1
|
Chen S, Daly P, Anjago WM, Wang R, Zhao Y, Wen X, Zhou D, Deng S, Lin X, Voglmeir J, Cai F, Shen Q, Druzhinina IS, Wei L. Genus-wide analysis of Trichoderma antagonism toward Pythium and Globisporangium plant pathogens and the contribution of cellulases to the antagonism. Appl Environ Microbiol 2024; 90:e0068124. [PMID: 39109875 PMCID: PMC11409678 DOI: 10.1128/aem.00681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 09/19/2024] Open
Abstract
Parasitism is an important lifestyle in the Trichoderma genus but has not been studied in a genus-wide way toward Pythium and Globisporangium hosts. Our approach screened a genus-wide set of 30 Trichoderma species in dual culture assays with two soil-borne Pythium and three Globisporangium plant-parasitic species and used exo-proteomic analyses, with the aim to correlate Trichoderma antagonism with potential strategies for attacking Pythium and Globisporangium. The Trichoderma spp. showed a wide range of antagonism from strong to weak, but the same Trichoderma strain showed similar levels toward all the Pythium and Globisporangium species. The Trichoderma enzymes from strong (Trichoderma asperellum, Trichoderma atroviride, and Trichoderma virens), moderate (Trichoderma cf. guizhouense and Trichoderma reesei), and weak (Trichoderma parepimyces) antagonists were induced by the autoclaved mycelia of one of the screened Pythium species, Pythium myriotylum. The variable proportions of putative cellulases, proteases, and redox enzymes suggested diverse as well as shared strategies amongst the antagonists. There was a partial positive correlation between antagonism from microscopy and the cellulase activity induced by autoclaved P. myriotylum mycelia in different Trichoderma species. The deletion of the cellulase transcriptional activator XYR1 in T. reesei led to lower antagonism toward Pythium and Globisporangium. The antagonism of Pythium and Globisporangium appears to be a generic property of Trichoderma as most of the Trichoderma species were at least moderately antagonistic. While a role for cellulases in the antagonism was uncovered, cellulases did not appear to make a major contribution to T. reesei antagonism, and other factors are also likely contributing.IMPORTANCETrichoderma is an important genus widely distributed in nature with broad ecological impacts and applications in the biocontrol of plant diseases. The Pythium and Globisporangium genera of fungus-like water molds include many important soil-borne plant pathogens that cause various diseases. Most of the Trichoderma species showed at least a moderate ability to compete with or antagonize the Pythium and Globisporangium hosts, and microscopy showed examples of parasitism (a slow type of killing) and predation (a fast type of killing). Hydrolytic enzymes such as cellulases and proteases produced by Trichoderma likely contribute to the antagonism. A mutant deficient in cellulase activity had reduced antagonism. Interestingly, Pythium and Globisporangium species contain cellulose in their cell walls (unlike true fungi such as Trichoderma), and the cellulolytic ability of Trichoderma appears beneficial for antagonism of water molds.
Collapse
Affiliation(s)
- Siqiao Chen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wilfred Mabeche Anjago
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yishen Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xian Wen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xisha Lin
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Cai
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Irina S. Druzhinina
- Department of Accelerated Taxonomy, The Royal Botanic Gardens Kew, London, United Kingdom
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
3
|
Xiao Z, Zhao Q, Li W, Gao L, Liu G. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front Microbiol 2023; 14:1146210. [PMID: 37125207 PMCID: PMC10134904 DOI: 10.3389/fmicb.2023.1146210] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
In the control of plant diseases, biocontrol has the advantages of being efficient and safe for human health and the environment. The filamentous fungus Trichoderma harzianum and its closely related species can inhibit the growth of many phytopathogenic fungi, and have been developed as commercial biocontrol agents for decades. In this review, we summarize studies on T. harzianum species complex from the perspective of strain improvement. To elevate the biocontrol ability, the production of extracellular proteins and compounds with antimicrobial or plant immunity-eliciting activities need to be enhanced. In addition, resistance to various environmental stressors should be strengthened. Engineering the gene regulatory system has the potential to modulate a variety of biological processes related to biocontrol. With the rapidly developing technologies for fungal genetic engineering, T. harzianum strains with increased biocontrol activities are expected to be constructed to promote the sustainable development of agriculture.
Collapse
Affiliation(s)
- Ziyang Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Li
- Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd., Beijing, China
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Wu X, Lyu Y, Ren H, Zhou F, Zhang X, Zhao X, Zhang G, Yang H. Degradation of oxalic acid by Trichoderma afroharzianum and its correlation with cell wall degrading enzymes in antagonising Botrytis cinerea. J Appl Microbiol 2022; 133:2680-2693. [PMID: 35543356 DOI: 10.1111/jam.15617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 11/27/2022]
Abstract
AIM Oxalic acid (OA) is one of the pathogenic factors of Botrytis cinerea. Trichoderma afroharzianum exerts both antagonistic and oxalate-degrading effects on B. cinerea. This study aimed to investigate the relationship between the elimination of OA by T. afroharzianum and its antagonistic effects on B. cinerea. METHODS AND RESULTS Reversed-phase high performance liquid chromatogram (RP-HPLC) analysis showed that T. afroharzianum LTR-2 eliminated 10- or 20-mmol/L OA within 120 h, with the degradation being particularly efficient at the concentration of 20 mmol/L. RNA-seq analysis showed that the oxalate decarboxylase (OXDC) gene Toxdc, β-1,3-exoglucanase gene Tglu, and aspartic protease gene Tpro of LTR-2 were significantly upregulated after treatment with 20-mmol/L OA. RT-qPCR analysis showed that under the conditions of confrontation, Toxdc and three cell wall degrading enzyme (CWDE) genes were upregulated before physical contact with B. cinerea. In addition, RT-qPCR analysis showed that OA synthesis in B. cinerea was not significantly affected by LTR-2. CONCLUSIONS The results revealed a correlation between OA degradation and mycoparasitism in T. afroharzianum when antagonizing B. cinerea at transcriptional level. SIGNIFICANCE AND IMPACT OF THE STUDY The relationship between OA degradation by T. afroharzianum and its effects against B. cinerea provide a new perspective on the antagonism of T. afroharzianum against B. cinerea. In addition, this study provides theoretical data for the scientific application of T. afroharzianum in the field of biocontrol.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Yuping Lyu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - He Ren
- Shandong New Times Pharmaceutical Co., Ltd., Linyi 273400, China
| | - Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Guangzhi Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Hetong Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| |
Collapse
|
5
|
Huilgol SN, Nandeesha KL, Banu H. Fungal Biocontrol Agents: An Eco-friendly Option for the Management of Plant Diseases to Attain Sustainable Agriculture in India. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Dautt-Castro M, Jijón-Moreno S, Gómez-Hernández N, del Carmen González-López M, Hernández-Hernández EJ, Rosendo-Vargas MM, Rebolledo-Prudencio OG, Casas-Flores S. New Insights on the Duality of Trichoderma as a Phytopathogen Killer and a Plant Protector Based on an Integrated Multi-omics Perspective. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Sánchez-Montesinos B, Santos M, Moreno-Gavíra A, Marín-Rodulfo T, Gea FJ, Diánez F. Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides. J Fungi (Basel) 2021; 7:598. [PMID: 34436137 PMCID: PMC8397002 DOI: 10.3390/jof7080598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Our purpose was to evaluate the ability of Trichoderma aggressivum f. europaeum as a biological control agent against diseases from fungal phytopathogens. Twelve isolates of T. aggressivum f. europaeum were obtained from several substrates used for Agaricus bisporus cultivation from farms in Castilla-La Mancha (Spain). Growth rates of the 12 isolates were determined, and their antagonistic activity was analysed in vitro against Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium solani f. cucurbitae, Pythium aphanidermatum, Rhizoctonia solani, and Mycosphaerella melonis, and all isolates had high growth rates. T. aggressivum f. europaeum showed high antagonistic activity for different phytopathogens, greater than 80%, except for P. aphanidermatum at approximately 65%. The most effective isolate, T. aggressivum f. europaeum TAET1, inhibited B. cinerea, S. sclerotiorum, and M. melonis growth by 100% in detached leaves assay and inhibited germination of S. sclerotiorum sclerotia. Disease incidence and severity in plant assays for pathosystems ranged from 22% for F. solani to 80% for M. melonis. This isolate reduced the incidence of Podosphaera xanthii in zucchini leaves by 66.78%. The high compatibility by this isolate with fungicides could allow its use in combination with different pest management strategies. Based on the results, T. aggressivum f. europaeum TAET1 should be considered for studies in commercial greenhouses as a biological control agent.
Collapse
Affiliation(s)
- Brenda Sánchez-Montesinos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Alejandro Moreno-Gavíra
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Teresa Marín-Rodulfo
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Francisco J. Gea
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), Quintanar del Rey, 16220 Cuenca, Spain;
| | - Fernando Diánez
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| |
Collapse
|
8
|
Deciphering Trichoderma-Plant-Pathogen Interactions for Better Development of Biocontrol Applications. J Fungi (Basel) 2021; 7:jof7010061. [PMID: 33477406 PMCID: PMC7830842 DOI: 10.3390/jof7010061] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the fungal genus Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) are ubiquitous and commonly encountered as soil inhabitants, plant symbionts, saprotrophs, and mycoparasites. Certain species have been used to control diverse plant diseases and mitigate negative growth conditions. The versatility of Trichoderma’s interactions mainly relies on their ability to engage in inter- and cross-kingdom interactions. Although Trichoderma is by far the most extensively studied fungal biocontrol agent (BCA), with a few species already having been commercialized as bio-pesticides or bio-fertilizers, their wide application has been hampered by an unpredictable efficacy under field conditions. Deciphering the dialogues within and across Trichoderma ecological interactions by identification of involved effectors and their underlying effect is of great value in order to be able to eventually harness Trichoderma’s full potential for plant growth promotion and protection. In this review, we focus on the nature of Trichoderma interactions with plants and pathogens. Better understanding how Trichoderma interacts with plants, other microorganisms, and the environment is essential for developing and deploying Trichoderma-based strategies that increase crop production and protection.
Collapse
|
9
|
Emanuel RV, César Arturo PU, Lourdes Iveth MR, Homero RDLC, Mauricio Nahuam CA. In vitro growth of Colletotrichum gloeosporioides is affected by butyl acetate, a compound produced during the co-culture of Trichoderma sp. and Bacillus subtilis. 3 Biotech 2020; 10:329. [PMID: 32656062 DOI: 10.1007/s13205-020-02324-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/29/2020] [Indexed: 02/01/2023] Open
Abstract
The co-culture of plant beneficial microbes to stimulate the production of antimicrobial metabolites is gaining ground. Here, the inactivated Colletotrichum gloeosporioides mycelium was used to induce the biosynthesis of antifungal compounds in the co-culture systems of Trichoderma sp. and Bacillus subtilis. The hexanic extracts obtained from the co-culture systems were tested against C. gloeosporioides. Those that inhibited the phytopathogen growth were further fractionated by column and thin-layer chromatography and analyzed by gas chromatography coupled to mass spectrometry (GC-MS). Ethyl butanoate, butyl acetate, acetic acid, 2-butoxyethanol, 3,5-di-tert-butyl-4-hydroxybenzaldehyde, 3,5-di-tert-butyl-4-hydroxybenzyl alcohol, hexadecanoic acid, and octadecanoic acid were identified. Butyl acetate was the most abundant compound, and its application affected the morphology and mycelial development of C. gloeosporioides, thereby inhibiting the radial growth, reducing spore formation, and inducing soft colonies. We conclude that co-culturing Trichoderma sp. and B. subtilis promotes the production of novel diffusible organic compounds with an antifungal effect on C. gloeosporioides.
Collapse
Affiliation(s)
- Ramírez-Vigil Emanuel
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, 58030 Morelia, Michoacán México
- Laboratorio de Bioquímica y Biología Molecular, División de Ingeniería Bioquímica, Tecnológico Nacional de México Campus Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez 2120, Fracc. Valle de la Herradura, 61100 Ciudad Hidalgo, Michoacán México
| | - Peña-Uribe César Arturo
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, 58030 Morelia, Michoacán México
| | - Macías-Rodríguez Lourdes Iveth
- Laboratorio de Bioquímica Ecológica, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-3, Ciudad Universitaria, 58030 Morelia, Michoacán México
| | - Reyes de la Cruz Homero
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, 58030 Morelia, Michoacán México
| | - Chávez-Avilés Mauricio Nahuam
- Laboratorio de Bioquímica y Biología Molecular, División de Ingeniería Bioquímica, Tecnológico Nacional de México Campus Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez 2120, Fracc. Valle de la Herradura, 61100 Ciudad Hidalgo, Michoacán México
| |
Collapse
|
10
|
Ullah A. Structure-Function Studies and Mechanism of Action of Snake Venom L-Amino Acid Oxidases. Front Pharmacol 2020; 11:110. [PMID: 32158389 PMCID: PMC7052187 DOI: 10.3389/fphar.2020.00110] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Snake venom L-amino acid oxidases (SV-LAAOs) are the least studied venom enzymes. These enzymes catalyze the stereospecific oxidation of an L-amino acid to their corresponding α-keto acid with the liberation of hydrogen peroxide (H2O2) and ammonia (NH3). They display various pathological and physiological activities including induction of apoptosis, edema, platelet aggregation/inhibition, hemorrhagic, and anticoagulant activities. They also show antibacterial, antiviral and leishmanicidal activity and have been used as therapeutic agents in some disease conditions like cancer and anti-HIV drugs. Although the crystal structures of six SV-LAAOs are present in the Protein Data Bank (PDB), there is no single article that describes all of them in particular. To better understand their structural properties and correlate it with their function, the current work describes structure characterization, structure-based mechanism of catalysis, inhibition and substrate specificity of SV-LAAOs. Sequence analysis indicates a high sequence identity (>84%) among SV-LAAOs, comparatively lower sequence identity with Pig kidney D-amino acid oxidase (<50%) and very low sequence identity (<24%) with bacterial LAAOs, Fugal (L-lysine oxidase), and Zea mays Polyamine oxidase (PAAO). The three-dimensional structure of these enzymes are composed of three-domains, a FAD-binding domain, a substrate-binding domain and a helical domain. The sequence and structural analysis indicate that the amino acid residues in the loops vary in length and composition due to which the surface charge distribution also varies that may impart variable substrate specificity to these enzymes. The active site cavity volume and its average depth also vary in these enzymes. The inhibition of these enzymes by synthetic inhibitors will lead to the production of more potent antivenoms against snakebite envenomation.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
11
|
Hua L, Yong C, Zhanquan Z, Boqiang L, Guozheng Q, Shiping T. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. FOOD QUALITY AND SAFETY 2018. [DOI: 10.1093/fqsafe/fyy016] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Li Hua
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
| | - Chen Yong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
| | - Zhang Zhanquan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Li Boqiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Qin Guozheng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Tian Shiping
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| |
Collapse
|
12
|
Cheng CH, Shen BN, Shang QW, Liu LYD, Peng KC, Chen YH, Chen FF, Hu SF, Wang YT, Wang HC, Wu HY, Lo CT, Lin SS. Gene-to-Gene Network Analysis of the Mediation of Plant Innate Immunity by the Eliciting Plant Response-Like 1 (Epl1) Elicitor of Trichoderma formosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:683-691. [PMID: 29436965 DOI: 10.1094/mpmi-01-18-0002-ta] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A new clade, Trichoderma formosa, secretes eliciting plant response-like 1 (Epl1), a small peptide elicitor that stimulates plant immunity. Nicotiana benthamiana pretreated with Epl1 for 3 days developed immunity against Tomato mosaic virus (ToMV) infection. The transcriptome profiles of T. formosa and N. benthamiana were obtained by deep sequencing; the transcript of Epl1 is 736 nt in length and encodes a 12-kDa peptide. Identifying critical genes in Epl1-mediated immunity was challenging due to high similarity between the transcriptome expression profiles of Epl1-treated and ToMV-infected N. benthamiana samples. Therefore, an efficient bioinformatics data mining approach was used for high-throughput transcriptomic assays in this study. We integrated gene-to-gene network analysis into the ContigViews transcriptome database, and genes related to jasmonic acid and ethylene signaling, salicylic acid signaling, leucine-rich repeats, transcription factors, and histone variants were hubs in the gene-to-gene networks. In this study, the Epl1 of T. formosa triggers plant immunity against various pathogen infections. Moreover, we demonstrated that high-throughput data mining and gene-to-gene network analysis can be used to identify critical candidate genes for further studies on the mechanisms of plant immunity.
Collapse
Affiliation(s)
- Chi-Hua Cheng
- 1 Department of Biotechnology, National Formosa University, Yulin, Taiwan
| | - Bing-Nan Shen
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Qian-Wen Shang
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kou-Cheng Peng
- 4 Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan
| | - Yan-Huey Chen
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Fang-Fang Chen
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Sin-Fen Hu
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tai Wang
- 5 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Hao-Ching Wang
- 6 Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Wu
- 7 Instrumentation Center, National Taiwan University
| | - Chaur-Tsuen Lo
- 1 Department of Biotechnology, National Formosa University, Yulin, Taiwan
| | - Shih-Shun Lin
- 2 Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- 5 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
- 8 Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; and
- 9 Center of Biotechnology, National Taiwan University
| |
Collapse
|
13
|
Sharma V, Salwan R, Shanmugam V. Molecular characterization of β-endoglucanase from antagonistic Trichoderma saturnisporum isolate GITX-Panog (C) induced under mycoparasitic conditions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:73-80. [PMID: 30033019 DOI: 10.1016/j.pestbp.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/28/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The endoglucanase belonging to glycoside hydrolase family 61 are little studied. In present study, a β-endoglucanase of ~37 kDa induced on autoclaved mycelium of Fusarium oxysporum was cloned and characterized. The molecular characterization of β-endoglucanase encoding gene revealed presence of a single intron and an open reading frame of 1044-bp which encoded a protein of 347 amino acid residues. The phylogenetic analysis of Eglu revealed its similarity to endo-β-glucanases of other Trichoderma spp. The catalytic site of β-endoglucanase contained Asp, Asn, His and Tyr residues. The cDNA encoding β-glucanase was cloned into E. coli and Pichia pastoris using pQUA-30 and pPIC9K vector system, respectively. The comparison of structure revealed that most similar structure to Eglu is Hypocrea jecorina template 5o2w.1.A of glycoside hydrolase family 61.The biochemical characterization of β-endoglucanase purified from T. saturnisporum isolate and the recombinant protein expressed in E. coli and P. pastoris was active under acidic conditions with a pH optima of 5 and temperature optima of 60 °C. The purified and expressed enzyme preparation was able to inhibit growth of F.oxysporum at 1 × 105 spores/mL which clearly revealed its significance in plant pathogen suppression.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research Development, Chandigarh University Gharuan, 140 413, India.
| | - Richa Salwan
- University Centre for Research Development, Chandigarh University Gharuan, 140 413, India
| | - V Shanmugam
- Division of Plant Pathology, IARI, New Delhi, India
| |
Collapse
|
14
|
Elamathi E, Malathi P, Viswanathan R, Ramesh Sundar A. Expression analysis on mycoparasitism related genes during antagonism of Trichoderma with Colletotrichum falcatum causing red rot in sugarcane. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2018. [DOI: 10.1007/s13562-018-0444-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Qiu Z, Wu X, Zhang J, Huang C. High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia. PLoS One 2017; 12:e0187055. [PMID: 29073211 PMCID: PMC5658199 DOI: 10.1371/journal.pone.0187055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022] Open
Abstract
Trichoderma asperellum is one of the species which can be isolated from contaminated Pleurotus ostreatus cultivation substrate with green mold disease. This study focused on the relationship between high temperature and infectivity of T. asperellum to P. ostreatus. Antagonism experiments between T. asperellum and P. ostreatus mycelia revealed that high temperature-treated P. ostreatus mycelia were more easily infected by T. asperellum and covered by conidia. Microscopic observation also showed that P. ostreatus mycelia treated with high temperature could adsorb more T. asperellum conidia. Furthermore, conidia obtained from T. asperellum mycelia grown at 36°C featured higher germination rate compared with that incubated at 28°C. High temperature-treated T. asperellum mycelia can produce conidia in shorter periods, and T. asperellum mycelia were less sensitive to high temperature than P. ostreatus. Deactivated P. ostreatus mycelia can induce T. asperellum cell wall-degrading enzymes (CWDEs) and P. ostreatus mycelia subjected to high temperature showed induced CWDEs more effective than those incubated at 28°C. Moreover, T. asperellum showed higher CWDEs activity at high temperature. In dual cultures, hydrogen peroxide (H2O2) increased after 36°C, and high concentration of H2O2 could significantly inhibit the growth of P. ostreatus mycelia. In summary, our findings indicated for the first time that high temperature can induce a series of mechanisms to enhance infection abilities of T. asperellum to P. ostreatus mycelia and to cause Pleurotus green mold disease.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Aloulou-Abdelkefi M, Trigui-Lahiani H, Gargouri A. Autoclaved mycelium induces efficiently the production of hydrolytic enzymes for protoplast preparation of autologous fungus. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s000368381702003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Ramada MHS, Steindorff AS, Bloch C, Ulhoa CJ. Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose. Proteomics 2016; 16:477-90. [PMID: 26631988 DOI: 10.1002/pmic.201400546] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 08/20/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2023]
Abstract
Trichoderma harzianum is a fungus well known for its potential as a biocontrol agent against many fungal phytopathogens. The aim of this study was to characterize the proteins secreted by T. harzianum ALL42 when its spores were inoculated and incubated for 48 h in culture media supplemented with glucose (GLU) or with cell walls from Fusarium solani (FSCW), a phytopathogen that causes severe losses in common bean and soy crops in Brazil, as well as other crop diseases around the world. Trichoderma harzianum was able to grow in Trichoderma Liquid Enzyme Production medium (TLE) and Minimal medium (MM) supplemented with FSCW and in TLE+GLU, but was unable to grow in MM+GLU medium. Protein quantification showed that TLE+FSCW and MM+FSCW had 45- and 30- fold, respectively, higher protein concentration on supernatant when compared to TLE+GLU, and this difference was observable on 2D gel electrophoresis (2DE). A total of 94 out of 105 proteins excised from 2DE maps were identified. The only protein observed in all three conditions was epl1. In the media supplemented with FSCW, different hydrolases such as chitinases, β-1,3-glucanases, glucoamylases, α-1,3-glucanases and proteases were identified, along with other proteins with no known functions in mycoparasitism, such as npp1 and cys. Trichoderma harzianum showed a complex and diverse arsenal of proteins that are secreted in response to the presence of FSCW, with novel proteins not previously described in mycoparasitic-related studies.
Collapse
Affiliation(s)
- Marcelo Henrique Soller Ramada
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Brasília, DF, Brazil
- Laboratório de Espectrometria de Massa, Embrapa-Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Andrei Stecca Steindorff
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Brasília, DF, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, Embrapa-Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Cirano José Ulhoa
- Laboratório de Enzimologia, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB), Goiânia, GO, Brazil
| |
Collapse
|
18
|
Sjaarda CP, Abubaker KS, Castle AJ. Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts. Microb Biotechnol 2015; 8:918-29. [PMID: 25824278 PMCID: PMC4621445 DOI: 10.1111/1751-7915.12277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/16/2015] [Indexed: 12/25/2022] Open
Abstract
Laccases are used by fungi for several functions including defence responses to stresses associated with attack by other fungi. Laccase activity changes and the induction of two laccase genes, lcc1 and lcc2, in Agaricus bisporus were measured in response to toxic extracts of medium in which Trichoderma aggressivum, the cause of green mould disease, was grown. A strain of A. bisporus that shows resistance to the extracts showed higher basal levels and greater enzymatic activity after extract exposure than did a sensitive strain. Furthermore, pre-incubation of T. aggressivum extract with laccases reduced toxicity. Faster induction and greater numbers of lcc2 transcripts in response to the extract were noted in the resistant strain than in the sensitive strain. The timing and increase in lcc2 transcript abundance mirrored changes in total laccase activity. No correlation between resistance and lcc1 transcription was apparent. Transcript abundance in transformants with a siRNA construct homologous to both genes varied widely. A strong negative correlation between transcript abundance and sensitivity of the transformant to toxic extract was observed in plate assays. These results indicated that laccase activity and in particular that encoded by lcc2 contributes to toxin metabolism and by extension green mould disease resistance.
Collapse
Affiliation(s)
- Calvin P Sjaarda
- Department of Biological Sciences, Brock UniversitySt Catharines, ON, L2S 3A1, Canada
| | - Kamal S Abubaker
- Department of Biological Sciences, Brock UniversitySt Catharines, ON, L2S 3A1, Canada
| | - Alan J Castle
- Department of Biological Sciences, Brock UniversitySt Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
19
|
Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res 2015; 40:315-324. [PMID: 27746683 PMCID: PMC5052430 DOI: 10.1016/j.jgr.2015.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. METHODS In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. RESULTS The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. CONCLUSION The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.
Collapse
|
20
|
Vos CMF, De Cremer K, Cammue BPA, De Coninck B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. MOLECULAR PLANT PATHOLOGY 2015; 16:400-12. [PMID: 25171761 PMCID: PMC6638538 DOI: 10.1111/mpp.12189] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma-plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR-prime phase). Finally, we discuss the ISR-boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea.
Collapse
Affiliation(s)
- Christine M F Vos
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium
| | | | | | | |
Collapse
|
21
|
Ullah A, Masood R, Spencer PJ, Murakami MT, Arni RK. Crystallization and preliminary X-ray diffraction studies of an L-amino-acid oxidase from Lachesis muta venom. Acta Crystallogr F Struct Biol Commun 2014; 70:1556-9. [PMID: 25372830 PMCID: PMC4231865 DOI: 10.1107/s2053230x14017877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/02/2014] [Indexed: 11/10/2022] Open
Abstract
Snake-venom proteins form multi-component defence systems by the recruitment and rapid evolution of nonvenomous proteins and hence serve as model systems to understand the structural modifications that result in toxicity. L-Amino-acid oxidases (LAAOs) are encountered in a number of snake venoms and have been implicated in the inhibition of platelet aggregation, cytotoxicity, haemolysis, apoptosis and haemorrhage. An L-amino-acid oxidase from Lachesis muta venom has been purified and crystallized. The crystals belonged to space group P2₁, with unit-cell parameters a=66.05, b=79.41, c=100.52 Å, β=96.55°. The asymmetric unit contained two molecules and the structure has been determined and partially refined at 3.0 Å resolution.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| | - Rehana Masood
- Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| | - Patrick Jack Spencer
- Comissão Nacional de Energia Nuclear, Instituto de Pesquisas Energéticas e Nucleares, IPEN, São Paulo 05508-900, Brazil
| | - Mário Tyago Murakami
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Raghuvir Krishnaswamy Arni
- Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
22
|
Zhang F, Yang X, Ran W, Shen Q. Fusarium oxysporuminduces the production of proteins and volatile organic compounds byTrichoderma harzianumT-E5. FEMS Microbiol Lett 2014; 359:116-23. [DOI: 10.1111/1574-6968.12582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fengge Zhang
- National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Xingming Yang
- National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization; Nanjing Agricultural University; Nanjing China
| | - Wei Ran
- National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization; Nanjing Agricultural University; Nanjing China
| | - Qirong Shen
- National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
23
|
Shibu MA, Yang HH, Lo CT, Lin HS, Liu SY, Peng KC. Characterization of a novel resistance-related deoxycytidine deaminase from Brassica oleracea var. capitata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1796-1801. [PMID: 24475736 DOI: 10.1021/jf4048513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Brassica oleracea deoxycytidine deaminase (BoDCD), a deoxycytidine deaminase (DCD, EC 3.5.4.14) enzyme, is known to play an important role in the Trichoderma harzianum ETS 323 mediated resistance mechanism in young leaves of B. oleracea var. capitata during Rhizoctonia solani infection. BoDCD potentially neutralizes cytotoxic products of host lipoxygenase activity, and thereby BoDCD restricts the hypersensitivity-related programmed cell death induced in plants during the initial stages of infection. To determine the biochemical characteristics and to partially elucidate the designated functional properties of BoDCD, the enzyme was cloned into an Escherichia coli expression system, and its potential to neutralize the toxic analogues of 2'-deoxycytidine (dC) was examined. BoDCD transformants of E. coli cells were found to be resistant to 2'-deoxycytidine analogues at all of the concentrations tested. The BoDCD enzyme was also overexpressed as a histidine-tagged protein and purified using nickel chelating affinity chromatography. The molecular weight of BoDCD was determined to be 20.8 kDa as visualized by SDS-PAGE. The substrate specificity and other kinetic properties show that BoDCD is more active in neutralizing cytotoxic cytosine β-d-arabinofuranoside than in deaminating 2'-deoxycytinde to 2'-deoxyuridine in nucleic acids or in metabolizing cytidine to uridine. The optimal temperature and pH of the enzyme were 27 °C and 7.5. The Km and Vmax values of BoDCD were, respectively, 91.3 μM and 1.475 mM for its natural substrate 2'-deoxycytidine and 63 μM and 2.072 mM for cytosine β-d-arabinofuranoside. The phenomenon of neutralization of cytotoxic dC analogues by BoDCD is discussed in detail on the basis of enzyme biochemical properties.
Collapse
Affiliation(s)
- Marthandam Asokan Shibu
- Department of Life Science and the Institute of Biotechnology, National Dong Hwa University , Hualien 97401, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Guigón-López C, Guerrero-Prieto V, Lanzuise S, Lorito M. Enzyme activity of extracellular protein induced in Trichoderma asperellum and T. longibrachiatum by substrates based on Agaricus bisporus and Phymatotrichopsis omnivora. Fungal Biol 2014; 118:211-21. [DOI: 10.1016/j.funbio.2013.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/28/2022]
|
25
|
Liu Y, Yang Q. Cloning and Heterologous Expression of Serine Protease SL41 Related to Biocontrol in Trichoderma harzianum. J Mol Microbiol Biotechnol 2013; 23:431-9. [DOI: 10.1159/000346830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Yao L, Yang Q, Song J, Tan C, Guo C, Wang L, Qu L, Wang Y. Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88. J Microbiol 2013; 51:174-82. [DOI: 10.1007/s12275-013-2545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/22/2012] [Indexed: 01/10/2023]
|
27
|
Cheng CH, Yang CA, Peng KC. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. PHYTOPATHOLOGY 2012; 102:1054-63. [PMID: 22734558 DOI: 10.1094/phyto-11-11-0315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
ABSTRACT Previous studies have shown that the extracellular proteins of Trichoderma harzianum ETS 323 grown in the presence of deactivated Botrytis cinerea in culture include a putative l-amino acid oxidase and have suggested the involvement of this enzyme in the antagonistic mechanism. Here, we hypothesized that the mycoparasitic process of Trichoderma spp. against B. cinerea involves two steps; that is, an initial hyphal coiling stage and a subsequent hyphal coiling stage, with different coiling rates. The two-step antagonism of T. harzianum ETS 323 against B. cinerea during the mycoparasitic process in culture was evaluated using a biexponential equation. In addition, an l-amino acid oxidase (Th-l-AAO) was identified from T. harzianum ETS 323. The secretion of Th-l-AAO was increased when T. harzianum ETS 323 was grown with deactivated hyphae of B. cinerea. Moreover, in vitro assays indicated that Th-l-AAO effectively inhibited B. cinerea hyphal growth, caused cytosolic vacuolization in the hyphae, and led to hyphal lysis. Th-l-AAO also showed disease control against the development of B. cinerea on postharvest apple fruit and tobacco leaves. Furthermore, an apoptosis-like response, including the generation of reactive oxygen species, was observed in B. cinerea after treatment with Th-l-AAO, suggesting that Th-l-AAO triggers programmed cell death in B. cinerea. This may be associated with the two-step antagonism of T. harzianum ETS 323 against B. cinerea.
Collapse
Affiliation(s)
- Chi-Hua Cheng
- Institute of Biotechnology, National Dong-Hwa University, Hualien 97401, Taiwan, R.O.C
| | | | | |
Collapse
|
28
|
Silva AJD, Gómez-Mendoza DP, Junqueira M, Domont GB, Ximenes Ferreira Filho E, de Sousa MV, Ricart CAO. Blue native-PAGE analysis of Trichoderma harzianum secretome reveals cellulases and hemicellulases working as multienzymatic complexes. Proteomics 2012; 12:2729-38. [DOI: 10.1002/pmic.201200048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adelson Joel da Silva
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Diana Paola Gómez-Mendoza
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Magno Junqueira
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | | | | | - Marcelo Valle de Sousa
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Carlos André Ornelas Ricart
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| |
Collapse
|
29
|
Do Vale LHF, Gómez-Mendoza DP, Kim MS, Pandey A, Ricart CAO, Edivaldo XFF, Sousa MV. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 2012; 12:2716-28. [DOI: 10.1002/pmic.201200063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/24/2012] [Accepted: 05/30/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Luis H. F. Do Vale
- Brazilian Center for Protein Research; Laboratory of Protein Chemistry and Biochemistry; Department of Cell Biology; University of Brasilia; Brasilia; DF; Brazil
| | - Diana P. Gómez-Mendoza
- Brazilian Center for Protein Research; Laboratory of Protein Chemistry and Biochemistry; Department of Cell Biology; University of Brasilia; Brasilia; DF; Brazil
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine; Johns Hopkins University School of Medicine; Baltimore; MD; USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine; Johns Hopkins University School of Medicine; Baltimore; MD; USA
| | - Carlos A. O. Ricart
- Brazilian Center for Protein Research; Laboratory of Protein Chemistry and Biochemistry; Department of Cell Biology; University of Brasilia; Brasilia; DF; Brazil
| | | | - Marcelo V. Sousa
- Brazilian Center for Protein Research; Laboratory of Protein Chemistry and Biochemistry; Department of Cell Biology; University of Brasilia; Brasilia; DF; Brazil
| |
Collapse
|
30
|
Ullah A, Coronado M, Murakami MT, Betzel C, Arni RK. Crystallization and preliminary X-ray diffraction analysis of an L-amino-acid oxidase from Bothrops jararacussu venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:211-3. [PMID: 22298002 DOI: 10.1107/s1744309111054923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022]
Abstract
Snake-venom L-amino-acid oxidases (SV-LAAOs) trigger a wide range of local and systematic effects, including inhibition of platelet aggregation, cytotoxicity, haemolysis, apoptosis and haemorrhage. These effects mainly arise from the uncontrolled release of the hydrogen peroxide that is produced by the redox reaction involving L-amino acids catalyzed by these flavoenzymes. Taking their clinical relevance into account, few SV-LAAOs have been structurally characterized and the structural determinants responsible for their broad direct and indirect pharmacological activities remain unclear. In this work, an LAAO from Bothrops jararacussu venom (BJu-LAAO) was purified and crystallized. The BJu-LAAO crystals belonged to space group P2(1), with unit-cell parameters a = 66.38, b = 72.19, c = 101.53 Å, β = 90.9°. The asymmetric unit contained two molecules and the structure was determined and partially refined at 3.0 Å resolution.
Collapse
Affiliation(s)
- Anwar Ullah
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto-SP, Brazil
| | | | | | | | | |
Collapse
|
31
|
Lukasheva E, Efremova A, Treshalina E, Arinbasarova A, Medentzev A, Berezov T. L-amino acid oxidases: properties and molecular mechanisms of action. ACTA ACUST UNITED AC 2012; 58:372-84. [DOI: 10.18097/pbmc20125804372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During previous decade L-amino acid oxidases (LAAO) attracted the steady interest of researchers due to their poly functional effects on different biological systems. The review summarizes information concerning the sources, structure, phisico-chemical and catalytical properties of LAAO which exhibit antibacterial, antifungal, antiprotozoal, antiviral effects as well as the ambiguous action on platelet aggregation. Special attention is devoted to the elucidation of molecular mechanisms of LAAO action. It is proposed that the unique properties of LAAO are based on their catalytic reaction, which causes the decrease of L-amino acid levels, including the essential amino acids and formation of hydrogen peroxide. The action of liberated H2O2 on cells involves the synthesis of oxygen reactive species and the development of necrotic and apoptotic pathways of cell death. The presence of carbohydrate moieties in LAAO molecules promotes their attachment to cell's surface and creation of high H2O2 local concentrations. The wide range of LAAO biological effects is undoubtedly connected with their important functional roles in the organism. In particular, it was shown that in the mice brain the LAAO-catalyzed reaction is the single pathway of L-lysine degradation, while in the mice milk LAAO carry out the antibacterial effect and in human leucocytes LAAO take part in fulfilling their defending role. Protector action may be also attributed to the oxidases from the other numerous sources: microscopic fungi, snake venoms and sea inhabitants.
Collapse
Affiliation(s)
- E.V. Lukasheva
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| | - A.A. Efremova
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| | - E.M. Treshalina
- N. N. Blokhin Cancer Research Center,Russian Academy of Medical Sciences
| | - A.Ju. Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
| | - A.G. Medentzev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
| | - T.T. Berezov
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| |
Collapse
|
32
|
Lukasheva EV, Efremova AA, Treshalina EM, Arinbasarova AY, Medentzev AG, Berezov TT. L-Amino acid oxidases: Properties and molecular mechanisms of action. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s199075081104007x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 2011; 77:4361-70. [PMID: 21531825 DOI: 10.1128/aem.00129-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A high-throughput sequencing approach was utilized to carry out a comparative transcriptome analysis of Trichoderma atroviride IMI206040 during mycoparasitic interactions with the plant-pathogenic fungus Rhizoctonia solani. In this study, transcript fragments of 7,797 Trichoderma genes were sequenced, 175 of which were host responsive. According to the functional annotation of these genes by KOG (eukaryotic orthologous groups), the most abundant group during direct contact was "metabolism." Quantitative reverse transcription (RT)-PCR confirmed the differential transcription of 13 genes (including swo1, encoding an expansin-like protein; axe1, coding for an acetyl xylan esterase; and homologs of genes encoding the aspartyl protease papA and a trypsin-like protease, pra1) in the presence of R. solani. An additional relative gene expression analysis of these genes, conducted at different stages of mycoparasitism against Botrytis cinerea and Phytophthora capsici, revealed a synergistic transcription of various genes involved in cell wall degradation. The similarities in expression patterns and the occurrence of regulatory binding sites in the corresponding promoter regions suggest a possible analog regulation of these genes during the mycoparasitism of T. atroviride. Furthermore, a chitin- and distance-dependent induction of pra1 was demonstrated.
Collapse
|
34
|
Alves RM, Feliciano PR, Sampaio SV, Nonato MC. A rational protocol for the successful crystallization of L-amino-acid oxidase from Bothrops atrox. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:475-8. [PMID: 21505245 PMCID: PMC3080154 DOI: 10.1107/s1744309111003770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/29/2011] [Indexed: 11/10/2022]
Abstract
Despite the valuable contributions of robotics and high-throughput approaches to protein crystallization, the role of an experienced crystallographer in the evaluation and rationalization of a crystallization process is still crucial to obtaining crystals suitable for X-ray diffraction measurements. In this work, the difficult task of crystallizing the flavoenzyme L-amino-acid oxidase purified from Bothrops atrox snake venom was overcome by the development of a protocol that first required the identification of a non-amorphous precipitate as a promising crystallization condition followed by the implementation of a methodology that combined crystallization in the presence of oil and seeding techniques. Crystals were obtained and a complete data set was collected to 2.3 Å resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 73.64, b = 123.92, c = 105.08 Å, β = 96.03°. There were four protein subunits in the asymmetric unit, which gave a Matthews coefficient V(M) of 2.12 Å(3) Da(-1), corresponding to 42% solvent content. The structure has been solved by molecular-replacement techniques.
Collapse
Affiliation(s)
- Raquel Melo Alves
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirao Preto–FCFRP–USP, Avenida do Café s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil
| | - Patricia Rosa Feliciano
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto–FCFRP–USP, Avenida do Café s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil
| | - Suely Vilela Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirao Preto–FCFRP–USP, Avenida do Café s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto–FCFRP–USP, Avenida do Café s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil
| |
Collapse
|
35
|
Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from 'omics to the field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:395-417. [PMID: 20455700 DOI: 10.1146/annurev-phyto-073009-114314] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Structural and functional genomics investigations are making an important impact on the current understanding and application of microbial agents used for plant disease control. Here, we review the case of Trichoderma spp., the most widely applied biocontrol fungi, which have been extensively studied using a variety of research approaches, including genomics, transcriptomics, proteomics, metabolomics, etc. Known for almost a century for their beneficial effects on plants and the soil, these fungi are the subject of investigations that represent a successful case of translational research, in which 'omics-generated novel understanding is directly translated in to new or improved crop treatments and management methods. We present an overview of the latest discoveries on the Trichoderma expressome and metabolome, of the complex and diverse biotic interactions established in nature by these microbes, and of their proven or potential importance to agriculture and industry.
Collapse
Affiliation(s)
- Matteo Lorito
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale (ArBoPaVe), Università di Napoli Federico II, Portici, Napoli, Italy 80138.
| | | | | | | |
Collapse
|