1
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
2
|
Arce FT, Younger S, Gaber AA, Mascarenhas JB, Rodriguez M, Dudek SM, Garcia JGN. Lamellipodia dynamics and microrheology in endothelial cell paracellular gap closure. Biophys J 2023; 122:4730-4747. [PMID: 37978804 PMCID: PMC10754712 DOI: 10.1016/j.bpj.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Vascular endothelial cells (ECs) form a semipermeable barrier separating vascular contents from the interstitium, thereby regulating the movement of water and molecular solutes across small intercellular gaps, which are continuously forming and closing. Under inflammatory conditions, however, larger EC gaps form resulting in increased vascular leakiness to circulating fluid, proteins, and cells, which results in organ edema and dysfunction responsible for key pathophysiologic findings in numerous inflammatory disorders. In this study, we extend our earlier work examining the biophysical properties of EC gap formation and now address the role of lamellipodia, thin sheet-like membrane projections from the leading edge, in modulating EC spatial-specific contractile properties and gap closure. Micropillars, fabricated by soft lithography, were utilized to form reproducible paracellular gaps in human lung ECs. Using time-lapse imaging via optical microscopy, rates of EC gap closure and motility were measured with and without EC stimulation with the barrier-enhancing sphingolipid, sphingosine-1-phosphate. Peripheral ruffle formation was ubiquitous during gap closure. Kymographs were generated to quantitatively compare the lamellipodia dynamics of sphingosine-1-phosphate-stimulated and -unstimulated ECs. Utilizing atomic force microscopy, we characterized the viscoelastic behavior of EC lamellipodia. Our results indicate decreased stiffness and increased liquid-like behavior of expanding lamellipodia compared with regions away from the cellular edge (lamella and cell body) during EC gap closure, results in sync with the rapid kinetics of protrusion/retraction motion. We hypothesize this dissipative EC behavior during gap closure is linked to actomyosin cytoskeletal rearrangement and decreased cross-linking during lamellipodia expansion. In summary, these studies of the kinetic and mechanical properties of EC lamellipodia and ruffles at gap boundaries yield insights into the mechanisms of vascular barrier restoration and potentially a model system for examining the druggability of lamellipodial protein targets to enhance vascular barrier integrity.
Collapse
Affiliation(s)
- Fernando Teran Arce
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida.
| | - Scott Younger
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Amir A Gaber
- Department of Medicine, University of Arizona, Tucson, Arizona
| | | | - Marisela Rodriguez
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida; Department of Medicine, University of Arizona, Tucson, Arizona
| | - Steven M Dudek
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois
| | - Joe G N Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida.
| |
Collapse
|
3
|
Wei Y, Wang K, Xia Q, Li B, Liu L. 3D diversiform dynamic process of microvilli in living cells. Biochem Biophys Res Commun 2022; 635:114-119. [DOI: 10.1016/j.bbrc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/17/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
4
|
Fonseka NM, Arce FT, Christie HS, Aspinwall CA, Saavedra SS. Nanomechanical Properties of Artificial Lipid Bilayers Composed of Fluid and Polymerizable Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:100-111. [PMID: 34968052 DOI: 10.1021/acs.langmuir.1c02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymerization enhances the stability of a planar supported lipid bilayer (PSLB) but it also changes its chemical and mechanical properties, attenuates lipid diffusion, and may affect the activity of integral membrane proteins. Mixed bilayers composed of fluid lipids and poly(lipids) may provide an appropriate combination of polymeric stability coupled with the fluidity and elasticity needed to maintain the bioactivity of reconstituted receptors. Previously (Langmuir, 2019, 35, 12483-12491) we showed that binary mixtures of the polymerizable lipid bis-SorbPC and the fluid lipid DPhPC form phase-segregated PSLBs composed of nanoscale fluid and poly(lipid) domains. Here we used atomic force microscopy (AFM) to compare the nanoscale mechanical properties of these binary PSLBs with single-component PSLBs. The elastic (Young's) modulus, area compressibility modulus, and bending modulus of bis-SorbPC PSLBs increased upon polymerization. Before polymerization, breakthrough events at forces below 5 nN were observed, but after polymerization, the AFM tip could not penetrate the PSLB up to an applied force of 20 nN. These results are attributed to the polymeric network in poly(bis-SorbPC), which increases the bilayer stiffness and resists compression and bending. In binary DPhPC/poly(bis-SorbPC) PSLBs, the DPhPC domains are less stiff, more compressible, and are less resistant to rupture and bending compared to pure DPhPC bilayers. These differences are attributed to bis-SorbPC monomers and oligomers present in DPhPC domains that disrupt the packing of DPhPC molecules. In contrast, the poly(bis-SorbPC) domains are stiffer and less compressible relative to pure PSLBs; this difference is attributed to DPhPC filling the nm-scale pores in the polymerized domains that are created during bis-SorbPC polymerization. Thus, incomplete phase segregation increases the stability of poly(bis-SorbPC) but has the opposite, detrimental effect for DPhPC. Overall, these results provide guidance for the design of partially polymerized bilayers for technological uses.
Collapse
Affiliation(s)
- N Malithi Fonseka
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Fernando Teran Arce
- Department of Medicine, University of Arizona, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Hamish S Christie
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute and Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - S Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute and Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Arefi SMA, Yang CWT, Sin DD, Feng JJ. A mechanical test of the tenertaxis hypothesis for leukocyte diapedesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:93. [PMID: 34236552 PMCID: PMC8264968 DOI: 10.1140/epje/s10189-021-00096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
As part of the immune response, leukocytes can directly transmigrate through the body of endothelial cells or through the gap between adjacent endothelial cells. These are known, respectively, as the transcellular and paracellular route of diapedesis. What determines the usage of one route over the other is unclear. A recently proposed tenertaxis hypothesis claims that leukocytes choose the path with less mechanical resistance against leukocyte protrusions. We examined this hypothesis using numerical simulation of the mechanical resistance during paracellular and transcellular protrusions. By using parameters based on human lung endothelium, our results show that the required force to breach the endothelium through the transcellular route is greater than paracellular route, in agreement with experiments. Moreover, experiments have demonstrated that manipulation of the relative strength between the two routes can make the transcellular route preferable. Our simulations have demonstrated this reversal and thus tentatively confirmed the hypothesis of tenertaxis.
Collapse
Affiliation(s)
- S M Amin Arefi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Cheng Wei Tony Yang
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| |
Collapse
|
6
|
Wang T, Brown ME, Kelly GT, Camp SM, Mascarenhas JB, Sun X, Dudek SM, Garcia JGN. Myosin light chain kinase ( MYLK) coding polymorphisms modulate human lung endothelial cell barrier responses via altered tyrosine phosphorylation, spatial localization, and lamellipodial protrusions. Pulm Circ 2018; 8:2045894018764171. [PMID: 29480069 PMCID: PMC5846938 DOI: 10.1177/2045894018764171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive endogenous lipid that signals a rearrangement of the actin cytoskeleton via the regulation of non-muscle myosin light chain kinase isoform (nmMLCK). S1P induces critical nmMLCK Y464 and Y471 phosphorylation resulting in translocation of nmMLCK to the periphery where spatially-directed increases in myosin light chain (MLC) phosphorylation and tension result in lamellipodia protrusion, increased cell-cell adhesion, and enhanced vascular barrier integrity. MYLK, the gene encoding nmMLCK, is a known candidate gene in lung inflammatory diseases, with coding genetic variants (Pro21His, Ser147Pro, Val261Ala) that confer risk for inflammatory lung injury and influence disease severity. The functional mechanisms by which these MYLK coding single nucleotide polymorphisms (SNPs) affect biologic processes to increase disease risk and severity remain elusive. In the current study, we utilized quantifiable cell immunofluorescence assays to determine the influence of MYLK coding SNPs on S1P-mediated nmMLCK phosphorylation and translocation to the human lung endothelial cell (EC) periphery . These disease-associated MYLK variants result in reduced levels of S1P-induced Y464 phosphorylation, a key site for nmMLCK enzymatic regulation and activation. Reduced Y464 phosphorylation resulted in attenuated nmMLCK protein translocation to the cell periphery. We further conducted EC kymographic assays which confirmed that lamellipodial protrusion in response to S1P challenge was retarded by expression of a MYLK transgene harboring the three MYLK coding SNPs. These data suggest that ARDS/severe asthma-associated MYLK SNPs functionally influence vascular barrier-regulatory cytoskeletal responses via direct alterations in the levels of nmMLCK tyrosine phosphorylation, spatial localization, and lamellipodial protrusions.
Collapse
Affiliation(s)
- Ting Wang
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Mary E Brown
- 2 Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Gabriel T Kelly
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joseph B Mascarenhas
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Xiaoguang Sun
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Steven M Dudek
- 2 Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| |
Collapse
|
7
|
Viswanathan P, Ephstein Y, Garcia JGN, Cho M, Dudek SM. Differential elastic responses to barrier-altering agonists in two types of human lung endothelium. Biochem Biophys Res Commun 2016; 478:599-605. [PMID: 27473658 DOI: 10.1016/j.bbrc.2016.07.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 01/21/2023]
Abstract
Vascular integrity is primarily determined by endothelial cell (EC) cytoskeletal structure that is differentially regulated by various stimuli. In this study, atomic force microscopy (AFM) was used to characterize structural and mechanical properties in the cytoskeleton of cultured human pulmonary artery EC (HPAEC) and human lung microvascular EC (HLMVEC) by determining elastic properties (Young's modulus) in response to endogenous barrier protective agents sphingosine 1-phosphate (S1P) and hepatocyte growth factor (HGF), or the barrier disruptive molecule thrombin. Initial studies in unstimulated cells indicate higher baseline peripheral elastic modulus values in HPAEC (mean 2.9 KPa) than in HLMVEC (1.8 KPa). After 30 min of stimulation, S1P induced the highest Young's modulus increase (6.1 KPa) compared to the other barrier enhancing stimuli, HGF (5.8 KPa) and the pharmaceutical agent and S1P analog FTY720 (4.1 KPa). In contrast, the barrier disruptive agent thrombin decreased values from 2.5 KPa to 0.7 KPa depending on the cell type and treatment time. AFM topographical imaging supports these quantitative biophysical data regarding differential peripheral elastic properties in EC. Overall, these AFM studies provide novel insights into the biomechanical properties of human lung EC that regulate vascular barrier function and have potential applicability to pathophysiologic vascular leak syndromes such as acute lung injury.
Collapse
Affiliation(s)
- P Viswanathan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Y Ephstein
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - J G N Garcia
- Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - M Cho
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - S M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Fior R, Kwok J, Malfatti F, Sbaizero O, Lal R. Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells. Ann Biomed Eng 2015; 43:1841-50. [PMID: 25549773 PMCID: PMC4490153 DOI: 10.1007/s10439-014-1229-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response.
Collapse
Affiliation(s)
- Raffaella Fior
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, USA
- Department of Engineering and Architecture, University of Trieste, Trieste, 31400, Italy
| | - Jeanie Kwok
- Department of Aerospace and Mechanical Engineering, University of California, San Diego, La Jolla, 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, 92093, USA
| | - Francesca Malfatti
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 92093, USA
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, 31400, Italy
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, USA
- Department of Aerospace and Mechanical Engineering, University of California, San Diego, La Jolla, 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, 92093, USA
| |
Collapse
|
9
|
Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability. Sci Rep 2015; 5:11097. [PMID: 26086333 PMCID: PMC4650616 DOI: 10.1038/srep11097] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
The endothelial cell (EC) lining of the pulmonary vascular system forms a
semipermeable barrier between blood and the interstitium and regulates various
critical biochemical functions. Collectively, it represents a prototypical
biomechanical system, where the complex hierarchical architecture, from the
molecular scale to the cellular and tissue level, has an intimate and intricate
relationship with its biological functions. We investigated the mechanical
properties of human pulmonary artery endothelial cells (ECs) using atomic force
microscopy (AFM). Concurrently, the wider distribution and finer details of the
cytoskeletal nano-structure were examined using fluorescence microscopy (FM) and
scanning transmission electron microscopy (STEM), respectively. These correlative
measurements were conducted in response to the EC barrier-disrupting agent,
thrombin, and barrier-enhancing agent, sphingosine 1-phosphate (S1P). Our new
findings and analysis directly link the spatio-temporal complexities of cell
re-modeling and cytoskeletal mechanical properties alteration. This work provides
novel insights into the biomechanical function of the endothelial barrier and
suggests similar opportunities for understanding the form-function relationship in
other biomechanical subsystems.
Collapse
|
10
|
Altmann JB, Yan G, Meeks JF, Abood ME, Brailoiu E, Brailoiu GC. G protein-coupled estrogen receptor-mediated effects on cytosolic calcium and nanomechanics in brain microvascular endothelial cells. J Neurochem 2015; 133:629-39. [PMID: 25703621 DOI: 10.1111/jnc.13066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 01/14/2023]
Abstract
G protein-coupled estrogen receptor (GPER) is a relatively recently identified non-nuclear estrogen receptor, expressed in several tissues, including brain and blood vessels. The mechanisms elicited by GPER activation in brain microvascular endothelial cells are incompletely understood. The purpose of this work was to assess the effects of GPER activation on cytosolic Ca(2+) concentration, [Ca(2+)](i), nitric oxide production, membrane potential and cell nanomechanics in rat brain microvascular endothelial cells (RBMVEC). Extracellular but not intracellular administration of G-1, a selective GPER agonist, or extracellular administration of 17-β-estradiol and tamoxifen, increased [Ca(2+)](i) in RBMVEC. The effect of G-1 on [Ca(2+)](i) was abolished in Ca(2+) -free saline or in the presence of a L-type Ca(2+) channel blocker. G-1 increased nitric oxide production in RBMVEC; the effect was prevented by NG-nitro-l-arginine methyl ester. G-1 elicited membrane hyperpolarization that was abolished by the antagonists of small and intermediate-conductance Ca(2+) -activated K(+) channels, apamin, and charibdotoxin. GPER-mediated responses were sensitive to G-36, a GPER antagonist. In addition, atomic force microscopy studies revealed that G-1 increased the modulus of elasticity, indicative of cytoskeletal changes and increase in RBMVEC stiffness. Our results unravel the mechanisms underlying GPER-mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature. Activation of the G protein-coupled estrogen receptor (GPER) in rat brain microvascular endothelial cells (RBMVEC) increases [Ca(2+)](i) by promoting Ca(2+) influx. The increase in [Ca(2+)](i) leads to membrane hyperpolarization, nitric oxide (NO) production, and to cytoskeletal changes and increased cell stiffness. Our results unravel the mechanisms underlying GPER-mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature.
Collapse
Affiliation(s)
- Joseph B Altmann
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gaspar D, Freire JM, Pacheco TR, Barata JT, Castanho MA. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:308-16. [DOI: 10.1016/j.bbamcr.2014.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022]
|
12
|
Sharma S, Santiskulvong C, Rao J, Gimzewski JK, Dorigo O. The role of Rho GTPase in cell stiffness and cisplatin resistance in ovarian cancer cells. Integr Biol (Camb) 2015; 6:611-7. [PMID: 24718685 DOI: 10.1039/c3ib40246k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in cell stiffness (Young's modulus, E), as measured via Atomic Force Microscopy (AFM), is a newly recognized characteristic of cancer cells and may play a role in platinum drug resistance of ovarian cancers. We previously showed that, compared to their syngeneic cisplatin-sensitive counterpart, cisplatin-resistant ovarian cancer cells are stiffer, and this cell stiffness was dependent on actin polymerization and presence of stress fibers. Here, we measured the correlation between Young's modulus (via AFM measurements on live, non-apoptotic cells in physiological buffer) and cisplatin-sensitivity (IC50 as determined via the XTT cell viability assay) in a panel of nine ovarian cancer cell lines representing a range of cisplatin sensitivities. We found that cisplatin-sensitive cells had a lower Young's modulus, compared to cisplatin-resistant cells and resistant cells had a cytoskeleton composed of long actin stress fibers. As Rho GTPase mediates stress fiber formation, we examined the role of Rho GTPase in cell stiffness and platinum resistance. Rho inhibition decreased cell stiffness in cisplatin-resistant CP70 cells and increased their cisplatin sensitivity while Rho activation increased cell stiffness in cisplatin-sensitive A2780 cells and decreased their cisplatin sensitivity. Based on changes in cell stiffness, IC50 and cellular actin stress fiber organization in CP70 and A2780 cells, our findings reveal a direct role of Rho mediated actin remodeling mechanism in cisplatin resistance of ovarian cancer cells. These findings suggest the potential applicability of cell mechanical phenotyping as a model for determining sensitivity of ovarian cancer cells that could have major implications in ovarian cancer diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
13
|
Fine Needle Elastography (FNE) device for biomechanically determining local variations of tissue mechanical properties. J Biomech 2014; 48:81-8. [PMID: 25468668 DOI: 10.1016/j.jbiomech.2014.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 11/22/2022]
Abstract
Diseased tissues exhibit changes in mechanical properties and thus possess clinical diagnostic significance. We report the design and development of a Fine Needle Elastography (FNE) prototype device integrated with Fine Needle Aspiration Cytology (FNAC) needle that allows for quantitative and sensitive assessment of tissues and materials based on local variations in elastic, friction, and cutting forces on needle insertion. A piezoelectric force-sensor at the base of FNA needle measures the forces opposing needle penetration with micrometer scale resolution. Measurement precision (±5 μm) and axial resolution (~20 μm) of FNE device was tested using control mm size gelatin matrices and unripe pear in assessing needle penetration resistance, force heterogeneity and optimization of needle penetration velocity. Further, we demonstrated the usefulness of FNE in quantitative, biomechanical differentiation of simulated thyroid tumor nodules in an ultrasound neck phantom. Fluid or solid nodules were probed in the phantom study coupled with ultrasound guidance. Our data shows significantly higher force variations (1-D force heterogeneity; HF,a=6.5 mN, HF,q=8.25 mN and stiffness heterogeneity; HS,a=0.0274 kN/m, HS,q=0.0395 kN/m) in solid nodules compared either to fluid nodules or to regions corresponding to healthy thyroid tissue within the ultrasound phantom. The results suggest future applications of in vivo FNE biopsies based on force heterogeneity to diagnose thyroid tumors in areas where ultrasound instrumentation or access to a qualified pathologist for FNAC are unavailable, as well as an ancillary diagnostic tool in thyroid cancer management.
Collapse
|
14
|
Choi AH, Conway RC, Ben-Nissan B. Finite-element modeling and analysis in nanomedicine and dentistry. Nanomedicine (Lond) 2014; 9:1681-95. [DOI: 10.2217/nnm.14.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article aims to provide a brief background to the current applications of finite-element analysis (FEA) in nanomedicine and dentistry. FEA was introduced in orthopedic biomechanics in the 1970s in order to assess the stresses and deformation in human bones during functional loadings and in the design and analysis of implants. Since then, it has been applied with great frequency in orthopedics and dentistry in order to analyze issues such as implant design, bone remodeling and fracture healing, the mechanical properties of biomedical coatings on implants and the interactions at the bone–implant interface. More recently, FEA has been used in nanomedicine to study the mechanics of a single cell and to gain fundamental insights into how the particulate nature of blood influences nanoparticle delivery.
Collapse
Affiliation(s)
- Andy H Choi
- School of Chemistry & Forensic Science, Faculty of Science, University of Technology, Sydney, Australia
| | - Richard C Conway
- School of Chemistry & Forensic Science, Faculty of Science, University of Technology, Sydney, Australia
- Department of Oral & Maxillofacial Surgery, Westmead Hospital, Sydney, NSW, Australia
| | - Besim Ben-Nissan
- School of Chemistry & Forensic Science, Faculty of Science, University of Technology, Sydney, Australia
| |
Collapse
|
15
|
Sharma S, Zhu H, Grintsevich EE, Reisler E, Gimzewski JK. Correlative nanoscale imaging of actin filaments and their complexes. NANOSCALE 2013; 5:5692-702. [PMID: 23727693 PMCID: PMC4030708 DOI: 10.1039/c3nr01039b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Huanqi Zhu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
| | - Elena E. Grintsevich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- California NanoSystems Institute, University of California, Los Angeles, California, USA
- International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|