1
|
Jiang Y, Cao Y, Yao Y, Zhang D, Wang Y. Chitosan and hyaluronic acid in breast cancer treatment: Anticancer efficacy and nanoparticle and hydrogel development. Int J Biol Macromol 2025; 301:140144. [PMID: 39848359 DOI: 10.1016/j.ijbiomac.2025.140144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The pervasive global health concern of breast cancer necessitates the development of innovative therapeutic interventions to enhance efficacy and mitigate adverse effects. Chitosan and hyaluronic acid, recognized for their biocompatibility and biodegradability, present compelling options for the novel drug delivery systems and therapeutic platforms in the context of breast cancer management. This review will delineate the distinctive attributes of chitosan and hyaluronic acid, encompassing their inherent anticancer properties, targeting capabilities, and suitability for chemical modifications along with nanoparticle development. These characteristics render them exceptionally well-suited for the fabrication of nanoparticles and hydrogels. The intrinsic anticancer potential of chitosan, in conjunction with its mucoadhesive properties, and the robust binding affinity of hyaluronic acid to CD44 receptors, facilitate specific drug delivery to the malignant cells, thus circumventing the limitations inherent in traditional treatment modalities such as chemotherapy. The incorporation of these materials into nanocarriers allows for the co-delivery of therapeutic agents, thereby potentiating synergistic effects, while hydrogel systems provide localized, controlled drug release and facilitate tissue regeneration. An analysis of advancements in their synthesis, functionalization, and application is presented, while also acknowledging challenges pertaining to scalability and clinical translation.
Collapse
Affiliation(s)
- Yanlin Jiang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiqun Yao
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Dianlong Zhang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China.
| | - Yuying Wang
- Department of Breast Surgery, The Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, China.
| |
Collapse
|
2
|
Poonia N, Kumar V, Subudhi RN, Dalabehera M, Setia A, Bora KS, Arora V. Iron oxide nanoparticles: a versatile nanoplatform for the treatment and diagnosis of ovarian cancer. Ther Deliv 2024:1-14. [PMID: 39722582 DOI: 10.1080/20415990.2024.2442301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Ovarian cancer remains one of the main causes of human mortality, accounting for millions of deaths every year. Despite of several clinical options such as chemotherapy, photodynamic therapy (PDT), hormonal treatment, radiation therapy, and surgery to manage this disease, the mortality rate is still very high. This alarming statistic highlights the urgent need for innovative approaches to improve both diagnosis and treatment. Success stories of iron oxide nanoparticles, i.e. Ferucarbotran (Resovist®) and Ferrixan (Cliavist®) for liver imaging, CNS (Central nervous system) imaging, cell labeling, etc. have motivated researchers to explore these nanocarriers for treatment and diagnosis of different diseases. Iron oxide nanoparticles have improved the therapeutic efficacy of anticancer drugs through targeted delivery, heat/ROS (reactive oxygen species) generation on application of external energy and have also shown great potential as contrast agents for magnetic resonance imaging (MRI). Their unique magnetic properties enable sensitive imaging, and surface modification allows the attachment of specific biomolecules for targeted detection of ovarian cancer cells. Their unique properties, viz. magnetic responsiveness and surface functionalization, make them versatile tools for enhancing both imaging and therapeutic outcomes. Present article reviews the literature on the synthesis, functionalization, and applications of iron oxide nanoparticles in management of ovarian cancer.
Collapse
Affiliation(s)
- Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vipan Kumar
- Department of Pharmaceutical Chemistry, Swami Vivekanand College of Pharmacy, Rajpura, India
| | | | - Manoj Dalabehera
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Anupama Setia
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa, India
| | - Kundan Singh Bora
- Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| |
Collapse
|
3
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|
4
|
Kashyap A, Kumari M, Singh A, Mukherjee K, Maity D. Current development of theragnostic nanoparticles for women's cancer treatment. Biomed Mater 2024; 19:042001. [PMID: 38471150 DOI: 10.1088/1748-605x/ad3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical industry, nanoparticles (NPs-exclusively small particles with size ranging from 1-100 nanometres) are recently employed as powerful tools due to their huge potential in sophisticated and enhanced cancer theragnostic (i.e. therapeutics and diagnostics). Cancer is a life-threatening disease caused by carcinogenic agents and mutation in cells, leading to uncontrolled cell growth and harming the body's normal functioning while affecting several factors like low levels of reactive oxygen species, hyperactive antiapoptotic mRNA expression, reduced proapoptotic mRNA expression, damaged DNA repair, and so on. NPs are extensively used in early cancer diagnosis and are functionalized to target receptors overexpressing cancer cells for effective cancer treatment. This review focuses explicitly on how NPs alone and combined with imaging techniques and advanced treatment techniques have been researched against 'women's cancer' such as breast, ovarian, and cervical cancer which are substantially occurring in women. NPs, in combination with numerous imaging techniques (like PET, SPECT, MRI, etc) have been widely explored for cancer imaging and understanding tumor characteristics. Moreover, NPs in combination with various advanced cancer therapeutics (like magnetic hyperthermia, pH responsiveness, photothermal therapy, etc), have been stated to be more targeted and effective therapeutic strategies with negligible side effects. Furthermore, this review will further help to improve treatment outcomes and patient quality of life based on the theragnostic application-based studies of NPs in women's cancer treatment.
Collapse
Affiliation(s)
- Ananya Kashyap
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Madhubala Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Arnika Singh
- Department of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, IN 46202, United States of America
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, IN 46202, United States of America
| |
Collapse
|
5
|
Lomphithak T, Sae-Fung A, Sprio S, Tampieri A, Jitkaew S, Fadeel B. Exploiting the ferroaddiction of pancreatic cancer cells using Fe-doped nanoparticles. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102714. [PMID: 38738528 DOI: 10.1016/j.nano.2023.102714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/23/2023] [Accepted: 10/21/2023] [Indexed: 05/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in KRAS mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type versus mutant KRAS. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe3+ to Fe2+. Taken together, our data show that FeHA is capable of triggering cancer cell death in a KRAS-selective, STEAP3-dependent manner in PDAC cells.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Apiwit Sae-Fung
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics-National Research Council (ISSMC-CNR), Faenza, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics-National Research Council (ISSMC-CNR), Faenza, Italy
| | - Siriporn Jitkaew
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Gao X, Wang X, Li S, Saif Ur Rahman M, Xu S, Liu Y. Nanovaccines for Advancing Long-Lasting Immunity against Infectious Diseases. ACS NANO 2023; 17:24514-24538. [PMID: 38055649 DOI: 10.1021/acsnano.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Infectious diseases, particularly life-threatening pathogens such as small pox and influenza, have substantial implications on public health and global economies. Vaccination is a key approach to combat existing and emerging pathogens. Immunological memory is an essential characteristic used to evaluate vaccine efficacy and durability and the basis for the long-term effects of vaccines in protecting against future infections; however, optimizing the potency, improving the quality, and enhancing the durability of immune responses remains challenging and a focus for research involving investigation of nanovaccine technologies. In this review, we describe how nanovaccines can address the challenges for conventional vaccines in stimulating adaptive immune memory responses to protect against reinfection. We discuss protein and nonprotein nanoparticles as useful antigen platforms, including those with highly ordered and repetitive antigen array presentation to enhance immunogenicity through cross-linking with multiple B cell receptors, and with a focus on antigen properties. In addition, we describe how nanoadjuvants can improve immune responses by providing enhanced access to lymph nodes, lymphnode targeting, germinal center retention, and long-lasting immune response generation. Nanotechnology has the advantage to facilitate vaccine induction of long-lasting immunity against infectious diseases, now and in the future.
Collapse
Affiliation(s)
- Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | | | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
7
|
Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022; 16:100358. [PMID: 35880099 PMCID: PMC9307458 DOI: 10.1016/j.mtbio.2022.100358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Multi-target Tyrosine Kinase Inhibitors (MTKIs) have drawn substantial attention in tumor therapy. MTKIs could inhibit tumor cell proliferation and induce apoptosis by blocking the activity of tyrosine kinase. However, the toxicity and drug resistance of MTKIs severely restrict their further clinical application. The nano pharmaceutical technology based on MTKIs has attracted ever-increasing attention in recent years. Researchers deliver MTKIs through various types of nanocarriers to overcome drug resistance and improve considerably therapeutic efficiency. This review intends to summarize comprehensive applications of MTKIs nanoparticles in malignant tumor treatment. Firstly, the mechanism and toxicity were introduced. Secondly, various nanocarriers for MTKIs delivery were outlined. Thirdly, the combination treatment schemes and drug resistance reversal strategies were emphasized to improve the outcomes of cancer therapy. Finally, conclusions and perspectives were summarized to guide future research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
8
|
Naeimi R, Najafi R, Molaei P, Amini R, Pecic S. Nanoparticles: The future of effective diagnosis and treatment of colorectal cancer? Eur J Pharmacol 2022; 936:175350. [DOI: 10.1016/j.ejphar.2022.175350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
|
9
|
Ahmadi Kamalabadi M, Neshastehriz A, Ghaznavi H, Amini SM. Folate functionalized gold-coated magnetic nanoparticles effect in combined electroporation and radiation treatment of HPV-positive oropharyngeal cancer. Med Oncol 2022; 39:196. [PMID: 36071293 DOI: 10.1007/s12032-022-01780-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The rate of HPV-positive oropharyngeal cancer incidence is increasing, especially in the young population. While these patients show good responses to radiotherapy. The major complication of radiotherapy is normal tissue involvement. Thus, finding an effective treatment method is essential. Multimodal therapy with the lowest side effect could be an effective treatment method. Theranostic gold magnetic core-shell nanostructure was developed as a platform for multimodal therapy of HPV-positive oropharyngeal cancer. The folate functionalized gold-magnetic core-shell nanostructure has been synthesized in a stepwise approach and characterized with various techniques including TEM, UV-Vis, and FTIR spectroscopy. KB was selected as a host for HPV and folate receptor-positive cancer. HGF as normal cell lines was selected. Both cell lines have been treated with nanoparticles, electric field and radiotherapy, either separately or in combination. Cell viability and apoptosis rate were determined by MTT and flow cytometry assay. In addition, cellular uptake of the nanoparticles was measured by ICP-OES analysis. The average size of folate functionalized gold-magnetic core-shell nanostructure was 13.8 ± 6.4 nm. A characteristic plasmonic peak of gold nanoshells was observed in the UV-Vis spectrum. The functionalization of synthesized nanostructure was confirmed with FTIR spectroscopy. None of the treatments alone can cause a significant death in cancerous cells. Combination treatments can increase cancer cell mortality and increase the proportion of apoptotic cells in them. Furthermore, it has been observed that the electric field enhanced the cellular uptake of nanoparticles just in cancerous cells. Based on our findings, we conclude that the combination of folate functionalized nanoparticles and electroporation opens a new way to improve radiation therapy efficacy of HPV-positive cancers.
Collapse
Affiliation(s)
- Mahdieh Ahmadi Kamalabadi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Radiation Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshastehriz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Radiation Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Taghipour YD, Zarebkohan A, Salehi R, Rahimi F, Torchilin VP, Hamblin MR, Seifalian A. An update on dual targeting strategy for cancer treatment. J Control Release 2022; 349:67-96. [PMID: 35779656 DOI: 10.1016/j.jconrel.2022.06.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 12/18/2022]
Abstract
The key issue in the treatment of solid tumors is the lack of efficient strategies for the targeted delivery and accumulation of therapeutic cargoes in the tumor microenvironment (TME). Targeting approaches are designed for more efficient delivery of therapeutic agents to cancer cells while minimizing drug toxicity to normal cells and off-targeting effects, while maximizing the eradication of cancer cells. The highly complicated interrelationship between the physicochemical properties of nanoparticles, and the physiological and pathological barriers that are required to cross, dictates the need for the success of targeting strategies. Dual targeting is an approach that uses both purely biological strategies and physicochemical responsive smart delivery strategies to increase the accumulation of nanoparticles within the TME and improve targeting efficiency towards cancer cells. In both approaches, either one single ligand is used for targeting a single receptor on different cells, or two different ligands for targeting two different receptors on the same or different cells. Smart delivery strategies are able to respond to triggers that are typical of specific disease sites, such as pH, certain specific enzymes, or redox conditions. These strategies are expected to lead to more precise targeting and better accumulation of nano-therapeutics. This review describes the classification and principles of dual targeting approaches and critically reviews the efficiency of dual targeting strategies, and the rationale behind the choice of ligands. We focus on new approaches for smart drug delivery in which synthetic and/or biological moieties are attached to nanoparticles by TME-specific responsive linkers and advanced camouflaged nanoparticles.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fariborz Rahimi
- Department of Electrical Engineering, University of Bonab, Bonab, Iran
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine and Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, South Africa
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
11
|
Ngo W, Ahmed S, Blackadar C, Bussin B, Ji Q, Mladjenovic SM, Sepahi Z, Chan WC. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev 2022; 185:114238. [PMID: 35367524 DOI: 10.1016/j.addr.2022.114238] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Effective delivery of therapeutic and diagnostic nanoparticles is dependent on their ability to accumulate in diseased tissues. However, most nanoparticles end up in liver macrophages regardless of nanoparticle design after administration. In this review, we describe the interactions of liver macrophages with nanoparticles. Liver macrophages have significant advantages in interacting with circulating nanoparticles over most target cells and tissues in the body. We describe these advantages in this article. Understanding these advantages will enable the development of strategies to overcome liver macrophages and deliver nanoparticles to targeted diseased tissues effectively. Ultimately, these approaches will increase the therapeutic efficacy and diagnostic signal of nanoparticles.
Collapse
|
12
|
Ezzat AA, Tammam SN, Hanafi RS, Rashad O, Osama A, Abdelnaby E, Magdeldin S, Mansour S. Different Serum, Different Protein Corona! The Impact of the Serum Source on Cellular Targeting of Folic Acid-Modified Chitosan-Based Nanoparticles. Mol Pharm 2022; 19:1635-1646. [PMID: 35380849 DOI: 10.1021/acs.molpharmaceut.2c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nanoparticle (NP) protein corona represents an interface between biological components and NPs, dictating their cellular interaction and biological fate. To assess the success of cellular targeting, NPs modified with targeting ligands are incubated with target cells in serum-free culture medium or in the presence of fetal bovine serum (FBS). In the former, the role of the corona is overlooked, and in the latter, the effects of a corona that does not represent the one forming in humans nor the respective disease state are considered. Via proteomic analysis, we demonstrate how the difference in the composition of FBS, sera from healthy human volunteers, and breast cancer patients (BrCr Pt) results in the formation of completely different protein coronas around the same NP. Successful in vitro targeting of breast cancer cells was only observed when NPs were incubated with target cells in the presence of BrCr Pt sera only. In such cases, the success of targeting was not attributed to the targeting ligand itself, but to the adsorption of specific serum proteins that facilitate NP uptake by cancer cells in the presence of BrCr Pt sera. This work therefore demonstrates how the serum source affects the reliability of in vitro experiments assessing NP-cell interactions and the consequent success or failure of active targeting and may in fact indicate an additional reason for the limited clinical success of drug targeting by NPs in cancer.
Collapse
Affiliation(s)
- Aya A Ezzat
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Omar Rashad
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt
| | - Eman Abdelnaby
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt.,Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt.,Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Al Obour, Egypt
| |
Collapse
|
13
|
Ramezani Farani M, Azarian M, Heydari Sheikh Hossein H, Abdolvahabi Z, Mohammadi Abgarmi Z, Moradi A, Mousavi SM, Ashrafizadeh M, Makvandi P, Saeb MR, Rabiee N. Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer. ACS APPLIED BIO MATERIALS 2022; 5:1305-1318. [PMID: 35201760 PMCID: PMC8941513 DOI: 10.1021/acsabm.1c01311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The functionalized nanoparticles (10-20 nm) were less likely to aggregate compared to non-functionalized nanoparticles. HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles were compared in drug loading procedures with curcumin. HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles' maximal drug-loading capacities were determined to be 82 and 88%, respectively. HeLa cells and mouse L929 fibroblasts treated with nanoparticles took up more FA@HPG@Fe3O4 nanoparticles than HPG@Fe3O4 nanoparticles. The FA@HPG@Fe3O4 nanoparticles produced in the current investigation have potential as anticancer drug delivery systems. For the purpose of diagnosis, incubation of HeLa cells with nanoparticles decreased MRI signal enhancement's percentage and the largest alteration was observed after incubation with FA@HPG@Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology
and Diseases Group (TDG), Pharmaceutical Sciences Research Center
(PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Azarian
- Department
of Radiology, Charité - Universitätsmedizin
Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Hamid Heydari Sheikh Hossein
- Department
of Biotechnology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Zohreh Abdolvahabi
- Metabolic
Diseases Research Center, Research Institute for Prevention of Non-Communicable
Diseases, Qazvin University of Medical Sciences, Qazvin 241567, Iran
| | - Zahra Mohammadi Abgarmi
- Department
of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran 1668814811, P.O.
Box: 14115-331, Iran
| | - Arash Moradi
- Department
of Medical Biotechnology, National Institute
of Genetic Engineering and Biotechnology, Tehran 1668814811, P.O.
Box: 14956-161, Iran
| | | | - Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey,Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy,
| | - Mohammad Reza Saeb
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, 80-233, Poland
| | - Navid Rabiee
- Department
of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran,School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia,;
| |
Collapse
|
14
|
Folic acid conjugated chitosan encapsulated palladium nanoclusters for NIR triggered photothermal breast cancer treatment. Carbohydr Polym 2022; 280:119021. [PMID: 35027124 DOI: 10.1016/j.carbpol.2021.119021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
This study developed folic acid (FA) conjugated chitosan (CS) encapsulated rutin (R) synthesized palladium nanoclusters (Pd NCs) for NIR triggered and folate receptor (FR) targeted triple-negative breast cancer (MDA-MB 231 cells) treatment. R-Pd NCs exhibited flower-shaped particles with an average size of <100 nm. FA-CS encapsulation concealed the flower shape of R-Pd NCs with a positive charge. The XRD spectrum confirmed the cubic crystalline structure of Pd. The FA conjugation on CS improved the cellular uptake of R-Pd NCs in MDA-MB 231 cells was confirmed by TEM. FA-CS-R-Pd NCs (+NIR) treatment was considerably inhibited the MDA-MB 231 cells proliferation evidenced by cell viability, fluorescent staining, and flow cytometry analysis. Further, in vitro hemolysis assay and in Ovo model confirmed the non-toxic nature of FA-CS-R-Pd-NCs with or without NIR radiation. Hence, this study concluded that FA-CS-R-Pd NCs can be applied for the treatment of drug-resistant breast cancer.
Collapse
|
15
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
16
|
Farshbaf M, Valizadeh H, Panahi Y, Fatahi Y, Chen M, Zarebkohan A, Gao H. The impact of protein corona on the biological behavior of targeting nanomedicines. Int J Pharm 2022; 614:121458. [PMID: 35017025 DOI: 10.1016/j.ijpharm.2022.121458] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
For successful translation of targeting nanomedicines from bench to bedside, it is vital to address their most common drawbacks namely rapid clearance and off-target accumulation. These complications evidently originate from a phenomenon called "protein corona (PC) formation" around the surface of targeting nanoparticles (NPs) which happens once they encounter the bloodstream and interact with plasma proteins with high collision frequency. This phenomenon endows the targeting nanomedicines with a different biological behavior followed by an unexpected fate, which is usually very different from what we commonly observe in vitro. In addition to the inherent physiochemical properties of NPs, the targeting ligands could also remarkably dictate the amount and type of adsorbed PC. As very limited studies have focused their attention on this particular factor, the present review is tasked to discuss the best simulated environment and latest characterization techniques applied to PC analysis. The effect of PC on the biological behavior of targeting NPs engineered with different targeting moieties is further discussed. Ultimately, the recent progresses in manipulation of nano-bio interfaces to achieve the most favorite therapeutic outcome are highlighted.
Collapse
Affiliation(s)
- Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
17
|
Ali A, Akhtar J, Ahmad U, Basheer AS, Jaiswal N, Jahan A. Armamentarium in drug delivery for colorectal cancer. Crit Rev Ther Drug Carrier Syst 2022; 40:1-48. [DOI: 10.1615/critrevtherdrugcarriersyst.2022039241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Subhan MA. Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics. RSC Adv 2022; 12:32956-32978. [PMID: 36425155 PMCID: PMC9670683 DOI: 10.1039/d2ra02005j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Metal oxide nanoparticles have attracted increased attention due to their emerging applications in cancer detection and therapy. This study envisioned to highlight the great potential of metal oxide NPs due to their interesting properties including high payload, response to magnetic field, affluence of surface modification to overcome biological barriers, and biocompatibility. Mammogram, ultrasound, X-ray computed tomography (CT), MRI, positron emission tomography (PET), optical or fluorescence imaging are used for breast imaging. Drug-loaded metal oxide nanoparticle delivered to the breast cancer cells leads to higher drug uptake. Thus, enhanced the cytotoxicity to target cells compared to free drug. The drug loaded metal oxide nanoparticle formulations hold great promise to enhance efficacy of breast cancer therapy including multidrug resistant (MDR) and metastatic breast cancers. Various metal oxides including magnetic metal oxides and magnetosomes are of current interests to explore cancer drug delivery and diagnostic efficacy especially for metastatic breast cancer. Metal oxide-based nanocarrier formulations are promising for their usage in drug delivery and release to breast cancer cells, cancer diagnosis and their clinical translations. Biomarker targeted therapy approaches for TNBC using metal oxide-based NPs are highly effective and promising.![]()
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
19
|
Nemati M, Bani F, Sepasi T, Zamiri RE, Rasmi Y, Kahroba H, Rahbarghazi R, Sadeghi MR, Wang Y, Zarebkohan A, Gao H. Unraveling the Effect of Breast Cancer Patients' Plasma on the Targeting Ability of Folic Acid-Modified Chitosan Nanoparticles. Mol Pharm 2021; 18:4341-4353. [PMID: 34779630 DOI: 10.1021/acs.molpharmaceut.1c00525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of protein corona (PC) around nanoparticles (NPs) has been reported inside biological conditions. This effect can alter delivery capacity toward the targeted tissues. Here, we synthesized folic acid-modified chitosan NPs (FA-CS NPs) using different concentrations of folic acid (5, 10, and 20%). FA-CS NPs were exposed to plasmas of breast cancer patients and healthy donors to evaluate the possibility of PC formation. We also monitored uptake efficiency in in vitro conditions after incubation with human breast cancer cell line MDA-MB-231 and monocyte/macrophage-like Raw264.7 cells. Data showed that the formation of PC around FA-CS NPs can change physicochemical properties coincided with the rise in NP size and negative surface charge. SDS-PAGE electrophoresis revealed differences in the type and content rate of plasma proteins attached to NP surface in a personalized manner. Based on MTT data, the formation of PC around NPs did not exert cytotoxic effects on MDA-MB-231 cells while this phenomenon reduced uptake rate. Fluorescence imaging and flow cytometry analyses revealed reduced cellular internalization rate in NPs exposed to patients' plasma compared to the control group. In contrast to breast MDA-MB-231 cells, Raw264.7 cells efficiently adsorbed the bare and PC-coated NPs from both sources, indicating the involvement of ligand-receptor-dependent and independent cellular engulfment. These data showed that the PC formed on the FA-CS NPs is entirely different in breast cancer patients and healthy counterparts. PC derived from patients' plasma almost abolishes the targeting efficiency of FA-CS NPs even in different mechanisms, while this behavior was not shown in the control group. Surprisingly, Raw264.7 cells strongly adsorbed the PC-coated NPs, especially when these particles were in the presence of patients' sera. It is strongly suggested that the formation of PC around can affect delivering capacity of FA-CS NPs to cancer cells. It seems that the PC-coated FA-CS NPs can be used as an efficient delivery strategy for the transfer of specific biomolecules in immune system disorders.
Collapse
Affiliation(s)
- Mahdieh Nemati
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Tina Sepasi
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Reza Eghdam Zamiri
- Department of Radiation Oncology, Shahid Madani Hospital, Tabriz University of Medical Science, Tabriz 5166/15731, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Mohammed Reza Sadeghi
- Department of Molecular Medicine, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Yazhen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
20
|
Pavitra E, Dariya B, Srivani G, Kang SM, Alam A, Sudhir PR, Kamal MA, Raju GSR, Han YK, Lakkakula BVKS, Nagaraju GP, Huh YS. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol 2021; 69:293-306. [PMID: 31260733 DOI: 10.1016/j.semcancer.2019.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the deadliest diseases worldwide due to a lack of early detection methods and appropriate drug delivery strategies. Conventional imaging techniques cannot accurately distinguish benign from malignant tissue, leading to frequent misdiagnosis or diagnosis at late stages of the disease. Novel screening tools with improved accuracy and diagnostic precision are thus required to reduce the mortality burden of this malignancy. Additionally, current therapeutic strategies, including radio- and chemotherapies carry adverse side effects and are limited by the development of drug resistance. Recent advances in nanotechnology have rendered it an attractive approach for designing novel clinical solutions for CRC. Nanoparticle-based formulations could assist early tumor detection and help to overcome the limitations of conventional therapies including poor aqueous solubility, nonspecific biodistribution and limited bioavailability. In this review, we shed light on various types of nanoparticles used for diagnosis and drug delivery in CRC. In addition, we will explore how these nanoparticles can improve diagnostic accuracy and promote selective drug targeting to tumor sites with increased efficiency and reduced cytotoxicity against healthy colon tissue.
Collapse
Affiliation(s)
- Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Gowru Srivani
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Putty-Reddy Sudhir
- The Center for Translational Biomedical Research, UNCG, Kannapolis, NC-28081, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
21
|
Ghorbani F, Kokhaei P, Ghorbani M, Eslami M. Application of different nanoparticles in the diagnosis of colorectal cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Breznica P, Koliqi R, Daka A. A review of the current understanding of nanoparticles protein corona composition. Med Pharm Rep 2020; 93:342-350. [PMID: 33225259 PMCID: PMC7664725 DOI: 10.15386/mpr-1756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Upon entering into the biological environments, the surface of the nanoparticles is immediately coated with proteins and form the so-called a protein corona due to which a nanoparticle changes its “synthetic” identity to a new “biological” identity. Different types of nanoparticles have different protein binding profiles, which is why they have different protein corona composition and therefore it cannot be said that there is a universal protein corona. The composition and amount of protein in the corona depends on the physical and chemical characteristics of the nanoparticles, the type of biological medium and the exposure time. Protein corona increases the diameter but also changes the composition of the surface of the nanoparticles and these changes affect biodistribution, efficacy, and toxicity of the nanoparticles.
Collapse
Affiliation(s)
- Pranvera Breznica
- Department of Pharmaceutical Chemistry, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| | - Rozafa Koliqi
- Department of Clinical Pharmacy and Biopharmacy, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| | - Arlinda Daka
- Department of Clinical Pharmacy and Biopharmacy, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| |
Collapse
|
23
|
Far-reaching advances in the role of carbon nanotubes in cancer therapy. Life Sci 2020; 257:118059. [PMID: 32659368 DOI: 10.1016/j.lfs.2020.118059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Cancer includes a group of diseases involving unregulated cell growth with the potential to invade or expand to other parts of the body, resulting in an estimate of 9.6 million deaths worldwide in 2018. Manifold studies have been conducted to design more efficacious techniques for cancer therapy due to the inadequacy of conventional treatments including chemotherapy, surgery, and radiation therapy. With the advances in the biomedical applications of nanotechnology-based systems, nanomaterials have gained increasing attention as promising vehicles for targeted cancer therapy and optimizing treatment outcomes. Owing to their outstanding thermal, electrical, optical and chemical properties, carbon nanotubes (CNTs) have been profoundly studied to explore the various perspectives of their application in cancer treatment. The current study aims to review the role of CNTs whether as a carrier or mediator in cancer treatment for enhancing the efficacy as well as the specificity of therapy and reducing adverse side effects. This comprehensive review indicates that CNTs have the capability to be the next generation nanomaterials to actualize noninvasive targeted eradication of tumors. However, further studies are needed to evaluate the consequences of their biomedical application before the transition into clinical trials, since possible adverse effects of CNTs on biological systems have not been clearly understood.
Collapse
|
24
|
Miranda MA, Silva LB, Carvalho IPS, Amaral R, de Paula MH, Swiech K, Bastos JK, Paschoal JAR, Emery FS, Dos Reis RB, Bentley MVLB, Marcato PD. Targeted uptake of folic acid-functionalized polymeric nanoparticles loading glycoalkaloidic extract in vitro and in vivo assays. Colloids Surf B Biointerfaces 2020; 192:111106. [PMID: 32474325 DOI: 10.1016/j.colsurfb.2020.111106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Solanum lycocarpum fruits contain two major glycoalkaloids (GAs), solamargine (SM) and solasonine (SS). These compounds are reported as cytotoxic. However, they have poor water solubility and low bioavailability. To overcome these disadvantages and getting an efficient formulation the current study aimed to develop, characterize, and test the effectiveness of a nanotechnology-based strategy using poly(D,L-lactide) (PLA) nanoparticles functionalized with folate as delivery system of glycoalkaloidic extract (AE) for bladder cancer therapy. The strategic of adding folic acid into nanoformulations can increase the selectivity of the compounds to the cancer cells reducing the side effects. Our results revealed the successful preparation of AE-loaded folate-targeted nanoparticles (NP-F-AE) with particle size around 177 nm, negative zeta potential, polydispersity index <0.20, and higher efficiency of encapsulation for both GAs present in the extract (>85 %). To investigate the cellular uptake, the fluorescent dye coumarin-6 was encapsulated into the nanoparticle (NP-F-C6). The cell studies showed high uptake of nanoparticles by breast (MDA-MB-231) and bladder (RT4) cancer cells, but not for normal keratinocytes cells (HaCaT) indicating the target uptake to cancer cells. The cytotoxicity of nanoparticles was evaluated on RT4 2D culture model showing 2.16-fold lower IC50 than the free AE. Furthermore, the IC50 increased on the RT4 spheroids compared to 2D model. The nanoparticles penetrated homogeneously into the urotheliumof porcine bladder. These results showed that folate-conjugated polymeric nanoparticles are potential carriers for targeted glycoalkaloidic extract delivery to bladder cancer cells.
Collapse
Affiliation(s)
- M A Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L B Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - I P S Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M H de Paula
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - K Swiech
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J A R Paschoal
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F S Emery
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R B Dos Reis
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M V L B Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - P D Marcato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
25
|
Zackova Suchanova J, Hejtmankova A, Neburkova J, Cigler P, Forstova J, Spanielova H. The Protein Corona Does Not Influence Receptor-Mediated Targeting of Virus-like Particles. Bioconjug Chem 2020; 31:1575-1585. [DOI: 10.1021/acs.bioconjchem.0c00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jirina Zackova Suchanova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Alzbeta Hejtmankova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Hana Spanielova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
26
|
Mendozza M, Caselli L, Salvatore A, Montis C, Berti D. Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft devices. SOFT MATTER 2019; 15:8951-8970. [PMID: 31680131 DOI: 10.1039/c9sm01601e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This contribution reviews the state of art on hybrid soft matter assemblies composed of inorganic nanoparticles (NP) and lamellar or non-lamellar lipid bilayers. After a short outline of the relevant energetic contributions, we address the interaction of NPs with synthetic lamellar bilayers, meant as cell membrane mimics. We then review the design of hybrid nanostructured materials composed of lipid bilayers and some classes of inorganic NPs, with particular emphasis on the effects on the amphiphilic phase diagram and on the additional properties contributed by the NPs. Then, we present the latest developments on the use of lipid bilayers as coating agents for inorganic NPs. Finally, we remark on the main achievements of the last years and our vision for the development of the field.
Collapse
Affiliation(s)
- Marco Mendozza
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Annalisa Salvatore
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
27
|
Cai R, Chen C. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805740. [PMID: 30589115 DOI: 10.1002/adma.201805740] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/06/2018] [Indexed: 05/17/2023]
Abstract
Engineering nanomaterials are increasingly considered promising and powerful biomedical tools or devices for imaging, drug delivery, and cancer therapies, but few nanomaterials have been tested in clinical trials. This wide gap between bench discoveries and clinical application is mainly due to the limited understanding of the biological identity of nanomaterials. When they are exposed to the human body, nanoparticles inevitably interact with bodily fluids and thereby adsorb hundreds of biomolecules. A "biomolecular corona" forms on the surface of nanomaterials and confers a new biological identity for NPs, which determines the following biological events: cellular uptake, immune response, biodistribution, clearance, and toxicity. A deep and thorough understanding of the biological effects triggered by the protein corona in vivo will speed up their translation to the clinic. To date, nearly all studies have attempted to characterize the components of protein coronas depending on different physiochemical properties of NPs. Herein, recent advances are reviewed in order to better understand the impact of the biological effects of the nanoparticle-corona on nanomedicine applications. The recent development of the impact of protein corona formation on the pharmacokinetics of nanomedicines is also highlighted. Finally, the challenges and opportunities of nanomedicine toward future clinical applications are discussed.
Collapse
Affiliation(s)
- Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, Chinese Academy of Science, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, Chinese Academy of Science, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
28
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
29
|
Yan S, Huang Q, Chen J, Song X, Chen Z, Huang M, Xu P, Zhang J. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int J Nanomedicine 2019; 14:6799-6812. [PMID: 31692522 PMCID: PMC6711554 DOI: 10.2147/ijn.s216194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT), a clinical anticancer therapeutic modality, has a long history in clinical cancer treatments since the 1970s. However, PDT has not been widely used largely because of metabolic problems and off-target phototoxicities of the current clinical photosensitizers. PURPOSE The objective of the study is to develop a high-efficiency and high-specificity carrier to precisely deliver photosensitizers to tumor sites, aiming at addressing metabolic problems, as well as the systemic damages current clinical photosensitizers are known to cause. METHODS We synthesized a polydopamine (PDA)-based carrier with the modification of folic acid (FA), which is to target the overexpressed folate receptors on tumor surfaces. We used this carrier to load a cationic phthalocyanine-type photosensitizer (Pc) and generated a PDA-FA-Pc nanomedicine. We determined the antitumor effects and the specificity to tumor cell lines in vitro. In addition, we established human cancer-xenografted mice models to evaluate the tumor-targeting property and anticancer efficacies in vivo. RESULTS Our PDA-FA-Pc nanomedicine demonstrated a high stability in normal physiological conditions, however, could specifically release photosensitizers in acidic conditions, eg, tumor microenvironment and lysosomes in cancer cells. Additionally, PDA-FA-Pc nanomedicine demonstrated a much higher cellular uptake and phototoxicity in cancer cell lines than in healthy cell lines. Moreover, the in vivo imaging data indicated excellent tumor-targeting properties of PDA-FA-Pc nanomedicine in human cancer-xenografted mice. Lastly, PDA-FA-Pc nanomedicine was found to significantly suppress tumor growth within two human cancer-xenografted mice models. CONCLUSION Our current study not only demonstrates PDA-FA-Pc nanomedicine as a highly potent and specific anticancer agent, but also suggests a strategy to address the metabolic and specificity problems of clinical photosensitizers.
Collapse
Affiliation(s)
- Shufeng Yan
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| | - Qingqing Huang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Xiaorong Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, People’s Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore138673, Singapore
| | - Juncheng Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| |
Collapse
|
30
|
Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona. Biophys Chem 2019; 253:106218. [PMID: 31325709 DOI: 10.1016/j.bpc.2019.106218] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022]
Abstract
In biological fluids, nanoparticles (NPs) are in contact with proteins and other biomolecules. Proteins adsorb to NPs and form a coating called a protein corona (PC). The PC is known to greatly affect the interaction of NPs with biological systems. A comprehensive knowledge of the protein nanoparticle interaction is essential to understand the biological fate of NPs and for the design of NPs for biomedicine. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are sensitive spectroscopy techniques that measure fluorescence intensity fluctuations of single molecules inside a femtoliter confocal volume. Both techniques are suitable for studying the formation of protein corona around NPs and for examining corona stability in situ in biological matrixes. In this review we provide a short description of FCS/FCCS and their application in PC studies, highlighting results from our work about the impact of surface chemistry of NPs on corona formation and NP intracellular fate.
Collapse
|
31
|
Madamsetty VS, Sharma A, Toma M, Samaniego S, Gallud A, Wang E, Pal K, Mukhopadhyay D, Fadeel B. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 18:112-121. [PMID: 30849547 PMCID: PMC6588439 DOI: 10.1016/j.nano.2019.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/25/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related deaths and novel treatment approaches are urgently needed. Here we show that poly(ethylene glycol)-functionalized nanodiamonds loaded with doxorubicin (ND-PEG-DOX) afforded a considerable improvement over free drug in an orthotopic pancreatic xenograft model. ND-PEG-DOX complexes were also superior to free DOX in 3-dimensional (3D) tumor spheroids of PDAC. ND-PEG showed no cytotoxicity towards macrophages, and histopathological analysis showed no abnormalities of major organs upon in vivo administration of ND-PEG-DOX. These results provide evidence that ND-mediated drug delivery may serve as a means of improving the therapeutic outcome in PDAC.
Collapse
Affiliation(s)
- Vijay S Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anil Sharma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Maria Toma
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Samaniego
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Audrey Gallud
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States.
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm 2018; 552:328-339. [DOI: 10.1016/j.ijpharm.2018.10.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 01/04/2023]
|
33
|
Figueiredo Borgognoni C, Kim JH, Zucolotto V, Fuchs H, Riehemann K. Human macrophage responses to metal-oxide nanoparticles: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:694-703. [PMID: 29726285 DOI: 10.1080/21691401.2018.1468767] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanomaterials have been widely used in our daily lives in medicine, cosmetics, paints, textiles and food products. Many studies aim to determine their biological effects in different types of cells. The interaction of these materials with the immune system leads to reactions by modifying the susceptibility or resistance of the host body which could induce adverse health effects. Macrophages, as specific cells of the innate immune response, play a crucial role in the human defence system to foreign agents. They can be used as a reliable test object for the investigation of immune responses under nanomaterials exposure displayed by expression of a variety of receptors and active secretion of key signalling substances for these processes. This report covers studies of human macrophage behaviours upon exposure of nanomaterials. We focused on their interaction with metal-oxide nanoparticles as these are largely used in medical and cosmetics applications. The discussion and summary of these studies can guide the development of new nanomaterials, which are, at the same time, safe and useful for new purposes, especially for health applications.
Collapse
Affiliation(s)
- Camila Figueiredo Borgognoni
- a Center for Nanotechnology (CeNTech) , Münster , Germany.,b Physics Institute , University of Sao Paulo , Sao Carlos , Brazil
| | - Joo Hyoung Kim
- a Center for Nanotechnology (CeNTech) , Münster , Germany.,c Institute of Physics , University of Münster , Münster , Germany
| | | | - Harald Fuchs
- a Center for Nanotechnology (CeNTech) , Münster , Germany.,c Institute of Physics , University of Münster , Münster , Germany
| | - Kristina Riehemann
- a Center for Nanotechnology (CeNTech) , Münster , Germany.,c Institute of Physics , University of Münster , Münster , Germany
| |
Collapse
|
34
|
Mullis AS, Schlichtmann BW, Narasimhan B, Cademartiri R, Mallapragada SK. Ligand-cascading nano-delivery devices to enable multiscale targeting of anti-neurodegenerative therapeutics. Biomed Mater 2018; 13:034102. [DOI: 10.1088/1748-605x/aaa778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Li Y, Xu Y, Fleischer CC, Huang J, Lin R, Yang L, Mao H. Impact of Anti-Biofouling Surface Coatings on the Properties of Nanomaterials and Their Biomedical Applications. J Mater Chem B 2018; 6:9-24. [PMID: 29479429 PMCID: PMC5821433 DOI: 10.1039/c7tb01695f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding and subsequently controlling non-specific interactions between engineered nanomaterials and biological environment have become increasingly important for further developing and advancing nanotechnology for biomedical applications. Such non-specific interactions, also known as the biofouling effect, mainly associate with the adsorption of biomolecules (such as proteins, DNAs, RNAs, and peptides) onto the surface of nanomaterials and the adhesion or uptake of nanomaterials by various cells. By altering the surface properties of nanomaterials the biofouling effect can lead to in situ changes of physicochemical properties, pharmacokinetics, functions, and toxicity of nanomaterials. This review provides discussions on the current understanding of the biofouling effect, the factors that affect the non-specific interactions associated with biofouling, and the impact of the biofouling effect on the performances and functions of nanomaterials. An overview of the development and applications of various anti-biofouling coating materials to preserve and improve the properties and functions of engineered nanomaterials for intended biomedical applications is also provided.
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Run Lin
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Kevadiya BD, Woldstad C, Ottemann BM, Dash P, Sajja BR, Lamberty B, Morsey B, Kocher T, Dutta R, Bade AN, Liu Y, Callen SE, Fox HS, Byrareddy SN, McMillan JM, Bronich TK, Edagwa BJ, Boska MD, Gendelman HE. Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics 2018; 8:256-276. [PMID: 29290806 PMCID: PMC5743473 DOI: 10.7150/thno.22764] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 01/23/2023] Open
Abstract
RATIONALE Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy.
Collapse
Affiliation(s)
- Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Brendan M. Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rinku Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon E. Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn M. McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael D. Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
37
|
Dai Q, Bertleff‐Zieschang N, Braunger JA, Björnmalm M, Cortez‐Jugo C, Caruso F. Particle Targeting in Complex Biological Media. Adv Healthc Mater 2018; 7. [PMID: 28809092 DOI: 10.1002/adhm.201700575] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/04/2017] [Indexed: 12/22/2022]
Abstract
Over the past few decades, nanoengineered particles have gained increasing interest for applications in the biomedical realm, including diagnosis, imaging, and therapy. When functionalized with targeting ligands, these particles have the potential to interact with specific cells and tissues, and accumulate at desired target sites, reducing side effects and improve overall efficacy in applications such as vaccination and drug delivery. However, when targeted particles enter a complex biological environment, the adsorption of biomolecules and the formation of a surface coating (e.g., a protein corona) changes the properties of the carriers and can render their behavior unpredictable. For this reason, it is of importance to consider the potential challenges imposed by the biological environment at the early stages of particle design. This review describes parameters that affect the targeting ability of particulate drug carriers, with an emphasis on the effect of the protein corona. We highlight strategies for exploiting the protein corona to improve the targeting ability of particles. Finally, we provide suggestions for complementing current in vitro assays used for the evaluation of targeting and carrier efficacy with new and emerging techniques (e.g., 3D models and flow-based technologies) to advance fundamental understanding in bio-nano science and to accelerate the development of targeted particles for biomedical applications.
Collapse
Affiliation(s)
- Qiong Dai
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Nadja Bertleff‐Zieschang
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Julia A. Braunger
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
38
|
Targeted Delivery of siRNA Therapeutics to Malignant Tumors. JOURNAL OF DRUG DELIVERY 2017; 2017:6971297. [PMID: 29218233 PMCID: PMC5700508 DOI: 10.1155/2017/6971297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/10/2017] [Indexed: 01/11/2023]
Abstract
Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.
Collapse
|
39
|
Facile Synthesis of Folic Acid-Modified Iron Oxide Nanoparticles for Targeted MR Imaging in Pulmonary Tumor Xenografts. Mol Imaging Biol 2017; 18:569-78. [PMID: 26620721 DOI: 10.1007/s11307-015-0918-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The purpose of this study was to develop folic acid (FA)-modified iron oxide (Fe3O4) nanoparticles (NPs) for targeted magnetic resonance imaging (MRI) of H460 lung carcinoma cells. PROCEDURES Water-dispersible Fe3O4 NPs synthesized via a mild reduction method were conjugated with FA to generate FA-targeted Fe3O4 NPs. The specificity of FA-targeted Fe3O4 NPs to bind FA receptor was investigated in vitro by cellular uptake and cell MRI and in vivo by MRI of H460 tumors. RESULTS The formed NPs displayed good biocompatibility and ultrahigh r 2 relaxivity (440.01/mM/s). The targeting effect of the NPs to H460 cells was confirmed by in vitro cellular uptake and cell MRI. H460 tumors showed a significant reduction in T2 signal intensity at 0.85 h, which then recovered and returned to control at 2.35 h. CONCLUSIONS The results indicate that the prepared FA-targeted Fe3O4 NPs have potential to be used as T2 negative contrast agents in targeted MRI.
Collapse
|
40
|
van der Meer SB, Knuschke T, Frede A, Schulze N, Westendorf AM, Epple M. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo. Acta Biomater 2017; 57:414-425. [PMID: 28552820 DOI: 10.1016/j.actbio.2017.05.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/25/2023]
Abstract
Avidin was covalently conjugated to the surface of calcium phosphate nanoparticles, coated with a thin silica shell and terminated by sulfhydryl groups (diameter of the solid core about 50nm), with a bifunctional crosslinker connecting the amino groups of avidin to the sulfhydryl group on the nanoparticle surface. This led to a versatile nanoparticle system where all kinds of biotinylated (bio-)molecules can be easily attached to the surface by the non-covalent avidin-biotin-complex formation. It also permits the attachment of different biomolecules on the same nanoparticle (heteroavidity), creating a modular system for specific applications in medicine and biology. The variability of the binding to the nanoparticle surface of the was demonstrated with various biotinylated molecules, i.e. fluorescent dyes and antibodies. The accessibility of the conjugated avidin was demonstrated by a fluorescence-quenching assay. About 2.6 binding sites for biotin were accessible on each avidin tetramer. Together with a number of about 240 avidin tetramer units per nanoparticle, this offers about 600 binding sites for biotin on each nanoparticle. The uptake of fluorescently labelled avidin-conjugated calcium phosphate nanoparticles by HeLa cells showed the co-localization of fluorescent avidin and fluorescent biotin, indicating the stability of the complex under cell culture conditions. CD11c-antibody functionalized nanoparticles specifically targeted antigen-presenting immune cells (dendritic cells; DCs) in vitro and in vivo (mice) with high efficiency. STATEMENT OF SIGNIFICANCE Calcium phosphate nanoparticles have turned out to be very useful transporters for biomolecules into cells, both in vitro and in vivo. However, their covalent surface functionalization with antibodies, fluorescent dyes, or proteins requires a separate chemical synthesis for each kind of surface molecule. We have therefore developed avidin-terminated calcium phosphate nanoparticles to which all kinds of biotinylated molecules can be easily attached, also as a mixture of two or more molecules. This non-covalent bond is stable both in cell culture and after injection into mice in vivo. Thus, we have created a highly versatile system for many applications, from the delivery of biomolecules over the targeting of cells and tissue to in vivo imaging.
Collapse
Affiliation(s)
- Selina Beatrice van der Meer
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Torben Knuschke
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Annika Frede
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Nina Schulze
- Imaging Centre Campus Essen (ICCE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Astrid M Westendorf
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
41
|
Jones SK, Sarkar A, Feldmann DP, Hoffmann P, Merkel OM. Revisiting the value of competition assays in folate receptor-mediated drug delivery. Biomaterials 2017; 138:35-45. [PMID: 28551461 DOI: 10.1016/j.biomaterials.2017.05.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Polymeric nanoparticles have been studied for gene and drug delivery. These nanoparticles can be modified to utilize a targeted delivery approach to selectively deliver their payload to specific cells, while avoiding unwanted delivery to healthy cells. One commonly over-expressed receptor which can be targeted by ligand-conjugated nanoparticles is the folate receptor alpha (FRα). The ability to target FRα remains a promising concept, and therefore, understanding the binding dynamics of the receptor with the ligand of the nanoparticle therapeutic can provide valuable insight. This manuscript focuses on the interaction between self-assembled nanoparticles decorated with a folic acid (FA) ligand and FRα. The nanoparticles consist of micelles formed with a FA conjugated triblock copolymer (PEI-g-PCL-b-PEG-FA) which condensed siRNA to form micelleplexes. By combining biological and biophysical approaches, this manuscript explores the binding kinetics and force of the targeted siRNA containing nanoparticles to FRα in comparison with free FA. We demonstrate via flow cytometry and atomic force microscopy that multivalent micelleplexes bind to FRα with a higher binding probability and binding force than monovalent FA. Furthermore, we revisited why competitive inhibition studies of binding of multivalent nanoparticles to their respective receptor are often reported in literature to be inconclusive evidence of effective receptor targeting. In conclusion, the results presented in this paper suggest that multivalent targeted nanoparticles display strong receptor binding that a monovalent ligand may not be able to compete with under in vitro conditions and that high concentrations of competing monovalent ligands can lead to measurement artifacts.
Collapse
Affiliation(s)
- Steven K Jones
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anwesha Sarkar
- Department of Physics and Astronomy, Wayne State University of College of Liberal Arts and Sciences, Detroit, MI, USA
| | - Daniel P Feldmann
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter Hoffmann
- Department of Physics and Astronomy, Wayne State University of College of Liberal Arts and Sciences, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pharmaceutical Sciences, Wayne State University School of Pharmacy and Health Sciences, Detroit, MI, USA; Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Munich, Germany; Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
42
|
Qu D, Liu M, Huang M, Wang L, Chen Y, Liu C, Liu Y. Octanoyl galactose ester-modified microemulsion system self-assembled by coix seed components to enhance tumor targeting and hepatoma therapy. Int J Nanomedicine 2017; 12:2045-2059. [PMID: 28352174 PMCID: PMC5358984 DOI: 10.2147/ijn.s125293] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A nanosized drug delivery platform with a combination of rational components and tumor targeting is significant for enhancement of anticancer therapy and reduction of side effects. In this study, we developed a octanoyl galactose ester-modified microemulsion system self-assembled by coix seed components (Gal(oct)-C-MEs), which improved the tumor accumulation through asialoglycoprotein receptor-mediated endocytosis and promoted the antitumor efficacy through multicomponent-mediated synergistic effect. Octanoyl galactose ester (Gal(oct)) with a yield of 82.3% was synthesized through a green enzymatic reaction and multidimensional characterization. Gal(oct)-C-MEs with a spherical shape had a small and uniform particle size (58.49±1.03 nm), narrow polydispersity index (0.09±0.01) and neutral surface charge (-5.82±0.57 mV). In the cellular uptake studies, the internalized Gal(oct)-C-ME was 2.28-fold higher relative to that of coix seed component-based microemulsions (C-MEs). The half-maximal inhibitory concentration of Gal(oct)-C-MEs against HepG2 cells was 46.5±2.4 μg/mL, which was notably higher than that of C-MEs. Importantly, the intratumor fluorescence of HepG2 xenograft-bearing nude mice treated with Cy5/Gal(oct)-C-MEs was 1.9-fold higher relative to treatment with Cy5/C-MEs. In the study of antitumor efficacy in vivo, HepG2 xenograft-bearing nude mice intragastrically administered Gal(oct)-C-MEs for 14 days exhibited the strongest inhibition of tumor growth and the lowest toxicity against liver and kidney among all the treatments. In summary, Gal(oct)-C-ME, as a highly effective and safe anticancer drug delivery system, showed promising potential for hepatoma therapy.
Collapse
Affiliation(s)
- Ding Qu
- Research Center for Multicomponent Traditional Medicine and Microecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Research Center for Multicomponent Traditional Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Mingjian Liu
- Research Center for Multicomponent Traditional Medicine and Microecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine
| | - Mengmeng Huang
- Research Center for Multicomponent Traditional Medicine and Microecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Research Center for Multicomponent Traditional Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Lixiang Wang
- Research Center for Multicomponent Traditional Medicine and Microecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine
| | - Yan Chen
- Research Center for Multicomponent Traditional Medicine and Microecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Research Center for Multicomponent Traditional Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Congyan Liu
- Research Center for Multicomponent Traditional Medicine and Microecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Research Center for Multicomponent Traditional Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Yuping Liu
- Research Center for Multicomponent Traditional Medicine and Microecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Research Center for Multicomponent Traditional Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Rotan O, Severin KN, Pöpsel S, Peetsch A, Merdanovic M, Ehrmann M, Epple M. Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:381-393. [PMID: 28326227 PMCID: PMC5331334 DOI: 10.3762/bjnano.8.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
The efficient intracellular delivery of (bio)molecules into living cells remains a challenge in biomedicine. Many biomolecules and synthetic drugs are not able to cross the cell membrane, which is a problem if an intracellular mode of action is desired, for example, with a nuclear receptor. Calcium phosphate nanoparticles can serve as carriers for small and large biomolecules as well as for synthetic compounds. The nanoparticles were prepared and colloidally stabilized with either polyethyleneimine (PEI; cationic nanoparticles) or carboxymethyl cellulose (CMC; anionic nanoparticles) and loaded with defined amounts of the fluorescently labelled proteins HTRA1, HTRA2, and BSA. The nanoparticles were purified by ultracentrifugation and characterized by dynamic light scattering and scanning electron microscopy. Various cell types (HeLa, MG-63, THP-1, and hMSC) were incubated with fluorescently labelled proteins alone or with protein-loaded cationic and anionic nanoparticles. The cellular uptake was followed by light and fluorescence microscopy, confocal laser scanning microscopy (CLSM), and flow cytometry. All proteins were readily transported into the cells by cationic calcium phosphate nanoparticles. Notably, only HTRA1 was able to penetrate the cell membrane of MG-63 cells in dissolved form. However, the application of endocytosis inhibitors revealed that the uptake pathway was different for dissolved HTRA1 and HTRA1-loaded nanoparticles.
Collapse
Affiliation(s)
- Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Katharina N Severin
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Simon Pöpsel
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Alexander Peetsch
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Melisa Merdanovic
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Michael Ehrmann
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| |
Collapse
|
44
|
|
45
|
Bettini S, Giancane G, Pagano R, Bonfrate V, Salvatore L, Madaghiele M, Buccolieri A, Manno D, Serra A, Maruccio G, Monteduro AG, Syrgiannis Z, Valli L, Prato M. A simple approach to synthetize folic acid decorated magnetite@SiO2 nanostructures for hyperthermia applications. J Mater Chem B 2017; 5:7547-7556. [DOI: 10.1039/c7tb02002c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Folic Acid decorated SPIONs selective internalization was monitored by an innovative Ellipsometry imaging approach.
Collapse
|
46
|
Gallud A, Bondarenko O, Feliu N, Kupferschmidt N, Atluri R, Garcia-Bennett A, Fadeel B. Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: Exploring the role of different pattern recognition receptors. Biomaterials 2016; 121:28-40. [PMID: 28063981 DOI: 10.1016/j.biomaterials.2016.12.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 12/26/2016] [Indexed: 12/23/2022]
Abstract
Mesoporous silica-based particles are promising candidates for biomedical applications. Here, we address the importance of macrophage activation status for internalization of AMS6 (approx. 200 nm in diameter) versus AMS8 (approx. 2 μm) mesoporous silica particles and the role of different phagocytosis receptors for particle uptake. To this end, FITC-conjugated silica particles were used. AMS8 were found to be non-cytotoxic both for M-CSF-stimulated (anti-inflammatory) and GM-CSF-stimulated (pro-inflammatory) macrophages, whereas AMS6 exhibited cytotoxicity towards M-CSF-stimulated, but not GM-CSF-stimulated macrophages; this toxicity was, however, mitigated in the presence of serum. AMS8 triggered the secretion of pro-inflammatory cytokines in M-CSF-activated cells. Class A scavenger receptor (SR-A) expression was noted in both M-CSF and GM-CSF-stimulated macrophages, although the expression was higher in the former case, and gene silencing of SR-A resulted in a decreased uptake of AMS6 in the absence of serum. GM-CSF-stimulated macrophages expressed higher levels of the mannose receptor CD206 compared to M-CSF-stimulated cells, and uptake of AMS6, but not AMS8, was reduced following the downregulation of CD206 in GM-CSF-stimulated cells; particle uptake was also suppressed by mannan, a competitive ligand. These studies demonstrate that macrophage activation status is an important determinant of particle uptake and provide evidence for a role of different macrophage receptors for cell uptake of silica particles.
Collapse
Affiliation(s)
- Audrey Gallud
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Olesja Bondarenko
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Neus Feliu
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Natalia Kupferschmidt
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Alfonso Garcia-Bennett
- Department of Chemistry and Biomolecular Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
47
|
Pinto MP, Arce M, Yameen B, Vilos C. Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine (Lond) 2016; 12:59-72. [PMID: 27876436 DOI: 10.2217/nnm-2016-0307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain tumors display the highest mortality rates of all childhood cancers, and over the last decade its prevalence has steadily increased in elderly. To date, effective treatments for brain tumors and particularly for malignant gliomas remain a challenge mainly due to the low permeability and high selectivity of the blood-brain barrier (BBB) to conventional anticancer drugs. In recent years, the elucidation of the cellular mechanisms involved in the transport of substances into the brain has boosted the development of therapeutic-targeted nanoparticles (NPs) with the ability to cross the BBB. Here, we present a comprehensive overview of the available therapeutic strategies developed against malignant gliomas based on 'actively targeted' NPs, the challenges of crossing the BBB and blood-brain tumor barrier as well as its mechanisms and a critical assessment of clinical studies that have used targeted NPs for the treatment of malignant gliomas. Finally, we discuss the potential of actively targeted NP-based strategies in clinical settings, its possible side effects and future directions for therapeutic applications. First draft submitted: 4 October 2016; Accepted for publication: 14 October 2016; Published online: 23 November 2016.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Laboratory of Immunology of Reproduction, Faculty of Chemistry & Biology, Universidad de Santiago de Chile, 9170022 Santiago, Chile
| | - Maximiliano Arce
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Basit Yameen
- Laboratory of Nanomedicine & Biomaterials, Department of Anesthesiology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
48
|
Su G, Zhou X, Zhou H, Li Y, Zhang X, Liu Y, Cao D, Yan B. Size-Dependent Facilitation of Cancer Cell Targeting by Proteins Adsorbed on Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30037-30047. [PMID: 27748107 DOI: 10.1021/acsami.6b10967] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understandings of how biomolecules modify nanoparticles in a biological context and how these exchanges impact nano-biointeractions are fundamental to nanomedicine and nanotoxicology research. In this work, cancer-targeting gold nanoparticles (TGNPs) with different sizes (5, 15, and 40 nm) were designed and synthesized. These nanoparticles spontaneously adsorbed proteins in complete cell culture medium (Dulbecco's modified Eagle's medium with 10% human serum). Although the targeting ligands on the surface of nanoparticles were likely to be shielded by adsorbed proteins, the targeting capability of nanoparticles was maintained due to the highly dynamic nature of protein adsorption. By regulating the size and surface curvature of nanoparticles, we found that smaller TGNPs (5 nm, large surface curvature) recognize folate receptors on HeLa cells mainly through one-on-one bindings, and adsorbed proteins partially interfered with their binding, inducing a reduction of cell uptake by ∼30%. Larger TGNPs (40 nm, small surface curvature) bound to cell surface receptors through multivalent interactions, and their binding affinity was, in contrast, enhanced by adsorbed proteins, resulting in an increased cell uptake by ∼13%. Computational modeling further corroborated our experimental findings. The compelling findings from this work demonstrated how nanoparticle's size controlled its biological activity and provided key design principles for nanomedicine agents.
Collapse
Affiliation(s)
- Gaoxing Su
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
- School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University , Nantong 226001, China
| | - Xiaofei Zhou
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Hongyu Zhou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Ye Li
- College of Biological Sciences and Biotechnology, Beijing Forest University , Beijing 100083, China
| | - Xianren Zhang
- Division of Molecular and Materials Simulation, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology , Beijing 100029, China
| | - Yin Liu
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Dapeng Cao
- Division of Molecular and Materials Simulation, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology , Beijing 100029, China
| | - Bing Yan
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| |
Collapse
|
49
|
Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond) 2016; 11:2443-56. [PMID: 27529192 DOI: 10.2217/nnm-2016-0194] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is highly prevalent worldwide, and despite notable progress in treatment still leads to significant morbidity and mortality. The use of nanoparticles as a drug delivery system has become one of the most promising strategies for cancer therapy. Targeted nanoparticles could take advantage of differentially expressed molecules on the surface of tumor cells, providing effective release of cytotoxic drugs. Several efforts have recently reported the use of diverse molecules as ligands on the surface of nanoparticles to interact with the tumor cells, enabling the effective delivery of antitumor agents. Here, we present recent advances in targeted nanoparticles against CRC and discuss the promising use of ligands and cellular targets in potential strategies for the treatment of CRCs.
Collapse
Affiliation(s)
- Bruno A Cisterna
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, & Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile
| | - Nazila Kamaly
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Micro & Nanotechnology, Technical University of Denmark, DTU Nanotech, 2800 Kgs. Lyngby, Denmark
| | - Won Il Choi
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Ali Tavakkoli
- Department of Surgery, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, & Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
50
|
Chen D, Monteiro-Riviere NA, Zhang LW. Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27418010 DOI: 10.1002/wnan.1419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/08/2016] [Accepted: 06/24/2016] [Indexed: 01/12/2023]
Abstract
Metallic nanoparticles (NP) have been used for biomedical applications especially for imaging. Compared to nonmetallic NP, metallic NP provide high contrast images because of their optical light scattering, magnetic resonance, X-ray absorption, or other physicochemical properties. In this review, a series of in vitro imaging techniques for metallic NP will be introduced, meanwhile their strengths and weaknesses will be discussed. By utilizing these imaging methods, the cellular uptake of metallic NP can be easily visualized to better understand the endocytic mechanisms of NP intracellular delivery. Several types of metallic NP that are used for imaging or as contrast agents such as quantum dots, gold, iron oxide, and other metallic NP will be presented. Cellular uptake of metallic NP and associated endocytic mechanisms highly depends upon the NP size, charge, surface coating, shape, or other factors such as cell type, cell differentiation status, cell surface status, external forces, protein binding, temperature, and the biological milieu. Classical endocytic routes such as lipid raft-mediated pathways, clathrin or caveolae-mediated pathways, macropinocytosis, and phagocytosis have been investigated, yet there is still a demand to determine other endocytic pathways. Knowing the different methodologies used to determine the endocytic pathways will increase the understanding of NP toxicity, cancer cell targeting, and imaging, so that surface coatings can be created for efficient cell uptake of metallic NP with minimal cytotoxicity WIREs Nanomed Nanobiotechnol 2017, 9:e1419. doi: 10.1002/wnan.1419 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dandan Chen
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, United States
| | - Leshuai W Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|