1
|
Tawfeek HM, Mekkawy AI, Abdelatif AAH, Aldosari BN, Mohammed-Saeid WA, Elnaggar MG. Intranasal delivery of sulpiride nanostructured lipid carrier to central nervous system; in vitro characterization and in vivo study. Pharm Dev Technol 2024; 29:841-854. [PMID: 39264666 DOI: 10.1080/10837450.2024.2404034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
The low and erratic oral absorption of sulpiride (SUL) a dopaminergic receptor antagonist, and its P-glycoprotein efflux in the gastrointestinal tract restricted its oral route for central nervous system disorders. An intranasal formulation was formulated based on nanostructured lipid carrier to tackle these obstacles and deliver SUL directly to the brain. Sulipride-loaded nanostructured lipid carrier (SUL-NLC) was prepared using compritol®888 ATO and different types of liquid lipids and emulsifiers. SUL-NLCs were characterized for their particle size, charge, and encapsulation efficiency. Morphology and compatibility with other NLC excipients were also studied. Moreover, SUL in vitro release, nanodispersion stability, in vivo performance and SUL pharmacokinetics were investigated. Results delineates that SUL-NLC have a particle size ranging from 366.2 ± 62.1 to 640.4 ± 50.2 nm and encapsulation efficiency of 75.5 ± 1.5%. SUL showed a sustained release pattern over 24 h and maintained its physical stability for three months. Intranasal SUL-NLC showed a significantly (p < 0.01) higher SUL brain concentration than that found in plasma after oral administration of commercial SUL product with 4.47-fold increase in the relative bioavailability. SUL-NLCs as a nose to brain approach is a promising formulation for enhancing the SUL bioavailability and efficient management of neurological disorders.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Ahmed A H Abdelatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Waleed A Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Marwa G Elnaggar
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Shentu CY, Wang HB, Peng X, Xu DC, Qian LN, Chen Y, Peng LH. Progress and Challenges of Topical Delivery Technologies Meditated Drug Therapy for Osteoarthritis. Int J Nanomedicine 2024; 19:8337-8352. [PMID: 39161359 PMCID: PMC11330747 DOI: 10.2147/ijn.s466437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease commonly seen in middle-aged and elderly people. Multiple cytokines are involved in the local tissue damage in OA. Currently, non-pharmacologic and surgical interventions are the main conventional approaches for the treatment of OA. In terms of pharmaceutical drug therapy, NSAIDs and acetaminophen are mainly used to treat OA. However, it is prone to various adverse reactions such as digestive tract ulcer, thromboembolism, prosthesis loosening, nerve injury and so on. With the in-depth study of OA, more and more novel topical drug delivery strategies and vehicles have been developed, which can make up for the shortcomings of traditional dosage forms, improve the bioavailability of drugs, and significantly reduce drug side effects. This review summarizes the immunopathogenesis, treatment guidelines, and progress and challenges of topical delivery technologies of OA, with some perspectives on the future pharmacological treatment of OA proposed.
Collapse
Affiliation(s)
- Cheng-Yu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao-Bin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiao Peng
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
| | - Dong-Chen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Li-Na Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, People’s Republic of China
| |
Collapse
|
3
|
Manchanda N, Vishkarma H, Goyal M, Shah S, Famta P, Talegaonkar S, Srivastava S. Surface Functionalized Lipid Nanoparticles in Promoting Therapeutic Outcomes: An Insight View of the Dynamic Drug Delivery System. Curr Drug Targets 2024; 25:278-300. [PMID: 38409709 DOI: 10.2174/0113894501285598240216065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Compared to the conventional approach, nanoparticles (NPs) facilitate a non-hazardous, non-toxic, non-interactive, and biocompatible system, rendering them incredibly promising for improving drug delivery to target cells. When that comes to accomplishing specific therapeutic agents like drugs, peptides, nucleotides, etc., lipidic nanoparticulate systems have emerged as even more robust. They have asserted impressive ability in bypassing physiological and cellular barriers, evading lysosomal capture and the proton sponge effect, optimizing bioavailability, and compliance, lowering doses, and boosting therapeutic efficacy. However, the lack of selectivity at the cellular level hinders its ability to accomplish its potential to the fullest. The inclusion of surface functionalization to the lipidic NPs might certainly assist them in adapting to the basic biological demands of a specific pathological condition. Several ligands, including peptides, enzymes, polymers, saccharides, antibodies, etc., can be functionalized onto the surface of lipidic NPs to achieve cellular selectivity and avoid bioactivity challenges. This review provides a comprehensive outline for functionalizing lipid-based NPs systems in prominence over target selectivity. Emphasis has been put upon the strategies for reinforcing the therapeutic performance of lipidic nano carriers' using a variety of ligands alongside instances of relevant commercial formulations.
Collapse
Affiliation(s)
- Namish Manchanda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
- Centre of Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Sector-67, S.A.S Nagar, Mohali-160062, Punjab, India
| | - Harish Vishkarma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Muskan Goyal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| |
Collapse
|
4
|
Chen H, Li Z, Li X, Lu J, Chen B, Wang Q, Wu G. Biomaterial-Based Gene Delivery: Advanced Tools for Enhanced Cartilage Regeneration. Drug Des Devel Ther 2023; 17:3605-3624. [PMID: 38076630 PMCID: PMC10706074 DOI: 10.2147/dddt.s432056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Gene therapy has emerged as a promising and innovative approach in cartilage regeneration. Integrating biomaterials into gene therapy offers a unique opportunity to enhance gene delivery efficiency, optimize gene expression dynamics, modulate immune responses, and promote tissue regeneration. Despite the rapid progress in biomaterial-based gene delivery, there remains a deficiency of comprehensive discussions on recent advances and their specific application in cartilage regeneration. Therefore, this review aims to provide a thorough overview of various categories of biomaterials employed in gene delivery, including both viral and non-viral vectors, with discussing their distinct advantages and limitations. Furthermore, the diverse strategies employed in gene therapy are discussed and summarized, such as the utilization of growth factors, anti-inflammatory cytokines, and chondrogenic genes. Additionally, we highlights the significant challenges that hinder biomaterial-based gene delivery in cartilage regeneration, including immune response modulation, gene delivery efficiency, and the sustainability of long-term gene expression. By elucidating the functional properties of biomaterials-based gene therapy and their pivotal roles in cartilage regeneration, this review aims to enhance further advances in the design of sophisticated gene delivery systems for improved cartilage regeneration outcomes.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Zhen Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Xiaoqi Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Jiongjiong Lu
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Beibei Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Qiongchao Wang
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Guangliang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| |
Collapse
|
5
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
6
|
Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater 2023; 23:156-169. [PMID: 36406248 PMCID: PMC9661677 DOI: 10.1016/j.bioactmat.2022.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The skeletal system is responsible for weight-bearing, organ protection, and movement. Bone diseases caused by trauma, infection, and aging can seriously affect a patient's quality of life. Bone targeted biomaterials are suitable for the treatment of bone diseases. Biomaterials with bone-targeted properties can improve drug utilization and reduce side effects. A large number of bone-targeted micro-nano materials have been developed. However, only a few studies addressed bone-targeted hydrogel. The large size of hydrogel makes it difficult to achieve systematic targeting. However, local targeted hydrogel still has significant prospects. Molecules in bone/cartilage extracellular matrix and bone cells provide binding sites for bone-targeted hydrogel. Drug delivery systems featuring microgels with targeting properties is a key construction strategy for bone-targeted hydrogel. Besides, injectable hydrogel drug depot carrying bone-targeted drugs is another strategy. In this review, we summarize the bone-targeted hydrogel through application environment, construction strategies and disease applications. We hope this article will provide a reference for the development of bone-targeted hydrogels. We also hope this article could increase awareness of bone-targeted materials. Introducing the microenvironment and target molecules in different parts of long bones. Summarizing the construction strategy of micro/nanoparticle hydrogel with bone targeting properties. Summarizing the construction strategy of hydrogel based depot carrying bone-targeted drugs. Reporting the application and effect of bone targeting hydrogel in common bone diseases.
Collapse
|
7
|
Chaurawal N, Kataria M, Kumar MV, Mishra NP, Goni VG, Raza K. Emerging Advances in Nanocarriers Approaches in the Effective Therapy of Pain Related Disorders: Recent Evidence and Futuristic Needs. AAPS PharmSciTech 2023; 24:111. [PMID: 37118029 DOI: 10.1208/s12249-023-02567-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Pain disorders are the primary cause of disability nowadays. These disorders, such as rheumatoid arthritis (RA) and osteoarthritis (OA), cause loss of function, joint pain and inflammation and deteriorate the quality of life. The treatment of these inflammatory diseases includes anti-inflammatory drugs administered via intra-articular, topical or oral routes, physical rehabilitation or surgery. Owing to the various side effects these drugs could offer, the novel approaches and nanomaterials have shown potential to manage inflammatory diseases, prolonged half-life of anti-inflammatory drugs, reduced systemic toxicity, provide specific targeting, and refined their bioavailability. This review discusses in brief about the pain pathophysiology and its types. The review summarizes the conventional therapies used to treat pain disorders and the need for novel strategies to overcome the adverse effects of conventional therapies. The review describes the recent advancements in nanotherapeutics for inflammatory diseases using several lipids, polymers and other materials and their excellent efficiency in improving the treatment over conventional therapies. The results of the nanotherapeutic studies inferred that the necessity to use nanocarriers is due to their controlled release, targeting drug delivery to inflamed tissues, low toxicity and biocompatibility. Therefore, it is possible to assert that nanotechnology will emerge as a great tool for advancing the treatment of pain disorders in the near future.
Collapse
Affiliation(s)
- Nishtha Chaurawal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Mohak Kataria
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Muniramiah Vinod Kumar
- Professor of Orthopaedics, East Point College of Medical Sciences and Research Centre, Bangaluru, Karnataka, 560049, India
| | - Narayan Prasad Mishra
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, 751019, India
| | - Vijay G Goni
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
8
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
9
|
Song P, Cui Z, Hu L. Applications and prospects of intra-articular drug delivery system in arthritis therapeutics. J Control Release 2022; 352:946-960. [PMID: 36375618 DOI: 10.1016/j.jconrel.2022.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Arthritis is a kind of chronic disease that affects joints and muscles with the symptoms of joint pain, inflammation and limited movement of joints. Among various clinical therapies, drug therapy has been extensively applied because of its accessibility, safety and effectiveness. In recent years, the intra-articular injection has dramatic therapeutic effects in treating arthritis with high patient compliance and low side effects. In this review, we will introduce pathology of arthritis, along with the accessible treatment and diagnosis methods, then we will summarize major advances of current hopeful intra-articular delivery systems such as microspheres, hydrogels, nanoparticles and liposomes. At last, some safety assessments in the preclinical work and the main challenges for the further development of intra-articular treatment were also discussed.
Collapse
Affiliation(s)
- Pengjin Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding 071000, China
| | - Zhe Cui
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding 071000, China.
| | - Liandong Hu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding 071000, China.
| |
Collapse
|
10
|
Rao C, Shi S. Development of Nanomaterials to Target Articular Cartilage for Osteoarthritis Therapy. Front Mol Biosci 2022; 9:900344. [PMID: 36032667 PMCID: PMC9402910 DOI: 10.3389/fmolb.2022.900344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is an obstinate, degradative, and complicated disease that has drawn much attention worldwide. Characterized by its stubborn symptoms and various sequela, OA causes much financial burden on both patients and the health system. What’s more, conventional systematic therapy is not effective enough and causes multiple side effects. There’s much evidence that nanoparticles have unique properties such as high penetration, biostability, and large specific surface area. Thus, it is urgent to exploit novel medications for OA. Nanomaterials have been sufficiently studied, exploiting diverse nano-drug delivery systems (DDSs) and targeted nano therapeutical molecules. The nanomaterials are primarily intra-articular injected under the advantages of high topical concentration and low dosage. After administration, the DDS and targeted nano therapeutical molecules can specifically react with the components, including cartilage and synovium of a joint in OA, furthermore attenuate the chondrocyte apoptosis, matrix degradation, and macrophage recruitment. Thus, arthritis would be alleviated. The DDSs could load with conventional anti-inflammatory drugs, antibodies, RNA, and so on, targeting chondrocytes, synovium, or extracellular matrix (ECM) and releasing the molecules sequentially. The targeted nano therapeutical molecules could directly get to the targeted tissue, alleviating the inflammation and promoting tissue healing. This review will comprehensively collect and evaluate the targeted nanomaterials to articular cartilage in OA.
Collapse
|
11
|
宗 路, 吴 乾, 董 仲, 黄 立, 杨 惠. [Research progress of nanomaterials for intra-articular targeted drug delivery in treatment of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:908-914. [PMID: 35848190 PMCID: PMC9288906 DOI: 10.7507/1002-1892.202203033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Indexed: 01/24/2023]
Abstract
Objective To review the research progress of intra-articular targeted delivery of nanomaterials in the treatment of osteoarthritis (OA). Methods The domestic and foreign related literature on intra-articular targeted delivery of nanomaterials for the treatment of OA was extensively reviewed, and their targeting strategies were discussed and summarized. Results Rapid drug clearance from the joint remains a critical limitation in drug efficacy. Nanocarriers can not only significantly improve the residence profiles of drugs in the joint, but also achieve targeted delivery of drugs to specific joint tissues through active or passive targeting strategies. Conclusion With the continuous development of various emerging tissue- or cell-specific drugs, the targeted delivery of drugs with nanomaterials promise to realize the clinical translation of these drugs in the treatment of OA.
Collapse
Affiliation(s)
- 路杰 宗
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 乾 吴
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
- 昆山市第一人民医院骨科(江苏昆山 215300)Department of Orthopedics, the First People’s Hospital of Kunshan, Kunshan Jiangsu, 215300, P. R. China
| | - 仲琛 董
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 立新 黄
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 惠林 杨
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| |
Collapse
|
12
|
CDDO-Im ameliorates osteoarthritis and inhibits chondrocyte apoptosis in mice via enhancing Nrf2-dependent autophagy. Acta Pharmacol Sin 2022; 43:1793-1802. [PMID: 34754093 PMCID: PMC9253092 DOI: 10.1038/s41401-021-00782-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease with few treatment options. The pathogenesis of OA is characterized by sustained inflammation, oxidative stress and chondrocyte apoptosis that eventually lead to cartilage degradation and joint dysfunction. In the present study, we identified a synthetic triterpenoid CDDO-Im(1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) as an activator of Nrf2 (nuclear factor erythroid 2-related factor 2) that displayed strong anti-OA effects. We showed that CDDO-Im (20 nM) significantly alleviated TNF-α-induced apoptosis of primary human chondrocytes and extracellular matrix degradation. In a mouse OA model incurred by DMM (destabilization of medial meniscus), administration of CDDO-Im (2.5 mg/kg, ip, every other day for 8 weeks) effectively reduced knee joint cartilage erosion and serum levels of inflammatory cytokines IL-1β and IL-6. We revealed that CDDO-Im (20 nM) significantly enhanced autophagy activities in chondrocytes, whereas the autophagy inhibition by chloroquine (CQ, 50 μM) or 3-methyladenine (3-MA, 5 mM) abrogated the anti-apoptosis and chondroprotective effects of CDDO-Im in TNF-α-treated chondrocytes. Moreover, we confirmed that CDDO-Im (1-20 nM) dose-dependently activated Nrf2 pathway in TNF-α-treated chondrocytes, and its chondroprotective and autophagy-enhancing effects were significantly diminished when Nrf2 signaling was blocked by Nrf2 inhibitor ML385 (20 μM) or siRNA-mediated Nrf2 knockdown. Together, our results demonstrate that CDDO-Im exhibits prominent chondroprotective and anti-OA activities owing to its Nrf2 activation and autophagy-enhancing properties, which might provide new insights into the strategies of OA clinical prevention and treatment.
Collapse
|
13
|
Ebada HMK, Nasra MMA, Nassra RA, Abdallah OY. Chondroitin sulfate-functionalized lipid nanoreservoirs: a novel cartilage-targeting approach for intra-articular delivery of cassic acid for osteoarthritis treatment. Drug Deliv 2022; 29:652-663. [PMID: 35188017 PMCID: PMC8865121 DOI: 10.1080/10717544.2022.2041130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel intra-articular nanoreservoirs were implemented employing different cartilage targeting approaches to improve cartilage bioavailability of a chondroprotective drug, cassic acid (CA), for effective amelioration of cartilage deterioration off-targeting CA gastrointestinal disorders. Herein, we compared active cartilage-targeting approach via chondroitin sulfate (CHS) functionalization versus passive targeting using positively charged nanoparticles to target negatively charged cartilage matrix. Firstly, CA integrated nanoreservoirs (CA-NRs) were fabricated based on ionic conjugation between CA and cationic hydrophobic surface modifier octadecylamine (ODA) and were further functionalized with CHS to develop CHS-CA-NRs. Confocal laser microscope was used to visualize the accumulation of nanoparticles into the cartilage tissue. Both targeting approaches promoted CA local cartilage availability and prolonged its residence time. Compared to passive targeted CA-NRs, active targeted CHS-CA-NRs showed higher fluorescence signals in proximity to and inside chondrocytes which lasted for up to 21 days. In MIA-osteoarthritic rats, CHS-CA-NRs showed superior antiosteoarthritic activity, exhibiting highest cartilage repair compared to CA-NRs. Additionally, CHS-CA-NRs significantly inhibited OA inflammatory cytokine, degradation enzyme and oxidative stress and improved cartilage matrix biosynthesis. Conclusively, CHS-CA-NRs improved OA repair showing a superior efficacy for articular cartilage targeting with CHS which could be a potential advance for OA therapy.
Collapse
Affiliation(s)
- Heba M K Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maha M A Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rasha A Nassra
- Department of Medical Biochemistery, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Carvalho BG, Garcia BBM, Malfatti-Gasperini AA, Han SW, de la Torre LG. Hybrid polymer/lipid vesicle synthesis: Association between cationic liposomes and lipoplexes with chondroitin sulfate. Colloids Surf B Biointerfaces 2021; 210:112233. [PMID: 34838413 DOI: 10.1016/j.colsurfb.2021.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
The association of cationic carriers with different anionic mucoadhesive biopolymers has been widely explored as an alternative to improve their delivery routes and specific targeting. This work presents a complete analysis of the association between chondroitin sulfate (CS) and cationic liposomes (CLs)/lipoplex (CL-pDNA). In this study, plasmid DNA (pDNA) was used as a genetic cargo for association with carriers. Firstly, we measured the stoichiometry of pseudo complexes and evaluated their colloidal properties, structural and morphological characteristics. Optimized CL-pDNA lipoplexes (positive z-potential) and CL-CS / CL-pDNA-CS (negative z-potential with CS mass ratio of 9% (w/w)) were further studied in detail. Small-angle X-ray scattering analysis and cryo-transmission electron microscopy micrographs revealed that the electrostatic interaction between CS and CL / CL-pDNA easily reorganized the lipid bilayers resulting in nanoscale uni/multilamellar vesicles. A high CS mass ratio (9% (w/w)) led to the reassembly of liposomal structure, wherein the pDNA was easily exchanged for CS chains, forming more than 50% of dense multilamellar vesicles. This data evidenced that the association between CS and CLs is not a conventional coating process since it generates complex and hybrid structures. We believe that these obtained colloidal data may be used in the future to investigate polymer-tailored nanocarriers and their production process. In brief, the colloidal study of hybrid structures may open interesting perspectives for developing novel carriers for drug and gene delivery applications.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil
| | - Bianca B M Garcia
- Center for Cell Therapy and Molecular, Federal University of São Paulo (UNIFESP), 04044-010 São Paulo, Brazil
| | - Antonio A Malfatti-Gasperini
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Sang W Han
- Center for Cell Therapy and Molecular, Federal University of São Paulo (UNIFESP), 04044-010 São Paulo, Brazil
| | - Lucimara G de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil.
| |
Collapse
|
15
|
Shah H, Madni A, Rahim MA, Jan N, Khan A, Khan S, Jabar A, Ali A. Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein. PLoS One 2021; 16:e0258141. [PMID: 34665836 PMCID: PMC8525764 DOI: 10.1371/journal.pone.0258141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
The present study is associated with the development of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein. Proliposomes were developed by thin film hydration method and converted into the liposomal derived gel using carbopol-934 as a gelling agent. Formulations with varied lecithin to cholesterol ratios were investigated to obtain the optimal size, entrapment efficiency, and enhanced in vitro dissolution. Dynamic light scattering analysis revealed the particle size and zeta potential in the range of 385.1±2.45-762.8±2.05 nm and -22.4±0.55-31.2±0.96mV respectively. Fourier transform infrared (FTIR) spectroscopic analysis depicted the physicochemical compatibility, powdered x-ray diffraction (PXRD) analysis predicted the crystalline nature of pure drug and its transition into amorphous form within formulation. The differential scanning calorimetry (DSC) demonstrated the thermal stability of the formulation. The in vitro drug release study using dialysis membrane displayed the enhanced dissolution of diacerein due to the presence of hydrophilic carrier (Maltodextrin) followed by sustained drug release due to the presence of lipid mixture (lecithin and cholesterol). Ex vivo permeation studies depicted 3.50±0.27 and 3.21±0.22 folds enhanced flux of liposomal gels as compared to control. The acute oral toxicity study showed safety and biocompatibility of the system as no histopathological changes in vital organs were observed. These results suggests that proliposomes and liposomal derived gel are promising candidates for the solubility and permeability enhancement of diacerein in the management of osteoarthritis.
Collapse
Affiliation(s)
- Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Muhammad Abdur Rahim
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Abdul Jabar
- College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
16
|
Parashar P, Singh N, Alka A, Maurya P, Saraf SA. An assessment of in-vitro and in-vivo evaluation methods for theranostic nanomaterials. Curr Pharm Des 2021; 28:78-90. [PMID: 34348616 DOI: 10.2174/1381612827666210804101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
Nanoparticles (NPs) as nanocarriers have emerged as novel and promising theranostic agents. The term theranostics revealed the properties of NPs capable of diagnosing the disease at an early stage and/or treating the disease. Such NPs are usually developed employing a surface engineering approach. The theranostic agents comprise NPs loaded with a drug/diagnostic agent that delivers it precisely to the target site. Theranostics is a field with promising results in enhancing therapeutic efficacy facilitated through higher payload at the targeted tissue, reduced dose, and dose-dependent side effects. However, controversies in terms of toxicity and size-dependent properties have often surfaced for NPs. Thus, a stringent in-vitro and in-vivo evaluation is required to develop safe and non-toxic NPs as theranostic agents. The review also focuses on the various entry points of NPs in the human system and their outcomes, including toxicity. It elaborates the evaluation criteria to ensure the safe use of NPs for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Poonam Parashar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| | - Alka Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| |
Collapse
|
17
|
Abdelhakeem E, El-Nabarawi M, Shamma R. Effective Ocular Delivery of Eplerenone Using Nanoengineered Lipid Carriers in Rabbit Model. Int J Nanomedicine 2021; 16:4985-5002. [PMID: 34335024 PMCID: PMC8318821 DOI: 10.2147/ijn.s319814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Background Eplerenone (Epl) is a selective mineralocorticoid-receptor antagonist used for chronic central serous chorioretinopathy treatment. Our goal was to enhance the corneal performance of Epl-loaded nanostructured lipid carriers (NLCs) through surface modification using different coating polymers. Methods Epl-loaded modified NLCs (Epl-loaded MNLCs) were prepared by coating the surface of Epl-loaded NLCs using different polymers, namely hyaluronic acid, chitosan oligosaccharide lactate, and hydrogenated collagen. A 31×41 full factorial design was used to evaluate the effect of the surface modification on the properties of the prepared systems. Selected optimal Epl-loaded MNLCs were further evaluated for in vitro drug release, morphology, pH, rheological properties, corneal mucoadhesion, irritation, and penetration. Results Epl-loaded MNLCs were successfully prepared with high drug-entrapment efficiency and nanosized particles with low size distribution. Transmission electron microscopy revealed nanosized spherical particles surrounded by a coating layer of the surface modifier. The pH, refractive index, and viscosity results of the Epl-loaded MNLCs confirmed the ocular compatibility of the systems with no blurring of vision. The safety and ocular tolerance of the optimal MNLCs were confirmed using the hen’s egg test on chorioallantoic membrane and by histopathological evaluation of rabbit eyes treated with the optimal systems. Confocal laser-scanning microscopy of corneal surfaces confirmed successful transcorneal permeation of the Epl-loaded MNLCs compared to the unmodified Epl-loaded NLCs, revealed by higher corneal fluorescence intensity at all time intervals. Conclusion Overall, the results confirmed the potential of Epl-loaded MNLCs as a direct approach for Epl ocular delivery.
Collapse
Affiliation(s)
- Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Craciunescu O, Icriverzi M, Florian PE, Roseanu A, Trif M. Mechanisms and Pharmaceutical Action of Lipid Nanoformulation of Natural Bioactive Compounds as Efficient Delivery Systems in the Therapy of Osteoarthritis. Pharmaceutics 2021; 13:1108. [PMID: 34452068 PMCID: PMC8399940 DOI: 10.3390/pharmaceutics13081108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.
Collapse
Affiliation(s)
- Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Madalina Icriverzi
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Paula Ecaterina Florian
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Anca Roseanu
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Mihaela Trif
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| |
Collapse
|
19
|
Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. NANO-MICRO LETTERS 2021; 13:149. [PMID: 34160733 PMCID: PMC8222488 DOI: 10.1007/s40820-021-00670-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Osteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of "smart" bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
20
|
Folic acid decorated chitosan-coated solid lipid nanoparticles for the oral treatment of rheumatoid arthritis. Ther Deliv 2021; 12:297-310. [PMID: 33726498 DOI: 10.4155/tde-2020-0123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Systemic treatment of rheumatoid arthritis has been accompanied with several side effects. This study attempts to reduce leflunomide systemic side effects besides increasing its joint healing outcomes via formulation of layer-by-layer coated, leflunomide-loaded solid lipid nanoparticles (SLNs). Methods: SLNs were coated with chitosan (CS) followed by folic acid (FA). FA-CS-SLNs were about 284.9 nm and carried negative surface charge. Results & conclusion: FA-CS-SLNs showed sustained release profile for 168 h. Results of oral administration of FA-CS-SLNs in rats with adjuvant-induced arthritis revealed improved joint healing and reduced hepatotoxicity compared with leflunomide suspension. This may be attributed to the ability of FA-CS-SLNs to actively target FA receptors that are overexpressed in inflamed rheumatic joints in addition to innate joint healing properties of CS.
Collapse
|
21
|
Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater 2021; 123:31-50. [PMID: 33444800 DOI: 10.1016/j.actbio.2021.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), is a common musculoskeletal disorder that will progressively increase in older populations and is expected to be the most dominant cause of disability in the world population by 2030. The progression of OA is controlled by a multi-factorial pathway that has not been completely elucidated and understood yet. However, over the years, research efforts have provided a significant understanding of some of the processes contributing to the progression of OA. Both cartilage and bone degradation processes induce articular cells to produce inflammatory mediators that produce proinflammatory cytokines that block the synthesis of collagen type II and aggrecan, the major components of cartilage. Systemic administration and intraarticular injection of anti-inflammatory agents are the first-line treatments of OA. However, small anti-inflammatory molecules are rapidly cleared from the joint cavity which limits their therapeutic efficacy. To palliate this strong technological drawback, different types of polymeric materials such as microparticles, nanoparticles, and hydrogels, have been examined as drug carriers for the delivery of therapeutic agents to articular joints. The main purpose of this review is to provide a summary of recent developments in natural and synthetic polymeric drug delivery systems for the delivery of anti-inflammatory agents to arthritic joints. Furthermore, this review provides an overview of the design rules that have been proposed so far for the development of drug carriers used in OA therapy. Overall it is difficult to state clearly which polymeric platform is the most efficient one because many advantages and disadvantages could be pointed to both natural and synthetic formulations. That requires further research in the near future.
Collapse
|
22
|
Mishra S, Ganguli M. Functions of, and replenishment strategies for, chondroitin sulfate in the human body. Drug Discov Today 2021; 26:1185-1199. [PMID: 33549530 DOI: 10.1016/j.drudis.2021.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Chondroitin sulfate (CS) belongs to a class of molecules called glycosaminoglycans (GAGs). These are long, linear chains of polysaccharides comprising alternating amino sugars and hexuronic acid. Similar to other GAGs, CS is important in a multitude of biological activities. Alteration of CS levels has been implicated in several pathological conditions, including osteoarthritis (OA) and other inflammatory diseases, as well as physiological conditions, such as aging. Therefore, devising replenishment strategies for this molecule is an important area of research. In this review, we discuss the nature of CS, its function in different organs, and its implications in health and disease. We also describe different methods for the exogenous administration of CS.
Collapse
Affiliation(s)
- Sarita Mishra
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
23
|
Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJ. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Soliman MAN, Ibrahim HK, Nour SAEK. Diacerein solid dispersion loaded tablets for minimization of drug adverse effects: statistical design, formulation, in vitro, and in vivo evaluation. Pharm Dev Technol 2021; 26:302-315. [PMID: 33356729 DOI: 10.1080/10837450.2020.1869982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diacerein is a BCS class II drug employed in osteoarthritis management. The acid/base hydrolysis of the unabsorbed diacerein in the colon is responsible for its laxative effect. Therefore, this work aimed to enhance the solubility, dissolution, and oral bioavailability of diacerein. Such enhancement means lower doses and fewer gastrointestinal adverse effects. A 41.31.21 full factorial design was adopted to prepare 24 solid dispersion formulae. Solid-state characterization showed the dissolution of diacerein crystals as metastable amorphous or microcrystalline forms in a matrix system that enhanced the drug dissolution. Desirability factor suggested compounding an optimized formula (F1) of Pluronic®F68 with 1:3 drug:carrier ratio using rotavap that showed higher drug solubility (187.61 µg/mL) than drug powder (22.5 µg/mL). It achieved higher dissolution efficiency (4.04-fold) and rate (6.6-fold) as well as 100% release in 2 min. F1 was compressed into tablets recording greater dissolution efficiency (1.24-fold) and rate (12.5-fold) than the marketed product. The prepared tablet accomplished a 2.66-fold enhancement in diacerein bioavailability compared to the marketed product. In conclusion, the formulation of diacerein as solid dispersion loaded tablets could be of added value for the treatment of osteoarthritis in terms of enhanced patient compliance. Solid dispersion is an easy and scalable technique.
Collapse
Affiliation(s)
- Mohamed Ahmed Naseef Soliman
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt.,Faculty of Health and Life Sciences, Leicester Institute of Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Howida Kamal Ibrahim
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Samia Abd El-Kader Nour
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Xiao S, Chen L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J Control Release 2020; 328:817-833. [PMID: 33176171 DOI: 10.1016/j.jconrel.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common degenerative disease involving numerous joint tissues and cells, with a growing rate in prevalence that ultimately results in a negative social impact. Early diagnosis, OA progression monitoring and effective treatment are of significant importance in halting OA process. However, traditional imaging techniques lack sensitivity and specificity, which lead to a delay in timely clinical intervention. Additionally, current treatments only slow the progression of OA but have not meet the largely medical need for disease-modifying therapy. In order to overcome the above-mentioned problems and improve clinical efficacy, nanotheranostics has been proposed on OA remedy, which has confirmed success in animal models. In this review, different imaging targets-based nanoprobe for early and timely OA diagnosis is first discussed. Second, therapeutic strategies delivered by nanosystem are summarized as much as possible. Their advantages and the potential for clinical translation are detailed discussed. Third, nanomedicine simultaneously combined with the imaging for OA treatment is introduced. Nanotheranostics dynamically tracked the OA treatment outcomes to timely and individually adjust therapy. Finally, future prospects and challenges of nanotechnology-based OA diagnosis, imaging and treatment are concluded and predicted. It is believed that nanoprobe and nanomedicine will become prospective in OA therapeutic revolution.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
26
|
Mohamed MI, Al-Mahallawi AM, Awadalla SM. Development and optimization of osmotically controlled drug delivery system for poorly aqueous soluble diacerein to improve its bioavailability. Drug Dev Ind Pharm 2020; 46:814-825. [DOI: 10.1080/03639045.2020.1757696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Magdy I. Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulaziz M. Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Sami M. Awadalla
- Department of Pharmaceutics, Faculty of Pharmacy, Khartoum University, Khartoum, Sudan
| |
Collapse
|
27
|
Mohammadinejad R, Ashrafizadeh M, Pardakhty A, Uzieliene I, Denkovskij J, Bernotiene E, Janssen L, Lorite GS, Saarakkala S, Mobasheri A. Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Curr Rheumatol Rep 2020; 22:12. [PMID: 32248371 PMCID: PMC7128005 DOI: 10.1007/s11926-020-0884-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review article, we discuss the potential for employing nanotechnological strategies for the diagnosis, monitoring, and clinical management of osteoarthritis (OA) and explore how nanotechnology is being integrated rapidly into regenerative medicine for OA and related osteoarticular disorders. RECENT FINDINGS We review recent advances in this rapidly emerging field and discuss future opportunities for innovations in enhanced diagnosis, prognosis, and treatment of OA and other osteoarticular disorders, the smart delivery of drugs and biological agents, and the development of biomimetic regenerative platforms to support cell and gene therapies for arresting OA and promoting cartilage and bone repair. Nanotubes, magnetic nanoparticles, and other nanotechnology-based drug and gene delivery systems may be used for targeting molecular pathways and pathogenic mechanisms involved in OA development. Nanocomposites are also being explored as potential tools for promoting cartilage repair. Nanotechnology platforms may be combined with cell, gene, and biological therapies for the development of a new generation of future OA therapeutics. Graphical Abstract.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Lauriane Janssen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PL 4500, 3FI-90014, Oulu, Finland
| | - Gabriela S Lorite
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PL 4500, 3FI-90014, Oulu, Finland
| | - Simo Saarakkala
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania.
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, UK.
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz University, Jeddah, Saudi Arabia.
- University Medical Center Utrecht, Department of Orthopedics and Department of Rheumatology & Clinical Immunology, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Transdermal co-delivery of glucosamine sulfate and diacerein for the induction of chondroprotection in experimental osteoarthritis. Drug Deliv Transl Res 2020; 10:1327-1340. [PMID: 31907788 DOI: 10.1007/s13346-019-00701-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this work was to develop a transdermal delivery system consisting of a glucosamine sulfate-laden xanthan hydrogel containing a nanoemulsion-loaded diacerein. The system was intended to prevent cartilage degradation typical of osteoarthritis. The nanoemulsion, made of soybean oil as the oil phase; soybean lecithin, Tween 80, and poloxamer 407 as surfactants; and propylene glycol as cosurfactant, was formed within the hydrogel. The hydrodynamic diameter of the nanoemulsion globules was 81.95 ± 0.256 nm with 0.285 ± 0.036 of PDI value and the zeta potential value of the formulation was 39.33 ± 0.812 mV. CryoSEM and TEM studies revealed the uniform morphology of the vehicle. A rheological study exposed the nanoemulsion-loaded hydrogel as a thixotropic system. Satisfactory storage stability under ICH conditions was established by the zeta potential and rheological studies. Furthermore, skin biocompatibility of the hydrogel was ascertained on the basis of skin irritation study. Additionally, the diffusion of the drugs across rat skin followed a controlled non-Fickian anomalous steady mechanism. Following in vivo administration in experimental osteoarthritis, the transdermal hydrogel showed a reduction in tumor necrosis factor-alpha, C-reactive protein, high mobility group box protein, and monocyte chemoattractant protein-1. Finally, histopathological analysis of the animals showed satisfactory chondroprotection in the in vivo study. In conclusion, the developed transdermal systems showed a potential against the progression of experimental osteoarthritis.
Collapse
|
29
|
Kou L, Xiao S, Sun R, Bao S, Yao Q, Chen R. Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug Deliv 2019; 26:870-885. [PMID: 31524006 PMCID: PMC6758706 DOI: 10.1080/10717544.2019.1660434] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a progressive and degenerative disease, which is no longer confined to the elderly. So far, current treatments are limited to symptom relief, and no valid OA disease-modifying drugs are available. Additionally, OA relative joint is challenging for drug delivery, since the drugs experience rapid clearance in joint, showing a poor bioavailability. Existing therapeutic drugs, like non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, are not conducive for long-term use due to adverse effects. Though supplementations, including chondroitin sulfate and glucosamine, have shown beneficial effects on joint tissues in OA, their therapeutic use is still debatable. New emerging agents, like Kartogenin (KGN) and Interleukin-1 receptor antagonist (IL-1 ra), without a proper formulation, still will not work. Therefore, it is urgent to establish a suitable and efficient drug delivery system for OA therapy. In this review, we pay attention to various types of drug delivery systems and potential therapeutic drugs that may escalate OA treatments.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuyi Xiao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
García-Couce J, Almirall A, Fuentes G, Kaijzel E, Chan A, Cruz LJ. Targeting Polymeric Nanobiomaterials as a Platform for Cartilage Tissue Engineering. Curr Pharm Des 2019; 25:1915-1932. [DOI: 10.2174/1381612825666190708184745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
Articular cartilage is a connective tissue structure that is found in anatomical areas that are important for the movement of the human body. Osteoarthritis is the ailment that most often affects the articular cartilage. Due to its poor intrinsic healing capacity, damage to the articular cartilage is highly detrimental and at present the reconstructive options for its repair are limited. Tissue engineering and the science of nanobiomaterials are two lines of research that together can contribute to the restoration of damaged tissue. The science of nanobiomaterials focuses on the development of different nanoscale structures that can be used as carriers of drugs / cells to treat and repair damaged tissues such as articular cartilage. This review article is an overview of the composition of articular cartilage, the causes and treatments of osteoarthritis, with a special emphasis on nanomaterials as carriers of drugs and cells, which reduce inflammation, promote the activation of biochemical factors and ultimately contribute to the total restoration of articular cartilage.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Amisel Almirall
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Eric Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| |
Collapse
|
31
|
Keshavarz A, Alobaida A, McMurtry IF, Nozik-Grayck E, Stenmark KR, Ahsan F. CAR, a Homing Peptide, Prolongs Pulmonary Preferential Vasodilation by Increasing Pulmonary Retention and Reducing Systemic Absorption of Liposomal Fasudil. Mol Pharm 2019; 16:3414-3429. [PMID: 31194563 PMCID: PMC7035787 DOI: 10.1021/acs.molpharmaceut.9b00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we sought to elucidate the role of CAR (a cyclic peptide) in the accumulation and distribution of fasudil, a drug for pulmonary arterial hypertension (PAH), in rat lungs and in producing pulmonary specific vasodilation in PAH rats. As such, we prepared liposomes of fasudil and CAR-conjugated liposomal fasudil and assessed the liposomes for CAR conjugation, physical properties, entrapment efficiencies, in vitro release profiles, and stabilities upon incubation in cell culture media, storage, and aerosolization. We also studied the cellular uptake of fasudil in different formulations, quantified heparan sulfate (HS) in pulmonary arterial smooth muscle cells (PASMCs), and investigated the distribution of the liposomes in the lungs of PAH rats. We assessed the drug accumulation in a close and recirculating isolated perfused rat lung model and studied the pharmacokinetics and pharmacological efficacy of the drug and formulations in Sugen/hypoxia-induced PAH rats. The entrapment efficiency of the liposomal fasudil was 95.5 ± 4.5%, and the cumulative release was 93.95 ± 6.22%. The uptake of CAR liposomes by pulmonary arterial cells and their distribution and accumulation in the lungs were much greater than those of no-CAR-liposomes. CAR-induced increase in the cellular uptake was associated with an increase in HS expression by rat PAH-PASMCs. CAR, when conjugated with liposomal fasudil and given via an intratracheal instillation, extended the elimination half-life of the drug by four-fold compared with fasudil-in-no-CAR-liposomes given via the same route. CAR-conjugated liposomal fasudil, as opposed to fasudil-in-no-CAR-liposomes and CAR pretreatment followed by fasudil-in-no-CAR-liposomes, reduced the mean pulmonary arterial pressure by 40-50% for 6 h, without affecting the mean systemic arterial pressure. On the whole, this study suggests that CAR aids in concentrating the drug in the lungs, increasing the cellular uptake, extending the half-life of fasudil, and eliciting a pulmonary-specific vasodilation when the peptide remains conjugated on the liposomal surface, but not when CAR is given as a pretreatment or alone as an admixture with the drug.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Ivan F. McMurtry
- Department of Pharmacology, The Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, United States
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Kurt R. Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| |
Collapse
|
32
|
Zewail M, Nafee N, Helmy MW, Boraie N. Coated nanostructured lipid carriers targeting the joints – An effective and safe approach for the oral management of rheumatoid arthritis. Int J Pharm 2019; 567:118447. [DOI: 10.1016/j.ijpharm.2019.118447] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
|
33
|
Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater 2019; 93:239-257. [PMID: 30862551 DOI: 10.1016/j.actbio.2019.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a prevalent and debilitating disease that involves pathological contributions from numerous joint tissues and cells. The joint is a challenging arena for drug delivery, since the joint has poor bioavailability for systemically administered drugs and experiences rapid clearance of therapeutics after intra-articular injection. Moreover, each tissue within the joint presents unique barriers to drug localization. In this review, the various applications of nanotechnology to overcome these drug delivery limitations are investigated. Nanomaterials have reliably shown improvements to retention profiles of drugs within the joint space relative to injected free drugs. Additionally, nanomaterials have been modified through active and passive targeting strategies to facilitate interactions with and localization within specific joint tissues such as cartilage and synovium. Last, the limitations of drawing cross-study comparisons, the implications of synovial fluid, and the potential importance of multi-modal therapeutic strategies are discussed. As emerging, cell-specific disease modifying osteoarthritis drugs continue to be developed, the need for targeted nanomaterial delivery will likely become critical for effective clinical translation of therapeutics for osteoarthritis. STATEMENT OF SIGNIFICANCE: Improving drug delivery to the joint is a pressing clinical need. Over 27 million Americans live with osteoarthritis, and this figure is continuously expanding. Numerous drugs have been investigated but have failed in clinical trials, likely related to poor bioavailability to target cells. This article comprehensively reviews the advances in nano-scale delivery vehicles designed to overcome the delivery barriers in the joint. This is the first review to analyze active and passive targeting strategies systematically for different target sites while also delineating between tissue homing and whole joint retention. By bringing together the lessons learned across numerous nano-scale platforms, researchers may be able to hone future nanomaterial designs, allowing emerging therapeutics to perform with clinically relevant efficacy and disease modifying potential.
Collapse
|
34
|
Zhong G, Yang X, Jiang X, Kumar A, Long H, Xie J, Zheng L, Zhao J. Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. NANOSCALE 2019; 11:11605-11616. [PMID: 31173033 PMCID: PMC6776464 DOI: 10.1039/c9nr03060c] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anti-oxidative agents hold great potential in osteoarthritis (OA) therapy. However, most radical scavengers have poor biocompatibility and potential cytotoxicity, which limit their applications. Herein we explore dopamine melanin (DM) nanoparticles as a novel scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS). DM nanoparticles show low cytotoxicity and a strong ability to sequester a broad range of ROS and RNS, including superoxides, hydroxyl radicals, and peroxynitrite. This translates to excellent anti-inflammatory and chondro-protective effects by inhibiting intracellular ROS and RNS and promoting antioxidant enzyme activities. With an average diameter of 112.5 nm, DM nanoparticles can be intra-articularly (i.a.) injected into an affected joint and retained at the injection site. When tested in vivo in rodent OA models, DM nanoparticles showed diminished inflammatory cytokine release and reduced proteoglycan loss, which in turn slowed down cartilage degradation. Mechanistic studies suggest that DM nanoparticles also enhance autophagy that benefits OA control. In summary, our study suggests DM nanoparticles as a safe and promising therapeutic for OA.
Collapse
Affiliation(s)
- Gang Zhong
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Xianfang Jiang
- The College of Stomatology, Guangxi Medical University, Nanning, 530021, China
| | - Anil Kumar
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Huiping Long
- Department of Neurology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Li Zheng
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
35
|
Gade S, Patel KK, Gupta C, Anjum MM, Deepika D, Agrawal AK, Singh S. An Ex Vivo Evaluation of Moxifloxacin Nanostructured Lipid Carrier Enriched In Situ Gel for Transcorneal Permeation on Goat Cornea. J Pharm Sci 2019; 108:2905-2916. [PMID: 30978345 DOI: 10.1016/j.xphs.2019.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
The study was designed to fabricate the moxifloxacin nanostructured lipid carriers (MOX-NLCs) loaded in situ gel for opthalmic application to improve the corneal permeation and retention and also subside the toxic effect associated with intracameral injection of moxifloxacin in endophthalmitis treatment. Initially, Box-Behnken design was used to optimize the various factors significantly affecting the final formulation attributes. MOX-NLCs with particle size 232.1 ± 9.2 nm, polydispersity index 0.247 ± 0.031, zeta potential -16.3 ± 1.6 mV, entrapment efficiency 63.1 ± 2.4%, and spherical shape was achieved. The optimized MOX-NLCs demonstrated the Higuchi release kinetics with highest regression coefficient. Besides this, FTIR, differential scanning calorimetry, and X-ray diffraction results suggested that MOX had excellent compatibility with excipients. Furthermore, the results of ex-vivo permeation study demonstrated 2-fold higher permeation (208.7 ± 17.6 μg), retention (37.26 ± 2.83 μg), and flux (9.57 ± 0.73 μg/cm2 h) compared with free MOX in situ gel. In addition, MOX-NLCs exhibited normal corneal hydration and did not show any sign of structural damage to the corneal tissue as confirmed by histology. Therefore, the findings strongly suggest that MOX-NLCs in situ gel with higher permeation and retention can be a better alternative strategy to prevent and treat the endophthalmitis infection.
Collapse
Affiliation(s)
- Shilpkala Gade
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India
| | - Krishna Kumar Patel
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India
| | - Chandan Gupta
- Bombay College of Pharmacy, Kalina, Santacruz, Mumbai, Maharastra, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India
| | - Deepika Deepika
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
36
|
Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov Today 2018; 23:1761-1775. [DOI: 10.1016/j.drudis.2018.05.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
|
37
|
Towards the antioxidant therapy in Osteoarthritis: Contribution of nanotechnology. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Allam AN, Hamdallah SI, Abdallah OY. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: preparation, characterization, and ex vivo/in vivo evaluation. Int J Nanomedicine 2017; 12:4733-4745. [PMID: 28740381 PMCID: PMC5503500 DOI: 10.2147/ijn.s139706] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nanodrug delivery systems have been widely reviewed for their use in several drug formulations to improve bioavailability, sustain effect, and decrease side effects of many candidate drugs. The objective of this study was to evaluate the potential of chitosan (CS)-coated nanosuspensions to enhance bioavailability and reduce the diarrheal side effect of diacerein (DCN) after oral administration. DCN nanosuspensions (DNS) were prepared by sonoprecipitation technique using different stabilizers at three different concentrations. The selected DNS with optimum particle size (PS), polydispersity index (PDI), and Zeta potential (ZP) was coated with three different concentrations of CS-coated DNS (CS-DNS) and screened. In vitro dissolution was performed for the selected lyophilized formulae and compared with DCN powder in addition to the assessment of drug crystallinity via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Ex vivo drug permeability using noneverted rat intestine, intraluminal content, and mucoadhesion evaluation was studied for nominated formulae in comparison to DCN suspension. Moreover, in vivo study, pharmacokinetic parameters, and evaluation of diarrheal potential were conducted after oral administration of selected formulae. Polyvinyl pyrrolidone (PVP)-stabilized DNS showed a significant increase (P≤0.05) in PS and PDI as the stabilizer concentration increased. PVP-stabilized DNS with the lowest CS concentration was protected from aggregation by lyophilization with mannitol. A remarked enhancement in dissolution parameters was observed in the nanocrystals’ formulae. Morphological examination and X-ray diffraction confirmed drug crystallinity. The intermediate permeation parameters of CS-DNS-F10, lowest rhein-to-DCN ratio in intraluminal content along with the highest percentage of mucoadhesive, could serve as a sustaining profile of coated formula. CS-DNS-F10 showed a significantly higher Cmax of 0.74±0.15 µg/mL at a delayed Tmax of 3.60±0.55 hours with a relative bioavailability of 172.1% compared to DCN suspension. CS-coated nanosuspensions could serve as promising revenue to enhance bioavailability and reduce the diarrheal side effect of DCN after oral administration.
Collapse
Affiliation(s)
- Ahmed N Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sherif I Hamdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Garg A, Bhalala K, Tomar DS, Wahajuddin. In-situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles. Int J Pharm 2017; 516:120-130. [DOI: 10.1016/j.ijpharm.2016.10.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 11/27/2022]
|
40
|
Reimann S, Schneider T, Welker P, Neumann F, Licha K, Schulze-Tanzil G, Wagermaier W, Fratzl P, Haag R. Dendritic polyglycerol anions for the selective targeting of native and inflamed articular cartilage. J Mater Chem B 2017; 5:4754-4767. [DOI: 10.1039/c7tb00618g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dye-conjugated polyanions show high affinities toward native and inflamed cartilage dependent on the anionic moiety and the condition of the tissue.
Collapse
Affiliation(s)
- Sabine Reimann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Tobias Schneider
- Institute of Anatomy
- General Hospital Nuremberg
- Paracelsus Medical University
- 90419 Nuremberg
- Germany
| | - Pia Welker
- Institute of Anatomy and Cell Biology Charité Universitätsmedizin Berlin
- 10115 Berlin
- Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy
- General Hospital Nuremberg
- Paracelsus Medical University
- 90419 Nuremberg
- Germany
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces
- Department of Biomaterials
- 14424 Potsdam
- Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces
- Department of Biomaterials
- 14424 Potsdam
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
41
|
Biological voyage of solid lipid nanoparticles: a proficient carrier in nanomedicine. Ther Deliv 2016; 7:691-709. [DOI: 10.4155/tde-2016-0038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review projects the prospects and issues faced by solid lipid nanoparticles (SLNs) in current scenarios, specially related to its clinical implementation and effectiveness. We re-examine the basic concept of biobehavior and movement of SLNs as a nanomedicine carrier. The extensive survey of the uptake and absorption mechanism from different routes, distribution pattern, targeting efficiency, effect of surface functionalization on biodistribution, elimination pathways and toxic effects have been documented. In general, the objective of this review is to boost our knowledge about the interaction of SLNs with the bioenvironment, their movement in, and effect on, a living system and future prospects.
Collapse
|
42
|
Holyoak DT, Tian YF, van der Meulen MCH, Singh A. Osteoarthritis: Pathology, Mouse Models, and Nanoparticle Injectable Systems for Targeted Treatment. Ann Biomed Eng 2016; 44:2062-75. [PMID: 27044450 DOI: 10.1007/s10439-016-1600-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/26/2016] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a progressive, degenerative disease of articulating joints that not only affects the elderly, but also involves younger, more active individuals with prolonged participation in high physical-demand activities. Thus, effective therapies that are easy to adopt clinically are critical in limiting the societal burden associated with OA. This review is focused on intra-articular injectable regimens and provides a comprehensive look at existing in vivo models of OA that might be suitable for developing, testing, and finding a cure for OA by intra-articular injections. We first discuss the pathology, molecular mechanisms responsible for the initiation and progression of OA, and challenges associated with disease-specific targeting of OA. We proceed to discuss available animal models of OA and provide a detailed perspective on the use of mouse models in studies of experimental OA. We finally provide a closer look at intra-articular injectable treatments for OA, focusing on biomaterials-based nanoparticles, and provide a comprehensive overview of the various nanometer-size ranges studied.
Collapse
Affiliation(s)
- Derek T Holyoak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853-7501, USA
| | - Ye F Tian
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853-7501, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853-7501, USA.
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853-7501, USA.
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853-7501, USA.
| |
Collapse
|
43
|
Bottini M, Bhattacharya K, Fadeel B, Magrini A, Bottini N, Rosato N. Nanodrugs to target articular cartilage: An emerging platform for osteoarthritis therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:255-68. [DOI: 10.1016/j.nano.2015.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/16/2015] [Indexed: 01/12/2023]
|
44
|
Javed I, Hussain SZ, Shahzad A, Khan JM, Ur-Rehman H, Rehman M, Usman F, Razi MT, Shah MR, Hussain I. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein-In-vitro and in-vivo study. Colloids Surf B Biointerfaces 2016; 141:1-9. [PMID: 26816348 DOI: 10.1016/j.colsurfb.2016.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 01/29/2023]
Abstract
We report the synthesis and evaluation of lecithin-gold hybrid nanocarriers for the oral delivery of drugs with improved pharmacokinetics, Au-drug interactive bioactivity and controlled drug releasing behavior at physiological pH inside human body. For this purpose, diacerein, a hydrophobic anti-arthritic drug, was loaded in lecithin NPs (LD NPs), which were further coated by Au NPs either by in-situ production of Au NPs on LD NPs or by employing pre-synthesized Au NPs. All LDAu NPs were found to release drug selectively at the physiological pH of 7.4 and showed 2.5 times increase in the oral bioavailability of diacerein. Pharmacological efficacy was significantly improved i.e., greater than the additive effect of diacerein and Au NPs alone. LDAu NPs started suppressing inflammation at first phase, whereas LD NPs showed activity in the second phase of inflammation. These results indicate the interaction of Au NPs with prostaglandins and histaminic mediators of first phase of carrageenan induced inflammation. Acute toxicity study showed no hepatic damage but the renal toxicity parameters were close to the upper safety limits. Toxicity parameters were dependent on surface engineering of LDAu NPs. Apart from enhancing the oral bioavailability of hydrophobic drugs and improving their anti-inflammatory activity, these hybrid nanocarriers may have potential applications in gold-based photothermal therapy and the tracing of inflammation at atherosclerotic and arthritic site.
Collapse
Affiliation(s)
- Ibrahim Javed
- Department of Chemistry, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt. 54792 Lahore, Pakistan; Faculty of Pharmacy, Bahauddin Zakariya University, Bosan Road, Multan 60000, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt. 54792 Lahore, Pakistan
| | - Atif Shahzad
- Faculty of Pharmacy, Bahauddin Zakariya University, Bosan Road, Multan 60000, Pakistan
| | - Jahanzeb Muhammad Khan
- Department of Chemistry, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt. 54792 Lahore, Pakistan
| | - Habib Ur-Rehman
- Department of Chemistry, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt. 54792 Lahore, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faisal Usman
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Muhammad Tahir Razi
- Faculty of Pharmacy, Bahauddin Zakariya University, Bosan Road, Multan 60000, Pakistan
| | - Muhammad Raza Shah
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt. 54792 Lahore, Pakistan.
| |
Collapse
|
45
|
Singh SK, Dadhania P, Vuddanda PR, Jain A, Velaga S, Singh S. Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment. RSC Adv 2016. [DOI: 10.1039/c5ra19793g] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of the present research work was to develop asenapine (ASM) loaded nanostructured lipid carriers (ANLC) for the delivery of drugs in the brain by an intranasal route to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Parth Dadhania
- Pharma Research
- Lupin Limited (Research Park)
- Pune-411042
- India
| | - Parameswara Rao Vuddanda
- Pharmaceutical Research Lab
- Department of Health Sciences
- Division of Medical Sciences
- Luleå University of Technology
- 971 87 Luleå
| | - Achint Jain
- Pharma Research
- Lupin Limited (Research Park)
- Pune-411042
- India
| | - Sitaram Velaga
- Pharmaceutical Research Lab
- Department of Health Sciences
- Division of Medical Sciences
- Luleå University of Technology
- 971 87 Luleå
| | - Sanjay Singh
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| |
Collapse
|
46
|
Chattopadhyay H, Auddy B, Sur T, Sana S, Datta S. Accentuated transdermal application of glucosamine sulphate attenuates experimental osteoarthritis induced by monosodium iodoacetate. J Mater Chem B 2016; 4:4470-4481. [DOI: 10.1039/c6tb00327c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarthritis is a chronic degenerative joint disease causing pain and disability.
Collapse
Affiliation(s)
- Helen Chattopadhyay
- Department of Chemical Technology
- University of Calcutta
- Kolkata – 700 009
- India
| | - Biswajit Auddy
- Department of Chemical Technology
- University of Calcutta
- Kolkata – 700 009
- India
| | - Tapas Sur
- Department of Pharmacology
- Institute of Post Graduate Medical Education & Research
- Kolkata – 700020
- India
| | - Santanu Sana
- Department of Chemical Technology
- University of Calcutta
- Kolkata – 700 009
- India
| | - Sriparna Datta
- Department of Chemical Technology
- University of Calcutta
- Kolkata – 700 009
- India
| |
Collapse
|
47
|
Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydr Polym 2015; 133:391-9. [DOI: 10.1016/j.carbpol.2015.07.063] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 11/22/2022]
|
48
|
Roy K, Kanwar RK, Kanwar JR. Molecular targets in arthritis and recent trends in nanotherapy. Int J Nanomedicine 2015; 10:5407-20. [PMID: 26345140 PMCID: PMC4554438 DOI: 10.2147/ijn.s89156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to its severity and increasing epidemiology, arthritis needs no description. There are various forms of arthritis most of which are disabling, very painful, and common. In spite of breakthroughs in the field of drug discovery, there is no cure for arthritis that can eliminate the disease permanently and ease the pain. The present review focuses on some of the most successful drugs in arthritis therapy and their side effects. Potential new targets in arthritis therapy such as interleukin-1β, interleukin-17A, tumor necrosis factor alpha, osteopontin, and several others have been discussed here, which can lead to refinement of current therapeutic modalities. Mechanisms for different forms of arthritis have been discussed along with the molecules that act as potential biomarkers for arthritis. Due to the difficulty in monitoring the disease progression to detect the advanced manifestations of the diseases, drug-induced cytotoxicity, and problems with drug delivery; nanoparticle therapy has gained the attention of the researchers. The unique properties of nanoparticles make them highly attractive for the design of novel therapeutics or diagnostic agents for arthritis. The review also focuses on the recent trends in nanoformulation development used for arthritis therapy. This review is, therefore, important because it describes the relevance and need for more arthritis research, it brings forth a critical discussion of successful drugs in arthritis and analyses the key molecular targets. The review also identifies several knowledge gaps in the published research so far along with the proposal of new ideas and future directions in arthritis therapy.
Collapse
Affiliation(s)
- Kislay Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
49
|
El-Laithy HM, Basalious EB, El-Hoseiny BM, Adel MM. Novel self-nanoemulsifying self-nanosuspension (SNESNS) for enhancing oral bioavailability of diacerein: Simultaneous portal blood absorption and lymphatic delivery. Int J Pharm 2015; 490:146-54. [DOI: 10.1016/j.ijpharm.2015.05.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
|
50
|
Shangguan M, Qi J, Lu Y, Wu W. Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure. Int J Pharm 2015; 489:195-202. [DOI: 10.1016/j.ijpharm.2015.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/16/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
|