1
|
ten Hove M, Smyris A, Booijink R, Wachsmuth L, Hansen U, Alic L, Faber C, Hӧltke C, Bansal R. Engineered SPIONs functionalized with endothelin a receptor antagonist ameliorate liver fibrosis by inhibiting hepatic stellate cell activation. Bioact Mater 2024; 39:406-426. [PMID: 38855059 PMCID: PMC11157122 DOI: 10.1016/j.bioactmat.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelin-1/endothelin A receptor (ET-1/ETAR) pathway plays an important role in the progression of liver fibrosis by activating hepatic stellate cells (HSCs) - a key cell type involved in the pathogenesis of liver fibrosis. Inactivating HSCs by blocking the ET-1/ETAR pathway using a selective ETAR antagonist (ERA) represents a promising therapeutic approach for liver fibrosis. Unfortunately, small-molecule ERAs possess limited clinical potential due to poor bioavailability, short half-life, and rapid renal clearance. To improve the clinical applicability, we conjugated ERA to superparamagnetic iron-oxide nanoparticles (SPIONs) and investigated the therapeutic efficacy of ERA and ERA-SPIONs in vitro and in vivo and analyzed liver uptake by in vivo and ex vivo magnetic resonance imaging (MRI), HSCs-specific localization, and ET-1/ETAR-pathway antagonism in vivo. In murine and human liver fibrosis/cirrhosis, we observed overexpression of ET-1 and ETAR that correlated with HSC activation, and HSC-specific localization of ETAR. ERA and successfully synthesized ERA-SPIONs demonstrated significant attenuation in TGFβ-induced HSC activation, ECM production, migration, and contractility. In an acute CCl4-induced liver fibrosis mouse model, ERA-SPIONs exhibited higher liver uptake, HSC-specific localization, and ET-1/ETAR pathway antagonism. This resulted in significantly reduced liver-to-body weight ratio, plasma ALT levels, and α-SMA and collagen-I expression, indicating attenuation of liver fibrosis. In conclusion, our study demonstrates that the delivery of ERA using SPIONs enhances the therapeutic efficacy of ERA in vivo. This approach holds promise as a theranostic strategy for the MRI-based diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Marit ten Hove
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Andreas Smyris
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Lydia Wachsmuth
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Lejla Alic
- Department of Magnetic Detection and Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Cornelius Faber
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Carsten Hӧltke
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| |
Collapse
|
2
|
Agoulnik IU, Kaftanovskaya EM, Myhr C, Bathgate RAD, Kocan M, Peng Y, Lindsay RM, DiStefano PS, Agoulnik AI. Engineering a long acting, non-biased relaxin agonist using Protein-in-Protein technology. Biochem Pharmacol 2024; 227:116401. [PMID: 38945278 DOI: 10.1016/j.bcp.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The peptide hormone relaxin plays a critical role in tissue remodeling in a variety of tissues through activation of its cognate receptor, RXFP1. Relaxin's ability to modify extracellular matrices has provided a strong rationale for treating fibrosis in a variety of tissues. Treatment with recombinant relaxin peptides in clinical studies of heart failure has not yet proven useful, likely due to the short half-life of infused peptide. To circumvent this particular pharmacokinetic pitfall we have used a Protein-in-Protein (PiP) antibody technology described previously, to insert a single-chain human relaxin construct into the complementarity-determining region (CDR) of an immunoglobulin G (IgG) backbone, creating a relaxin molecule with a half-life of ∼4-5 days in mice. Relaxin-PiP biologics displaced Europium-labeled human relaxin in RXFP1-expressing cells and demonstrated full agonist activity on both human and mouse RXFP1 receptors. Relaxin-PiPs did not show signal transduction bias, as they activated cAMP in THP-1 cells, and cGMP and pERK signaling in primary human cardiac fibroblasts. In an induced carbon tetrachloride mouse model of liver fibrosis one relaxin-PiP, R2-PiP, caused reduction of liver lesions, ameliorated collagen accumulation in the liver with the corresponding reduction of Collagen1a1 gene expression, and increased cell proliferation in hepatic parenchyma. These relaxin biologics represent a novel approach to the design of a long-acting RXFP1 agonist to probe the clinical utility of relaxin/RXFP1 signaling to treat a variety of human fibrotic diseases.
Collapse
Affiliation(s)
- Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Courtney Myhr
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Yingjie Peng
- Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Ronald M Lindsay
- Zebra Biologics, Inc., 1041 Old Marlboro Road, Concord, MA 01742 USA
| | - Peter S DiStefano
- Zebra Biologics, Inc., 1041 Old Marlboro Road, Concord, MA 01742 USA.
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
3
|
Setyawati DR, Sekaringtyas FC, Pratiwi RD, Rosyidah A, Azhar R, Gustini N, Syahputra G, Rosidah I, Mardliyati E, Tarwadi, El Muttaqien S. Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1105-1116. [PMID: 39188757 PMCID: PMC11346304 DOI: 10.3762/bjnano.15.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Over recent decades, nanomedicine has played an important role in the enhancement of therapeutic outcomes compared to those of conventional therapy. At the same time, nanoparticle drug delivery systems offer a significant reduction in side effects of treatments by lowering the off-target biodistribution of the active pharmaceutical ingredients. Cancer nanomedicine represents the most extensively studied nanotechnology application in the field of pharmaceutics and pharmacology since the first nanodrug for cancer treatment, liposomal doxorubicin (Doxil®), has been approved by the FDA. The advancement of cancer nanomedicine and its enormous technological success also included various other target diseases, including hepatic fibrosis. This confirms the versatility of nanomedicine for improving therapeutic activity. In this review, we summarize recent updates of nanomedicine platforms for improving therapeutic efficacy regarding liver fibrosis. We first emphasize the challenges of conventional drugs for penetrating the biological barriers of the liver. After that, we highlight design principles of nanocarriers for achieving improved drug delivery of antifibrosis drugs through passive and active targeting strategies.
Collapse
Affiliation(s)
- Damai Ria Setyawati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Fransiska Christydira Sekaringtyas
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Riyona Desvy Pratiwi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - A’liyatur Rosyidah
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Rohimmahtunnissa Azhar
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Nunik Gustini
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Gita Syahputra
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Idah Rosidah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Tarwadi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Sjaikhurrizal El Muttaqien
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| |
Collapse
|
4
|
Li Y, Ma L, Xiong Y, Shi J, Zhang F, Chai Q, Hu G, Liu Y. Delivering Relaxin Plasmid by Polymeric Metformin Lipid Nanoparticles for Liver Fibrosis Treatment. Curr Drug Deliv 2024; 21:431-437. [PMID: 37032506 DOI: 10.2174/1567201820666230407135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Liver fibrosis usually progresses to liver cirrhosis and even results in hepatocellular carcinoma, which accounts for one million deaths annually worldwide. To date, anti-liver fibrosis drugs for clinical treatment have not yet been approved. Nowadays, as a natural regulator, Relaxin (RLX) has received increased attention because the expression of RLX could deactivate the activation of hepatic stellate cells (aHSCs) and resolve liver fibrosis. However, its application in treatment is limited due to the short half-life in circulation and low accumulation within the target organ. METHODS To address these problems, a kind of polymeric metformin (PolyMet)-loaded relaxin plasmid (pRLX) core-membrane lipid nanoparticle (PolyMet-pRLX-LNPs, PRLNP) was prepared. Here, PolyMet was used as a carrier to replace the traditional polymer polyethylene diene (PEI), which is of higher toxicity, to prolong the circulation time of pRLX in vivo. Then, the antifibrotic ability of PRLNP to overcome liver fibrosis was carried out in C57BL/6 mice. It is worth mentioning that this is the first time to investigate the potential of PRLNP in carbon tetrachloride-induced liver fibrosis. RESULTS The results showed that PRLNP effectively downregulated fibrosis-related biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, histopathological examinations also showed low collagen accumulation, revealing that PRLNP could histologically and functionally alleviate liver fibrosis. In addition, no significant difference in serum biochemical value between the PRLNP and the normal group, suggesting the safety profile of PRLNP. CONCLUSION This research proposed a novel non-toxic treatment method for liver fibrosis with a nanosystem to effectively treat liver fibrosis.
Collapse
Affiliation(s)
- Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feifeng Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Chai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gengshan Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
5
|
Barreto da Silva T, Dias EA, Cardoso LMDF, Gama JFG, Alves LA, Henriques-Pons A. Magnetic Nanostructures and Stem Cells for Regenerative Medicine, Application in Liver Diseases. Int J Mol Sci 2023; 24:ijms24119293. [PMID: 37298243 DOI: 10.3390/ijms24119293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.
Collapse
Affiliation(s)
- Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Evellyn Araújo Dias
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | | | - Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastácio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
6
|
Liu K, Sun T, Xu W, Song J, Chen Y, Ruan Y, Li H, Cui K, Zhang Y, Feng Y, Pan J, Liang E, Xin Z, Wang T, Wang S, Liu J, Luan Y. Relaxin-2 Prevents Erectile Dysfunction by Cavernous Nerve, Endothelial and Histopathological Protection Effects in Rats with Bilateral Cavernous Nerve Injury. World J Mens Health 2023; 41:434-445. [PMID: 36047071 PMCID: PMC10042645 DOI: 10.5534/wjmh.220003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Cavernous nerve injury induced erectile dysfunction (ED) is a refractory complication with high incidence in person under radical prostatectomy. Studies have shown that relaxin-2 (RLX-2) plays a vital role of endothelial protection, vasodilation, anti-fibrosis and neuroprotection in a variety of diseases. However, whether penile cavernous erection can benefit from RLX-2 remains unknown. The purpose of the experiment was to explore the effects of RLX-2 on ED in the rat suffering with bilateral cavernous nerve injury (BCNI). MATERIALS AND METHODS The rats were divided into three groups: Sham group was underwent sham operation, BCNI+RLX group or BCNI group was underwent bilateral cavernous nerve crush and then randomly treated with RLX-2 (0.4 mg/kg/d) or saline by continuous administration using a subcutaneously implanted micro pump for 4 weeks respectively. Then, erectile function was evaluated by electrical stimulation of cavernous nerves. Cavernous nerves and penile tissues and were collected for histological evaluation. RESULTS Erectile function of rats with BCNI was partially improved after RLX-2 treatment. The BCNI group had lower expression of relaxin family peptide receptor (RXFP) 1, p-AKT/AKT, p-eNOS/eNOS ratios than sham operation rats, but RLX-2 could partially reversed these changes. Histologically, the BCNI+RLX group had a significant effect on preservation of neurofilament, neuronal glial antigen 2 of penile tissue and nNOS of cavernous nerves when compared with BCNI group. RLX-2 could inhibited the lever of BCNI induced corporal fibrosis and apoptosis via regulating TGFβ1-Smad2/3-CTGF pathway and the expression of Bax/Bcl-2 ratio, caspase3. CONCLUSIONS RLX-2 could improve erectile function of BCNI rats by protecting cavernous nerve and endothelial function and suppressing corporal fibrosis and apoptosis via RXFP1 and AKT/eNOS pathway. Our findings may provide a promising treatment for refractory BCNI induced ED.
Collapse
Affiliation(s)
- Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yinwei Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhong Feng
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jiancheng Pan
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Enli Liang
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhongcheng Xin
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Bansal R, Poelstra K. Hepatic Stellate Cell Targeting Using Peptide-Modified Biologicals. Methods Mol Biol 2023; 2669:269-284. [PMID: 37247067 DOI: 10.1007/978-1-0716-3207-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Liver diseases are a leading cause of death worldwide and are rising exponentially due to increasing prevalence of metabolic disorders. Hepatic stellate cells (HSCs) are recognized as a key therapeutic target in liver diseases as these cells, upon activation during liver damage and ongoing liver inflammation, secrete excessive amounts of extracellular matrix that leads to liver tissue scarring (fibrosis) responsible for liver dysfunction (end-stage liver disease) and desmoplasia in hepatocellular carcinoma. Targeting of HSCs to reverse fibrosis progression has been realized by several experts in the field, including us. We have developed strategies to target activated HSCs by utilizing the receptors overexpressed on the surface of activated HSCs. One well-known receptor is platelet derived growth factor receptor-beta (PDGFR-β). Using PDGFR-β recognizing peptides (cyclic PPB or bicyclic PPB), we can deliver biologicals, e.g., interferon gamma (IFNγ) or IFNγ activity domain (mimetic IFNγ), to the activated HSCs that can inhibit their activation and reverse liver fibrosis. In this chapter, we provide the detailed methods and the principles involved in the synthesis of these targeted (mimetic) IFNγ constructs. These methods can be adapted for synthesizing constructs for targeted/cell-specific delivery of peptides/proteins, drugs, and imaging agents useful for various applications including diagnosis and treatment of inflammatory and fibrotic diseases and cancer.
Collapse
Affiliation(s)
- Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Klaas Poelstra
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Soares GA, Pereira GM, Romualdo GR, Biasotti GGA, Stoppa EG, Bakuzis AF, Baffa O, Barbisan LF, Miranda JRA. Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry. Pharmaceutics 2022; 14:pharmaceutics14091907. [PMID: 36145654 PMCID: PMC9504370 DOI: 10.3390/pharmaceutics14091907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
Collapse
Affiliation(s)
- Guilherme A. Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
- Correspondence:
| | - Gabriele M. Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Guilherme R. Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Gabriel G. A. Biasotti
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Erick G. Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Andris F. Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Oswaldo Baffa
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Luis F. Barbisan
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Jose R. A. Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
9
|
Gu L, Zhang F, Wu J, Zhuge Y. Nanotechnology in Drug Delivery for Liver Fibrosis. Front Mol Biosci 2022; 8:804396. [PMID: 35087870 PMCID: PMC8787125 DOI: 10.3389/fmolb.2021.804396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.
Collapse
Affiliation(s)
- Lihong Gu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Zhang
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuzheng Zhuge
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|
11
|
Korolev D, Postnov V, Aleksandrov I, Murin I. The Combination of Solid-State Chemistry and Medicinal Chemistry as the Basis for the Synthesis of Theranostics Platforms. Biomolecules 2021; 11:1544. [PMID: 34680176 PMCID: PMC8534059 DOI: 10.3390/biom11101544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents the main patterns of synthesis for theranostics platforms. We examine various approaches to the interpretation of theranostics, statistics of publications drawn from the PubMed database, and the solid-state and medicinal chemistry methods used for the formation of nanotheranostic objects. We highlight and analyze chemical methods for the modification of nanoparticles, synthesis of spacers with functional end-groups, and the immobilization of medicinal substances and fluorophores. An overview of the modern solutions applied in various fields of medicine is provided, along with an outline of specific examples and an analysis of modern trends and development areas of theranostics as a part of personalized medicine.
Collapse
Affiliation(s)
- Dmitry Korolev
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
| | - Viktor Postnov
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;
| | - Ilia Aleksandrov
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
| | - Igor Murin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;
| |
Collapse
|
12
|
Dai X, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Advances on Nanomedicines for Diagnosis and Theranostics of Hepatic Fibrosis. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xinghang Dai
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- West China School of Medicine Sichuan University Chengdu 610041 China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Amgen Bioprocessing Centre Keck Graduate Institute CA 91711 USA
| | - Zhongwei Gu
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
13
|
Ezhilarasan D. Relaxin in hepatic fibrosis: What is known and where to head? Biochimie 2021; 187:144-151. [PMID: 34102254 DOI: 10.1016/j.biochi.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Relaxin (RLX) is a heterodimeric, polypeptide hormone that has natural anti-fibrotic activity in many organs. During the chronic liver injury, hepatic stellate cells (HSCs) are phenotypically transformed into myofibroblasts. This process is known as activation of HSCs. Activated HSCs play a central role in hepatic fibrosis. Quiescent HSCs were shown to express low levels of RLX receptors such as RXFP1 and RXFP2. Upon chronic liver injury, HSCs are activated and express high levels of the RLX receptors. ML290, an agonist of RXFP1 has been reported to have antifibrotic effect in vitro as well as in vivo. Serelaxin, a recombinant human RLX-2 treatment has reduced hepatic fibrosis and portal hypertension in experimental models due to its vasodilation properties by inducing intrahepatic nitric oxide level. Serelaxin has also produced a neutral effect when studied against human cirrhosis-related portal hypertension in clinical trials. RLX is a potent collagen synthesis inhibitor and it has extracellular matrix (ECM) remodeling properties by promoting matrix metalloproteinases and downregulating expression of metalloproteinases inhibitors. Available reports suggest that RLX could induce ECM remodeling and suppress the profibrogenic transforming growth factor-β signaling and thereby regress hepatic fibrosis. Though RLX has natural antifibrotic activity, its antifibrotic molecular mechanisms especially in hepatic fibrosis condition are not reported. This review exclusively focuses antifibrotic effect of RLX on hepatic fibrosis.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
14
|
Eftekhari A, Arjmand A, Asheghvatan A, Švajdlenková H, Šauša O, Abiyev H, Ahmadian E, Smutok O, Khalilov R, Kavetskyy T, Cucchiarini M. The Potential Application of Magnetic Nanoparticles for Liver Fibrosis Theranostics. Front Chem 2021; 9:674786. [PMID: 34055744 PMCID: PMC8161198 DOI: 10.3389/fchem.2021.674786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic liver damage and leading to cirrhosis, liver cancer, and liver failure. To date, there is no effective and specific therapy for patients with hepatic fibrosis. As a result of their various advantages such as biocompatibility, imaging contrast ability, improved tissue penetration, and superparamagnetic properties, magnetic nanoparticles have a great potential for diagnosis and therapy in various liver diseases including fibrosis. In this review, we focus on the molecular mechanisms and important factors for hepatic fibrosis and on potential magnetic nanoparticles-based therapeutics. New strategies for the diagnosis of liver fibrosis are also discussed, with a summary of the challenges and perspectives in the translational application of magnetic nanoparticles from bench to bedside.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Maragheh University of Medical Sciences, Maragheh, Iran
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
- Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, Lublin, Poland
| | | | | | | | - Ondrej Šauša
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Huseyn Abiyev
- Department of Biochemistry, Azerbaijan Medical University, Baku, Azerbaijan
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, United States
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Rovshan Khalilov
- Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
| | - Taras Kavetskyy
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, Lublin, Poland
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
15
|
Hu X, Shang G, Zhang J, Chen Z, Fu L, Li J, Lu X. Clinical Yi-guan decoction for liver cirrhosis: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e24530. [PMID: 33787570 PMCID: PMC8021356 DOI: 10.1097/md.0000000000024530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND At present, Liver Cirrhosis (LC) is common in most later liver and gallbladder diseases that its morbidity and mortality seriously affect human health. The limitation and effectiveness of western medicine on LC have become a huge clinical challenge. However, a large number of clinical studies have shown that Yi-guan decoction has become a complementary treatment for LC. Therefore, this systematic review will aim to explore the safety and feasibility of Yi-guan decoction in the treatment of LC. METHODS We will conduct a comprehensive literature search in Medline, PubMed, Cochrane Database of Systematic Reviews, Embase, Chinese Biomedical Literatures Database, China National Knowledge Infrastructure, Wang Fang Database, Chinese Scientific Journal Database from inception to December 2020 without any language restriction, In addition, relevant literature will be searched manually. The main subject terms searched: "Yi-guan decoction" "cirrhosis" "LC". Data entry will be performed by 2 researchers separately. Primary outcomes will be concluded: Liver function indicators: Total bilirubin, Alanine transaminase, Aspartate aminotransferase, etc. Secondary outcome indicators: Total effective rate, Nutrition index, Survival analysis, Adverse events; All randomized controlled trials collected in this study will be evaluated and rated using the Cochrane risk-of-biasassessment tool. Meta-analysis will be performed using RevMan 5.4.0 software. The heterogeneity test will be conducted between the studies, P < .1 and I2 > 50% are the thresholds for the tests. Using solid effect model or random effect model will be based on its heterogeneity value. RESULTS This systematic review provides a theoretical basis for Yi-guan decoction to treat LC, we will report this result soon. CONCLUSION This study will explore Yi-guan decoction can will be used as one of the non drug therapies to prevent or treat LC. TRIAL REGISTRATION NUMBER INPLASY2020120114.
Collapse
Affiliation(s)
- Xingyao Hu
- Research Center for Differention and Development of TCM Basic Theory
| | - Guangbin Shang
- Research Center for Differention and Development of TCM Basic Theory
| | - Jie Zhang
- Research Center for Differention and Development of TCM Basic Theory
| | - Zhong Chen
- Research Center for Differention and Development of TCM Basic Theory
| | - Liu Fu
- Research Center for Differention and Development of TCM Basic Theory
| | - Jun Li
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| | - Xiaonan Lu
- College of Traditional Chinese Medicine of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
16
|
Fallowfield JA, Ramachandran P. A relaxin-based nanotherapy for liver fibrosis. NATURE NANOTECHNOLOGY 2021; 16:365-366. [PMID: 33495619 DOI: 10.1038/s41565-020-00832-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jonathan A Fallowfield
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Prakash Ramachandran
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Abstract
Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
18
|
Bai X, Su G, Zhai S. Recent Advances in Nanomedicine for the Diagnosis and Therapy of Liver Fibrosis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1945. [PMID: 33003520 PMCID: PMC7599596 DOI: 10.3390/nano10101945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis, a reversible pathological process of inflammation and fiber deposition caused by chronic liver injury and can cause severe health complications, including liver failure, liver cirrhosis, and liver cancer. Traditional diagnostic methods and drug-based therapy have several limitations, such as lack of precision and inadequate therapeutic efficiency. As a medical application of nanotechnology, nanomedicine exhibits great potential for liver fibrosis diagnosis and therapy. Nanomedicine enhances imaging contrast and improves tissue penetration and cellular internalization; it simultaneously achieves targeted drug delivery, combined therapy, as well as diagnosis and therapy (i.e., theranostics). In this review, recent designs and development efforts of nanomedicine systems for the diagnosis, therapy, and theranostics of liver fibrosis are introduced. Relative to traditional methods, these nanomedicine systems generally demonstrate significant improvement in liver fibrosis treatment. Perspectives and challenges related to these nanomedicine systems translated from laboratory to clinical use are also discussed.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| |
Collapse
|
19
|
Kurniawan DW, Booijink R, Pater L, Wols I, Vrynas A, Storm G, Prakash J, Bansal R. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release 2020; 328:640-652. [PMID: 32979454 DOI: 10.1016/j.jconrel.2020.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
Liver diseases are the growing health problem with no clinically approved therapy available. Activated hepatic stellate cells (HSCs) are the key driver cells responsible for extracellular matrix deposition, the hallmark of liver fibrosis. Fibroblast growth factor 2 (FGF2) has shown to possess anti-fibrotic effects in fibrotic diseases including liver fibosis, and promote tissue regeneration. Among the fibroblast growth factor receptors (FGFRs), FGF2 interact primarily with FGFR1, highly overexpressed on activated HSCs, and inhibit HSCs activation. However, FGF2 poses several limitations including poor systemic half-life and stability owing to enzymatic degradation. The aim of this study is to improve the stability and half-life of FGF2 thereby improving the therapuetic efficacy of FGF2 for the treatment of liver fibrosis. We found that FGFR1-3 mRNA levels were overexpressed in cirrhotic human livers, while FGFR1c, 2c, 3c, 4 and FGF2 mRNA levels were overexpressed in TGFβ-activated HSCs (LX2 cells) and FGFR1 protein expression was highly increased in TGFβ-activated HSCs. Treatment with FGF2 inhibited TGFβ-induced HSCs activation, migration and contraction in vitro. FGF2 was conjugated to superparamagnetic iron-oxide nanoparticles (SPIONs) using carbodiimide chemistry, and the resulting FGF2-SPIONs were confirmed by dynamic light scattering (DLS), zeta potential, dot-blot analysis and Prussian Blue iron-staining. In vitro, treatment with FGF2-SPIONs evidenced increased therapeutic effects (attenuated TGFβ-induced HSCs activation, migration and contraction) of FGF2 in TGFβ-activated HSCs and ameliorated early liver fibrogenesis in vivo in acute carbon tetrachloride (CCl4)-induced liver injury mouse model. In contrast, free FGF2 showed no significant effects in vivo. Altogether, this study presents a promising therapeutic approach using FGF2-SPIONs for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Dhadhang Wahyu Kurniawan
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands; Department of Pharmacy, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Richell Booijink
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Lena Pater
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Irene Wols
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Aggelos Vrynas
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Gert Storm
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands; Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
20
|
Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Crit Rev Oncol Hematol 2020; 151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
|
21
|
Poelstra K. Innovative Nanotechnological Formulations to Reach the Hepatic Stellate Cell. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43152-020-00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Purpose of Review
Treatment of liver fibrosis benefits from hepatic stellate cell (HSC)-specific delivery. Since the description of first carrier to HSC, many developments have taken place in this area. The purpose is to give an overview of the different carriers and homing moieties that are available for HSC targeting and illustrate the opportunities and hurdles they provide.
Recent Findings
There is a growing number of homing devices to deliver drugs to HSC, and options to deliver siRNA to HSC have emerged. Other developments include controlling corona formation, development of linker technology, and design of theranostic approaches. We are on the eve of reaching the clinic with innovative HSC-specific compounds.
Summary
An overview of different core molecules is presented together with an overview of targeting strategies toward different receptors on HSC, providing a versatile toolbox. Many therapeutics, ranging from small chemical entities and proteins to RNA- or DNA-modulating substances, have already been incorporated in these constructs in the recent years.
Collapse
|
22
|
Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020; 8:e1194. [PMID: 32100955 PMCID: PMC7196478 DOI: 10.1002/mgg3.1194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Relaxin/relaxin family peptide receptor 1 (RXFP1) signaling is important for both normal physiology and disease. Strong preclinical evidence supports relaxin as a potent antifibrotic molecule. However, relaxin‐based therapy failed in clinical trial in patients with systemic sclerosis. We and others have discovered that aberrant expression of RXFP1 may contribute to the abnormal relaxin/RXFP1 signaling in different diseases. Reduced RXFP1 expression and alternative splicing transcripts with potential functional consequences have been observed in fibrotic tissues. A relative decrease in RXFP1 expression in fibrotic tissues—specifically lung and skin—may explain a potential insensitivity to relaxin. In addition, receptor dimerization also plays important roles in relaxin/RXFP1 signaling. Methods This review describes the tissue specific expression, characteristics of the splicing variants, and homo/heterodimerization of RXFP1 in both normal physiological function and human diseases. We discuss the potential implications of these molecular features for developing therapeutics to restore relaxin/RXFP1 signaling and to harness relaxin's potential antifibrotic effects. Results Relaxin/RXFP1 signaling is important in both normal physiology and in human diseases. Reduced expression of RXFP1 in fibrotic lung and skin tissues surrenders both relaxin/RXFP1 signaling and their responsiveness to exogenous relaxin treatments. Alternative splicing and receptor dimerization are also important in regulating relaxin/RXFP1 signaling. Conclusions Understanding the molecular mechanisms that drive aberrant expression of RXFP1 in disease and the functional roles of alternative splicing and receptor dimerization will provide insight into therapeutic targets that may restore the relaxin responsiveness of fibrotic tissues.
Collapse
Affiliation(s)
- Ting-Yun Chen
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiangning Tan
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Kass
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Mardhian DF, Vrynas A, Storm G, Bansal R, Prakash J. FGF2 engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor. Nanotheranostics 2020; 4:26-39. [PMID: 31911892 PMCID: PMC6940204 DOI: 10.7150/ntno.38092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized with abundant tumor stroma, is a highly malignant tumor with poor prognosis. The tumor stroma largely consists of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), and is known to promote tumor growth and progression as well as acts as a barrier to chemotherapy. Inhibition of tumor stroma is highly crucial to induce the effect of chemotherapy. In this study, we delivered fibroblast growth factor 2 (FGF2) to human pancreatic stellate cells (hPSCs), the precursors of CAFs, using superparamagnetic iron oxide nanoparticles (SPIONs). FGF2 was covalently conjugated to functionalized PEGylated dextran-coated SPIONs. FGF2-SPIONs significantly reduced TGF-β induced hPSCs differentiation (α-SMA and collagen-1 expression) by inhibiting pSmad2/3 signaling and inducing ERK1/2 activity, as shown with western blot analysis. Then, we established a stroma-rich self-assembling 3D heterospheroid model by co-culturing PANC-1 and hPSCs in 3D environment. We found that FGF2-SPIONs treatment alone inhibited the tumor stroma-induced spheroid growth. In addition, they also potentiated the effect of gemcitabine, as shown by measuring the spheroid size and ATP content. These effects were attributed to the reduced expression of the hPSC activation and differentiation marker, α-SMA. Furthermore, to demonstrate an application of SPIONs, we applied an external magnetic field to spheroids while incubated with FGF2-SPIONs. This resulted in an enhanced effect of gemcitabine in our 3D model. In conclusion, this study presents a novel approach to target FGF2 to tumor stroma using SPIONs and thereby enhancing the effect of gemcitabine as demonstrated in the complex 3D tumor spheroid model.
Collapse
Affiliation(s)
- Deby Fajar Mardhian
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Aggelos Vrynas
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Gert Storm
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
24
|
Levada K, Omelyanchik A, Rodionova V, Weiskirchen R, Bartneck M. Magnetic-Assisted Treatment of Liver Fibrosis. Cells 2019; 8:E1279. [PMID: 31635053 PMCID: PMC6830324 DOI: 10.3390/cells8101279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury can be induced by viruses, toxins, cellular activation, and metabolic dysregulation and can lead to liver fibrosis. Hepatic fibrosis still remains a major burden on the global health systems. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are considered the main cause of liver fibrosis. Hepatic stellate cells are key targets in antifibrotic treatment, but selective engagement of these cells is an unresolved issue. Current strategies for antifibrotic drugs, which are at the critical stage 3 clinical trials, target metabolic regulation, immune cell activation, and cell death. Here, we report on the critical factors for liver fibrosis, and on prospective novel drugs, which might soon enter the market. Apart from the current clinical trials, novel perspectives for anti-fibrotic treatment may arise from magnetic particles and controlled magnetic forces in various different fields. Magnetic-assisted techniques can, for instance, enable cell engineering and cell therapy to fight cancer, might enable to control the shape or orientation of single cells or tissues mechanically. Furthermore, magnetic forces may improve localized drug delivery mediated by magnetism-induced conformational changes, and they may also enhance non-invasive imaging applications.
Collapse
Affiliation(s)
- Kateryna Levada
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Alexander Omelyanchik
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Valeria Rodionova
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
- National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, D-52074 Aachen, Germany.
| |
Collapse
|