1
|
Ci Z, Wang H, Luo J, Wei C, Chen J, Wang D, Zhou Y. Application of Nanomaterials Targeting Immune Cells in the Treatment of Chronic Inflammation. Int J Nanomedicine 2024; 19:13925-13946. [PMID: 39735324 PMCID: PMC11682674 DOI: 10.2147/ijn.s497590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Chronic inflammation is a common characteristic of all kinds of diseases, including autoimmune diseases, metabolic diseases, and tumors. It is distinguished by the presence of low concentrations of inflammatory factors stimulating the body for an extended period, resulting in a persistent state of infection. This condition is manifested by the aggregation and infiltration of mononuclear cells, lymphocytes, and other immune cells, leading to tissue hyperplasia and lesions. Although various anti-inflammatory medications, including glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs), have shown strong therapeutic effects, they lack specificity and targeting ability, and require high dosages, which can lead to severe adverse reactions. Nanoparticle drug delivery mechanisms possess the capacity to minimize the effect on healthy cells or tissues due to their targeting capabilities and sustained drug release properties. However, most nanosystems can only target the inflammatory sites rather than specific types of immune cells, leaving room for further improvement in the therapeutic effects of nanomaterials. This article reviews the current research progress on the role of diverse immune cells in inflammation, focusing on the functions of neutrophils and macrophages during inflammation. It provides an overview of the domestic and international applications of nanomaterials in targeted therapy for inflammation, aiming to establish a conceptual foundation for the utilization of nanomaterials targeting immune cells in the treatment of chronic inflammation and offer new perspectives for the avoidance and management of inflammation.
Collapse
Affiliation(s)
- Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxia Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Biology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
2
|
Liu S, Yang M, Liu H, Hao Y, Zhang D. Recent Progress in Microenvironment-Responsive Nanodrug Delivery Systems for the Targeted Treatment of Rheumatoid Arthritis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2008. [PMID: 39532280 DOI: 10.1002/wnan.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that often causes joint pain, swelling, and functional impairments. Drug therapy is the main strategy used to alleviate the symptoms of RA; however, drug therapy may have several adverse effects, such as nausea, vomiting, abdominal pain, diarrhea, gastric ulcers, intestinal bleeding, hypertension, hyperglycemia, infection, fatigue, and indigestion. Moreover, long-term excessive use of drugs may cause liver and kidney dysfunction, as well as thrombocytopenia. Nanodrug delivery systems (NDDSs) can deliver therapeutics to diseased sites with the controlled release of the payload in an abnormal microenvironment, which helps to reduce the side effects of the therapeutics. Abnormalities in the microenvironment, such as a decreased pH, increased expression of matrix metalloproteinases (MMPs), and increased concentrations of reactive oxygen species (ROS), are associated with the progression of RA but also provide an opportunity to achieve microenvironment-responsive therapeutic release at the RA site. Microenvironment-responsive NDDSs may overcome the abovementioned disadvantages of RA therapy. Herein, we comprehensively review recent progress in the development of microenvironment-responsive NDDSs for RA treatment, including pH-, ROS-, MMP-, and multiresponsive NDDSs. Furthermore, the pathological microenvironment is highlighted in detail.
Collapse
Affiliation(s)
- Shuhang Liu
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ming Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Han Liu
- Center of Emergency, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Wang X, Huang H, Xu W, Gong Y, Shi S, Wan X, Li P. TGF-β1 and FOXM1 siRNA co-loaded nanoparticles by disulfide crosslinked PEG-PDMAEMA for the treatment of triple-negative breast cancer and its bone metastases in vitro. Drug Dev Ind Pharm 2024:1-12. [PMID: 39286903 DOI: 10.1080/03639045.2024.2404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is characterized by higher malignancy and mortality and is prone to distant metastasis, among which bone is the most common site. It's urgent to explore new strategies for the treatment of TNBC and its bone metastases. METHODS A tumor environment responsive vector, poly-(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly-(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA), was constructed to co-delivery transforming growth factor-β1 (TGF-β1) siRNA and forkhead box M1 (FOXM1) siRNA in MDA-MB-231 cells. The preparation, characterization, in vitro release, stability, and transfection efficiency of nanoparticles were measured. Cell viability, migration, and invasion of MDA-MB-231 cells were determined. Cell chemotactic migration and cell heterogeneity adhesion of MDA-MB-231 cells to the human osteoblast-like cell line MG-63 were determined. RESULTS PDMAEMA-SS-PEG-SS-PDMAEMA self-assembled with siRNA at N/P of 15:1 into nanoparticles with a particle size of 122 nm. In vitro release exhibited redox and pH sensitivity, and the nanoparticles protected siRNA from degradation by RNase and serum protein, remaining stable at 4 °C with similar transfection efficiency with lipo2000. Nanoparticles co-loaded with TGF-β1 siRNA and FOXM1 siRNA inhibited the cell viability, migration and invasion of MDA-MB-231 cells, as well as chemotactic migration and heterogeneous adhesion of MDA-MB-231 cells to MG-63 cells, showing a synergetic effect. After gene silencing on TGF-β1 and FOXM1, the epithelial to mesenchymal transition (EMT) related molecules vimentin mRNA expression decreased while E-cadherin increased. CONCLUSIONS PDMAEMA-SS-PEG-SS-PDMAEMA was suitable for TGF-β1 siRNA and FOXM1 siRNA delivery, exhibiting a synergetic inhibition effect on TNBC and its bone metastases, which might be related to its synergetic inhibition on EMT.
Collapse
Affiliation(s)
- Xingbo Wang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Hong Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenxiu Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Songbo Shi
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Xu Wan
- Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China Shanghai
| | - Pengbiao Li
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
4
|
Laha A, Nasra S, Bhatia D, Kumar A. Advancements in rheumatoid arthritis therapy: a journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. NANOSCALE 2024; 16:14975-14993. [PMID: 39056352 DOI: 10.1039/d4nr02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that mainly affects the inner lining of the synovial joints and leads to chronic inflammation. While RA is not known as lethal, recent research indicates that it may be a silent killer because of its strong association with an increased risk of chronic lung and heart diseases. Patients develop these systemic consequences due to the regular uptake of heavy drugs such as disease-modifying antirheumatic medications (DMARDs), glucocorticoids (GCs), nonsteroidal anti-inflammatory medicines (NSAIDs), etc. Nevertheless, a number of these medications have off-target effects, which might cause adverse toxicity, and have started to become resistant in patients as well. Therefore, alternative and promising therapeutic techniques must be explored and adopted, such as post-translational modification inhibitors (like protein arginine deiminase inhibitors), RNA interference by siRNA, epigenetic drugs, peptide therapy, etc., specifically in macrophages, neutrophils, Treg cells and dendritic cells (DCs). As the target cells are specific, ensuring targeted delivery is also equally important, which can be achieved with the advent of nanotechnology. Furthermore, these nanocarriers have fewer off-site side effects, enable drug combinations, and allow for lower drug dosages. Among the nanoparticles that can be used for targeting, there are both inorganic and organic nanomaterials such as solid-lipid nanoparticles, liposomes, hydrogels, dendrimers, and biomimetics that have been discussed. This review highlights contemporary therapy options targeting macrophages, neutrophils, Treg cells, and DCs and explores the application of diverse nanotechnological techniques to enhance precision RA therapies.
Collapse
Affiliation(s)
- Anwesha Laha
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
5
|
Angela S, Fadhilah G, Hsiao WWW, Lin HY, Ko J, Lu SCW, Lee CC, Chang YS, Lin CY, Chang HC, Chiang WH. Nanomaterials in the treatment and diagnosis of rheumatoid arthritis: Advanced approaches. SLAS Technol 2024; 29:100146. [PMID: 38844139 DOI: 10.1016/j.slast.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory condition that affects persons between the ages of 20 and 40, causes synovium inflammation, cartilage loss, and joint discomfort as some of its symptoms. Diagnostic techniques for RA have traditionally been split into two main categories: imaging and serological tests. However, significant issues are associated with both of these methods. Imaging methods are costly and only helpful in people with obvious symptoms, while serological assays are time-consuming and require specialist knowledge. The drawbacks of these traditional techniques have led to the development of novel diagnostic approaches. The unique properties of nanomaterials make them well-suited as biosensors. Their compact dimensions are frequently cited for their outstanding performance, and their positive impact on the signal-to-noise ratio accounts for their capacity to detect biomarkers at low detection limits, with excellent repeatability and a robust dynamic range. In this review, we discuss the use of nanomaterials in RA theranostics. Scientists have recently synthesized, characterized, and modified nanomaterials and biomarkers commonly used to enhance RA diagnosis and therapy capabilities. We hope to provide scientists with the promising potential that nanomaterials hold for future theranostics and offer suggestions on further improving nanomaterials as biosensors, particularly for detecting autoimmune disorders.
Collapse
Affiliation(s)
- Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsuan-Yi Lin
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Joshua Ko
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven Che-Wei Lu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lin
- The Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
6
|
Nautiyal G, Sharma SK, Kaushik D, Pandey P. Nano - Based Therapeutic Strategies in Management of Rheumatoid Arthritis. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:433-456. [PMID: 37904559 DOI: 10.2174/1872210517666230822100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents as one of the utmost promising scientific technologies of the 21st century. It exhibits remarkable potential in the field of medicine, including imaging techniques and diagnostic tools, drug delivery systems and providing advances in treatment of several diseases with nanosized structures (less than 100 nm). OBJECTIVE Conventional drugs as a cornerstone of RA management including disease-modifying antirheumatic drugs (DMARDS), Glucocorticosteroids, etc are under clinical practice. Nevertheless, their low solubility profile, poor pharmacokinetics behaviour, and non-targeted distribution not only hamper their effectiveness, but also give rise to severe adverse effects which leads to the need for the emergence of nanoscale drug delivery systems. METHODS Several types of nano-diagnostic agents and nanocarriers have been identified; including polymeric nanoparticles (NPs), liposomes, nanogels, metallic NPs, nanofibres, carbon nanotubes, nano fullerene etc. Various patents and clinical trial data have been reported in relevance to RA treatment. RESULTS Nanocarriers, unlike standard medications, encapsulate molecules with high drug loading efficacy and avoid drug leakage and burst release before reaching the inflamed sites. Because of its enhanced targeting specificity with the ability to solubilise hydrophobic drugs, it acts as an enhanced drug delivery system. CONCLUSION This study explores nanoparticles potential role in RA as a carrier for site-specific delivery and its promising strategies to overcome the drawbacks. Hence, it concludes that nanomedicine is advantageous compared with conventional therapy to enhanced futuristic approach.
Collapse
Affiliation(s)
- Gunjan Nautiyal
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shiv Kant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Dhirender Kaushik
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
7
|
Zhang B, Li J, Jiang J, Lin X, Sun X, Wang Q. Overcoming delivery barriers for RNA therapeutics in the treatment of rheumatoid arthritis. Eur J Pharm Biopharm 2023; 192:147-160. [PMID: 37844708 DOI: 10.1016/j.ejpb.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
RNA therapeutics can manipulate gene expression or protein production, making them suitable for treating a wide range of diseases. Theoretically, any disease that has a definite biological target would probably find feasible therapeutic approach from RNA-based therapeutics. Numerous clinical trials using RNA therapeutics fighting against cancer, infectious diseases or inherited diseases have been reported and achieved desirable therapeutic efficacy. So far, encouraging findings from various animal experimental studies have also confirmed the great potential of RNA-based therapies in the treatment of rheumatic arthritis (RA). However, the in vivo multiple physiological barriers still seriously compromise the therapeutic efficacy of RNA drugs. Thus, safe and effective delivery strategies for RNA therapeutics are quite essential for their further and wide application in RA therapy. In this review, we will discuss the recent progress achieved using RNA-based therapeutics and focus on delivery strategies that can overcome the in vivo delivery barriers in RA treatment. Furthermore, discussion about the existing problems in current RNA delivery systems for RA therapy has been also included here.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiayu Jiang
- Patent Examination Cooperation Sichuan Center of the Patent office, Chengdu 610213, China
| | - Xin Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Chengdu 610041, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
8
|
Vaidya S, Mohod A, Eedara AC, Andugulapati SB, Pabbaraja S. Synthesis and Characterization of a New Cationic Lipid: Efficient siRNA Delivery and Anticancer Activity of Survivin-siRNA Lipoplexes for the Treatment of Lung and Breast Cancers. ChemMedChem 2023; 18:e202300097. [PMID: 37306531 DOI: 10.1002/cmdc.202300097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Survivin has been shown to be widely expressed in most tumor cells, including lung and breast cancers. Due to limited siRNA delivery, it is more challenging to target survivin using knockdown-based techniques. Designing and developing new, bifunctional chemical molecules with both selective anti-proliferative activity and effective siRNA transfection capabilities by targeting a particular gene is important to treat aggressive tumors like triple-negative breast tumors (TNBC). The cationic lipids deliver small interfering RNA (siRNA) and also display inherent anti-cancer activities; therefore, cationic lipid therapies have become very popular for treating malignant cancers. In the current study, we attempted to synthesize a series of acid-containing cationic lipids, anthranilic acid-containing mef lipids, and indoleacetic acid-containing etodo lipids etc. Further, we elucidated their bi-functional activity for their anticancer activity and survivin siRNA-mediated anti-cancer activity. Our results showed that lipoplexes with siRNA-Etodo: Dotap (ED) and siRNA-Mef: Dotap (MD) exhibited homogeneous particle size and positive zeta potential. Further, biological investigations resulted in enhanced survivin siRNA delivery with high stability, improved transfection efficiency, and anti-cancer activity. Additionally, our findings showed that survivin siRNA lipoplexes (ED and MD) in A549 cells and 4T1 cells exhibited stronger survivin knockdown, enhanced apoptosis, and G1 or G2/M phase arrest in both cell types. In vivo results revealed that treatment with survivin complexed lipoplexes significantly reduced tumor growth and tumor weight compared to control. Thus, our novel quaternary amine-based liposome formulations are predicted to open up new possibilities in the development of a simple and widely utilized platform for siRNA delivery and anti-cancer activities.
Collapse
Affiliation(s)
- Sandeep Vaidya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Annie Mohod
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Abhisheik Chowdary Eedara
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Afrasiabi S, Chiniforush N, Partoazar A, Goudarzi R. The role of bacterial infections in rheumatoid arthritis development and novel therapeutic interventions: Focus on oral infections. J Clin Lab Anal 2023:e24897. [PMID: 37225674 DOI: 10.1002/jcla.24897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) represents a primary public health challenge, which is a major source of pain, disability, and socioeconomic effects worldwide. Several factors contribute to its pathogenesis. Infections are an important concern in RA patients, which play a key role in mortality risk. Despite major advances in the clinical treatment of RA, long-term use of disease-modifying anti-rheumatic drugs can cause serious adverse effects. Therefore, effective strategies for developing novel prevention and RA-modifying therapeutic interventions are sorely needed. OBJECTIVE This review investigates the available evidence on the interplay between various bacterial infections, particularly oral infections and RA, and focuses on some potential interventions such as probiotics, photodynamic therapy, nanotechnology, and siRNA that can have therapeutic effects.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| |
Collapse
|
10
|
Zhang X, Liu Y, Xiao C, Guan Y, Gao Z, Huang W. Research Advances in Nucleic Acid Delivery System for Rheumatoid Arthritis Therapy. Pharmaceutics 2023; 15:1237. [PMID: 37111722 PMCID: PMC10145518 DOI: 10.3390/pharmaceutics15041237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the lives of nearly 1% of the total population worldwide. With the understanding of RA, more and more therapeutic drugs have been developed. However, lots of them possess severe side effects, and gene therapy may be a potential method for RA treatment. A nanoparticle delivery system is vital for gene therapy, as it can keep the nucleic acids stable and enhance the efficiency of transfection in vivo. With the development of materials science, pharmaceutics and pathology, more novel nanomaterials and intelligent strategies are applied to better and safer gene therapy for RA. In this review, we first summarized the existing nanomaterials and active targeting ligands used for RA gene therapy. Then, we introduced various gene delivery systems for RA treatment, which may enlighten the relevant research in the future.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
12
|
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635:122698. [PMID: 36754181 DOI: 10.1016/j.ijpharm.2023.122698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Rheumatoid arthritis (RA), a chronic autoimmune disease, is characterized by articular pain and swelling, synovial hyperplasia, and cartilage and bone destruction. Conventional treatment strategies for RA involve the use of anti-rheumatic drugs, which warrant high-dose, frequent, and long-term administration, resulting in serious adverse effects and poor patient compliance. To overcome these problems and improve clinical efficacy, drug delivery systems (DDS) have been designed for RA treatment. These systems have shown success in animal models of RA. In this review, representative DDS that target RA through passive or active effects on inflammatory cells are discussed and highlighted using examples. In particular, DDS allowing controlled and targeted drug release based on a variety of stimuli, intra-articular DDS, and transdermal DDS for RA treatment are described. Thus, this review provides an improved understanding of these DDS and paves the way for the development of novel DDS for efficient RA treatment.
Collapse
Affiliation(s)
- Qiying Shen
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou 311121, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China.
| |
Collapse
|
13
|
Yang L, Sha Y, Wei Y, Fang H, Jiang J, Yin L, Zhong Z, Meng F. Mannose-mediated nanodelivery of methotrexate to macrophages augments rheumatoid arthritis therapy. Biomater Sci 2023; 11:2211-2220. [PMID: 36748266 DOI: 10.1039/d2bm02072f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that gravely jeopardizes the quality of life of numerous people. Methotrexate (MTX) is a disease-modifying anti-rheumatic drug commonly used in clinics; however, it suffers from slow onset, moderate efficacy, and adverse reactions such as renal dysfunction, myelosuppression, and bone erosion after long-term treatment. Here, we explored macrophage targeted delivery of MTX using mannose-installed chimaeric polymersomes (Man-PMTX) as an advanced treatment for RA. Man-PMTX exhibited high (∼18 wt%) and robust loading of MTX, uniform size of 51-55 nm, minimal hemolytic activity, and glutathione-actuated drug release property. Man-PMTX showed better uptake by activated macrophages than PMTX, and more repolarization of bone marrow-derived macrophages (BMDMs) to anti-inflammatory M2 type macrophages and less secretion of TNF-α and IL-1β compared with free MTX and PMTX. In vivo studies revealed that Man-PMTX showed significantly higher accumulation in inflammatory joints than in healthy joints and effectively treated RA by relieving inflammation, repolarizing macrophages from M1 type to M2 type, and mitigating proinflammatory cytokines. Accordingly, Man-PMTX effectively protected the synovium and bone from damage. Mannose-mediated nanodelivery of methotrexate to macrophages appears to be an attractive strategy to augment rheumatoid arthritis therapy.
Collapse
Affiliation(s)
- Liang Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China. .,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China. .,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Hanghang Fang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Jingjing Jiang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China. .,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
14
|
Xin Li J, Jiao Zhang M, Feng Shi J, Peng Wang S, Mei Zhong X, Han Wu Y, Qu Y, Le Gao H, Ming Zhang J. pH-sensitive nano-polyelectrolyte complexes with arthritic macrophage-targeting delivery of triptolide. Int J Pharm 2023; 632:122572. [PMID: 36592894 DOI: 10.1016/j.ijpharm.2022.122572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Since pro-inflammatory macrophages take on a critical significance in the pathophysiology of rheumatoid arthritis (RA), the therapeutics to affect macrophages may receive distinct anti-RA effects. However, the therapeutic outcomes are still significantly impeded, which is primarily due to the insufficient drug delivery at the arthritic site. In this study, the macrophage-targeting and pH stimuli-responsive nano-polyelectrolyte complexes were designed for the efficient targeted delivery of triptolide (TP/PNPs) on the arthritic site. The anionic and cationic amphiphilic copolymers, i.e., hyaluronic acid-g-vitamin E succinate (HA-VE) and the quaternized poly (β-amino ester) (QPBAE-C18), were prepared and then characterized. The result indicated that TP/PNPs with the uniform particle size of ∼ 175 nm exhibited the high drug loading capacity and storage stability based on the polymeric charge interaction, in which DLC and DEE of TP/PNPs were obtained as 11.27 ± 0.44 % and 95.23 ± 2.34 %, respectively. Mediated by the "ELVIS" effect of NPs, CD44 receptor-mediated macrophage targeting, and pH-sensitive endo/lysosomal escape under the "proton sponge" effect, TP/PNPs exhibited the enhanced cellular internalization and cytotoxicity while mitigating the inflammation of LPS-activated RAW 264.7 cells. Even after 96-hour after administration, PNPs were preferentially accumulated in the inflammatory joints in a long term. It is noteworthy that after treatment for 14 days with 100 μg/kg of TP, TP/PNPs significantly facilitated arthritic symptom remission, protected cartilage, and mitigated inflammation of antigen-induced arthritis (AIA) rats, whereas the systematic side-effects of TP were reduced. In this study, an effective drug delivery strategy was proposed for the treatment of RA.
Collapse
Affiliation(s)
- Jia Xin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau
| | - Meng Jiao Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jin Feng Shi
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Sheng Peng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau
| | - Xue Mei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Han Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Le Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jin Ming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Tian J, Chen T, Huang B, Liu Y, Wang C, Cui Z, Xu H, Li Q, Zhang W, Liang Q. Inflammation specific environment activated methotrexate-loaded nanomedicine to treat rheumatoid arthritis by immune environment reconstruction. Acta Biomater 2023; 157:367-380. [PMID: 36513249 DOI: 10.1016/j.actbio.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA), as an autoimmune inflammatory disease, is featured by enhanced vascular permeability, irreversible cartilage destroys and bone erosion. Although the pathogenesis of RA is still unclear, the immune environment, particularly the lymphatic system, which is instrumental to immune cell surveillance and interstitial fluid balance, plays vital roles in the process of RA. Herein, an inflammation specific environment activated methotrexate-encapsulated nanomedicine (MTX@NPs) was constructed for RA treatment, which accumulated in inflamed joints, and released MTX in the specific RA microenvironment. Notably, MTX@NPs could regulate the immune environment including reducing the expressions of inflammatory cytokines of macrophages and the inflammatory level of lymphatic epithelial cells (LECs), and ameliorating the lymphatic vessel contraction and drainage. In vitro and In vivo studies illustrated that MTX@NPs exhibited a high RA therapeutic efficacy and insignificant systemic toxicity owing to the suppression of the inflammation response and the improved lymphatic functions of RA joints. It suggests that the nanomedicine paves a potential way to the clinical practice of autoimmune diseases treatments via the regulation of immune environment and lymphatic functions. STATEMENT OF SIGNIFICANCE: Although 1.0% of the population in the world suffers from rheumatoid arthritis (RA), the pathogenesis of RA is still unclear and the therapeutic effect of the first-line clinical drugs is relatively low. Herein, we propose a specific RA-microenvironment triggered nanomedicine (MTX@NPs), which enhances RA treatment of a first-line antirheumatic drug (methotrexate, MTX) by immune environment reconstruction. The nanomedicine exhibits RA joints accumulation by EPR effect, and releases MTX under the specific RA environment, leading to the dramatical drop of M1-type macrophages and acceleration of lymphatic vessel contraction and drainage. Finally, the inflammatory cytokines in RA immune environment are reduced sharply, indicating the outstanding therapeutic efficacy of MTX@NPs to RA.
Collapse
Affiliation(s)
- Jia Tian
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Chao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Qiang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
16
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
17
|
Li G, Xu F, Yang B, Lu X, Li X, Qi Y, Teng L, Li Y, Sun F, Liu W. A nanotherapy responsive to the inflammatory microenvironment for the dual-targeted treatment of atherosclerosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102557. [PMID: 35390526 DOI: 10.1016/j.nano.2022.102557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerosis remains the main cause of death and disability, as well as a leading cause of coronary arterial disease. Inflammation is one of the pathogenic factors of arteriosclerosis; however, the current treatments based on lowering the level of inflammation in the plaque tissue of patients with atherosclerosis are not clinically used. Herein, we hypothesize that αvβ3 receptor affinity and low pH sensitivity may be regarded as a valid therapeutic strategy for targeting sites of atherosclerosis according to the microenvironments of inflammation. To prove this tentative hypothesis, an acid-labile material polyketal named PK3 was synthesized, and the cRGDfc peptide was used to modify nanoparticles composed of poly(lactide-co-glycolide) (PLGA), lecithin, and PK3, loaded with the anti-atherosclerotic drug rapamycin (RAP). The nanoparticles were prepared using an O/W method and then characterized, which showed an appropriate particle size and fulfilling responsive behaviors. In vitro release studies and stability tests showed that these nanoparticles can be effectively internalized by human umbilical vein endothelial cells (HUVEC), and also show a good in vitro anti-inflammatory effect. After intravenous (i.v.) injection, RGD targeted by pH-responsive nanotherapy (RAP-Nps-RGD) may be accumulated at the plaque site in ApoE-/- mice with atherosclerosis and can effectively attenuate plaque progression compared to other formulations. Moreover, its good safety profile and biocompatibility have been revealed in both in vitro and in vivo estimations. Accordingly, the prospect of nanoparticles responsive to the inflammatory microenvironment for preventing atherosclerotic through inflammation modulation provides great feasibility for the administration of alternate drug molecules to inflamed sites to slow down the process of arteriosclerosis.
Collapse
Affiliation(s)
- Ge Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Fei Xu
- School of Life Sciences, Jilin University, Changchun, China.
| | - Bo Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xinyue Lu
- School of Life Sciences, Jilin University, Changchun, China.
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, Australia.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China.
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, China.
| | - Wenhua Liu
- Jilin Univ, Hosp 2, Dept Anesthesiol, Changchun, PR China.
| |
Collapse
|
18
|
Polyketal-based nanocarriers: A new class of stimuli-responsive delivery systems for therapeutic applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Tan T, Huang Q, Chu W, Li B, Wu J, Xia Q, Cao X. Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis. Drug Deliv 2022; 29:692-701. [PMID: 35225122 PMCID: PMC8890522 DOI: 10.1080/10717544.2022.2044936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macrophages can transform into M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes, which mediate the immune/inflammatory response in rheumatoid arthritis (RA). Activated M1 phenotype macrophages and overexpression of folate (FA) receptors are abundant in inflammatory synovium and joints and promote the progression of RA. Germacrone (GER) can regulate the T helper 1 cell (Th1)/the T helper 2 cell (Th2) balance to delay the progression of arthritis. To deliver GER to inflammatory tissue cells to reverse M1-type proinflammatory cells and reduce inflammation, FA receptor-targeting nanocarriers loaded with GER were developed. In activated macrophages, FA-NPs/DiD showed significantly higher uptake efficiency than NPs/DiD. In vitro experiments confirmed that FA-NPs/GER could promote the transformation of M1 macrophages into M2 macrophages. In adjuvant-induced arthritis (AIA) rats, the biodistribution profiles showed selective accumulation at the inflammatory site of FA-NPs/GER, and significantly reduced the swelling and inflammation infiltration of the rat's foot. The levels of pro-inflammatory cytokines (TNF-α, IL-1β) in the rat's inflammatory tissue were significantly lower than other treatment groups, which indicated a significant therapeutic effect in AIA rats. Taken together, macrophage-targeting nanocarriers loaded with GER are a safe and effective method for the treatment of RA.
Collapse
Affiliation(s)
- Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Jingjing Wu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| |
Collapse
|
20
|
Li X, Wang H, Zou X, Su H, Li C. Methotrexate-loaded folic acid of solid-phase synthesis conjugated gold nanoparticles targeted treatment for rheumatoid arthritis. Eur J Pharm Sci 2021; 170:106101. [PMID: 34936935 DOI: 10.1016/j.ejps.2021.106101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Methotrexate (MTX) is a first-line drug for rheumatoid arthritis (RA). Targeting of MTX to inflamed joints is essential to the prevention of potential toxicity and improving therapeutic effects. Gold nanoparticles (GNPs) are characterized by controllable particle sizes and good biocompatibilities, therefore, they are promising drug delivery systems. We aimed at developing a GNPs drug delivery system incorporating MTX and folic acid (FA) with strong efficacies against RA. METHODS MTX-Cys-FA was synthesized through solid-phase organic synthesis. Then, it was coupled with sulfhydryl groups in GNPs, thereby successfully preparing a GNPs/MTX-Cys-FA nanoconjugate with targeting properties. Physical and chemical techniques were used to characterize it. Moreover, we conducted its stability, release, pharmacokinetics, biodistribution and cell cytotoxicity, cell uptake, cell migration, as well as its therapeutic effect on CIA rats. The histopathology was conducted to investigate anti-RA effects of GNPs/MTX-Cys-FA nanoconjugates. RESULTS The GNPs/MTX-Cys-FA nanoconjugate exhibited a spherical appearance, had a particle size of 103.06 nm, a zeta potential of -33.68 mV, drug loading capacity of 11.04 %, and an encapsulation efficiency of 73.61%. Cytotoxicity experiments revealed that GNPs had good biocompatibilities while GNPs/MTX-Cys-FA exhibited excellent drug-delivery abilities. Cell uptake and migration experiment showed that nanoconjugates containing FA by LPS activated mouse mononuclear macrophages (RAW264.7) was significantly increased, and they exerted significant inhibitory effects on human fibroblast-like synoviocytes (HFLS) of RA (p<0.01). In addition, the nanoconjugate prolonged blood circulation time of MTX in collagen-induced arthritis (CIA) rats (p<0.01), enhanced MTX accumulation in inflamed joints (p<0.01), enhanced their therapeutic effects (p<0.01), and reduced toxicity to major organs (p<0.01). CONCLUSION GNPs/MTX-Cys-FA nanoconjugates provide effective approaches for RA targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xuena Li
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Huanhui Wang
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Xiaotong Zou
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Hui Su
- Department of Pharmacy, The Sixth Affiliated Hospital of Harbin Medical University, No. 142 road, Zhongyuan Avenue, Harbin 150028, China
| | - Cheng Li
- College of Medicine, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China; Department of Pharmacy, Affiliated Hospital of Yanbian University, No. 1327, Juzi Street, Yanji 133000, China.
| |
Collapse
|
21
|
Guo RB, Zhang XY, Yan DK, Yu YJ, Wang YJ, Geng HX, Wu YN, Liu Y, Kong L, Li XT. Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy. Biomater Sci 2021; 10:499-513. [PMID: 34904598 DOI: 10.1039/d1bm01520f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial joint hyperplasia, joint inflammation, cartilage erosion and bone destruction. Macrophages play an essential role in the pathogenesis of RA, and folate receptor β (FR-β) is highly expressed on the surface of activated synovial macrophages in RA patients. Triptolide (TP) has anti-inflammatory properties, and it can protect the cartilage matrix, but its clinical application has been limited due to poor solubility, low bioavailability and systemic toxicity. Therefore, we constructed folate-modified triptolide liposomes (FA-TP-Lips) to target macrophages, thereby treating RA in a safe and effective way. The experiments indicated that FA-TP-Lips had properties of small particle size, uniform particle size distribution, high drug encapsulation and long circulation. Furthermore, FA-TP-Lips showed reduced cytotoxicity, increased cellular uptake and significant anti-inflammatory effects in vitro. It also inhibited osteoclastogenesis. In vivo experiments revealed that liposomes could prolong the circulation of TP in the body, as well as exhibit significant cartilage-protective and anti-inflammatory effects with lower toxicity compared with the free TP group, thereby providing a promising new approach for the treatment of RA.
Collapse
Affiliation(s)
- Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Xin-Yue Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - De-Kang Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Ying-Jie Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Yu-Jia Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Hong-Xia Geng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Ya-Nan Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| |
Collapse
|
22
|
Maheshwari R, Gadeval A, Raval N, Kalia K, Tekade RK. Laser activatable nanographene colloids for chemo-photothermal combined gene therapy of triple-negative breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112605. [PMID: 35525767 DOI: 10.1016/j.msec.2021.112605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
This investigation reports the green approach for developing laser activatable nanoscale-graphene colloids (nGC-CO-FA) for chemo-photothermal combined gene therapy of triple-negative breast cancer (TNBC). The nano colloid was found to be nanometric as characterized by SEM, AFM, and zeta sizer (68.2 ± 2.1 nm; 13.8 ± 1.2 mV). The doxorubicin (Dox) loaded employing hydrophobic interaction/π-π stacking showed >80% entrapment efficiency with a sustained pH-dependent drug release profile. It can efficiently incorporate siRNA and Dox and successfully co-localize them inside TNBC cells to obtain significant anticancer activity as evaluated using CCK-8 assay, apoptosis assay, cell cycle analysis, cellular uptake, fluorescence assay, endosomal escape study, DNA content analysis, and gene silencing efficacy studies. nGC-CO-FA/Dox/siRNA released the Dox in temperature- and a pH-responsive manner following NIR-808 laser irradiation. The synergistic photo-chemo-gene therapy using near infrared-808 nm laser (NIR-808) irradiation was found to be more effective as compared to without NIR-808 laser-treated counterparts (∆T: 37 ± 1.1 °C → to 49.2 ± 3.1 °C; 10 min; 0.5 W/cm2), suggesting the pivotal role of photothermal combined gene-therapy in the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Maheshwari
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
23
|
Li S, Su J, Cai W, Liu JX. Nanomaterials Manipulate Macrophages for Rheumatoid Arthritis Treatment. Front Pharmacol 2021; 12:699245. [PMID: 34335264 PMCID: PMC8316763 DOI: 10.3389/fphar.2021.699245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, and systemic inflammatory autoimmune disease, characterized by synovial inflammation, synovial lining hyperplasia and inflammatory cell infiltration, autoantibody production, and cartilage/bone destruction. Macrophages are crucial effector cells in the pathological process of RA, which can interact with T, B, and fibroblast-like synovial cells to produce large amounts of cytokines, chemokines, digestive enzymes, prostaglandins, and reactive oxygen species to accelerate bone destruction. Therefore, the use of nanomaterials to target macrophages has far-reaching therapeutic implications for RA. A number of limitations exist in the current clinical therapy for patients with RA, including severe side effects and poor selectivity, as well as the need for frequent administration of therapeutic agents and high doses of medication. These challenges have encouraged the development of targeting drug delivery systems and their application in the treatment of RA. Recently, obvious therapeutic effects on RA were observed following the use of various types of nanomaterials to manipulate macrophages through intravenous injection (active or passive targeting), oral administration, percutaneous absorption, intraperitoneal injection, and intra-articular injection, which offers several advantages, such as high-precision targeting of the macrophages and synovial tissue of the joint. In this review, the mechanisms involved in the manipulation of macrophages by nanomaterials are analyzed, and the prospect of clinical application is also discussed. The objective of this article was to provide a reference for the ongoing research concerning the treatment of RA based on the targeting of macrophages.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,College Pharmacy, Jiamusi University, Jiamusi, China
| | - Jin Su
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Wei Cai
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
24
|
Ding F, Zhang H, Li Q, Yang C. Identification of a potent ionizable lipid for efficient macrophage transfection and systemic anti-interleukin-1β siRNA delivery against acute liver failure. J Mater Chem B 2021; 9:5136-5149. [PMID: 34132324 DOI: 10.1039/d1tb00736j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA interference (RNAi) therapy has great potential for treating inflammatory diseases. However, the development of potent carrier materials for delivering siRNA to macrophages is challenging. Herein, we design a set of ionizable lipid nanoparticles (LNPs) to screen and identify a potent carrier of siRNA for silencing an essential pro-inflammatory cytokine, interleukin-1β (IL-1β) in macrophages. The top performance LNP (114-LNP), containing ionizable lipid with spermine as an amine-head group, facilitated efficient siRNA internalization via multiple endocytosis pathways and achieved effective endosome escape in macrophages. The optimized LNP/siIL-1β achieved strong silencing of IL-1β in both activated Raw 264.7 cells and primary macrophages. Furthermore, systematic administration of 114-LNP/siIL-1β complexes could effectively inhibit IL-1β expression in an acute liver failure model and significantly attenuated hepatic inflammation and liver damage. These results suggest that the optimized ionizable lipid nanoparticle represents a promising platform for anti-inflammation therapies.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | | | | | | |
Collapse
|
25
|
Sasaki H. Development of Multi-functional Nanoparticles for Clinical Application to Gene and Nucleic Acid Medicines. Biol Pharm Bull 2021; 43:1147-1153. [PMID: 32741935 DOI: 10.1248/bpb.b20-00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene and nucleic medicines have recently gained attention as novel drugs with the advancement of molecular biology and genetics; however, they have low bioavailability and low target delivery due to their low stability and poor membrane permeability. Therefore, the development of an effective drug delivery system (DDS) is necessary for the practical use of gene and nucleic acid medicines; however, despite considerable research, both safety and efficiency remain poor. Furthermore, the healthcare needs are not met by traditional DDS. Therefore, we developed an effective multi-functional DDS, which is constructed using materials that are safe for human consumption. This DDS involves several ternary complexes as novel gene delivery carriers constructed by coating the cationic complex of the gene and nucleic acid medicines as well as the biodegradable cationic polymer with a biocompatible anionic polymer. Early implementation of the ternary complex in clinical studies is expected due to their efficacy and safety. Furthermore, these complexes may be prepared using large-scale manufacturing. In addition, personalized DDS may be prepared according to the patient's disease stage, which is useful for advanced therapy.
Collapse
Affiliation(s)
- Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital
| |
Collapse
|
26
|
Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B 2021; 11:1158-1174. [PMID: 34094826 PMCID: PMC8144894 DOI: 10.1016/j.apsb.2021.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing understanding of the pathogenesis of rheumatoid arthritis (RA) has remarkably promoted the development of effective therapeutic regimens of RA. Nevertheless, the inadequate response to current therapies in a proportion of patients, the systemic toxicity accompanied by long-term administration or distribution in non-targeted sites and the comprised efficacy caused by undesirable bioavailability, are still unsettled problems lying across the full remission of RA. So far, these existing limitations have inspired comprehensive academic researches on nanomedicines for RA treatment. A variety of versatile nanocarriers with controllable physicochemical properties, tailorable drug release pattern or active targeting ability were fabricated to enhance the drug delivery efficiency in RA treatment. This review aims to provide an up-to-date progress regarding to RA treatment using nanomedicines in the last 5 years and concisely discuss the potential application of several newly emerged therapeutic strategies such as inducing the antigen-specific tolerance, pro-resolving therapy or regulating the immunometabolism for RA treatments.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Xia Y, Tang G, Chen Y, Wang C, Guo M, Xu T, Zhao M, Zhou Y. Tumor-targeted delivery of siRNA to silence Sox2 gene expression enhances therapeutic response in hepatocellular carcinoma. Bioact Mater 2021; 6:1330-1340. [PMID: 33210026 PMCID: PMC7658325 DOI: 10.1016/j.bioactmat.2020.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is one of the most promising methods for the treatment of malignant tumors. However, developing an efficient biocompatible delivery vector for small interfering RNA (siRNA) remains a challenging issue. This study aimed to prepare a non-viral tumor-targeted carrier, named RGDfC-modified functionalized selenium nanoparticles (RGDfC-SeNPs). RGDfC-SeNPs were used to selectively deliver siSox2 to HepG2 liver cancer cells and tissues for the treatment of hepatocellular carcinoma (HCC). In the current study, RGDfC-SeNPs were successfully synthesized and characterized. It was shown that RGDfC-SeNPs could effectively load siSox2 to prepare an antitumor prodrug RGDfC-Se@siSox2. RGDfC-Se@siSox2 exhibited selective uptake in HepG2 liver cancer cells and LO2 normal liver cells, indicating RGDfC-SeNPs could effectively deliver siSox2 to HepG2 liver cancer cells. RGDfC-Se@siSox2 entered HepG2 cells via clathrin-mediated endocytosis by firstly encircling the cytoplasm and then releasing siSox2 in the lysosomes. RGDfC-Se@siSox2 could effectively silence Sox2 and inhibit the proliferation, migration and invasion of HepG2 cells. RGDfC-Se@siSox2 induced HepG2 cells apoptosis most likely via overproduction of reactive oxygen species and disruption of the mitochondrial membrane potentials. Most importantly, RGDfC-Se@siSox2 significantly inhibited the tumor growth in HepG2 tumor-bearing mice without obvious toxic side effects. These studies indicated that RGDfC-SeNPs may be an ideal gene carrier for delivering siSox2 to HepG2 cells and that RGDfC-Se@siSox2 may be a novel and highly specific gene-targeted prodrug therapy for HCC.
Collapse
Affiliation(s)
- Yu Xia
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Guoyi Tang
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
28
|
Maurer V, Altin S, Ag Seleci D, Zarinwall A, Temel B, Vogt PM, Strauß S, Stahl F, Scheper T, Bucan V, Garnweitner G. In-Vitro Application of Magnetic Hybrid Niosomes: Targeted siRNA-Delivery for Enhanced Breast Cancer Therapy. Pharmaceutics 2021; 13:394. [PMID: 33809700 PMCID: PMC8002368 DOI: 10.3390/pharmaceutics13030394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Even though the administration of chemotherapeutic agents such as erlotinib is clinically established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly improved using RNA interference (RNAi) mechanisms for a combinational therapy. However, the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core. A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the application of an external magnetic field enhanced the internalization of siRNA, therefore increasing the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a cost-effective commercialization and can be considered as a promising candidate for future siRNA delivery agents.
Collapse
Affiliation(s)
- Viktor Maurer
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Selin Altin
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Didem Ag Seleci
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Ajmal Zarinwall
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bilal Temel
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
| | - Peter M. Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Frank Stahl
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Thomas Scheper
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Georg Garnweitner
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
29
|
Zhao M, Zhu T, Chen J, Cui Y, Zhang X, Lee RJ, Sun F, Li Y, Teng L. PLGA/PCADK composite microspheres containing hyaluronic acid-chitosan siRNA nanoparticles: A rational design for rheumatoid arthritis therapy. Int J Pharm 2021; 596:120204. [PMID: 33493604 DOI: 10.1016/j.ijpharm.2021.120204] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/14/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1), a member of the Bcl-2 anti-apoptotic family, is overexpressed in the synovial macrophages of patients with rheumatoid arthritis (RA). Small interfering RNA (siRNA) Mcl-1 can induce macrophage apoptosis in the joints and is a potential therapeutic target of RA. Nevertheless, the application of siRNA is limited owing to its instability and susceptibility to degradation in vivo. To address these shortcomings, we developed composite microspheres (MPs) loaded with hyaluronic acid (HA)-chitosan (CS) nanoparticles (NPs). First, we synthesized HA-CS/siRNA NPs (HCNPs) using ionotropic gelation process. Then, HCNPs, as an internal aqueous phase, were loaded into poly (D, L-lactide-co-glycolide) (PLGA) and poly (cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) MPs using the double emulsion method. The NPs-in-MPs (NiMPs) composite system provided sustained release of NPs, protected siRNA against nuclease degradation in the serum, and could readily cross the cellular membrane. In addition, we evaluated the advantages of NiMPs in an adjuvant-induced arthritis rat model. Our experimental results demonstrate that NiMPs have greater pharmacodynamic effects than common MPs. Meanwhile, compared with HCNPs, NiMPs reduced the frequency of drug administration. Therefore, NiMPs are a promising and novel siRNA delivery vehicle for RA therapy.
Collapse
Affiliation(s)
- Menghui Zhao
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyu Zhu
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jicong Chen
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xueyan Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, Jilin, China; College of Pharmacy, the Ohio State University, Columbus, OH, USA
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, Jilin, China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
30
|
Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, Bi Y. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. Int J Nanomedicine 2021; 16:1525-1551. [PMID: 33658782 PMCID: PMC7920594 DOI: 10.2147/ijn.s293427] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Nanomedicines afford unique advantages in therapeutic intervention against tumors. However, conventional nanomedicines have failed to achieve the desired effect against cancers because of the presence of complicated physiological fluids and the tumor microenvironment. Stimuli-responsive drug-delivery systems have emerged as potential tools for advanced treatment of cancers. Versatile nano-carriers co-triggered by multiple stimuli in different levels of organisms (eg, extracorporeal, tumor tissue, cell, subcellular organelles) have aroused widespread interest because they can overcome sequential physiological and pathological barriers to deliver diverse therapeutic “payloads” to the desired targets. Furthermore, multiple stimuli-responsive drug-delivery systems (MSR-DDSs) offer a good platform for co-delivery of agents and reversing multidrug resistance. This review affords a comprehensive overview on the “landscape” of MSR-DDSs against tumors, highlights the design strategies of MSR-DDSs in recent years, discusses the putative advantage of oncotherapy or the obstacles that so far have hindered the clinical translation of MSR-DDSs.
Collapse
Affiliation(s)
- Ruixin Jia
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, Jilin, People's Republic of China
| | - Lingyu Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ting Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Lu Fu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, People's Republic of China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ye Bi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China.,Practice Training Center, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
31
|
Laurini E, Aulic S, Marson D, Fermeglia M, Pricl S. Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. Methods Mol Biol 2021; 2282:209-244. [PMID: 33928579 DOI: 10.1007/978-1-0716-1298-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Peng D, Li J, Deng Y, Zhu X, Zhao L, Zhang Y, Li Z, Ou S, Li S, Jiang Y. Sodium para-aminosalicylic acid inhibits manganese-induced NLRP3 inflammasome-dependent pyroptosis by inhibiting NF-κB pathway activation and oxidative stress. J Neuroinflammation 2020; 17:343. [PMID: 33203418 PMCID: PMC7670624 DOI: 10.1186/s12974-020-02018-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background The activation of NOD-like receptor protein 3 (NLRP3) inflammasome-dependent pyroptosis has been shown to play a vital role in the pathology of manganese (Mn)-induced neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has a positive effect on the treatment of manganism. However, the mechanism is still unclear. We hypothesized that PAS-Na might act through NLRP3. Methods The microglial cell line BV2 and male Sprague-Dawley rats were used to investigate the impacts of PAS-Na on Mn-induced NLRP3 inflammasome-dependent pyroptosis. The related protein of the NF-κB pathway and NLRP3-inflammasome-dependent pyroptosis was detected by western blot. The reactive oxygen species and mitochondrial membrane potential were detected by immunofluorescence staining and flow cytometry. The activation of microglia and the gasdermin D (GSDMD) were detected by immunofluorescence staining. Results Our results showed that Mn treatment induced oxidative stress and activated the NF-κB pathway by increasing the phosphorylation of p65 and IkB-α in BV2 cells and in the basal ganglia of rats. PAS-Na could alleviate Mn-induced oxidative stress damage by inhibiting ROS generation, increasing mitochondrial membrane potential and ATP levels, thereby reducing the phosphorylation of p65 and IkB-α. Besides, Mn treatment could activate the NLRP3 pathway and promote the secretion of IL-18 and IL-1β, mediating pyroptosis in BV2 cells and in the basal ganglia and hippocampus of rats. But an inhibitor of NF-κb (JSH-23) treatment could significantly reduce LDH release, the expression of NLRP3 and Cleaved CASP1 protein and IL-1β and IL-18 mRNA level in BV2 cells. Interestingly, the effect of PAS-Na treatment in Mn-treated BV2 cells is similar to those of JSH-23. Besides, immunofluorescence results showed that PAS-Na reduced the increase number of activated microglia, which stained positively for GSDMD. Conclusion PAS-Na antagonized Mn-induced NLRP3 inflammasome dependent pyroptosis through inhibiting NF-κB pathway activation and oxidative stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02018-6.
Collapse
Affiliation(s)
- Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Junyan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Yue Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Xiaojuan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Lin Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Yuwen Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Zhaocong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Shiyan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.
| |
Collapse
|
33
|
Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020; 284:102261. [PMID: 32942181 DOI: 10.1016/j.cis.2020.102261] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
As one of the most promising and effective delivery systems for targeted controlled-release drugs, nanocarriers (NCs) have been widely studied. Although the development of nanoparticle preparations is very prosperous, the safety and effectiveness of NCs are not guaranteed and cannot be precisely controlled due to the unclear processes of absorption, distribution, metabolism, and excretion (ADME), as well as the drug release mechanism of NCs in the body. Thus, the approval of NCs for clinical use is extremely rare. This paper reviews the research progress and challenges of using NCs in vivo based on a review of several hundred closely related publications. First, the ADME of NCs under different administration routes is summarized; second, the influences of the physical, chemical, and biosensitive properties, as well as targeted modifications of NCs on their disposal process, are systematically analyzed; third, the tracer technology related to the in vivo study of NCs is elaborated; and finally, the challenges and perspectives of nanoparticle research in vivo are introduced. This review may help readers to understand the current research progress and challenges of nanoparticles in vivo, as well as of tracing technology in nanoparticle research, to help researchers to design safer and more efficient NCs. Furthermore, this review may aid researchers in choosing or exploring more suitable tracing technologies to further advance the development of nanotechnology.
Collapse
|
34
|
Li X, Yu C, Meng X, Hou Y, Cui Y, Zhu T, Li Y, Teng L, Sun F, Li Y. Study of double-targeting nanoparticles loaded with MCL-1 siRNA and dexamethasone for adjuvant-induced arthritis therapy. Eur J Pharm Biopharm 2020; 154:136-143. [DOI: 10.1016/j.ejpb.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/28/2022]
|
35
|
Nanoparticle-facilitated delivery of BAFF-R siRNA for B cell intervention and rheumatoid arthritis therapy. Int Immunopharmacol 2020; 88:106933. [PMID: 32866781 DOI: 10.1016/j.intimp.2020.106933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
The present study was designed to explore the effects of B-cell activating factor receptor (BAFF-R) siRNA encapsulated nanoparticles on collagen-induced arthritis (CIA). BAFF-R siRNA encapsulated nanoparticles (NP-siBAFF-R) were constructed using a double emulsion method and was characterized by dynamic light scattering and transmission electron microscopy. Cellular uptake of nanoparticles was determined using flow cytometry. The CIA mouse model was established and the mice were intravenously injected with nanoparticles. NP-siBAFF-R effectively decreased the expression of BAFF-R in B cells and facilitated the delivery of siRNA into B cells. Treatment of NPsiBAFF-R ameliorated rheumatoid arthritis (RA) symptoms in the CIA mouse model via decreasing the arthritis score, mean ankle diameter, the levels of anti-collagen IgG in serum and increasing the expression of collagen type II and osteocalcin in dissected joint tissues. Additionally, treatment of NPsiBAFF-R decreased the percentage and number of B cells and inhibited the production of pro-inflammatory cytokines in RA mice. These results demonstrate that NP-siBAFF-R may provide an effective strategy for RA treatment.
Collapse
|
36
|
Han D, Chen Q, Chen H. Food-Derived Nanoscopic Drug Delivery Systems for Treatment of Rheumatoid Arthritis. Molecules 2020; 25:E3506. [PMID: 32752061 PMCID: PMC7436204 DOI: 10.3390/molecules25153506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a severe systemic inflammatory disease with no cure at present. Recent developments in the understanding of inflammation and nanomaterial science have led to increased applications of nanostructured drug delivery systems in the treatment of RA. The present review summarizes novel fabrications of nanoscale drug carriers using food components as either the delivered drugs or carrier structures, in order to achieve safe, effective and convenient drug administration. Polyphenols and flavonoids are among the most frequently carried anti-RA therapeutics in the nanosystems. Fatty substances, polysaccharides, and peptides/proteins can function as structuring agents of the nanocarriers. Frequently used nanostructures include nanoemulsions, nanocapsules, liposomes, and various nanoparticles. Using these nanostructures has improved drug solubility, absorption, biodistribution, stability, targeted accumulation, and release. Joint vectorization, i.e., using a combination of bioactive molecules, can bring elevated therapeutic outcomes. Utilization of anti-arthritic chemicals that can self-assemble into nanostructures is a promising research orientation in this field.
Collapse
Affiliation(s)
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China;
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China;
| |
Collapse
|
37
|
Nanoparticle-siRNA: A potential strategy for rheumatoid arthritis therapy? J Control Release 2020; 325:380-393. [PMID: 32653501 DOI: 10.1016/j.jconrel.2020.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a common clinical inflammatory disease of the autoimmune system manifested by persistent synovitis, cartilage damage and even deformities. Despite significant progress in the clinical treatment of RA, long-term administration of anti-rheumatic drugs can cause a series of problems, including infections, gastrointestinal reactions, and abnormal liver and kidney functions. The emergence of RNA interference (RNAi) drugs has brought new hope for the treatment of RA. Designing a reasonable vector for RNAi drugs will greatly expand the application prospects of RNAi. Nanoparticles as a promising drug carrier provide reliable support for RNAi drugs. The review summarizes the pathogenesis of RA as a possible target for small interference RNA (siRNA) design. At the same time, the review also analyzes the nanoparticles used in siRNA carriers in recent years, laying the foundation and prospect for the next step in the development of intelligent nanocarriers.
Collapse
|
38
|
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that results in severe inflammatory microenvironments in the joint tissues. In clinics, disease-modifying antirheumatic drugs (DMARDs) are generally prescribed to patients with RA, but their long-term use often shows toxicity in some organs such as the gastrointestinal system, skin, and kidneys and immunosuppression-mediated infection. Nanomedicine has emerged as a new therapeutic strategy to efficiently localize the drugs in inflamed joints for the treatment of RA. In this Review, we introduce recent research in the area of nanomedicine for the treatment of RA and discuss how the nanomedicine can be used to deliver therapeutic agents to the inflamed joints and manage the progression of RA, particularly focusing on targeted delivery, controlled drug release, and immune modulation.
Collapse
Affiliation(s)
- Moonkyoung Jeong
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
39
|
Amphiphilic Polypeptides for VEGF siRNA Delivery into Retinal Epithelial Cells. Pharmaceutics 2020; 12:pharmaceutics12010039. [PMID: 31906576 PMCID: PMC7022581 DOI: 10.3390/pharmaceutics12010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022] Open
Abstract
Polyethyleneimine, poly-L-lysine, chitosan and some others cationic polymers have been thoroughly studied as nucleic acid delivery systems in gene therapy. However, the drug release from these systems proceeds at a very low rate due to extremely high binding between a carrier and gene material. To reduce these interactions and to enhance drug release, we developed a set of amphiphilic polypeptides containing positively and negatively charged amino acids as well as a hydrophobic one. The copolymers obtained were characterized by size-exclusion chromatography, static light scattering, HPLC amino acid analysis and 1HNMR spectroscopy. All copolymers formed particles due to a self-assembly in aqueous media. Depending on polypeptide composition, the formation of particles with hydrodynamic diameters from 180 to 900 nm was observed. Stability of polymer particles, loading and release efficiency were carefully studied. Cellular uptake of the particles was efficient and their cytotoxicity was negligible. The application of polymer carriers, containing siRNA, to vascular endothelial growth factor (VEGF-A165) silencing of ARPE-19 cells was successful. The gene silencing was confirmed by suppression of both messenger RNA and protein expression.
Collapse
|
40
|
Ni R, Song G, Fu X, Song R, Li L, Pu W, Gao J, Hu J, Liu Q, He F, Zhang D, Huang G. Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-α/BAFF signaling pathway. Biomaterials 2019; 232:119730. [PMID: 31918224 DOI: 10.1016/j.biomaterials.2019.119730] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease that results in synovitis, cartilage destruction, and even loss of joint function. The frequent and long-term administration of anti-rheumatic drugs often leads to obvious adverse effects and patient non-compliance. Therefore, to specifically deliver dexamethasone (Dex) to inflamed joints and reduce the administration frequency of Dex, we developed Dex-loaded reactive oxygen species (ROS)-responsive nanoparticles (Dex/Oxi-αCD NPs) and folic acid (FA) modified Dex/Oxi-αCD NPs (Dex/FA-Oxi-αCD NPs) and validated their anti-inflammatory effect in vitro and in vivo. In vitro study demonstrated that these NPs can be effectively internalized by activated macrophages and the released Dex from NPs significantly downregulated the expression of iRhom2, TNF-α, and BAFF in activated Raw264.7. In vivo experiments revealed that Dex/Oxi-αCD NPs, especially Dex/FA-Oxi-αCD NPs significantly accumulated at inflamed joints in collagen-induced arthritis (CIA) mice and alleviated the joint swelling and cartilage destruction. Importantly, the expression of iRhom2, TNF-α, and BAFF in the joint was inhibited by intravenous injection of Dex/Oxi-αCD NPs and Dex/FA-Oxi-αCD NPs. Collectively, our data revealed that Dex-loaded ROS-responsive NPs can target inflamed joints and attenuate arthritis, and the 'iRhom2-TNF-α-BAFF' pathway plays an important role in the treatment of RA with the NPs, suggesting that this pathway may be a novel target for RA therapy.
Collapse
Affiliation(s)
- Rongrong Ni
- Department of Chemistry, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guojing Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruifeng Song
- Department of Chemistry, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lanlan Li
- Department of Chemistry, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wendan Pu
- Department of Chemistry, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jining Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China
| | - Qin Liu
- Biomedical Analysis Center, Third Military Medical University (Amy Medical University), Chongqing, 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Urology, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China.
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
41
|
Emami J, Ansarypour Z. Receptor targeting drug delivery strategies and prospects in the treatment of rheumatoid arthritis. Res Pharm Sci 2019; 14:471-487. [PMID: 32038727 PMCID: PMC6937749 DOI: 10.4103/1735-5362.272534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory disease, is characterized by cartilage damage, bone tissue destruction, morphological changes in synovial fluids, and synovial joint inflammation. The inflamed synovial tissue has potential for passive and active targeting because of enhanced permeability and retention effect and the existence of RA synovial macrophages and fibroblasts that selectively express surface receptors such as folate receptor β, CD44 and integrin αVβ. Although there are numerous interventions in RA treatment, they are not safe and effective. Therefore, it is important to develop new drug or drug delivery systems that specifically targets inflamed/swollen joints but attenuates other possible damages to healthy tissues. Recently some receptors such as toll-like receptors (TLRs), the nucleotide-binding oligomerization domain-like receptors, and Fc-γ receptor have been identified in synovial tissue and immune cells that are involved in induction or suppression of arthritis. Analysis of the TLR pathway has moreover suggested new insights into the pathogenesis of RA. In the present paper, we have reviewed drug delivery strategies based on receptor targeting with novel ligand-anchored carriers exploiting CD44, folate and integrin αVβ as well as TLRs expressed on synovial monocytes and macrophages and antigen presenting cells, for possible active targeting in RA. TLRs could not only open a new horizon for developing new drugs but also their antagonists or humanized monoclonal antibodies that block TLRS specially TLR4 and TLR9 signaling could be used as targeting agents to antigen presenting cells and dendritic cells. As a conclusion, common conventional receptors and multifunctional ligands that arte involved in targeting receptors or developing nanocarriers with appropriate ligands for TLRs can provide profoundly targeting drug delivery systems for the effective treatment of RA.
Collapse
Affiliation(s)
- Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Zahra Ansarypour
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
42
|
Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today 2019; 25:718-730. [PMID: 31758914 DOI: 10.1016/j.drudis.2019.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
The delivery of noncoding (nc)RNA to target cancer stem cells and metastatic tumors has shown many positive outcomes, resulting in improved and more efficient treatment strategies. The success of therapeutic RNA depends solely on passing cellular barriers to reach the target site, where it binds to the mRNA of the interest. By 2018, 20 clinical trials had been initiated, most focusing on cancer and diabetes, with some progressing to Phase II clinical trials testing the safety and efficacy of small interfering (si)RNA. Many challenges limit RNA interference (RNAi) and miRNA usage in vivo; therefore, various approaches have been developed to promote ncRNA efficiency and stability. In this review, we focus on targeting the tumor microenvironment (TME) via the modification of delivery systems utilizing nanotechnology-based delivery approaches.
Collapse
|