1
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
2
|
Park NY, Kwak G, Doo HM, Kim HJ, Jang SY, Lee YI, Choi BO, Hong YB. Farnesol Ameliorates Demyelinating Phenotype in a Cellular and Animal Model of Charcot-Marie-Tooth Disease Type 1A. Curr Issues Mol Biol 2021; 43:2011-2021. [PMID: 34889893 PMCID: PMC8928981 DOI: 10.3390/cimb43030138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea;
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - Hyun-Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - Hye-Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - So-Young Jang
- Departments of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (B.-O.C.); (Y.-B.H.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-51-240-2762 (Y.-B.H.); Fax: +82-3410-0052 (B.-O.C.); +82-51-240-2971 (Y.-B.H.)
| | - Young-Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea;
- Departments of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
- Correspondence: (B.-O.C.); (Y.-B.H.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-51-240-2762 (Y.-B.H.); Fax: +82-3410-0052 (B.-O.C.); +82-51-240-2971 (Y.-B.H.)
| |
Collapse
|
3
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Caillaud M, Msheik Z, Ndong-Ntoutoume GMA, Vignaud L, Richard L, Favreau F, Faye PA, Sturtz F, Granet R, Vallat JM, Sol V, Desmoulière A, Billet F. Curcumin-cyclodextrin/cellulose nanocrystals improve the phenotype of Charcot-Marie-Tooth-1A transgenic rats through the reduction of oxidative stress. Free Radic Biol Med 2020; 161:246-262. [PMID: 32980538 DOI: 10.1016/j.freeradbiomed.2020.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022]
Abstract
The most prevalent form of Charcot-Marie-Tooth disease (CMT type 1A) is characterized by duplication of the PMP22 gene, peripheral dysmyelination and decreased nerve conduction velocities leading to muscle weakness. Recently, oxidative stress was reported as a feature in CMT1A patients. Curcumin exhibits antioxidant activities and has shown beneficial properties on peripheral nerves. However, curcumin presents unfavorable pharmacokinetics. We developed curcumin-cyclodextrin/cellulose nanocrystals (Nano-Cur) to bypass this limitation. The present study investigated the therapeutic potential of Nano-Cur in vitro in Schwann cells (SCs) and in vivo in the transgenic CMT1A rat model. In vitro, Nano-Cur treatment (0.01 μM for 8 h) reduced reactive oxygen species and improved mitochondrial membrane potential in CMT1A SCs. Moreover, Nano-Cur treatment (0.01 μM for 1 week) increased the expression of myelin basic protein in SC/neuron co-cultures. Preliminary in vivo experiments carried out in WT rats showed that intraperitoneal (i.p.) injection of Nano-Cur treatment containing 0.2 mg/kg of curcumin strongly enhanced the bioavailability of curcumin. Afterwards, in 1-month-old male CMT1A rats, Nano-Cur treatment (0.2 mg/kg/day, i.p. for 8 weeks) significantly improved sensori-motor functions (grip strength, balance performance, and mechanical and thermal sensitivities). Importantly, sensory and motor nerve conduction velocities were improved. Further histological and biochemical analyses indicated that myelin sheath thickness and myelin protein expression (myelin protein zero and PMP22) were increased. In addition, oxidative stress markers were decreased in the sciatic nerve and gastrocnemius muscle. Finally, Nrf2 expression and some major antioxidant enzymes were increased in sciatic nerve. Therefore, Nano-Cur significantly improved cellular, electrophysiological, and functional features of CMT1A rats.
Collapse
Affiliation(s)
- Martial Caillaud
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Zeina Msheik
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France
| | - Gautier M-A Ndong-Ntoutoume
- EA7500, PEIRENE Laboratory, Faculty of Science and Technology, University of Limoges, F-87000, Limoges, France
| | - Laetitia Vignaud
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France
| | - Laurence Richard
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France; Reference Center for Rare Peripheral Neuropathies, Department of Neurology, University Hospital of Limoges, F-87000, Limoges, France
| | - Frédéric Favreau
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France; Department of Biochemistry, University Hospital of Limoges, F-87000, Limoges, France
| | - Pierre-Antoine Faye
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France; Department of Biochemistry, University Hospital of Limoges, F-87000, Limoges, France
| | - Franck Sturtz
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France; Department of Biochemistry, University Hospital of Limoges, F-87000, Limoges, France
| | - Robert Granet
- EA7500, PEIRENE Laboratory, Faculty of Science and Technology, University of Limoges, F-87000, Limoges, France
| | - Jean-Michel Vallat
- Reference Center for Rare Peripheral Neuropathies, Department of Neurology, University Hospital of Limoges, F-87000, Limoges, France
| | - Vincent Sol
- EA7500, PEIRENE Laboratory, Faculty of Science and Technology, University of Limoges, F-87000, Limoges, France
| | - Alexis Desmoulière
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France
| | - Fabrice Billet
- EA6309, Myelin Maintenance and Peripheral Neuropathies, University of Limoges, Faculties of Medicine and Pharmacy, F-87000, Limoges, France.
| |
Collapse
|
5
|
Visigalli D, Capodivento G, Basit A, Fernández R, Hamid Z, Pencová B, Gemelli C, Marubbi D, Pastorino C, Luoma AM, Riekel C, Kirschner DA, Schenone A, Fernández JA, Armirotti A, Nobbio L. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front Neurol 2020; 11:903. [PMID: 32982928 PMCID: PMC7477391 DOI: 10.3389/fneur.2020.00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023] Open
Abstract
In Charcot-Marie-Tooth type 1A (CMT1A), Schwann cells exhibit a preponderant transcriptional deficiency of genes involved in lipid biosynthesis. This perturbed lipid metabolism affects the peripheral nerve physiology and the structure of peripheral myelin. Nevertheless, the identification and functional characterization of the lipid species mainly responsible for CMT1A myelin impairment currently lack. This is critical in the pathogenesis of the neuropathy since lipids are many and complex molecules which play essential roles in the cell, including the structural components of cellular membranes, cell signaling, and membrane trafficking. Moreover, lipids themselves are able to modify gene transcription, thereby affecting the genotype-phenotype correlation of well-defined inherited diseases, including CMT1A. Here we report for the first time a comprehensive lipid profiling in experimental and human CMT1A, demonstrating a previously unknown specific alteration of sphingolipid (SP) and glycerophospholipid (GP) metabolism. Notably, SP, and GP changes even emerge in biological fluids of CMT1A rat and human patients, implying a systemic metabolic dysfunction for these specific lipid classes. Actually, SP and GP are not merely reduced; their expression is instead aberrant, contributing to the ultrastructural abnormalities that we detailed by X-ray diffraction in rat and human internode myelin. The modulation of SP and GP pathways in myelinating dorsal root ganglia cultures clearly sustains this issue. In fact, just selected molecules interacting with these pathways are able to modify the altered geometric parameters of CMT1A myelinated fibers. Overall, we propose to exploit the present SP and GP metabolism impairment to select effective drugs and validate a set of reliable biomarkers, which remain a challenge in CMT1A neuropathy.
Collapse
Affiliation(s)
- Davide Visigalli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Giovanna Capodivento
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Abdul Basit
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Zeeshan Hamid
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Barbora Pencová
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Chiara Gemelli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Daniela Marubbi
- DIMES, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Oncologia Cellulare Genoa, Genoa, Italy
| | - Cecilia Pastorino
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Adrienne M Luoma
- Department of Biology, Boston College, Boston, MA, United States
| | | | | | - Angelo Schenone
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lucilla Nobbio
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| |
Collapse
|
6
|
Marinko JT, Carter BD, Sanders CR. Direct relationship between increased expression and mistrafficking of the Charcot-Marie-Tooth-associated protein PMP22. J Biol Chem 2020; 295:11963-11970. [PMID: 32647009 PMCID: PMC7443497 DOI: 10.1074/jbc.ac120.014940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a neuropathy of the peripheral nervous system that afflicts ∼1:2500 people. The most common form of this disease (CMT1A, 1:4000) is associated with duplication of chromosome fragment 17p11.2-12, which results in a third WT PMP22 allele. In rodent models overexpressing the PMP22 (peripheral myelin protein 22) protein and in dermal fibroblasts from patients with CMT1A, PMP22 aggregates have been observed. This suggests that overexpression of PMP22 under CMT1A conditions overwhelms the endoplasmic reticulum quality control system, leading to formation of cytotoxic aggregates. In this work, we used a single-cell flow-cytometry trafficking assay to quantitatively examine the relationship between PMP22 expression and trafficking efficiency in individual cells. We observed that as expression of WT or disease variants of PMP22 is increased, the amount of intracellular PMP22 increases to a greater extent than the amount of surface-trafficked protein. This was true for both transiently transfected cells and PMP22 stable expressing cells. Our results support the notion that overexpression of PMP22 in CMT1A leads to a disproportionate increase in misfolding and mistrafficking of PMP22, which is likely a contributor to disease pathology and progression.
Collapse
Affiliation(s)
- Justin T Marinko
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Brain Institute, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Zhou Y, Bazick H, Miles JR, Fethiere AI, Salihi MOA, Fazio S, Tavori H, Notterpek L. A neutral lipid-enriched diet improves myelination and alleviates peripheral nerve pathology in neuropathic mice. Exp Neurol 2019; 321:113031. [DOI: 10.1016/j.expneurol.2019.113031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022]
|
8
|
Liao YC, Tsai PC, Lin TS, Hsiao CT, Chao NC, Lin KP, Lee YC. Clinical and Molecular Characterization of PMP22 point mutations in Taiwanese patients with Inherited Neuropathy. Sci Rep 2017; 7:15363. [PMID: 29127354 PMCID: PMC5681590 DOI: 10.1038/s41598-017-14771-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023] Open
Abstract
Point mutations in the peripheral myelin protein 22 (PMP22) gene have been identified to cause demyelinating Charcot-Marie-Tooth disease (CMT) and hereditary neuropathy with liability to pressure palsy (HNPP). To investigate the mutation spectrum of PMP22 in Han-Chinese population residing in Taiwan, 53 patients with molecularly unassigned demyelinating CMT and 52 patients with HNPP-like neuropathy of unknown genetic causes were screened for PMP22 mutations by Sanger sequencing. Three point mutations were identified in four patients with demyelinating CMT, including c.256 C > T (p.Q86X) in two, and c.310delA (p.I104FfsX7) and c.319 + 1G > A in one each. One PMP22 missense mutation, c.124 T > C (p.C42R), was identified in a patient with HNPP-like neuropathy. The clinical presentations of these mutations vary from mild HNPP-like syndrome to severe infantile-onset demyelinating CMT. In vitro analyses revealed that both PMP22 p.Q86X and p.I104FfsX7 mutations result in truncated PMP22 proteins that are almost totally retained within cytosol, whereas the p.C42R mutation partially impairs cell membrane localization of PMP22 protein. In conclusion, PMP22 point mutations account for 7.5% and 1.9% of demyelinating CMT and HNPP patients with unknown genetic causes, respectively. This study delineates the clinical and molecular features of PMP22 point mutations in Taiwan, and emphasizes their roles in demyelinating CMT or HNPP-like neuropathy.
Collapse
Affiliation(s)
- Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC. .,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC.
| | - Pei-Chien Tsai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Thy-Sheng Lin
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Cheng-Tsung Hsiao
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC.,Division of Neurology, Department of Internal Medicine, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan, ROC.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Nai-Chen Chao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Kon-Ping Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
9
|
Pieczora L, Stracke L, Vorgerd M, Hahn S, Theiss C, Theis V. Unveiling of miRNA Expression Patterns in Purkinje Cells During Development. THE CEREBELLUM 2017; 16:376-387. [PMID: 27387430 DOI: 10.1007/s12311-016-0814-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs of 19-25 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs is associated with many disorders and neurodegenerative diseases affecting numerous different pathways and processes, of which many have not yet been completely explored. Recent studies even indicate a crucial role of miRNAs during brain development, with differential expression patterns of several miRNAs seen in both developing and mature cells. A miRNA profiling in brain tissue and the fundamental understanding of their effects might optimize the therapeutical treatment of various neurological disorders. In this study, we performed miRNA array analysis of enriched cerebellar Purkinje cell (PC) samples from both young and mature rat cerebella. We used laser microdissection (LMD) to enrich PC for a highly specific miRNA profiling. Altogether, we present the expression profile of at least 27 miRNAs expressed in rat cerebellar PC and disclose a different expression pattern of at least three of these miRNAs during development. These miRNAs are potential candidates for the regulation and control of cerebellar PC development, including neuritic and dendritic outgrowth as well as spine formation.
Collapse
Affiliation(s)
- Lukas Pieczora
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Lara Stracke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
10
|
Sociali G, Visigalli D, Prukop T, Cervellini I, Mannino E, Venturi C, Bruzzone S, Sereda MW, Schenone A. Tolerability and efficacy study of P2X7 inhibition in experimental Charcot-Marie-Tooth type 1A (CMT1A) neuropathy. Neurobiol Dis 2016; 95:145-57. [PMID: 27431093 DOI: 10.1016/j.nbd.2016.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/24/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Charcot-Marie-Tooth 1A (CMT1A) is a demyelinating hereditary neuropathy for which pharmacological treatments are not yet available. An abnormally high intracellular Ca(2+) concentration was observed in Schwann cells (SC) from CMT1A rats, caused by the PMP22-mediated overexpression of the P2X7 purinoceptor. The purpose of this study was to investigate the tolerability and therapeutic potential of a pharmacological antagonist of the P2X7 receptor (A438079) in CMT1A. A438079 ameliorated in vitro myelination of organotypic DRG cultures from CMT1A rats. Furthermore, we performed an experimental therapeutic trial in PMP22 transgenic and in wild-type rats. A preliminary dose-escalation trial showed that 3mg/kg A438079 administered via intraperitoneal injection every 24h for four weeks was well tolerated by wild type and CMT1A rats. Affected rats treated with 3mg/kg A438079 revealed a significant improvement of the muscle strength, when compared to placebo controls. Importantly, histologic analysis revealed a significant increase of the total number of myelinated axons in tibial nerves. Moreover, a significant decrease of the hypermyelination of small caliber axons and a significant increase of the frequency and diameter of large caliber myelinated axons was highlighted. An improved distal motor latencies was recorded, whereas compound muscle action potentials (CMAP) remained unaltered. A438079 reduced the SC differentiation defect in CMT1A rats. These results show that pharmacological inhibition of the P2X7 receptor is well tolerated in CMT1A rats and represents a proof-of-principle that antagonizing this pathway may correct the molecular derangements and improve the clinical phenotype in the CMT1A neuropathy.
Collapse
Affiliation(s)
- Giovanna Sociali
- DIMES, Section of Biochemistry, and CEBR, University of Genova, Viale Benedetto XV, 1, 16132, Italy
| | - Davide Visigalli
- DINOGMI and CEBR, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy
| | - Thomas Prukop
- Max Planck Institute of Experimental Medicine, Research Group "Molecular and Translational Neurology", Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Ilaria Cervellini
- Max Planck Institute of Experimental Medicine, Research Group "Molecular and Translational Neurology", Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Elena Mannino
- DIMES, Section of Biochemistry, and CEBR, University of Genova, Viale Benedetto XV, 1, 16132, Italy
| | - Consuelo Venturi
- DINOGMI and CEBR, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy
| | - Santina Bruzzone
- DIMES, Section of Biochemistry, and CEBR, University of Genova, Viale Benedetto XV, 1, 16132, Italy.
| | - Michael W Sereda
- Max Planck Institute of Experimental Medicine, Research Group "Molecular and Translational Neurology", Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany; University Medical Center Göttingen, Department of Clinical Neurophysiology, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Angelo Schenone
- DINOGMI and CEBR, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy
| |
Collapse
|
11
|
Visigalli D, Castagnola P, Capodivento G, Geroldi A, Bellone E, Mancardi G, Pareyson D, Schenone A, Nobbio L. Alternative Splicing in the HumanPMP22Gene: Implications in CMT1A Neuropathy. Hum Mutat 2015; 37:98-109. [DOI: 10.1002/humu.22921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Davide Visigalli
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | | | - Giovanna Capodivento
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Alessandro Geroldi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Emilia Bellone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Gianluigi Mancardi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit; IRCCS Foundation; C. Besta Neurological Institute; Milan Italy
| | - Angelo Schenone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Lucilla Nobbio
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| |
Collapse
|
12
|
Watila MM, Balarabe SA. Molecular and clinical features of inherited neuropathies due to PMP22 duplication. J Neurol Sci 2015; 355:18-24. [PMID: 26076881 DOI: 10.1016/j.jns.2015.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/30/2015] [Accepted: 05/25/2015] [Indexed: 02/06/2023]
Abstract
PMP22 is a transmembrane glycoprotein component of myelin, important for myelin functioning. Mutation of PMP22 gene which encodes for the production of PMP22 glycoprotein is associated with a variety of inherited neuropathies. This literature review sought to review the molecular mechanism and clinical features of inherited neuropathies caused by PMP22 duplication. PMP22 duplication causes CMT1A which accounts for more than half of all CMT cases and about 70% of CMT1 cases. It manifests with muscle weakness, depressed reflexes, impaired distal sensation, hand and foot deformities, slowing of NCV and onion bulbs. With no specific treatment available, it is managed conservatively. Future treatment may be based on the molecular genetics of the disease.
Collapse
Affiliation(s)
- M M Watila
- Department of Medicine, University of Maiduguri Teaching Hospital, PMB 1414 Maiduguri, Borno State, Nigeria.
| | - S A Balarabe
- Department of Medicine, Usman DanFodio University Teaching Hospital, Sokoto, Sokoto State, Nigeria
| |
Collapse
|
13
|
Abstract
Haploinsufficiency of peripheral myelin protein 22 (PMP22) causes hereditary neuropathy with liability to pressure palsies, a peripheral nerve lesion induced by minimal trauma or compression. As PMP22 is localized to cholesterol-enriched membrane domains that are closely linked with the underlying actin network, we asked whether the myelin instability associated with PMP22 deficiency could be mediated by involvement of the protein in actin-dependent cellular functions and/or lipid raft integrity. In peripheral nerves and cells from mice with PMP22 deletion, we assessed the organization of filamentous actin (F-actin), and actin-dependent cellular functions. Using in vitro models, we discovered that, in the absence of PMP22, the migration and adhesion capacity of Schwann cells and fibroblasts are similarly impaired. Furthermore, PMP22-deficient Schwann cells produce shortened myelin internodes, and display compressed axial cell length and collapsed lamellipodia. During early postnatal development, F-actin-enriched Schmidt-Lanterman incisures do not form properly in nerves from PMP22(-/-) mice, and the expression and localization of molecules associated with uncompacted myelin domains and lipid rafts, including flotillin-1, cholesterol, and GM1 ganglioside, are altered. In addition, we identified changes in the levels and distribution of cholesterol and ApoE when PMP22 is absent. Significantly, cholesterol supplementation of the culture medium corrects the elongation and migration deficits of PMP22(-/-) Schwann cells, suggesting that the observed functional impairments are directly linked with cholesterol deficiency of the plasma membrane. Our findings support a novel role for PMP22 in the linkage of the actin cytoskeleton with the plasma membrane, likely through regulating the cholesterol content of lipid rafts.
Collapse
|
14
|
Sedzik J, Jastrzebski JP, Grandis M. Glycans of myelin proteins. J Neurosci Res 2014; 93:1-18. [PMID: 25213400 DOI: 10.1002/jnr.23462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 01/04/2023]
Abstract
Human P0 is the main myelin glycoprotein of the peripheral nervous system. It can bind six different glycans, all linked to Asn(93) , the unique glycosylation site. Other myelin glycoproteins, also with a single glycosylation site (PMP22 at Asn(36) , MOG at Asn(31) ), bind only one glycan. The MAG has 10 glycosylation sites; the glycoprotein OMgp has 11 glycosylation sites. Aside from P0, no comprehensive data are available on other myelin glycoproteins. Here we review and analyze all published data on the physicochemical structure of the glycans linked to P0, PMP22, MOG, and MAG. Most data concern bovine P0, whose glycan moieties have an MW ranging from 1,294.56 Da (GP3) to 2,279.94 Da (GP5). The pI of glycosylated P0 protein varies from pH 9.32 to 9.46. The most charged glycan is MS2 containing three sulfate groups and one glucuronic acid; whereas the least charged one is the BA2 residue. All glycans contain one fucose and one galactose. The most mannose rich are the glycans MS2 and GP4, each of them has four mannoses; OPPE1 contains five N-acetylglucosamines and one sulfated glucuronic acid; GP4 contains one sialic acid. Furthermore, human P0 variants causing both gain and loss of glycosylation have been described and cause peripheral neuropathies with variable clinical severity. In particular, the substitution T(95) →M is a very common in Europe and is associated with a late-onset axonal neuropathy. Although peripheral myelin is made up largely of glycoproteins, mutations altering glycosylation have been described only in P0. This attractive avenue of research requires further study.
Collapse
Affiliation(s)
- Jan Sedzik
- Royal Institute of Technology, Department of Chemical Engineering, Protein Crystallization Facility, Stockholm, Sweden; National Institute of Physiological Sciences, Department of Neuroscience and Bioinformatics, Okazaki, Japan
| | | | | |
Collapse
|
15
|
Nobbio L, Visigalli D, Mannino E, Fiorese F, Kassack MU, Sturla L, Prada V, De Flora A, Zocchi E, Bruzzone S, Schenone A. The diadenosine homodinucleotide P18 improves in vitro myelination in experimental Charcot-Marie-Tooth type 1A. J Cell Biochem 2014; 115:161-7. [PMID: 23959806 DOI: 10.1002/jcb.24644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 11/05/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) is a demyelinating hereditary neuropathy whose pathogenetic mechanisms are still poorly defined and an etiologic treatment is not yet available. An abnormally high intracellular Ca(2+) concentration ([Ca(2+)]i) occurs in Schwann cells from CMT1A rats (CMT1A SC) and is caused by overexpression of the purinoceptor P2X7. Normalization of the Ca(2+) levels through down-regulation of P2X7 appears to restore the normal phenotype of CMT1A SC in vitro. We recently demonstrated that the diadenosine 5',5'''-P1, P2-diphosphate (Ap2A) isomer P18 behaves as an antagonist of the P2X7 purinergic receptor, effectively blocking channel opening induced by ATP. In addition, P18 behaves as a P2Y11 agonist, inducing cAMP overproduction in P2Y11-overexpressing cells. Here we investigated the in vitro effects of P18 on CMT1A SC. We observed that basal levels of intracellular cAMP ([cAMP]i), a known regulator of SC differentiation and myelination, are significantly lower in CMT1A SC than in wild-type (wt) cells. P18 increased [cAMP]i in both CMT1A and wt SC, and this effects was blunted by NF157, a specific P2Y11 antagonist. Prolonged treatment of organotypic dorsal root ganglia (DRG) cultures with P18 significantly increased expression of myelin protein zero, a marker of myelin production, in both CMT1A and wt cultures. Interestingly, P18 decreased the content of non-phosphorylated neurofilaments, a marker of axonal damage, only in CMT1A DRG cultures. These results suggest that P2X7 antagonists, in combination with [cAMP]i-increasing agents, could represent a therapeutic strategy aimed at correcting the molecular derangements causing the CMT1A phenotype.
Collapse
Affiliation(s)
- Lucilla Nobbio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Mother and Child Sciences and CEBR, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat Med 2014; 20:1055-61. [PMID: 25150498 DOI: 10.1038/nm.3664] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
Abstract
Duplication of the gene encoding the peripheral myelin protein of 22 kDa (PMP22) underlies the most common inherited neuropathy, Charcot-Marie-Tooth 1A (CMT1A), a disease without a known cure. Although demyelination represents a characteristic feature, the clinical phenotype of CMT1A is determined by the degree of axonal loss, and patients suffer from progressive muscle weakness and impaired sensation. CMT1A disease manifests within the first two decades of life, and walking disabilities, foot deformities and electrophysiological abnormalities are already present in childhood. Here, we show in Pmp22-transgenic rodent models of CMT1A that Schwann cells acquire a persistent differentiation defect during early postnatal development, caused by imbalanced activity of the PI3K-Akt and the Mek-Erk signaling pathways. We demonstrate that enhanced PI3K-Akt signaling by axonally overexpressed neuregulin-1 (NRG1) type I drives diseased Schwann cells toward differentiation and preserves peripheral nerve axons. Notably, in a preclinical experimental therapy using a CMT1A rat model, when treatment is restricted to early postnatal development, soluble NRG1 effectively overcomes impaired peripheral nerve development and restores axon survival into adulthood. Our findings suggest a model in which Schwann cell differentiation within a limited time window is crucial for the long-term maintenance of axonal support.
Collapse
|
17
|
Ravera S, Nobbio L, Visigalli D, Bartolucci M, Calzia D, Fiorese F, Mancardi G, Schenone A, Morelli A, Panfoli I. Oxydative phosphorylation in sciatic nerve myelin and its impairment in a model of dysmyelinating peripheral neuropathy. J Neurochem 2013; 126:82-92. [PMID: 23578247 DOI: 10.1111/jnc.12253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
Myelin sheath is the proteolipid membrane wrapping the axons of CNS and PNS. We have shown data suggesting that CNS myelin conducts oxidative phosphorylation (OXPHOS), challenging its role in limiting the axonal energy expenditure. Here, we focused on PNS myelin. Samples were: (i) isolated myelin vesicles (IMV) from sciatic nerves, (ii) mitochondria from primary Schwann cell cultures, and (iii) sciatic nerve sections, from wild type or Charcot-Marie-Tooth type 1A (CMT1A) rats. The latter used as a model of dys-demyelination. O₂ consumption and activity of OXPHOS proteins from wild type (Wt) or CMT1A sciatic nerves showed some differences. In particular, O₂ consumption by IMV from Wt and CMT1A 1-month-old rats was comparable, while it was severely impaired in IMV from adult affected animals. Mitochondria extracted from CMT1A Schwann cell did not show any dysfunction. Transmission electron microscopy studies demonstrated an increased mitochondrial density in dys-demyelinated axons, as to compensate for the loss of respiration by myelin. Confocal immunohistochemistry showed the expression of OXPHOS proteins in the myelin sheath, both in Wt and dys-demyelinated nerves. These revealed an abnormal morphology. Taken together these results support the idea that also PNS myelin conducts OXPHOS to sustain axonal function.
Collapse
|
18
|
Li J, Parker B, Martyn C, Natarajan C, Guo J. The PMP22 gene and its related diseases. Mol Neurobiol 2012; 47:673-98. [PMID: 23224996 DOI: 10.1007/s12035-012-8370-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Peripheral myelin protein-22 (PMP22) is primarily expressed in the compact myelin of the peripheral nervous system. Levels of PMP22 have to be tightly regulated since alterations of PMP22 levels by mutations of the PMP22 gene are responsible for >50 % of all patients with inherited peripheral neuropathies, including Charcot-Marie-Tooth type-1A (CMT1A) with trisomy of PMP22, hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of PMP22, and CMT1E with point mutations of PMP22. While overexpression and point-mutations of the PMP22 gene may produce gain-of-function phenotypes, deletion of PMP22 results in a loss-of-function phenotype that reveals the normal physiological functions of the PMP22 protein. In this article, we will review the basic genetics, biochemistry and molecular structure of PMP22, followed by discussion of the current understanding of pathogenic mechanisms involving in the inherited neuropathies with mutations in PMP22 gene.
Collapse
Affiliation(s)
- Jun Li
- VA Tennessee Valley Healthcare System, 1310 24th Avenue South, Nashville, TN 37212, USA.
| | | | | | | | | |
Collapse
|
19
|
Gazzerro E, Baldassari S, Giacomini C, Musante V, Fruscione F, La Padula V, Biancheri R, Scarfì S, Prada V, Sotgia F, Duncan ID, Zara F, Werner HB, Lisanti MP, Nobbio L, Corradi A, Minetti C. Hyccin, the molecule mutated in the leukodystrophy hypomyelination and congenital cataract (HCC), is a neuronal protein. PLoS One 2012; 7:e32180. [PMID: 22461884 PMCID: PMC3312879 DOI: 10.1371/journal.pone.0032180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/23/2012] [Indexed: 12/24/2022] Open
Abstract
“Hypomyelination and Congenital Cataract”, HCC (MIM #610532), is an autosomal recessive disorder characterized by congenital cataract and diffuse cerebral and peripheral hypomyelination. HCC is caused by deficiency of Hyccin, a protein whose biological role has not been clarified yet. Since the identification of the cell types expressing a protein of unknown function can contribute to define the physiological context in which the molecule is explicating its function, we analyzed the pattern of Hyccin expression in the central and peripheral nervous system (CNS and PNS). Using heterozygous mice expressing the b-galactosidase (LacZ) gene under control of the Hyccin gene regulatory elements, we show that the gene is primarily expressed in neuronal cells. Indeed, Hyccin-LacZ signal was identified in CA1 hippocampal pyramidal neurons, olfactory bulb, and cortical pyramidal neurons, while it did not colocalize with oligodendroglial or astrocytic markers. In the PNS, Hyccin was detectable only in axons isolated from newborn mice. In the brain, Hyccin transcript levels were higher in early postnatal development (postnatal days 2 and 10) and then declined in adult mice. In a model of active myelinogenesis, organotypic cultures of rat Schwann cells (SC)/Dorsal Root Ganglion (DRG) sensory neurons, Hyccin was detected along the neurites, while it was absent from SC. Intriguingly, the abundance of the molecule was upregulated at postnatal days 10 and 15, in the initial steps of myelinogenesis and then declined at 30 days when the process is complete. As Hyccin is primarily expressed in neurons and its mutation leads to hypomyelination in human patients, we suggest that the protein is involved in neuron-to-glia signalling to initiate or maintain myelination.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Muscular and Neurodegenerative Disease Unit, G. Gaslini Institute, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Latasa MJ, Ituero M, Moran-Gonzalez A, Aranda A, Cosgaya JM. Retinoic acid regulates myelin formation in the peripheral nervous system. Glia 2010; 58:1451-64. [PMID: 20648638 DOI: 10.1002/glia.21020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms that control myelin formation is essential for the development of demyelinating diseases treatments. All-trans-retinoic acid (RA) plays an essential role during the development of the nervous system as a potent regulator of morphogenesis, cell growth, and differentiation. In this study, we show that RA is also a potent inhibitor of peripheral nervous system (PNS) myelination. RA acts through its binding to RA receptors (RAR) and retinoid X receptors (RXR), two members of the superfamily of nuclear receptors that act as ligand-dependent transcription factors. Schwann cells (SCs) express all retinoid receptors during the relevant stages of myelin formation. Through the activation of RXR, RA produces an upregulation of Krox20, a SC-specific regulatory transcription factor that plays a central role during myelination. Krox20 upregulation translates into Mbp and Mpz overexpression, therefore blocking myelin formation. This increase in myelin protein expression is accompanied by the induction of an adaptive ER stress response. At the same time, through a RAR-dependent mechanism, RA downregulates myelin-associated glycoprotein, which also contributes to the dysmyelinating effect of the retinoid.
Collapse
Affiliation(s)
- Maria-Jesus Latasa
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 2009; 57:1265-79. [PMID: 19170179 DOI: 10.1002/glia.20846] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peripheral myelin protein 22 (PMP22) is a dose-sensitive, disease-associated protein primarily expressed in myelinating Schwann cells. Either reduction or overproduction of PMP22 can result in hereditary neuropathy, suggesting a requirement for correct protein expression for peripheral nerve biology. PMP22 is post-transcriptionally regulated and the 3'untranslated region (3'UTR) of the gene exerts a negative effect on translation. MicroRNAs (miRNAs) are small regulatory molecules that function at a post-transcriptional level by targeting the 3'UTR in a reverse complementary manner. We used cultured Schwann cells to demonstrate that alterations in the miRNA biogenesis pathway affect PMP22 levels, and endogenous PMP22 is subjected to miRNA regulation. GW-body formation, the proposed cytoplasmic site for miRNA-mediated repression, and Dicer expression, an RNase III family ribonuclease involved in miRNA biogenesis, are co-regulated with the differentiation state of Schwann cells. Furthermore, the levels of Dicer inversely correlate with PMP22, while the inhibition of Dicer leads to elevated PMP22. Microarray analysis of actively proliferating and differentiated Schwann cells, in conjunction with bioinformatics programs, identified several candidate PMP22-targeting miRNAs. Here we demonstrate that miR-29a binds and inhibits PMP22 reporter expression through a specific miRNA seed binding region. Over-expression of miR-29a enhances the association of PMP22 RNA with Argonaute 2, a protein involved in miRNA function, and reduces the steady-state levels of PMP22. In contrast, inhibition of endogenous miR-29a relieves the miRNA-mediated repression of PMP22. Correlation analyses of miR-29 and PMP22 in sciatic nerves reveal an inverse relationship, both developmentally and in post-crush injury. These results identify PMP22 as a target of miRNAs and suggest that myelin gene expression by Schwann cells is regulated by miRNAs.
Collapse
Affiliation(s)
- Jonathan D Verrier
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA
| | | | | | | | | | | |
Collapse
|
22
|
Melli G, Höke A. Dorsal Root Ganglia Sensory Neuronal Cultures: a tool for drug discovery for peripheral neuropathies. Expert Opin Drug Discov 2009; 4:1035-1045. [PMID: 20657751 DOI: 10.1517/17460440903266829] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND: Peripheral neuropathies affect many people worldwide and are caused by or associated with a wide range of conditions, both genetic and acquired. Current therapies are directed at symptomatic control because no effective regenerative treatment exists. Primary challenge is that mechanisms that lead to distal axonal degeneration, a common feature of all peripheral neuropathies, are largely unknown. OBJECTIVE/METHODS: To address the role and specific characteristics of dorsal root ganglia (DRG) derived sensory neuron culture system as a useful model in evaluating the pathogenic mechanisms of peripheral neuropathies and examination and validation of potential therapeutic compounds. A thorough review of the recent literature was completed and select examples of the use of DRG neurons in different peripheral neuropathy models were chosen to highlight the utility of these cultures. CONCLUSION: Many useful models of different peripheral neuropathies have been developed using DRG neuronal culture and potential therapeutic targets have been examined, but so far none of the potential therapeutic compounds have succeeded in clinical trials. In recent years, focus has changed to evaluation of axon degeneration as the primary outcome measure advocating a drug development strategy starting with phenotypic drug screening, followed by validation in primary complex co-cultures and animal models.
Collapse
Affiliation(s)
- Giorgia Melli
- Istituto Nazionale Neurologico Carlo Besta, Milano, Italy
| | | |
Collapse
|
23
|
Impaired expression of ciliary neurotrophic factor in Charcot-Marie-Tooth type 1A neuropathy. J Neuropathol Exp Neurol 2009; 68:441-55. [PMID: 19525893 DOI: 10.1097/nen.0b013e31819fa6ba] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigated the contribution of Schwann cell-derived ciliary neurotrophic factor (CNTF) to the pathogenesis of Charcot-Marie-Tooth disease type 1A (CMT1A) and addressed the question as to whether it plays a role in the development of axonal damage observed in the disease, with aging. Ciliary neurotrophic factor was underexpressed in experimental CMT1A but not in other models of hereditary neuropathies. Sciatic nerve crush experiments and dosage of CNTF at different time points showed that expression of this trophic factor remained significantly lower in CMT1A rats than in normal controls; moreover, in uninjured CMT1A sciatic nerves CNTF levels further decreased with ageing, thus paralleling the molecular signs of axonal impairment, that is increased expression of non-phosphorylated neurofilaments and amyloid precursor protein. Administration of CNTF to dorsal root ganglia cultures reduced dephosphorylation of neurofilaments in CMT1A cultures, without improving demyelination. Taken together, these results provide further evidence that the production of CNTF by Schwann cells is markedly reduced in CMT1A. Moreover, the observations suggest that trophic support to the axon is impaired in CMT1A and that further studies on the therapeutic use of trophic factors or their derivatives in experimental and human CMT1A are warranted.
Collapse
|
24
|
Nobbio L, Sturla L, Fiorese F, Usai C, Basile G, Moreschi I, Benvenuto F, Zocchi E, De Flora A, Schenone A, Bruzzone S. P2X7-mediated increased intracellular calcium causes functional derangement in Schwann cells from rats with CMT1A neuropathy. J Biol Chem 2009; 284:23146-58. [PMID: 19546221 DOI: 10.1074/jbc.m109.027128] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most frequent inherited neuromuscular disorder, affecting 1 person in 2500. CMT1A, the most common form of CMT, is usually caused by a duplication of chromosome 17p11.2, containing the PMP22 (peripheral myelin protein-22) gene; overexpression of PMP22 in Schwann cells (SC) is believed to cause demyelination, although the underlying pathogenetic mechanisms remain unclear. Here we report an abnormally high basal concentration of intracellular calcium ([Ca(2+)](i)) in SC from CMT1A rats. By the use of specific pharmacological inhibitors and through down-regulation of expression by small interfering RNA, we demonstrate that the high [Ca(2+)](i) is caused by a PMP22-related overexpression of the P2X7 purinoceptor/channel leading to influx of extracellular Ca(2+) into CMT1A SC. Correction of the altered [Ca(2+)](i) in CMT1A SC by small interfering RNA or with pharmacological inhibitors of P2X7 restores functional parameters of SC (migration and release of ciliary neurotrophic factor), which are typically defective in CMT1A SC. More significantly, stable down-regulation of the expression of P2X7 restores myelination in co-cultures of CMT1A SC with dorsal root ganglion sensory neurons. These results establish a pathogenetic link between high [Ca(2+)](i) and impaired SC function in CMT1A and identify overexpression of P2X7 as the molecular mechanism underlying both abnormalities. The development of P2X7 inhibitors is expected to provide a new therapeutic strategy for treatment of CMT1A neuropathy.
Collapse
Affiliation(s)
- Lucilla Nobbio
- Department of Neurosciences, Ophthalmology, and Genetics and Center of Excellence for Biomedical Research, University of Genova, Via De Toni 5, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fortun J, Go JC, Li J, Amici SA, Dunn WA, Notterpek L. Alterations in degradative pathways and protein aggregation in a neuropathy model based on PMP22 overexpression. Neurobiol Dis 2006; 22:153-64. [PMID: 16326107 DOI: 10.1016/j.nbd.2005.10.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/18/2005] [Accepted: 10/23/2005] [Indexed: 11/25/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is commonly associated with duplication of the peripheral myelin protein 22 (PMP22) gene. Mice expressing seven copies of the human PMP22, termed C22, suffer from a demyelinating neuropathy and display phenotypic traits of CMT1A. In this article, we investigate whether protein aggregates play a role in the CMT1A-like pathology of C22 mice. Utilizing biochemical and immunochemical tools, we found slowed turnover rate of the newly-synthesized PMP22 and the presence of cytoplasmic protein aggregates in affected nerves. The formation of these aggregates correlates with reduced proteasome activity and the accumulation of detergent-insoluble ubiquitinated substrates. A fraction of the aggregates associates with autophagosomes and lysosomes. Together, these data indicate that as a result of missorting and inefficient proteasomal degradation, the aggregation of PMP22 and recruitment of autophagosomes and lysosomes are key factors in the subcellular pathogenesis of CMT1A neuropathies.
Collapse
Affiliation(s)
- Jenny Fortun
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
26
|
Amici SA, Dunn WA, Murphy AJ, Adams NC, Gale NW, Valenzuela DM, Yancopoulos GD, Notterpek L. Peripheral myelin protein 22 is in complex with alpha6beta4 integrin, and its absence alters the Schwann cell basal lamina. J Neurosci 2006; 26:1179-89. [PMID: 16436605 PMCID: PMC6674566 DOI: 10.1523/jneurosci.2618-05.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral myelin protein 22 (PMP22) is a tetraspan membrane glycoprotein, the misexpression of which is associated with hereditary demyelinating neuropathies. Myelinating Schwann cells (SCs) produce the highest levels of PMP22, yet the function of the protein in peripheral nerve biology is unresolved. To investigate the potential roles of PMP22, we engineered a novel knock-out (-/-) mouse line by replacing the first two coding exons of pmp22 with the lacZ reporter. PMP22-deficient mice show strong beta-galactosidase reactivity in peripheral nerves, cartilage, intestines, and lungs, whereas phenotypically they display the characteristics of tomaculous neuropathy. In the absence of PMP22, myelination of peripheral nerves is delayed, and numerous axon-SC profiles show loose basal lamina, suggesting altered interactions of the glial cells with the extracellular matrix. The levels of beta4 integrin, a molecule involved in the linkage between SCs and the basal lamina, are severely reduced in nerves of PMP22-deficient mice. During early stages of myelination, PMP22 and beta4 integrin are coexpressed at the cell surface and can be coimmunoprecipitated together with laminin and alpha6 integrin. In agreement, in clone A colonic carcinoma cells, epitope-tagged PMP22 forms a complex with beta4 integrin. Together, these data indicate that PMP22 is a binding partner in the integrin/laminin complex and is involved in mediating the interaction of SCs with the extracellular environment.
Collapse
|
27
|
Nobbio L, Gherardi G, Vigo T, Passalacqua M, Melloni E, Abbruzzese M, Mancardi G, Nave KA, Schenone A. Axonal damage and demyelination in long-term dorsal root ganglia cultures from a rat model of Charcot-Marie-Tooth type 1A disease. Eur J Neurosci 2006; 23:1445-52. [PMID: 16553608 DOI: 10.1111/j.1460-9568.2006.04666.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical progression in hereditary and acquired demyelinating disorders of both the central and peripheral nervous system is mainly due to a time-dependent axonal impairment. We established 90-day dorsal root ganglia (DRG) cultures from a rat model of Charcot-Marie-Tooth type 1A (CMT1A) neuropathy to evaluate the structure of myelin and axons, and the expression of myelin-related proteins and cytoskeletal components, by morphological and molecular techniques. Both wild-type and CMT1A cultures were rich in myelinated fibres. Affected cultures showed dysmyelinated internodes and focal myelin swellings. Furthermore, uncompacted myelin and smaller axons with increased neurofilament (NF) density were found by electron microscopy, and Western blots showed higher levels of nonphosphorylated NF. Confocal microscopy demonstrated an abnormal distribution of the myelin-associated glycoprotein which, instead of being expressed at the noncompact myelin level, showed focal accumulation along the internodes while other myelin proteins were normally distributed. These findings suggest that CMT1A DRG cultures, similarly to the animal model and human disease, undergo axonal atrophy over a period of time. This model may be utilized to study the molecular changes underlying demyelination and secondary axonal impairment. As axonal damage may occur after just 3 months and tissue cultures represent a strictly controlled environment, this model may be ideal for testing neuroprotective therapies.
Collapse
Affiliation(s)
- Lucilla Nobbio
- Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Italy, Via De Toni, 5, 16132, Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Keilhoff G, Goihl A, Langnäse K, Fansa H, Wolf G. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol 2005; 85:11-24. [PMID: 16373171 DOI: 10.1016/j.ejcb.2005.09.021] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/05/2005] [Accepted: 09/21/2005] [Indexed: 02/08/2023] Open
Abstract
Bone marrow stromal cells (MSC) are multipotent stem cells that differentiate into cells of the mesodermal lineage. Although adult, their differentiation potential is remarkable, and they are able to transdifferentiate. Transdifferentiated cultivated rat MSC (tMSC) changed morphologically into cells resembling typical spindle-shaped Schwann cells (SC) with enhanced expression of LNGF receptor, Krox-20, CD104 and S100beta protein and decreased expression of bone morphogenetic protein receptor-1A compared to untreated rat MSC (rMSC). Transdifferentiation was reversible and repeatable. To evaluate the myelinating capacity, rMSC, tMSC, or SC cultured from male rats were grafted into an autologous muscle conduit bridging a 2-cm gap in the female rat sciatic nerve. The presence of the male-specific SRY gene (as revealed by PCR analysis) and S100 immunoreactivity of pre-labeled tMSC confirmed the presence of the implanted cells in the grafts. Three weeks after grafting, an appropriate regeneration was noted in the SC and in the tMSC groups, while regeneration in the rMSC group and in the control group without any cells was impaired. In contrast to SC, in some cases, single tMSC were able to myelinate more than one axon. Our findings demonstrate that it may be possible to differentiate MSC into therapeutically useful cells for clinical applications.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Medical Neurobiology, University of Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
29
|
Vigo T, Nobbio L, Hummelen PV, Abbruzzese M, Mancardi G, Verpoorten N, Verhoeven K, Sereda MW, Nave KA, Timmerman V, Schenone A. Experimental Charcot-Marie-Tooth type 1A: a cDNA microarrays analysis. Mol Cell Neurosci 2005; 28:703-14. [PMID: 15797717 DOI: 10.1016/j.mcn.2004.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 11/25/2004] [Accepted: 11/30/2004] [Indexed: 11/23/2022] Open
Abstract
To reveal the spectrum of genes that are modulated in Charcot-Marie-Tooth neuropathy type 1A (CMT1A), which is due to overexpression of the gene coding for the peripheral myelin protein 22 (pmp22), we performed a cDNA microarray experiment with cDNA from sciatic nerves of a rat model of the disease. In homozygous pmp22 overexpressing animals, we found a significant down-regulation of 86 genes, while only 23 known genes were up-regulated, suggesting that the increased dosage of pmp22 induces a general down-regulation of gene expression in peripheral nerve tissue. Classification of the modulated genes into functional categories leads to the identification of some pathways altered by overexpression of pmp22. In particular, a selective down-regulation of the ciliary neurotrophic factor transcript and of genes coding for proteins involved in cell cycle regulation, for cytoskeletal components and for proteins of the extracellular matrix, was observed. Cntf expression was further studied by real-time PCR and ELISA technique in pmp22 transgenic sciatic nerves, human CMT1A sural nerve biopsies, and primary cultures of transgenic Schwann cells. According to the results of cDNA microarray analysis, a down-regulation of cntf, both at the mRNA and protein level, was found in all the conditions tested. These results are relevant to reveal the molecular function of PMP22 and the pathogenic mechanism of CMT1A. In particular, finding a specific reduction of cntf expression in CMT1A Schwann cells suggests that overexpression of pmp22 significantly affects the ability of Schwann cells to offer a trophic support to the axon, which could be a factor, among other, responsible for the development of axonal atrophy in human and experimental CMT1A.
Collapse
Affiliation(s)
- Tiziana Vigo
- Department of Neurosciences, Ophthalmology and Genetics, University of Genova, Italy, via De Toni 5, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martino MA, Miller E, Grendys EC. The administration of chemotherapy in a patient with Charcot-Marie-Tooth and ovarian cancer. Gynecol Oncol 2005; 97:710-2. [PMID: 15863189 DOI: 10.1016/j.ygyno.2005.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/06/2005] [Accepted: 01/12/2005] [Indexed: 12/26/2022]
Abstract
BACKGROUND Standard adjuvant chemotherapy for epithelial ovarian carcinoma most commonly consists of a combination of carboplatin with a taxane derivative. However, treatment-related side effects such as peripheral neuropathy and neutropenia can be debilitating and in certain patient populations alterations may need to be considered. CASE We describe a case of a patient with epithelial ovarian carcinoma who had pre-existing peripheral neuropathy secondary to Charcot-Marie-Tooth Disease (CMT). She developed a distal sensory and motor neuropathy after her first treatment with carboplatin and paclitaxel and was unable to walk, write, or drive. Upon transfer of care to our center, we changed her taxane to docetaxel and her symptoms improved dramatically. We discuss the outcome of her treatment and the effects of paclitaxel on her underlying peripheral neuropathy. CONCLUSION Patients with Charcot-Marie-Tooth Disease who require chemotherapy may not be able to tolerate the neurotoxic side effects of paclitaxel-based chemotherapy. Consideration of alternative, less neurotoxic treatment regimens containing docetaxel may be considered.
Collapse
Affiliation(s)
- Martin A Martino
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of South Florida, H. Lee. Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
31
|
Liu N, Varma S, Shooter EM, Tolwani RJ. Enhancement of Schwann cell myelin formation by K252a in the Trembler-J mouse dorsal root ganglion explant culture. J Neurosci Res 2005; 79:310-7. [PMID: 15605381 DOI: 10.1002/jnr.20357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Trembler-J (TrJ) mouse, containing a point mutation in the peripheral myelin protein 22 gene, is characterized by severe hypomyelination and is a representative model of Charcot-Marie-Tooth 1A disease/Dejerine-Sottas Syndrome. Previous studies have shown that protein kinase inhibitor K252a enhances wild-type Schwann cell myelination in culture. We used a dorsal root ganglion (DRG) explant culture system from the heterozygous TrJ/+ mouse to investigate if myelination could be enhanced by K252a. The TrJ/+ DRG explant cultures replicated some important features of the TrJ/+ mouse, showing reduced myelin protein accumulation, thinner myelin sheaths, and shortened myelin internodes. K252a increased myelin protein accumulation and myelin sheath thickness but did not substantially increase myelin internode length. Furthermore, the TrJ/+ DRG explant culture and sciatic nerves continued to respond to K252a during the stage when myelination is complete in the wild type. A general tyrosine kinase inhibitor, genistein, but not inhibitors of serine/threonine protein kinase inhibitors, had a similar effect to K252a. K252a is therefore able to partially overcome hypomyelination by enhancing mutant Schwann cell myelin formation in the TrJ/+ mouse.
Collapse
MESH Headings
- Animals
- Carbazoles/pharmacology
- Cells, Cultured
- Charcot-Marie-Tooth Disease/drug therapy
- Charcot-Marie-Tooth Disease/metabolism
- Charcot-Marie-Tooth Disease/physiopathology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Genistein/pharmacology
- Indole Alkaloids
- Male
- Mice
- Mice, Neurologic Mutants
- Microscopy, Electron, Transmission
- Myelin Proteins/drug effects
- Myelin Proteins/metabolism
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Schwann Cells/ultrastructure
- Sciatic Nerve/drug effects
- Sciatic Nerve/metabolism
- Sciatic Nerve/ultrastructure
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Ning Liu
- Department of Neurobiology, School of Medicine Stanford University, 299 Campus Drive, Fairchild Building D225, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|