1
|
Nirogi R, Shinde A, Goyal VK, Ravula J, Benade V, Jetta S, Pandey SK, Subramanian R, Chowdary Palacharla VR, Mohammed AR, Abraham R, Dogiparti DK, Kalaikadhiban I, Jayarajan P, Jasti V, Bogan RK. Samelisant (SUVN-G3031), a histamine 3 receptor inverse agonist: Results from the phase 2 double-blind randomized placebo-controlled study for the treatment of excessive daytime sleepiness in adult patients with narcolepsy. Sleep Med 2024; 124:618-626. [PMID: 39504585 DOI: 10.1016/j.sleep.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Narcolepsy is a rare, chronic neurological disorder characterized by a dysregulated sleep-wake cycle, with core clinical features including excessive daytime sleepiness (EDS), cataplexy, hypnopompic/hypnagogic hallucinations, and sleep paralysis. Several treatment options are available for the symptomatic management of narcolepsy, but they have limitations. Comorbidities of narcolepsy further limit the treatment choices. Blocking of histamine 3 (H3) receptors has been demonstrated to be a viable approach for the management of symptoms of narcolepsy. Samelisant (SUVN-G3031) is a new H3 receptor inverse agonist. The efficacy, safety, tolerability, and pharmacokinetics of Samelisant in narcolepsy patients were evaluated in a phase 2, double-blind, placebo-controlled study (ClinicalTrials.gov identifier: NCT04072380). Patients diagnosed with narcolepsy according to the International Classification of Sleep Disorders criteria and having an Epworth Sleepiness Scale (ESS) score of ≥12 and a mean Maintenance of Wakefulness Test (MWT) time of <12 min across the 4 sessions at baseline were enrolled. The total study duration was up to 7 weeks, which included a screening period of 4 weeks, a treatment period of 2 weeks, and a safety follow-up 1 week after the last study drug administration. The primary efficacy measure was the change in total ESS score compared to placebo. Secondary and exploratory assessments included the Clinical Global Impression of Severity, MWT, Clinical Global Impression of Change, Patient Global Impression of Change and cataplexy rate. Safety assessments included monitoring adverse events (AEs) and laboratory assessments. Of the 426 patients screened, 190 were randomized. The safety and intention-to-treat population included 188 and 164 patients, respectively. A statistically significant treatment effect of Samelisant was observed on the primary endpoint, indicating improvements in EDS. The treatment's impact on EDS was also evident on the other patients' and clinicians' perspectives scales. The AEs reported in ≥5 % patients in any treatment groups were insomnia, abnormal dreams, nausea, and hot flush. Global phase 3 studies and long-term safety and efficacy assessments of Samelisant are planned to reaffirm the current findings.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India.
| | - Anil Shinde
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Vinod Kumar Goyal
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Jyothsna Ravula
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Vijay Benade
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Satish Jetta
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Santosh Kumar Pandey
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Ramkumar Subramanian
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Veera Raghava Chowdary Palacharla
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Abdul Rasheed Mohammed
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Renny Abraham
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Dhanunjay Kumar Dogiparti
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Ilayaraja Kalaikadhiban
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Pradeep Jayarajan
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Venkat Jasti
- Drug Discovery and Development, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad, Telangana, 500034, India
| | | |
Collapse
|
2
|
Dauvilliers Y, Craig SE, Bonsignore MR, Barbé F, Verbraecken J, Asin J, Georgiev O, Tiholov R, Caussé C, Lecomte JM, Schwartz JC, Lehert P, Randerath W, Pépin JL. Pitolisant 40 mg for excessive daytime sleepiness in obstructive sleep apnea patients treated or not by CPAP: Randomised phase 3 study. J Sleep Res 2024:e14373. [PMID: 39377364 DOI: 10.1111/jsr.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Obstructive sleep apnea (OSA) syndrome commonly leads to excessive daytime sleepiness (EDS). Pitolisant, a selective histamine-3 receptor antagonist, is efficacious at doses up to 20 mg once daily in OSA treated or not with continuous positive airway pressure (CPAP). We assessed the efficacy and safety of pitolisant at doses up to 40 mg once daily in patients with moderate to severe OSA treated or not with CPAP therapy. In this phase 3, multicentre, randomised, double-blind, placebo-controlled clinical trial, patients with OSA were assigned 2:1 to receive pitolisant (according to an individual up-titration scheme, 10, 20 or 40 mg once daily) or placebo for 12 weeks. The primary endpoint was a change in the Epworth Sleepiness Scale (ESS) score from baseline to week 12. Secondary endpoints included a change in reaction time using the Oxford Sleep Resistance test (OSleR), Clinical Global Impression of Change (CGI-C), and Patient's Global Opinion of the Effect (PGOE) of study treatment. Overall, 361 patients (mean age 52.4 years, 77.3% male; mean apnea-hypopnea index [AHI] 27.0 events/h) were randomised to receive pitolisant (n = 242; 50% received CPAP) or placebo (n = 119; 48.7% CPAP). After the dose-adjustment phase (week 3), 88.8% of patients received pitolisant 40 mg. Compared with placebo, pitolisant produced a significant reduction in the ESS score at week 12 (least square mean difference -2.6 (95% CI: -3.4; -1.8; p < 0.001)) irrespective of CPAP use; and improved the reaction time on OSleR, CGI-C, and PGOE at week 12. Pitolisant was well tolerated; no new safety signals were identified. In conclusion, pitolisant up to 40 mg once daily was an effective treatment for EDS in patients with moderate to severe OSA irrespective of CPAP use.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Centre National de Référence Narcolepsie, Unité du Sommeil, CHU Montpellier, Hôpital Gui-de-Chauliac, Service de Neurologie, Université de Montpellier, INSERM INM, Montpellier, France
| | - Sonya Elizabeth Craig
- Liverpool Sleep and Ventilation Centre, University Hospital Aintree, Liverpool University Foundation Trust, Liverpool, UK
| | - Maria R Bonsignore
- PROMISE Department, University of Palermo, Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Ferran Barbé
- Respiratory Department, Institut Ricerca Biomedica de Vilanova, Lleida, Spain
| | - Johan Verbraecken
- Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital and University of Antwerp, Edegem-Antwerp, Belgium
| | - Jerryl Asin
- Department of Pulmonary Medicine, Centre for Sleep Medicine, Amphia Hospital, Breda, The Netherlands
| | - Ognian Georgiev
- Department of Internal Medicine, Pulmonology, Alexandrovska Hospital Medical University, Sofia, Bulgaria
| | - Rumen Tiholov
- Department of Internal Diseases, Sv. Ivan Rilski Multiprofile Hospital for Active Treatment, Kozloduy, Bulgaria
| | | | | | | | - Philippe Lehert
- Faculty of Economics, University Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Winfried Randerath
- Bethanien Hospital, Institute of Pneumonology, University of Cologne, Solingen, Germany
| | - Jean-Louis Pépin
- HP2 Laboratory INSERM U1300, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
3
|
Thorpy MJ, Siegel JM, Dauvilliers Y. REM sleep in narcolepsy. Sleep Med Rev 2024; 77:101976. [PMID: 39186901 DOI: 10.1016/j.smrv.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Narcolepsy is mainly associated with excessive daytime sleepiness, but the characteristic feature is abnormal rapid eye movement (REM) sleep phenomena. REM sleep disturbances can manifest as cataplexy (in narcolepsy type 1), sleep paralysis, sleep-related hallucinations, REM sleep behavior disorder, abnormal dreams, polysomnographic evidence of REM sleep disruption with sleep-onset REM periods, and fragmented REM sleep. Characterization of REM sleep and related symptoms facilitates the differentiation of narcolepsy from other central hypersomnolence disorders and aids in distinguishing between narcolepsy types 1 and 2. A circuit comprising regions within the brainstem, forebrain, and hypothalamus is involved in generating and regulating REM sleep, which is influenced by changes in monoamines, acetylcholine, and neuropeptides. REM sleep is associated with brainstem functions, including autonomic control, and REM sleep disturbances may be associated with increased cardiovascular risk. Medications used to treat narcolepsy (and REM-related symptoms of narcolepsy) include stimulants/wake-promoting agents, pitolisant, oxybates, and antidepressants; hypocretin agonists are a potential new class of therapeutics. The role of REM sleep disturbances in narcolepsy remains an area of active research in pathophysiology, symptom management, and treatment. This review summarizes the current understanding of the role of REM sleep and its dysfunction in narcolepsy.
Collapse
Affiliation(s)
| | - Jerome M Siegel
- Department of Psychiatry and Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University Montpellier, INSERM INM, France
| |
Collapse
|
4
|
Biscarini F, Barateau L, Pizza F, Plazzi G, Dauvilliers Y. Narcolepsy and rapid eye movement sleep. J Sleep Res 2024:e14277. [PMID: 38955433 DOI: 10.1111/jsr.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Since the first description of narcolepsy at the end of the 19th Century, great progress has been made. The disease is nowadays distinguished as narcolepsy type 1 and type 2. In the 1960s, the discovery of rapid eye movement sleep at sleep onset led to improved understanding of core sleep-related disease symptoms of the disease (excessive daytime sleepiness with early occurrence of rapid eye movement sleep, sleep-related hallucinations, sleep paralysis, rapid eye movement parasomnia), as possible dysregulation of rapid eye movement sleep, and cataplexy resembling an intrusion of rapid eye movement atonia during wake. The relevance of non-sleep-related symptoms, such as obesity, precocious puberty, psychiatric and cardiovascular morbidities, has subsequently been recognized. The diagnostic tools have been improved, but sleep-onset rapid eye movement periods on polysomnography and Multiple Sleep Latency Test remain key criteria. The pathogenic mechanisms of narcolepsy type 1 have been partly elucidated after the discovery of strong HLA class II association and orexin/hypocretin deficiency, a neurotransmitter that is involved in altered rapid eye movement sleep regulation. Conversely, the causes of narcolepsy type 2, where cataplexy and orexin deficiency are absent, remain unknown. Symptomatic medications to treat patients with narcolepsy have been developed, and management has been codified with guidelines, until the recent promising orexin-receptor agonists. The present review retraces the steps of the research on narcolepsy that linked the features of the disease with rapid eye movement sleep abnormality, and those that do not appear associated with rapid eye movement sleep.
Collapse
Affiliation(s)
- Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
5
|
Shen Q, Tang X, Wen X, Cheng S, Xiao P, Zang S, Shen D, Jiang L, Zheng Y, Zhang H, Xu H, Mao C, Zhang M, Hu W, Sun J, Zhang Y, Chen Z. Molecular Determinant Underlying Selective Coupling of Primary G-Protein by Class A GPCRs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310120. [PMID: 38647423 PMCID: PMC11187927 DOI: 10.1002/advs.202310120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Indexed: 04/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.
Collapse
Affiliation(s)
- Qingya Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Xinyan Tang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Xin Wen
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
| | - Shizhuo Cheng
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Peng Xiao
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
| | - Shao‐Kun Zang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Dan‐Dan Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceZhejiang Chinese Medical UniversityHangzhou310053China
| | - Huibing Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Haomang Xu
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Chunyou Mao
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and EquipmentZhejiang UniversityHangzhou310016China
| | - Min Zhang
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Jin‐Peng Sun
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesPeking UniversityKey Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191China
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceZhejiang Chinese Medical UniversityHangzhou310053China
| |
Collapse
|
6
|
Nirogi R, Jayarajan P, Benade V, Abraham R, Goyal VK. Hits and misses with animal models of narcolepsy and the implications for drug discovery. Expert Opin Drug Discov 2024; 19:755-768. [PMID: 38747534 DOI: 10.1080/17460441.2024.2354293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Narcolepsy is a chronic and rare neurological disorder characterized by disordered sleep. Based on animal models and further research in humans, the dysfunctional orexin system was identified as a contributing factor to the pathophysiology of narcolepsy. Animal models played a larger role in the discovery of some of the pharmacological agents with established benefit/risk profiles. AREAS COVERED In this review, the authors examine the phenotypes observed in animal models of narcolepsy and the characteristics of clinically used pharmacological agents in these animal models. Additionally, the authors compare the effects of clinically used pharmacological agents on the phenotypes in animal models with those observed in narcolepsy patients. EXPERT OPINION Research in canine and mouse models have linked narcolepsy to the O×R2mutation and orexin deficiency, leading to new diagnostic criteria and a drug development focus. Advancements in pharmacological therapies have significantly improved narcolepsy management, with insights from both clinical experience and from animal models having led to new treatments such as low sodium oxybate and solriamfetol. However, challenges persist in addressing symptoms beyond excessive daytime sleepiness and cataplexy, highlighting the need for further research, including the development of diurnal animal models to enhance understanding and treatment options for narcolepsy.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| | - Pradeep Jayarajan
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| | - Vijay Benade
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| | - Renny Abraham
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| | - Vinod Kumar Goyal
- Drug Discovery & Development, Suven Life Sciences Limited, Hyderabad, India
| |
Collapse
|
7
|
Gao M, Dekker ME, Leurs R, Vischer HF. Pharmacological characterization of seven human histamine H 3 receptor isoforms. Eur J Pharmacol 2024; 968:176450. [PMID: 38387718 DOI: 10.1016/j.ejphar.2024.176450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
The histamine H3 receptor (H3R) regulates as a presynaptic G protein-coupled receptor the release of histamine and other neurotransmitters in the brain, and is consequently a potential therapeutic target for neuronal disorders. The human H3R encodes for seven splice variants that vary in the length of intracellular loop 3 and/or the C-terminal tail but are all able to induce heterotrimeric Gi protein signaling. The last two decades H3R drug discovery and lead optimization has been exclusively focused on the 445 amino acids-long reference isoform H3R-445. In this study, we pharmacologically characterized for the first time all seven H3R isoforms by determining their binding affinities for reference histamine H3 receptor agonists and inverse agonists. The H3R-453, H3R-415, and H3R-413 isoforms display similar binding affinities for all ligands as the H3R-445. However, increased agonist binding affinities were observed for the three shorter isoforms H3R-329, H3R-365, and H3R-373, whereas inverse agonists such as the approved anti-narcolepsy drug pitolisant (Wakix®) displayed significantly decreased binding affinities for the latter two isoforms. This opposite change in binding affinity of agonist versus inverse agonists on H3R-365 and H3R-373 is associated with their higher constitutive activity in a cAMP biosensor assay as compared to the other five isoforms. The observed differences in pharmacology between longer and shorter H3R isoforms should be considered in future drug discovery programs.
Collapse
Affiliation(s)
- Meichun Gao
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Mabel E Dekker
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| | - Henry F Vischer
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
9
|
Patel V, Sarkar P, Siegel DM, Teegala SB, Hirschberg PR, Wajid H, Itani O, Routh VH. The Antinarcolepsy Drug Modafinil Reverses Hypoglycemia Unawareness and Normalizes Glucose Sensing of Orexin Neurons in Male Mice. Diabetes 2023; 72:1144-1153. [PMID: 36525384 PMCID: PMC10382647 DOI: 10.2337/db22-0639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2023] [Indexed: 12/23/2022]
Abstract
Perifornical hypothalamus (PFH) orexin glucose-inhibited (GI) neurons that facilitate arousal have been implicated in hypoglycemia awareness. Mice lacking orexin exhibit narcolepsy, and orexin mediates the effect of the antinarcolepsy drug modafinil. Thus, hypoglycemia awareness may require a certain level of arousal for awareness of the sympathetic symptoms of hypoglycemia (e.g., tremors, anxiety). Recurrent hypoglycemia (RH) causes hypoglycemia unawareness. We hypothesize that RH impairs the glucose sensitivity of PFH orexin GI neurons and that modafinil normalizes glucose sensitivity of these neurons and restores hypoglycemia awareness after RH. Using patch-clamp recording, we found that RH enhanced glucose inhibition of PFH orexin GI neurons in male mice, thereby blunting activation of these neurons in low-glucose conditions. We then used a modified conditioned place preference behavioral test to demonstrate that modafinil reversed hypoglycemia unawareness in male mice after RH. Similarly, modafinil restored normal glucose sensitivity to PFH orexin GI neurons. We conclude that impaired glucose sensitivity of PFH orexin GI neurons plays a role in hypoglycemia unawareness and that normalizing their glucose sensitivity after RH is associated with restoration of hypoglycemia awareness. This suggests that the glucose sensitivity of PFH orexin GI neurons is a therapeutic target for preventing hypoglycemia unawareness.
Collapse
Affiliation(s)
- Vishwendra Patel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Dashiel M. Siegel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Suraj B. Teegala
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Pamela R. Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Hamad Wajid
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Omar Itani
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ
| | - Vanessa H. Routh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| |
Collapse
|
10
|
Abstract
Pitolisant (WAKIX®), a histamine H3 receptor antagonist/inverse agonist that has been developed by Bioprojet Pharma, is approved in the EU and USA and elsewhere for use in adults with narcolepsy with or without cataplexy. In February 2023, based on clinical data in patients aged 6 to < 18 years, pitolisant received its first approval in adolescents and children from the age of 6 years for the treatment of narcolepsy with or without cataplexy in the EU. This article summarizes the milestones in the development of pitolisant leading to this pediatric first approval for narcolepsy with or without cataplexy.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
11
|
Ngo Q, Plante DT. An Update on the Misuse and Abuse Potential of Pharmacological Treatments for Central Disorders of Hypersomnolence. CURRENT SLEEP MEDICINE REPORTS 2022. [DOI: 10.1007/s40675-022-00227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Danavorexton, a selective orexin 2 receptor agonist, provides a symptomatic improvement in a narcolepsy mouse model. Pharmacol Biochem Behav 2022; 220:173464. [PMID: 36108771 DOI: 10.1016/j.pbb.2022.173464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Narcolepsy type 1 (NT1), caused by loss of orexin neurons, is a neurological disorder characterized by excessive daytime sleepiness, cataplexy, disrupted nighttime sleep, hypnagogic/hypnopompic hallucinations and sleep paralysis, as well as a high risk of obesity. Danavorexton (TAK-925) is a novel brain-penetrant orexin 2 receptor (OX2R)-selective agonist currently being evaluated in clinical trials for the treatment of hypersomnia disorders including NT1. Thus, detailed characterization of danavorexton is critical for validating therapeutic potential of OX2R-selective agonists. Here, we report preclinical characteristics of danavorexton as a therapeutic drug for NT1. Danavorexton showed rapid association/dissociation kinetics to OX2R. The activation mode of endogenous OX2R by danavorexton and orexin peptide was very similar in an electrophysiological analysis. In orexin/ataxin-3 mice, a mouse model of NT1, danavorexton promoted wakefulness, and ameliorated fragmentation of wakefulness during the active phase after both acute and repeated administration, suggesting a low risk of receptor desensitization. Electroencephalogram (EEG) power spectral analysis revealed that danavorexton, but not modafinil, normalized dysregulated EEG power spectrum in orexin/ataxin-3 mice during the active phase. Finally, repeated administration of danavorexton significantly suppressed the body weight gain in orexin/ataxin-3 mice. Danavorexton may have the potential to treat multiple symptoms of NT1. These preclinical findings, together with upcoming clinical observations of danavorexton, could improve our understanding of the pathophysiology of NT1 and therapeutic potential of OX2R agonists.
Collapse
|
13
|
Ono T, Takenoshita S, Nishino S. Pharmacologic Management of Excessive Daytime Sleepiness. Sleep Med Clin 2022; 17:485-503. [PMID: 36150809 DOI: 10.1016/j.jsmc.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Excessive daytime sleepiness (EDS) is defined as "irresistible sleepiness in a situation when an individual would be expected to be awake, and alert." EDS has been a big concern not only from a medical but also from a public health point of view. Patients with EDS have the possibility of falling asleep even when they should wake up and concentrate, for example, when they drive, play sports, or walk outside. In this article, clinical characteristics of common hypersomnia and pharmacologic treatments of each hypersomnia are described.
Collapse
Affiliation(s)
- Taisuke Ono
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Geriatric Medicine, Kanazawa Medical University School of Medicine, Ishikawa, Japan.
| | - Shinichi Takenoshita
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
14
|
Abdulrazzaq YM, Bastaki SMA, Adeghate E. Histamine H3 receptor antagonists - Roles in neurological and endocrine diseases and diabetes mellitus. Biomed Pharmacother 2022; 150:112947. [PMID: 35447544 DOI: 10.1016/j.biopha.2022.112947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022] Open
Abstract
Human histamine H3 receptor (H3R) was initially described in the brain of rat in 1983 and cloned in 1999. It can be found in the human brain and functions as a regulator of histamine synthesis and release. H3 receptors are predominantly resident in the presynaptic region of neurons containing histamine, where they modulate the synthesis and release of histamine (autoreceptor) or other neurotransmitters such as dopamine, norepinephrine, gamma-aminobutyric acid (GABA), glutamate, acetylcholine and serotonin (all heteroreceptors). The human histamine H3 receptor has twenty isoforms of which eight are functional. H3 receptor expression is seen in the cerebral cortex, neurons of the basal ganglia and hippocampus, which are important for process of cognition, sleep and homoeostatic regulation. In addition, histamine H3R antagonists stimulate insulin release, through inducing the release of acetylcholine and cause significant reduction in total body weight and triglycerides in obese subjects by causing a feeling of satiety in the hypothalamus. The ability of histamine H3R antagonist to reduce diabetes-induced hyperglycaemia is comparable to that of metformin. It is reasonable therefore, to claim that H3 receptor antagonists may play an important role in the therapy of disorders of cognition, the ability to sleep, oxidative stress, inflammation and anomaly of glucose homoeostasis. A large number of H3R antagonists are being developed by pharmaceutical companies and university research centres. As examples of these new drugs, this review will discuss a number of drugs, including the first histamine H3R receptor antagonist produced.
Collapse
Affiliation(s)
- Yousef M Abdulrazzaq
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Salim M A Bastaki
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
15
|
Meskill GJ, Kallweit U, Zarycranski D, Caussé C, Finance O, Ligneau X, Davis CW. Pitolisant for the treatment of cataplexy in adults with narcolepsy. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2021.2022472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gerard J. Meskill
- Tricoastal Narcolepsy and Sleep Disorders Center, Sugar Land, Texas, USA
| | - Ulf Kallweit
- Center for Narcolepsy, Hypersomnias and Daytime Sleepiness, Universität Witten/Herdecke, Witten, Germany
| | | | | | | | | | - Craig W. Davis
- Harmony Biosciences, Plymouth Meeting, Pennsylvania, USA
| |
Collapse
|
16
|
Arrigoni E, Fuller PM. The Role of the Central Histaminergic System in Behavioral State Control. Curr Top Behav Neurosci 2022; 59:447-468. [PMID: 34595740 DOI: 10.1007/7854_2021_263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Histamine is a small monoamine signaling molecule that plays a role in many peripheral and central physiological processes, including the regulation of wakefulness. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and histamine neurons are thought to promote wakefulness and vigilance maintenance - under certain environmental and/or behavioral contexts - through their diffuse innervation of the cortex and other wake-promoting brain circuits. Histamine neurons also contain a number of other putative neurotransmitters, although the functional role of these co-transmitters remains incompletely understood. Within the brain histamine operates through three receptor subtypes that are located on pre- and post-synaptic membranes. Some histamine receptors exhibit constitutive activity, and hence exist in an activated state even in the absence of histamine. Newer medications used to reduce sleepiness in narcolepsy patients in fact enhance histamine signaling by blunting the constitutive activity of these histamine receptors. In this chapter, we provide an overview of the central histamine system with an emphasis on its role in behavioral state regulation and how drugs targeting histamine receptors are used clinically to treat a wide range of sleep-wake disorders.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Patrick M Fuller
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
17
|
Plancoulaine S, Guyon A, Inocente CO, Germe P, Zhang M, Robert P, Lin JS, Franco P. Cerebrospinal Fluid Histamine Levels in Healthy Children and Potential Implication for SIDS: Observational Study in a French Tertiary Care Hospital. Front Pediatr 2022; 10:819496. [PMID: 35450108 PMCID: PMC9016218 DOI: 10.3389/fped.2022.819496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE A defect of the waking systems could constitute a factor of vulnerability for sudden infant death syndrome (SIDS). A decrease in orexin levels, which promotes wakefulness and activates histaminergic neurons (another hypothalamic wake-promoting system) has already been demonstrated between 2 and 6 months. This work aims to study the levels of histamine (HA), tele-methylhistamine (t-MeHA), its direct metabolite, and t-MeHA/HA ratio in the cerebrospinal fluid (CSF) of healthy children, to evaluate the maturation of the histaminergic system and its possible involvement in SIDS. METHODS Seventy Eight French children between 0 and 20 years (48.7% boys) were included, all of whom had a clinical indication for lumbar puncture, but subsequently found to be normal. Measurements of HA and t-MeHA in CSF were performed by reverse phase liquid chromatography coupled to mass spectrometry detection. Statistical analyses were performed using Spearman correlations and Non-parametric pairwise ranking tests. RESULTS A negative correlation was found between age and CSF HA (r = -0.44, p < 10-4) and t-MeHA (r = -0.70, p < 10-4) levels. In pairwise comparisons, no difference in CSF HA and t-MeHA levels was observed between youngest age groups (i.e., 0-2 mo vs. 3-6 mo), but CSF HA and t-MeHA levels were significantly lower in older children (i.e., >6 mo vs. 0-6 mo). The CSF HA decrease with age was only observed in boys, who also presented global lower CSF HA levels than girls. CONCLUSION CSF HA and t-MeHA levels decrease with age in boys, and global levels are lower in boys than in girls. These results reveal changes in histaminergic transmission and metabolism during maturation. Whether lower CSF histamine values in boys compared to girls could contribute to their higher risk of SIDS warrants further research.
Collapse
Affiliation(s)
| | - Aurore Guyon
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France.,Bioprojet Biotech, Saint-Grégoire, France
| | - Clara-Odilia Inocente
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Philippine Germe
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Min Zhang
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | | | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Patricia Franco
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, University Lyon 1, Lyon, France
| |
Collapse
|
18
|
Clinical Impact of Pitolisant on Excessive Daytime Sleepiness and Cataplexy in Adults With Narcolepsy: An Analysis of Randomized Placebo-Controlled Trials. CNS Drugs 2022; 36:61-69. [PMID: 34935103 PMCID: PMC8732895 DOI: 10.1007/s40263-021-00886-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 10/27/2022]
Abstract
BACKGROUND Pitolisant, a selective histamine 3 receptor antagonist/inverse agonist, is indicated for the treatment of excessive daytime sleepiness or cataplexy in adults with narcolepsy. The efficacy and safety of pitolisant have been demonstrated in randomized placebo-controlled trials. When evaluating the results of randomized placebo-controlled trials, the clinical impact of a treatment can be assessed using effect size metrics that include Cohen's d (the standardized mean difference of an effect) and number needed to treat (NNT; number of patients that need to be treated to achieve a specific outcome for one person). OBJECTIVE The objective of this study was to evaluate the clinical impact of pitolisant for the reduction in excessive daytime sleepiness or cataplexy in adults with narcolepsy. METHODS This post hoc analysis incorporated data from two 7-week or 8-week randomized placebo-controlled trials (HARMONY 1, HARMONY CTP). Study medication was individually titrated, with a maximum possible pitolisant dose of 35.6 mg/day. Efficacy was assessed using the Epworth Sleepiness Scale (ESS) and weekly rate of cataplexy (HARMONY CTP only). Cohen's d was derived from the least-squares mean difference between treatment groups (pitolisant vs placebo), and NNTs were calculated from response rates. Treatment response was defined for excessive daytime sleepiness in two ways: (a) reduction in ESS score ≥ 3 or final ESS score ≤ 10 and (b) final ESS score ≤ 10. Treatment response was defined for cataplexy as a ≥ 25%, ≥ 50%, or ≥ 75% reduction in weekly rate of cataplexy. RESULTS The analysis population included 61 patients in HARMONY 1 (pitolisant, n = 31; placebo, n = 30) and 105 patients in HARMONY CTP (pitolisant, n = 54; placebo, n = 51). For pitolisant vs placebo, Cohen's d effect size values were 0.61 (HARMONY 1) and 0.86 (HARMONY CTP) based on changes in ESS scores, and 0.86 (HARMONY CTP) based on changes in weekly rate of cataplexy. NNTs for pitolisant were 3-5 for the treatment of excessive daytime sleepiness and 3-4 for the treatment of cataplexy. CONCLUSIONS The results of this analysis demonstrate the robust efficacy of pitolisant for the reduction in both excessive daytime sleepiness and cataplexy. These large effect sizes and low NNTs provide further evidence supporting the strength of the clinical response to pitolisant in the treatment of adults with narcolepsy. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT01067222 (February 2010), NCT01800045 (February 2013).
Collapse
|
19
|
Watson NF, Davis CW, Zarycranski D, Vaughn B, Dayno JM, Dauvilliers Y, Schwartz JC. Time to Onset of Response to Pitolisant for the Treatment of Excessive Daytime Sleepiness and Cataplexy in Patients With Narcolepsy: An Analysis of Randomized, Placebo-Controlled Trials. CNS Drugs 2021; 35:1303-1315. [PMID: 34822113 PMCID: PMC8642365 DOI: 10.1007/s40263-021-00866-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Pitolisant is approved in the USA and Europe for the treatment of excessive daytime sleepiness or cataplexy in adults with narcolepsy. OBJECTIVE Analyses evaluated the time to onset of clinical response during treatment with pitolisant. METHODS Data were obtained from two randomized, double-blind, 7-week or 8-week, placebo-controlled studies (HARMONY 1, HARMONY CTP). Study medication was individually titrated to a maximum dose of pitolisant 35.6 mg/day and then remained stable. Efficacy assessments included the Epworth Sleepiness Scale and weekly rate of cataplexy (calculated from patient diaries). Onset of clinical response was defined as the first timepoint at which there was statistical separation between pitolisant and placebo. RESULTS The analysis included 61 patients in HARMONY 1 (pitolisant, n = 31; placebo, n = 30) and 105 patients in HARMONY CTP (pitolisant, n = 54; placebo, n = 51). Onset of clinical response began at week 2 (HARMONY 1) or week 3 (HARMONY CTP) for the mean change in Epworth Sleepiness Scale score, and week 2 (HARMONY CTP) or week 5 (HARMONY 1) for the mean change in weekly rate of cataplexy, with further improvements observed in pitolisant-treated patients through the end of treatment. The percentage of treatment responders was significantly greater with pitolisant vs placebo beginning at week 3 for excessive daytime sleepiness (defined as an Epworth Sleepiness Scale score reduction ≥ 3) and week 2 for cataplexy (defined as a ≥ 50% reduction in weekly rate of cataplexy [HARMONY CTP]). CONCLUSIONS Onset of clinical response for excessive daytime sleepiness and/or cataplexy was generally observed within the first 2-3 weeks of pitolisant treatment in patients with narcolepsy. CLINICALTRIALS. GOV IDENTIFIER NCT01067222 (February 2010), NCT01800045 (February 2013).
Collapse
Affiliation(s)
- Nathaniel F Watson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Montpellier, France
- Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier INM, INSERM, University of Montpellier, Montpellier, France
| | | |
Collapse
|
20
|
Seifinejad A, Vassalli A, Tafti M. Neurobiology of cataplexy. Sleep Med Rev 2021; 60:101546. [PMID: 34607185 DOI: 10.1016/j.smrv.2021.101546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Cataplexy is the pathognomonic and the most striking symptom of narcolepsy. It has originally been, and still is now, widely considered as an abnormal manifestation of rapid eye movement (REM) sleep during wakefulness due to the typical muscle atonia. The neurocircuits of cataplexy, originally confined to the brainstem as those of REM sleep atonia, now include the hypothalamus, dorsal raphe (DR), amygdala and frontal cortex, and its neurochemistry originally focused on catecholamines and acetylcholine now extend to hypocretin (HCRT) and other neuromodulators. Here, we review the neuroanatomy and neurochemistry of cataplexy and propose that cataplexy is a distinct brain state that, despite similarities with REM sleep, involves cataplexy-specific features.
Collapse
Affiliation(s)
- Ali Seifinejad
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
21
|
Krief S, Berrebi‐Bertrand I, Nagmar I, Giret M, Belliard S, Perrin D, Uguen M, Robert P, Lecomte J, Schwartz J, Finance O, Ligneau X. Pitolisant, a wake-promoting agent devoid of psychostimulant properties: Preclinical comparison with amphetamine, modafinil, and solriamfetol. Pharmacol Res Perspect 2021; 9:e00855. [PMID: 34423920 PMCID: PMC8381683 DOI: 10.1002/prp2.855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2023] Open
Abstract
Several therapeutic options are currently available to treat excessive daytime sleepiness (EDS) in patients suffering from narcolepsy or obstructive sleep apnea. However, there are no comparisons between the various wake-promoting agents in terms of mechanism of action, efficacy, or safety. The goal of this study was to compare amphetamine, modafinil, solriamfetol, and pitolisant at their known primary pharmacological targets, histamine H3 receptors (H3R), dopamine, norepinephrine, and serotonin transporters, and in various in vivo preclinical models in relation to neurochemistry, locomotion, behavioral sensitization, and food intake. Results confirmed that the primary pharmacological effect of amphetamine, modafinil, and solriamfetol was to increase central dopamine neurotransmission, in part by inhibiting its transporter. Furthermore, solriamfetol increased levels of extracellular dopamine in the nucleus accumbens, and decreased the 3,4-dihydroxyphenyl acetic acid (DOPAC)/DA ratio in the striatum, as reported for modafinil and amphetamine. All these compounds produced hyperlocomotion, behavioral sensitization, and hypophagia, which are common features of psychostimulants and of compounds with abuse potential. In contrast, pitolisant, a selective and potent H3R antagonist/inverse agonist that promotes wakefulness, had no effect on striatal dopamine, locomotion, or food intake. In addition, pitolisant, devoid of behavioral sensitization by itself, attenuated the hyperlocomotion induced by either modafinil or solriamfetol. Therefore, pitolisant presents biochemical, neurochemical, and behavioral profiles different from those of amphetamine and other psychostimulants such as modafinil or solriamfetol. In conclusion, pitolisant is a differentiated therapeutic option, when compared with psychostimulants, for the treatment of EDS, as this agent does not show any amphetamine-like properties within in vivo preclinical models.
Collapse
|
22
|
Iacovides S, Kamerman P, Baker FC, Mitchell D. Why It Is Important to Consider the Effects of Analgesics on Sleep: A Critical Review. Compr Physiol 2021; 11:2589-2619. [PMID: 34558668 DOI: 10.1002/cphy.c210006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review the known physiological mechanisms underpinning all of pain processing, sleep regulation, and pharmacology of analgesics prescribed for chronic pain. In particular, we describe how commonly prescribed analgesics act in sleep-wake neural pathways, with potential unintended impact on sleep and/or wake function. Sleep disruption, whether pain- or drug-induced, negatively impacts quality of life, mental and physical health. In the context of chronic pain, poor sleep quality heightens pain sensitivity and may affect analgesic function, potentially resulting in further analgesic need. Clinicians already have to consider factors including efficacy, abuse potential, and likely side effects when making analgesic prescribing choices. We propose that analgesic-related sleep disruption should also be considered. The neurochemical mechanisms underlying the reciprocal relationship between pain and sleep are poorly understood, and studies investigating sleep in those with specific chronic pain conditions (including those with comorbidities) are lacking. We emphasize the importance of further work to clarify the effects (intended and unintended) of each analgesic class to inform personalized treatment decisions in patients with chronic pain. © 2021 American Physiological Society. Compr Physiol 11:1-31, 2021.
Collapse
Affiliation(s)
- Stella Iacovides
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Peter Kamerman
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Fiona C Baker
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Human Sleep Research Program, SRI International, Menlo Park, California, USA
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021; 11:biom11091345. [PMID: 34572558 PMCID: PMC8467868 DOI: 10.3390/biom11091345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Histamine does not only modulate the immune response and inflammation, but also acts as a neurotransmitter in the mammalian brain. The histaminergic system plays a significant role in the maintenance of wakefulness, appetite regulation, cognition and arousal, which are severely affected in neuropsychiatric disorders. In this review, we first briefly describe the distribution of histaminergic neurons, histamine receptors and their intracellular pathways. Next, we comprehensively summarize recent experimental and clinical findings on the precise role of histaminergic system in neuropsychiatric disorders, including cell-type role and its circuit bases in narcolepsy, schizophrenia, Alzheimer's disease, Tourette's syndrome and Parkinson's disease. Finally, we provide some perspectives on future research to illustrate the curative role of the histaminergic system in neuropsychiatric disorders.
Collapse
|
24
|
Shan L, Swaab DF. Changes in histaminergic system in neuropsychiatric disorders and the potential treatment consequences. Curr Neuropharmacol 2021; 20:403-411. [PMID: 34521328 PMCID: PMC9413789 DOI: 10.2174/1570159x19666210909144930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
In contrast to that of other monoamine neurotransmitters, the association of the histaminergic system with neuropsychiatric disorders is not well documented. In the last two decades, several clinical studies involved in the development of drugs targeting the histaminergic system have been reported. These include the H3R-antagonist/inverse agonist, pitolisant, used for the treatment of excessive sleepiness in narcolepsy, and the H1R antagonist, doxepin, used to alleviate symptoms of insomnia. The current review summarizes reports from animal models, including genetic and neuroimaging studies, as well as human brain samples and cerebrospinal fluid measurements from clinical trials, on the possible role of the histaminergic system in neuropsychiatric disorders. These studies will potentially pave the way for novel histamine-related therapeutic strategies.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam. Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam. Netherlands
| |
Collapse
|
25
|
Maski K, Trotti LM, Kotagal S, Robert Auger R, Swick TJ, Rowley JA, Hashmi SD, Watson NF. Treatment of central disorders of hypersomnolence: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med 2021; 17:1895-1945. [PMID: 34743790 DOI: 10.5664/jcsm.9326] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION This systematic review provides supporting evidence for the accompanying clinical practice guideline on the treatment of central disorders of hypersomnolence in adults and children. The review focuses on prescription medications with U.S. Food & Drug Administration approval and nonpharmacologic interventions studied for the treatment of symptoms caused by central disorders of hypersomnolence. METHODS The American Academy of Sleep Medicine commissioned a task force of experts in sleep medicine to perform a systematic review. Randomized controlled trials and observational studies addressing pharmacological and nonpharmacological interventions for central disorders of hypersomnolence were identified. Statistical analyses were performed to determine the clinical significance of all outcomes. Finally, the Grading of Recommendations Assessment, Development and Evaluation (GRADE) process was used to assess the evidence for the purpose of making specific treatment recommendations. RESULTS The literature search identified 678 studies; 144 met the inclusion criteria and 108 provided data suitable for statistical analyses. Evidence for the following interventions is presented: armodafinil, clarithromycin, clomipramine, dextroamphetamine, flumazenil, intravenous immune globulin (IVIG), light therapy, lithium, l-carnitine, liraglutide, methylphenidate, methylprednisolone, modafinil, naps, pitolisant, selegiline, sodium oxybate, solriamfetol, and triazolam. The task force provided a detailed summary of the evidence along with the quality of evidence, the balance of benefits and harms, patient values and preferences, and resource use considerations. CITATION Maski K, Trotti LM, Kotagal S, et al. Treatment of central disorders of hypersomnolence: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med. 2021;17(9):1895-1945.
Collapse
Affiliation(s)
- Kiran Maski
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Lynn Marie Trotti
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Suresh Kotagal
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - R Robert Auger
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Todd J Swick
- Neuroscience's Clinical Division, Takeda Pharmaceuticals
| | - James A Rowley
- Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Nathaniel F Watson
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
26
|
Shan L, Martens GJM, Swaab DF. Histamine-4 Receptor: Emerging Target for the Treatment of Neurological Diseases. Curr Top Behav Neurosci 2021; 59:131-145. [PMID: 34432256 DOI: 10.1007/7854_2021_237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A major challenge in the field of the biogenic amine histamine is the search for new-generation histamine receptor specific drugs. Daniel Bovet and Sir James Black received their Nobel Prizes for Medicine for their work on histamine-1 receptor (H1R) and H2R antagonists to treat allergies and gastrointestinal disorders. The first H3R-targeting drug to reach the market was approved for the treatment of the neurological disorder narcolepsy in 2018. The antagonists for the most recently identified histamine receptor, H4R, are currently under clinical evaluation for their potential therapeutic effects on inflammatory diseases such as atopic dermatitis and pruritus. In this chapter, we propose that H4R antagonists are endowed with prominent anti-inflammatory and immune effects, including in the brain. To substantiate this proposition, we combine data from transcriptional analyses of postmortem human neurodegenerative disease brain samples, human genome-wide association studies (GWAS), and translational animal model studies. The results prompt us to suggest the potential involvement of the H4R in various neurodegenerative diseases and how manipulating the H4R may create new therapeutic opportunities in central nervous system diseases.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Nijmegen, GA, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
28
|
Fabara SP, Ortiz JF, Anas Sohail A, Hidalgo J, Altamimi A, Tama B, Patel UK. Efficacy of Pitolisant on the Treatment of Narcolepsy: A Systematic Review. Cureus 2021; 13:e16095. [PMID: 34345566 PMCID: PMC8325524 DOI: 10.7759/cureus.16095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
Narcolepsy is characterized by excessive daytime sleepiness (EDS) and cataplexy. Histamine neurons play an important role in enhancing wakefulness. The objective of our study was to evaluate the efficacy of pitolisant, a histamine 3 (H3)-receptor antagonist/inverse agonist, in patients with a high burden of narcolepsy symptoms. We conducted an advanced PubMed search strategy with inclusion and exclusion criteria. The outcome included the Epworth Sleepiness Scale (ESS) and adverse effects frequency. Our primary outcome included the mean ESS score at the endpoint and showed that pitolisant was superior to the placebo, but not non-inferior to modafinil. Adverse effects were less common and shorter in duration in the pitolisant group compared to the modafinil-treated patients. Pitolisant was efficacious in reducing excessive daytime sleepiness and cataplexy compared with placebo, and it was well-tolerated in patients with severe narcolepsy symptoms as compared with modafinil.
Collapse
Affiliation(s)
- Stephanie P Fabara
- General Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | - Juan Fernando Ortiz
- Neurology, Universidad San Francisco de Quito, Quito, ECU.,Neurology, Larkin Community Hospital, Miami, USA
| | | | - Jessica Hidalgo
- Internal Medicine, Universidad San Francisco de Quito, Quito, ECU
| | | | - Belen Tama
- Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | - Urvish K Patel
- Public Health and Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
29
|
Nirogi R, Grandhi VR, Medapati RB, Ganuga N, Benade V, Gandipudi S, Manoharan A, Abraham R, Jayarajan P, Bhyrapuneni G, Shinde A, Badange RK, Subramanian R, Petlu S, Jasti V. Histamine 3 receptor inverse agonist Samelisant (SUVN-G3031): Pharmacological characterization of an investigational agent for the treatment of cognitive disorders. J Psychopharmacol 2021; 35:713-729. [PMID: 33546570 DOI: 10.1177/0269881120986418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Central histamine H3 receptors are a family of presynaptic auto and heteroreceptors. Blockade of the presynaptic H3 receptors activates the downstream pathway(s) involved in the processes of learning and memory, making it a potential therapeutic option for ameliorating cognitive dysfunction. Samelisant (SUVN-G3031) is a potent and selective inverse agonist at the H3 receptors. AIM The aim of this research is to study the effects of Samelisant in diverse animal models of cognitive functions. METHODS The effects of Samelisant on cognitive functions were studied using social recognition, object recognition and Morris water maze tasks. Neurochemical and electrophysiological effects of Samelisant were monitored using microdialysis and electroencephalography techniques. RESULTS Samelisant showed procognitive effects in diverse animal models of cognition at doses ranging from 0.3 to 3 mg/kg, per os (p.o.) (social recognition and object recognition task). Samelisant significantly increased the brain acetylcholine levels in the cortex at doses of 10 and 20 mg/kg, p.o. In the Morris water maze task, combined administration of suboptimal doses of Samelisant and donepezil resulted in procognitive effects significantly larger than the either treatment. Similarly, Samelisant significantly potentiated the effects of donepezil on pharmacodynamic biomarkers of cognition i.e. acetylcholine levels in brain and neuronal theta oscillations. CONCLUSION Samelisant may have potential utility in the treatment of cognitive deficits associated with hypocholinergic state.
Collapse
|
30
|
Samelisant (SUVN-G3031), a potent, selective and orally active histamine H3 receptor inverse agonist for the potential treatment of narcolepsy: pharmacological and neurochemical characterisation. Psychopharmacology (Berl) 2021; 238:1495-1511. [PMID: 33550481 DOI: 10.1007/s00213-021-05779-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE Samelisant (SUVN-G3031) is a potent and selective histamine H3 receptor (H3R) inverse agonist with good brain penetration and oral bioavailability. OBJECTIVES Pharmacological and neurochemical characterisation to support the utility of Samelisant (SUVN-G3031) in the treatment of sleep-related disorders like narcolepsy. METHODS Samelisant (SUVN-G3031) was tested in rat brain microdialysis studies for evaluation of modulation in histamine, dopamine and norepinephrine. Sleep EEG studies were carried out in orexin knockout mice to study the effects of Samelisant (SUVN-G3031) on the sleep-wake cycle and cataplexy. RESULTS Samelisant (SUVN-G3031) has a similar binding affinity towards human (hH3R; Ki = 8.7 nM) and rat (rH3R; Ki = 9.8 nM) H3R indicating no inter-species differences. Samelisant (SUVN-G3031) displays inverse agonist activity and it exhibits very high selectivity towards H3R. Samelisant (SUVN-G3031) treatment in mice produced a dose-dependent increase in tele-methylhistamine levels indicating the activation of histaminergic neurotransmission. Apart from increasing the levels of histamine, Samelisant (SUVN-G3031) also modulates dopamine and norepinephrine levels in the cerebral cortex while it has no effects on dopamine levels in the striatum or nucleus accumbens. Treatment with Samelisant (SUVN-G3031; 10 and 30 mg/kg, p.o.) produced a significant increase in wakefulness with a concomitant decrease in NREM sleep in orexin knockout mice subjected to sleep EEG. Samelisant (SUVN-G3031) also produced a significant decrease in Direct REM sleep onset (DREM) episodes, demonstrating its anticataplectic effects in an animal model relevant to narcolepsy. Modulation in cortical levels of histamine, norepinephrine and dopamine provides the neurochemical basis for wake-promoting and anticataplectic effects observed in orexin knockout mice. CONCLUSIONS Pre-clinical studies of Samelisant (SUVN-G3031) provide a strong support for utility in the treatment of sleep-related disorders related to EDS and is currently being evaluated in a phase 2 proof of concept study in the USA for the treatment of narcolepsy with and without cataplexy.
Collapse
|
31
|
Setnik B, McDonnell M, Mills C, Scart-Grès C, Robert P, Dayno JM, Schwartz JC. Evaluation of the abuse potential of pitolisant, a selective H3-receptor antagonist/inverse agonist, for the treatment of adult patients with narcolepsy with or without cataplexy. Sleep 2021; 43:5598311. [PMID: 31626696 PMCID: PMC7157189 DOI: 10.1093/sleep/zsz252] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives To evaluate the human abuse potential of pitolisant, a selective histamine 3 (H3)-receptor antagonist/inverse agonist recently approved by the US Food and Drug Administration for the treatment of excessive daytime sleepiness in adult patients with narcolepsy. Methods Nondependent, recreational stimulant users able to distinguish phentermine HCl 60 mg from placebo in a drug discrimination test were randomized in a four-period, double-blind, crossover design to receive single doses of pitolisant 35.6 mg (therapeutic dose), pitolisant 213.6 mg (supratherapeutic dose), phentermine HCl 60 mg, and placebo. The primary endpoint was maximum effect (Emax) on the 100-point Drug Liking (“at this moment”) visual analog scale. Results In 38 study completers (73.7% male; 65.8% white; mean age, 33.3 years), mean Drug Liking Emax was significantly greater for phentermine versus pitolisant 35.6 mg (mean difference, 21.4; p < 0.0001) and pitolisant 213.6 mg (mean difference, 19.7; p < 0.0001). Drug Liking Emax was similar for pitolisant (both doses) and placebo. Similarly, for key secondary measures of Overall Drug Liking and willingness to Take Drug Again, mean Emax scores were significantly greater for phentermine versus pitolisant (both doses) and similar for pitolisant (both doses) versus placebo. The incidence of adverse events was 82.1% after phentermine HCl 60 mg, 72.5% after pitolisant 213.6 mg, 47.5% after pitolisant 35.6 mg, and 48.8% after placebo administration. Conclusions In this study, pitolisant demonstrated significantly lower potential for abuse compared with phentermine and an overall profile similar to placebo; this suggests a low risk of abuse for pitolisant. Clinical Trial Registration ClinicalTrials.gov NCT03152123. Determination of the abuse potential of pitolisant in healthy, nondependent recreational stimulant users. https://clinicaltrials.gov/ct2/show/NCT03152123.
Collapse
Affiliation(s)
- Beatrice Setnik
- Syneos Health, Raleigh, NC.,Department of Toxicology and Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Mamelak M. Sleep, Narcolepsy, and Sodium Oxybate. Curr Neuropharmacol 2021; 20:272-291. [PMID: 33827411 PMCID: PMC9413790 DOI: 10.2174/1570159x19666210407151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Sodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario. Canada
| |
Collapse
|
33
|
Shan L, Fronczek R, Lammers GJ, Swaab DF. The tuberomamillary nucleus in neuropsychiatric disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:389-400. [PMID: 34225943 DOI: 10.1016/b978-0-12-820107-7.00024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tuberomamillary nucleus (TMN) is located within the posterior part of the hypothalamus. The histamine neurons in it synthesize histamine by means of the key enzyme histidine decarboxylase (HDC) and from the TMN, innervate a large number of brain areas, such as the cerebral cortex, hippocampus, amygdala as well as the thalamus, hypothalamus, and basal ganglia. Brain histamine is reduced to an inactivated form, tele-methylhistamine (t-MeHA), by histamine N-methyltransferase (HMT). In total, there are four types of histamine receptors (H1-4Rs) in the brain, all of which are G-protein coupled. The histaminergic system controls several basal physiological functions, including the sleep-wake cycle, energy and endocrine homeostasis, sensory and motor functions, and cognitive functions such as attention, learning, and memory. Histaminergic dysfunction may contribute to clinical disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, narcolepsy type 1, schizophrenia, Tourette syndrome, and autism spectrum disorder. In the current chapter, we focus on the role of the histaminergic system in these neurological/neuropsychiatric disorders. For each disorder, we first discuss human data, including genetic, postmortem brain, and cerebrospinal fluid studies. Then, we try to interpret the human changes by reviewing related animal studies and end by discussing, if present, recent progress in clinical studies on novel histamine-related therapeutic strategies.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands; Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Panula P. Histamine receptors, agonists, and antagonists in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:377-387. [PMID: 34225942 DOI: 10.1016/b978-0-12-820107-7.00023-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histamine in the brain is produced by a group of tuberomamillary neurons in the posterior hypothalamus and a limited number of mast cells in different parts of the brain. Four G-protein-coupled receptors mediate the effects of histamine. Two of these receptors, H3 and H4 receptors, are high-affinity receptors in the brain and immune system, respectively. The two classic histamine receptors, H1 receptor and H2 receptor, are well known as drug targets for allergy and gastric ulcer, respectively. These receptors have lower affinity for histamine than the more recently discovered H3 and H4 receptors. The H1 and H2 receptors are important postsynaptic receptors in the brain, and they mediate many of the central effects of histamine on, e.g., alertness and wakefulness. H3 receptor is a pre- and postsynaptic receptor, which regulates release of histamine and several other neurotransmitters, including serotonin, GABA, and glutamate. H4 receptor is found in cerebral blood vessels and microglia, but its expression in neurons is not yet well established. Pitolisant, a H3 receptor antagonist, is used to treat narcolepsy and hypersomnia. H1 receptor antagonists have been used to treat insomnia, but its use requires precautions due to potential side effects. H2 receptor antagonists have shown efficacy in treatment of schizophrenia, but they are not in widespread clinical use. H4 receptor ligands may in the future be tested for neuroimmunological disorders and potentially neurodegenerative disorders in which inflammation plays a role, but clinical tests have not yet been initiated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
35
|
Franceschini C, Pizza F, Cavalli F, Plazzi G. A practical guide to the pharmacological and behavioral therapy of Narcolepsy. Neurotherapeutics 2021; 18:6-19. [PMID: 33886090 PMCID: PMC8061157 DOI: 10.1007/s13311-021-01051-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 01/19/2023] Open
Abstract
Narcolepsy is a rare, chronic, and disabling central nervous system hypersomnia; two forms can be recognized: narcolepsy type 1 (NT1) and narcolepsy type 2 (NT2). Its etiology is still largely unknown, but studies have reported a strong association between NT1 and HLA, as well as a pathogenic association with the deficiency of cerebrospinal hypocretin-1. Thus, the most reliable pathogenic hypothesis is an autoimmune process destroying hypothalamic hypocretin-producing cells. A definitive cure for narcolepsy is not available to date, and although the research in the field is highly promising, up to now, current treatments have aimed to reduce the symptoms by means of different pharmacological approaches. Moreover, overall narcolepsy symptoms management can also benefit from non-pharmacological approaches such as cognitive behavioral therapies (CBTs) and psychosocial interventions to improve the patients' quality of life in both adult and pediatric-affected individuals as well as the well-being of their families. In this review, we summarize the available therapeutic options for narcolepsy, including the pharmacological, behavioral, and psychosocial interventions.
Collapse
Affiliation(s)
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Francesca Cavalli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy.
| |
Collapse
|
36
|
Guevarra JT, Hiensch R, Varga AW, Rapoport DM. Pitolisant to Treat Excessive Daytime Sleepiness and Cataplexy in Adults with Narcolepsy: Rationale and Clinical Utility. Nat Sci Sleep 2020; 12:709-719. [PMID: 33117007 PMCID: PMC7567539 DOI: 10.2147/nss.s264140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy is a sleep disorder marked by chronic, debilitating excessive daytime sleepiness and can be associated with cataplexy, sleep paralysis and sleep-related hallucinations. Pharmacological therapy for narcolepsy primarily aims to increase wakefulness and reduce cataplexy attacks. Pitolisant is a first-in-class agent utilizing histamine to improve wakefulness by acting as an antagonist/inverse agonist of the presynaptic histamine 3 receptor. This review summarizes the clinical efficacy, safety and tolerability of pitolisant in treating the symptoms of narcolepsy. Randomized and observational studies demonstrate pitolisant to be effective in treating both hypersomnolence and cataplexy while generally being well tolerated at prescribed doses. The most common adverse reactions include headache, insomnia and nausea.
Collapse
Affiliation(s)
- Jay T Guevarra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY10029, USA
| | - Robert Hiensch
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY10029, USA
| | - Andrew W Varga
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY10029, USA
| | - David M Rapoport
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY10029, USA
| |
Collapse
|
37
|
de Biase S, Pellitteri G, Gigli GL, Valente M. Evaluating pitolisant as a narcolepsy treatment option. Expert Opin Pharmacother 2020; 22:155-162. [PMID: 32941089 DOI: 10.1080/14656566.2020.1817387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Narcolepsy is a chronic sleep disorder characterized by a pentad of excessive daytime sleepiness (EDS), cataplexy, sleep paralysis, hypnagogic/hypnopompic hallucinations, and disturbed nocturnal sleep. Treatment of narcolepsy remains challenging and current therapy is strictly symptomatically based. AREAS COVERED The present manuscript is based on an extensive Internet and PubMed search from 1990 to 2020. It is focused on the clinical and pharmacological properties of pitolisant in the treatment of narcolepsy. EXPERT OPINION Currently there is no cure for narcolepsy. Although efforts have been made, current treatments do not always allow to obtain an optimal control of symptoms. Pitolisant is an antagonist/inverse agonist of the histamine H3 autoreceptor. Its mechanism of action is novel and distinctive compared to the other available therapies for narcolepsy. Clinical trials suggest that pitolisant administered at a dose of ≤36 mg/day is an effective treatment option for narcolepsy, reducing EDS and cataplexy. Pitolisant is available as oral tablets and offers a convenient once-daily regimen. Pitolisant is generally well tolerated and showed minimal abuse potential in animals and humans. Long-term studies comparing the effectiveness and tolerability of pitolisant with active drugs (e.g. modafinil, sodium oxybate) are needed.
Collapse
Affiliation(s)
| | - Gaia Pellitteri
- Neurology Unit, Department of Neurosciences, University Hospital of Udine , Udine, Italy
| | - Gian Luigi Gigli
- Neurology Unit, Department of Neurosciences, University Hospital of Udine , Udine, Italy.,Department of Mathematics, Informatics and Physics (DMIF), University of Udine , Udine, Italy
| | - Mariarosaria Valente
- Neurology Unit, Department of Neurosciences, University Hospital of Udine , Udine, Italy.,Department of Medical Area (DAME), University of Udine , Udine, Italy
| |
Collapse
|
38
|
Yoshikawa T, Nakamura T, Yanai K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol 2020; 178:750-769. [PMID: 32744724 DOI: 10.1111/bph.15220] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Histamine plays pleiotropic roles as a neurotransmitter in the physiology of brain function, this includes the maintenance of wakefulness, appetite regulation and memory retrieval. Since numerous studies have revealed an association between histaminergic dysfunction and diverse neuropsychiatric disorders, such as Alzheimer's disease and schizophrenia, a large number of compounds acting on the brain histamine system have been developed to treat neurological disorders. In 2016, pitolisant, which was developed as a histamine H3 receptor inverse agonist by Schwartz and colleagues, was launched for the treatment of narcolepsy, emphasising the prominent role of brain histamine on wakefulness. Recent advances in neuroscientific techniques such as chemogenetic and optogenetic approaches have led to remarkable progress in the understanding of histaminergic neural circuits essential for the control of wakefulness. In this review article, we summarise the basic knowledge about the histaminergic nervous system and the mechanisms underlying sleep/wake regulation that are controlled by the brain histamine system. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
39
|
Harwell V, Fasinu PS. Pitolisant and Other Histamine-3 Receptor Antagonists-An Update on Therapeutic Potentials and Clinical Prospects. MEDICINES 2020; 7:medicines7090055. [PMID: 32882898 PMCID: PMC7554886 DOI: 10.3390/medicines7090055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Background: Besides its well-known role as a peripheral chemical mediator of immune, vascular, and cellular responses, histamine plays major roles in the central nervous system, particularly in the mediation of arousal and cognition-enhancement. These central effects are mediated by the histamine-3 auto receptors, the modulation of which is thought to be beneficial for the treatment of disorders that impair cognition or manifest with excessive daytime sleepiness. Methods: A database search of PubMed, Google Scholar, and clinicaltrials.gov was performed in June 2020. Full-text articles were screened and reviewed to provide an update on pitolisant and other histamine-3 receptor antagonists. Results: A new class of drugs—histamine-3 receptor antagonists—has emerged with the approval of pitolisant for the treatment of narcolepsy with or without cataplexy. At the recommended dose, pitolisant is well tolerated and effective. It has also been evaluated for potential therapeutic benefit in Parkinson disease, epilepsy, attention deficit hyperactivity disorder, Alzheimer’s disease, and dementia. Limited studies have shown pitolisant to lack abuse potential which will be a major advantage over existing drug options for narcolepsy. Several histamine-3 receptor antagonists are currently in development for a variety of clinical indications. Conclusions: Although limited clinical studies have been conducted on this new class of drugs, the reviewed literature showed promising results for future additions to the clinical indications of pitolisant, and the expansion of the list of approved drugs in this class for a variety of indications.
Collapse
|
40
|
Dauvilliers Y, Arnulf I, Szakacs Z, Leu-Semenescu S, Lecomte I, Scart-Gres C, Lecomte JM, Schwartz JC. Long-term use of pitolisant to treat patients with narcolepsy: Harmony III Study. Sleep 2020; 42:5540186. [PMID: 31529094 PMCID: PMC6802569 DOI: 10.1093/sleep/zsz174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/08/2019] [Indexed: 11/14/2022] Open
Abstract
Study Objectives To asses the long-term safety and efficacy of pitolisant, an histamine H3-receptor antagonist, on narcolepsy. Methods This open-label, single-arm, pragmatic study, recruited adult patients with narcolepsy and Epworth Sleepiness Scale (ESS) score ≥12. After a titration period, patients were treated for up to 1 year with oral pitolisant once-a-day at up to 40 mg. Concomitant stimulants and anti-cataplectic agents were allowed. The primary endpoint was safety; secondary endpoints included ESS, cataplexy, and other diary parameters. Results Patients (n = 102, 75 with cataplexy) received pitolisant, for the first time in 73 of them. Sixty-eight patients (51 with cataplexy) completed the 12-month treatment. Common treatment-emergent adverse events were headache (11.8% of patients), insomnia (8.8%), weight gain (7.8%), anxiety (6.9%), depressive symptoms (4.9%), and nausea (4.9%). Seven patients had a serious adverse effect, unrelated to pitolisant except for a possibly related miscarriage. One-third of patients stopped pitolisant, mostly (19.6%) for insufficient benefit. ESS score decreased by 4.6 ± 0.6. Two-thirds of patients completing the treatment were responders (ESS ≤ 10 or ESS decrease ≥ 3), and one third had normalized ESS (≤10). Complete and partial cataplexy, hallucinations, sleep paralysis, and sleep attacks were reduced by 76%, 65%, 54%, 63%, and 27%, respectively. Pitolisant as monotherapy (43% of patients) was better tolerated and more efficacious on ESS than on add-on, but efficacy was maintained in this last case. Conclusions Long-term safety and efficacy of pitolisant on daytime sleepiness, cataplexy, hallucinations, and sleep paralysis is confirmed.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Reference National Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, University of Montpellier 1, Montpellier, INSERM U1061, France
| | - Isabelle Arnulf
- Sleep Disorder Unit, Hôpital la Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Excessive daytime sleepiness (EDS) is related to medical and social problems, including mental disorders, physical diseases, poor quality of life, and so forth. According to the International Classification of Sleep Disorders, Third Edition, diseases that result from EDS are narcolepsy type 1, narcolepsy type 2, idiopathic hypersomnia, hypersomnia due to a medical disorder, and others. EDS is usually treated using amphetamine-like central nervous system stimulants or modafinil and its R-enantiomer, armodafinil, wake-promoting compounds unrelated to amphetamines; a variety of new drugs are under development. The side effects of some stimulants are potent and careful selection and management are required.
Collapse
Affiliation(s)
- Shinichi Takenoshita
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
42
|
LC-MS/MS method for the quantification of SUVN-G3031, a novel H3 receptor inverse agonist for narcolepsy treatment. Bioanalysis 2020; 12:533-544. [PMID: 32351118 DOI: 10.4155/bio-2020-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: A LC-MS/MS method was validated for the quantification of SUVN-G3031, a novel H3 receptor inverse agonist in clinical development for the treatment of patients with narcolepsy, with and without cataplexy. Methodology: SUVN-G3031 was extracted from plasma following acetonitrile protein precipitation, separated by Ultra HPLC and quantified using positive ESI-MS/MS. Results: The method was linear across the range of 0.1-100 ng ml-1 in plasma. Results for intra and inter-day accuracy were from 99.8 to 104% and precision (%CV) was ≤10.6%. Conclusion: The method was applied to a first-in-human study in healthy volunteers. The method is precise, accurate and highly selective for the quantification of SUVN-G3031 in human plasma.
Collapse
|
43
|
Therapy for Cataplexy. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-0619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of the review
Cataplexy, an involuntary loss of muscle activity triggered by strong emotions is the most impressive symptom in narcolepsy. This review gives an overview of the current understanding of cataplexy and its available treatment options.
Recent findings
With the discovery of hypocretin/orexin, the understanding of the pathophysiology of cataplexy advanced in the past decades. In the recent years, with the development of new anticataplectic agents (e.g., Pitolisant) symptomatic treatment of cataplexy has further improved. Abrupt cessation of anticataplectic medication especially antidepressants increase the risk of status cataplecticus, a virtually continuous series of long-lasting cataplectic attacks.
Summary
Cataplexies still remain an under-recognized phenomenon due to missing diagnostic measures. Treatment for cataplexy still remains symptomatic but new agents with better tolerability and usability are continuously developed. New therapeutic actions either targeting the autoimmune mechanisms underlying orexin cell death or substituting orexin action are promising treatments for the near future.
Collapse
|
44
|
Abstract
Pitolisant (Wakix®), an orally available, first-in-class antagonist/inverse agonist of the histamine 3 receptor, is approved in the EU (as of March 2016) for the treatment of narcolepsy with or without cataplexy in adults and in the USA (as of August 2019) for the treatment of excessive daytime sleepiness (EDS) in adults with narcolepsy. Pitolisant was demonstrated to have minimal risk of abuse in preclinical and clinical studies, and is the only anti-narcoleptic drug not scheduled as a controlled substance in the USA. The totality of evidence from pivotal and supportive phase III trials suggests that pitolisant administered at up to the recommended maximum dose of 36 mg once daily reduces EDS and cataplexy in adults with narcolepsy relative to placebo. Noninferiority of pitolisant to modafinil in the management of EDS was not demonstrated. Pitolisant was generally well tolerated in clinical trials. Consistent with its mechanism of action, the most common treatment-emergent adverse events included headache, insomnia and anxiety. With minimal abuse potential and offering the convenience of oral, once-daily administration, pitolisant extends the range of approved treatment options available to adult patients with narcolepsy with or without cataplexy.
Collapse
Affiliation(s)
- Yvette N Lamb
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
45
|
Affiliation(s)
- Shuang Li
- Department of Pharmaceutical, Central Hospital of Linyi City, Yishui, Shandong, China
| | - Junyi Yang
- Department of Pharmaceutical, Central Hospital of Linyi City, Yishui, Shandong, China
| |
Collapse
|
46
|
Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019; 42:5099478. [PMID: 30239935 PMCID: PMC6335869 DOI: 10.1093/sleep/zsy183] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Histamine was first identified in the brain about 50 years ago, but only in the last few years have researchers gained an understanding of how it regulates sleep/wake behavior. We provide a translational overview of the histamine system, from basic research to new clinical trials demonstrating the usefulness of drugs that enhance histamine signaling. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and like many of the arousal systems, histamine neurons diffusely innervate the cortex, thalamus, and other wake-promoting brain regions. Histamine has generally excitatory effects on target neurons, but paradoxically, histamine neurons may also release the inhibitory neurotransmitter GABA. New research demonstrates that activity in histamine neurons is essential for normal wakefulness, especially at specific circadian phases, and reducing activity in these neurons can produce sedation. The number of histamine neurons is increased in narcolepsy, but whether this affects brain levels of histamine is controversial. Of clinical importance, new compounds are becoming available that enhance histamine signaling, and clinical trials show that these medications reduce sleepiness and cataplexy in narcolepsy.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
| | - Nicholas P Franks
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac, Université Montpellier, INSERM, Montpellier, France
| |
Collapse
|
47
|
Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. J Neurosci 2019; 39:8929-8939. [PMID: 31548232 DOI: 10.1523/jneurosci.1032-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 02/03/2023] Open
Abstract
The histaminergic neurons of the tuberomammillary nucleus (TMNHDC) of the posterior hypothalamus have long been implicated in promoting arousal. More recently, a role for GABAergic signaling by the TMNHDC neurons in arousal control has been proposed. Here, we investigated the effects of selective chronic disruption of GABA synthesis (via genetic deletion of the GABA synthesis enzyme, glutamic acid decarboxylase 67) or GABAergic transmission (via genetic deletion of the vesicular GABA transporter (VGAT)) in the TMNHDC neurons on sleep-wake in male mice. We also examined the effects of acute chemogenetic activation and optogenetic inhibition of TMNHDC neurons upon arousal in male mice. Unexpectedly, we found that neither disruption of GABA synthesis nor GABAergic transmission altered hourly sleep-wake quantities, perhaps because very few TMNHDC neurons coexpressed VGAT. Acute chemogenetic activation of TMNHDC neurons did not increase arousal levels above baseline but did enhance vigilance when the mice were exposed to a behavioral cage change challenge. Similarly, acute optogenetic inhibition had little effect upon baseline levels of arousal. In conclusion, we could not identify a role for GABA release by TMNHDC neurons in arousal control. Further, if TMNHDC neurons do release GABA, the mechanism by which they do so remains unclear. Our findings support the view that TMNHDC neurons may be important for enhancing arousal under certain conditions, such as exposure to a novel environment, but play only a minor role in behavioral and EEG arousal under baseline conditions.SIGNIFICANCE STATEMENT The histaminergic neurons of the tuberomammillary nucleus of the hypothalamus (TMNHDC) have long been thought to promote arousal. Additionally, TMNHDC neurons may counter-regulate the wake-promoting effects of histamine through co-release of the inhibitory neurotransmitter, GABA. Here, we show that impairing GABA signaling from TMNHDC neurons does not impact sleep-wake amounts and that few TMNHDC neurons contain the vesicular GABA transporter, which is presumably required to release GABA. We further show that acute activation or inhibition of TMNHDC neurons has limited effects upon baseline arousal levels and that activation enhances vigilance during a behavioral challenge. Counter to general belief, our findings support the view that TMNHDC neurons are neither necessary nor sufficient for the initiation and maintenance of arousal under baseline conditions.
Collapse
|
48
|
Bastaki SMA, Amir N, Więcek M, Kieć-Kononowicz K, Sadek B. Influence of the Novel Histamine H3 Receptor Antagonist/Inverse Agonist M39 on Gastroprotection and PGE2 Production Induced by (R)-Alpha-Methylhistamine in C57BL/6 Mice. Front Pharmacol 2019; 10:966. [PMID: 31572174 PMCID: PMC6751319 DOI: 10.3389/fphar.2019.00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
The role of histamine H3 receptors (H3Rs) in the regulation of gastroprotection and production of prostaglandin E2 (PGE2) as well as somatostatin remains contradictory. Therefore, the effects of the H3R antagonist/inverse agonist M39 on in vivo acidified ethanol-induced gastric ulcers and gastric acid secretion in the C57BL/6 mice were assessed. Results showed that acute systemic administration of H3R agonist (R)-α-methylhistamine (RAMH, 100 mg/kg, i.g.) significantly reduced the severity of ulcer index, increased gastric acid output, and increased mucosal PGE2 production without any alteration of somatostatin concentration in gastric juice. However, only acute systemic administration of the H2R agonist dimaprit (DIM, 10 mg/kg, p.o.) significantly decreased the level of somatostatin measured in gastric juice. Moreover, acute systemic administration of M39 (0.3 mg/kg, i.g.) abrogated the RAMH-induced increase of acid output as well as PGE2 production, but not the DIM (10 mg/kg, i.g.)-stimulated acid secretion, indicating that RAMH as well as M39 modulate the gastroprotective effects through interactions with histamine H3Rs. The present findings indicate that agonistic interaction with H3Rs is profoundly involved in the maintenance of gastric mucosal integrity by modulating PGE2 as well as gastric acid secretion, with no apparent role in the regulation of the inhibitory influence of somatostatin.
Collapse
Affiliation(s)
- Salim M. A. Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Bassem Sadek, ; Salim M.A. Bastaki,
| | - Naheed Amir
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University-Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University-Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Bassem Sadek, ; Salim M.A. Bastaki,
| |
Collapse
|
49
|
Thorpy MJ, Bogan RK. Update on the pharmacologic management of narcolepsy: mechanisms of action and clinical implications. Sleep Med 2019; 68:97-109. [PMID: 32032921 DOI: 10.1016/j.sleep.2019.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a chronic, debilitating neurological disorder of sleep-wake state instability. This instability underlies all narcolepsy symptoms, including excessive daytime sleepiness (EDS), symptoms of rapid eye movement (REM) sleep dysregulation (ie, cataplexy, hypnagogic/hypnopompic hallucinations, sleep paralysis), and disrupted nighttime sleep. Several neurotransmitter systems promote wakefulness, and various neural pathways are involved in regulating REM sleep-related muscle atonia, providing multiple targets for pharmacologic intervention to reduce EDS and cataplexy. Medications approved by the US Food and Drug Administration (FDA) for the treatment of EDS in narcolepsy include traditional stimulants (eg, amphetamines, methylphenidate), wake-promoting agents (eg, modafinil, armodafinil), and solriamfetol, which mainly act on dopaminergic and noradrenergic pathways. Sodium oxybate (thought to act via GABAB receptors) is FDA-approved for the treatment of EDS and cataplexy. Pitolisant, a histamine 3 (H3)-receptor antagonist/inverse agonist, is approved by the European Medicines Agency (EMA) for the treatment of narcolepsy with or without cataplexy in adults and by the FDA for the treatment of EDS in adults with narcolepsy. Pitolisant increases the synthesis and release of histamine in the brain and modulates the release of other neurotransmitters (eg, norepinephrine, dopamine). Antidepressants that inhibit reuptake of serotonin and/or norepinephrine are widely used off label to manage cataplexy. In many patients with narcolepsy, combination treatment with medications that act via different neural pathways is necessary for optimal symptom management. Mechanism of action, pharmacokinetics, and abuse potential are important considerations in treatment selection and subsequent medication adjustments to maximize efficacy and mitigate adverse effects in the treatment of patients with narcolepsy.
Collapse
Affiliation(s)
- Michael J Thorpy
- Sleep-Wake Disorders Center, Montefiore Medical Center, Albert Einstein College of Medicine, 3411 Wayne Ave, Bronx, NY, 10467, USA.
| | - Richard K Bogan
- SleepMed Inc., Bogan Sleep Consultants, LLC, 1333 Taylor Street, Columbia, SC, USA.
| |
Collapse
|
50
|
Choi Y, Raymer BK. Sleep modulating agents. Bioorg Med Chem Lett 2019; 29:2025-2033. [PMID: 31307886 DOI: 10.1016/j.bmcl.2019.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 12/28/2022]
Abstract
Sleep and wake are two fundamental states of human existence. Conditions such as insomnia and hypersomnia can have profound negative effects on human health. Many pharmacological interventions impacting sleep and wake are available or are under development. This brief digest surveys early approaches to sleep modulation and highlights recent developments in sleep modulating agents.
Collapse
Affiliation(s)
- Younggi Choi
- Discovery Chemistry, Alkermes, 852 Winter Street, Waltham, MA, United States
| | - Brian K Raymer
- Discovery Research, Alkermes, 852 Winter Street, Waltham, MA, United States.
| |
Collapse
|