1
|
Zhang B, Gang Q, Meng L, Li Z, Chu X, Wu H, Yang J, Huang B, Du K. A novel variant of biallelic MME gene associated with autosomal recessive late-onset distal hereditary motor neuropathy in Chinese families. BMC Med Genomics 2024; 17:223. [PMID: 39232784 PMCID: PMC11373294 DOI: 10.1186/s12920-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Distal hereditary motor neuropathies (dHMN) are a group of heterogeneous diseases and previous studies have reported that the compound heterozygous recessive MME variants cause dHMN. Our study found a novel homozygous MME variant and a reported compound heterozygous MME variant in two Chinese families, respectively. Next-generation sequencing and nerve conduction studies were performed for two probands. The probands in two families presented with the muscle weakness and wasting of both lower limbs and carried a c.2122 A > T (p.K708*) and c.1342 C > T&c.2071_2072delinsTT (p.R448*&p.A691L) variant, respectively. Prominently axonal impairment of motor nerves and slight involvement of sensory nerves were observed in nerve conduction study. Our study reported a "novel" nonsense mutation and a missense variant of autosomal recessive late-onset dHMN and reviewed reported MME variants associated with dHMN phenotype.
Collapse
Affiliation(s)
- Bentuo Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhenyu Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xujun Chu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Haohao Wu
- Department of Neurology, Qujing First People's Hospital, Yunnan, 655000, Qujing, China
| | - Junsu Yang
- Department of Neurology, Qujing First People's Hospital, Yunnan, 655000, Qujing, China
| | - Baogang Huang
- Department of Neurology, Qujing First People's Hospital, Yunnan, 655000, Qujing, China.
| | - Kang Du
- Department of Neurology, Qujing First People's Hospital, Yunnan, 655000, Qujing, China.
| |
Collapse
|
2
|
Grosz BR, Parmar JM, Ellis M, Bryen S, Simons C, Reis ALM, Stevanovski I, Deveson IW, Nicholson G, Laing N, Wallis M, Ravenscroft G, Kumar KR, Vucic S, Kennerson ML. A deep intronic variant in MME causes autosomal recessive Charcot-Marie-Tooth neuropathy through aberrant splicing. J Peripher Nerv Syst 2024; 29:262-274. [PMID: 38860315 DOI: 10.1111/jns.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Loss-of-function variants in MME (membrane metalloendopeptidase) are a known cause of recessive Charcot-Marie-Tooth Neuropathy (CMT). A deep intronic variant, MME c.1188+428A>G (NM_000902.5), was identified through whole genome sequencing (WGS) of two Australian families with recessive inheritance of axonal CMT using the seqr platform. MME c.1188+428A>G was detected in a homozygous state in Family 1, and in a compound heterozygous state with a known pathogenic MME variant (c.467del; p.Pro156Leufs*14) in Family 2. AIMS We aimed to determine the pathogenicity of the MME c.1188+428A>G variant through segregation and splicing analysis. METHODS The splicing impact of the deep intronic MME variant c.1188+428A>G was assessed using an in vitro exon-trapping assay. RESULTS The exon-trapping assay demonstrated that the MME c.1188+428A>G variant created a novel splice donor site resulting in the inclusion of an 83 bp pseudoexon between MME exons 12 and 13. The incorporation of the pseudoexon into MME transcript is predicted to lead to a coding frameshift and premature termination codon (PTC) in MME exon 14 (p.Ala397ProfsTer47). This PTC is likely to result in nonsense mediated decay (NMD) of MME transcript leading to a pathogenic loss-of-function. INTERPRETATION To our knowledge, this is the first report of a pathogenic deep intronic MME variant causing CMT. This is of significance as deep intronic variants are missed using whole exome sequencing screening methods. Individuals with CMT should be reassessed for deep intronic variants, with splicing impacts being considered in relation to the potential pathogenicity of variants.
Collapse
Affiliation(s)
- Bianca R Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
| | - Jevin M Parmar
- Rare Disease Genetics and Functional Genomics Research Group, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Melina Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha Bryen
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Andre L M Reis
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Igor Stevanovski
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Garth Nicholson
- The University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Nigel Laing
- Rare Disease Genetics and Functional Genomics Research Group, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics Research Group, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Kishore R Kumar
- The University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Translational Neurogenomics Group, Genomic and Inherited Disease Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Healthcare Campus, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Steve Vucic
- The University of Sydney, Camperdown, New South Wales, Australia
- Brain and Nerve Research Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
3
|
Wang S, Xiao Y, An X, Luo L, Gong K, Yu D. A comprehensive review of the literature on CD10: its function, clinical application, and prospects. Front Pharmacol 2024; 15:1336310. [PMID: 38389922 PMCID: PMC10881666 DOI: 10.3389/fphar.2024.1336310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.
Collapse
Affiliation(s)
- Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Yamashiro M, Ohnari K, Higuchi Y, Hashiguchi H, Takashima H, Okada K. [A case of Charcot-Marie-Tooth disease type 2 caused by homozygous MME gene mutation]. Rinsho Shinkeigaku 2023; 63:743-747. [PMID: 37880116 DOI: 10.5692/clinicalneurol.cn-001870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The patient is a 44-year-old man. His parents are consanguineous. He experienced muscle weakness in his toe and distal tingling sensation in his feet at 42 years of age, which gradually progressed. Additionally, a marked cyanotic discoloration of the feet appeared and worsened progressively. Neurological examination revealed loss of tendon reflexes and distal muscle weakness in the lower extremities. Findings from nerve conduction studies indicated axonal polyneuropathy. Upon detection of the MME gene mutation, the patient was diagnosed with autosomal-recessive Charcot-Marie-Tooth disease 2T (ARCMT2T). In this case, cyanosis of the lower extremities possibly was associated with ARCMT2T, and it was suggested to be due to neprilysin deletion linked with the MME mutation. This represents the first documented occurrence of cyanosis as a distinctive feature of CMT with MME mutation.
Collapse
Affiliation(s)
- Masataka Yamashiro
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health
| | - Keiko Ohnari
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health
| | - Yujiro Higuchi
- Department of Neurology and Clinical Neuroscience, Kagoshima University Graduate School of Medical Science
| | - Hiroaki Hashiguchi
- Department of Neurology and Clinical Neuroscience, Kagoshima University Graduate School of Medical Science
| | - Hiroshi Takashima
- Department of Neurology and Clinical Neuroscience, Kagoshima University Graduate School of Medical Science
| | - Kazumasa Okada
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health
| |
Collapse
|
5
|
Wen B, Pan Y, Cheng J, Xu L, Xu J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J Pain Res 2023; 16:3061-3073. [PMID: 37701560 PMCID: PMC10493102 DOI: 10.2147/jpr.s423733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is an excess and/or prolonged pain and inflammation condition that follows an injury to a limb. The pathogenesis of CRPS is multifaceted that remains incompletely understood. Neuroinflammation is an inflammatory response in the peripheral and central nervous systems. Dysregulated neuroinflammation plays a crucial role in the initiation and maintenance of pain and nociceptive neuronal sensitization, which may contribute to the transition from acute to chronic pain and the perpetuation of chronic pain in CRPS. The key features of neuroinflammation encompass infiltration and activation of inflammatory cells and the production of inflammatory mediators in both the central and peripheral nervous systems. This article reviews the role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, neuropeptides, glial cells, immune cells, cytokines, and keratinocytes. The objective is to provide insights that can inform future research and development of therapeutic targets for CRPS.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Inflammation and Immunity; Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
6
|
Dupuis M, Raymackers JM, Ackermans N, Boulanger S, Verellen-Dumoulin C. Hereditary axonal neuropathy related to MME gene mutation in a family with fetomaternal alloimmune glomerulonephritis. Acta Neurol Belg 2020; 120:149-154. [PMID: 31974930 DOI: 10.1007/s13760-020-01275-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
We report a consanguineous family with a homozygous and heterozygous membrane metallo-endopeptidase (MME) mutation (c.467delC) and two clinical conditions: fetomaternal alloimmune membranous glomerulopathy (FMG) and hereditary motor and sensory axonal neuropathy. The penetrance of both phenotypes was variable. Some individuals experienced unusually fast neurological degradation. Pain and vasomotor signs were frequent complaints, possibly due to a loss of the neutral endopeptidase (NEP, the MME gene product) function and its subsequent inability to degrade substance P and vasomotor peptides. Electrophysiological and nerve biopsy findings were consistent with predominantly axonal neuropathy. This specific clinical phenotype was attributed to a c.467delC MME gene mutation. Diagnosis of such a mutation is important but can be challenging, due to allele dropout. Heterozygous subjects who had already reached the expected age of disease onset had peripheral neuropathy, but also suffered from additional diseases. Neurologists should advise women of childbearing age with MME mutations to seek pre-pregnancy genetic advice and nephrologists should search for neuropathy in patients with FMG.
Collapse
Affiliation(s)
- M Dupuis
- Department of Neurology and Neurosurgery, Clinique Saint-Pierre, 9 avenue Reine Fabiola, B-1340, Ottignies, Belgium
- Institute of Pathology and Genetics, 25 avenue Georges Lemaître, B-6041, Charleroi, Belgium
| | - J M Raymackers
- Department of Neurology and Neurosurgery, Clinique Saint-Pierre, 9 avenue Reine Fabiola, B-1340, Ottignies, Belgium.
| | - N Ackermans
- Department of Neurology and Neurosurgery, Clinique Saint-Pierre, 9 avenue Reine Fabiola, B-1340, Ottignies, Belgium
| | - S Boulanger
- Institute of Pathology and Genetics, 25 avenue Georges Lemaître, B-6041, Charleroi, Belgium
| | - C Verellen-Dumoulin
- Institute of Pathology and Genetics, 25 avenue Georges Lemaître, B-6041, Charleroi, Belgium
| |
Collapse
|
7
|
Cervellini I, Galino J, Zhu N, Fricker FR, Bao L, Bennett DLH. Membrane metallo-endopeptidase is dispensable for repair after nerve injury. Glia 2019; 67:1990-2000. [PMID: 31339187 PMCID: PMC6771530 DOI: 10.1002/glia.23680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 11/14/2022]
Abstract
Membrane metallo-endopeptidase (MME), also known as neprilysin (NEP), has been of interest for its role in neurodegeneration and pain due to its ability to degrade β-amyloid and substance-P, respectively. In addition to its role in the central nervous system, MME has been reported to be expressed in the peripheral system, specifically in the inner and outer border of myelinating fibers, in the Schmidt-Lantermann cleft and in the paranodes. Recently, mutations of this gene have been associated with Charcot-Marie-Tooth Type 2 (CMT2). Peripheral nerve morphometry in mice lacking MME previously showed minor abnormalities in aged animals in comparison to CMT2 patients. We found that MME expression was dysregulated after nerve injury in a Neuregulin-1 dependent fashion. We therefore explored the hypothesis that MME may have a role in remyelination. In the naïve state in adulthood we did not find any impairment in myelination in MME KO mice. After nerve injury the morphological outcome in MME KO mice was indistinguishable from WT littermates in terms of axon regeneration and remyelination. We did not find any difference in functional motor recovery. There was a significant difference in sensory function, with MME KO mice starting to recover response to mechanical stimuli earlier than WT. The epidermal reinnnervation, however, was unchanged and this altered sensitivity may relate to its known function in cleaving the peptide substance-P, known to sensitise nociceptors. In conclusion, although MME expression is dysregulated after nerve injury in a NRG1-dependent manner this gene is dispensable for axon regeneration and remyelination after injury.
Collapse
Affiliation(s)
- Ilaria Cervellini
- The Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Jorge Galino
- The Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Ning Zhu
- The Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Florence R. Fricker
- The Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Lu Bao
- Boston Children's HospitalHarvard Medical SchoolBostonMassachusetts
| | - David L. H. Bennett
- The Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| |
Collapse
|
8
|
Sharma HS, Muresanu DF, Lafuente JV, Patnaik R, Tian ZR, Ozkizilcik A, Castellani RJ, Mössler H, Sharma A. Co-Administration of TiO2 Nanowired Mesenchymal Stem Cells with Cerebrolysin Potentiates Neprilysin Level and Reduces Brain Pathology in Alzheimer's Disease. Mol Neurobiol 2019; 55:300-311. [PMID: 28844104 DOI: 10.1007/s12035-017-0742-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neprilysin (NPL), the rate-limiting enzyme for amyloid beta peptide (AβP), appears to play a crucial role in the pathogenesis of Alzheimer's disease (AD). Since mesenchymal stem cells (MSCs) and/or cerebrolysin (CBL, a combination of neurotrophic factors and active peptide fragments) have neuroprotective effects in various CNS disorders, we examined nanowired delivery of MSCs and CBL on NPL content and brain pathology in AD using a rat model. AD-like symptoms were produced by intraventricular (i.c.v.) administration of AβP (1-40) in the left lateral ventricle (250 ng/10 μl, once daily) for 4 weeks. After 30 days, the rats were examined for NPL and AβP concentrations in the brain and related pathology. Co-administration of TiO2-nanowired MSCs (106 cells) with 2.5 ml/kg CBL (i.v.) once daily for 1 week after 2 weeks of AβP infusion significantly increased the NPL in the hippocampus (400 pg/g) from the untreated control group (120 pg/g; control 420 ± 8 pg/g brain) along with a significant decrease in the AβP deposition (45 pg/g from untreated control 75 pg/g; saline control 40 ± 4 pg/g). Interestingly, these changes were much less evident when the MSCs or CBL treatment was given alone. Neuronal damages, gliosis, and myelin vesiculation were also markedly reduced by the combined treatment of TiO2, MSCs, and CBL in AD. These observations are the first to show that co-administration of TiO2-nanowired CBL and MSCs has superior neuroprotective effects in AD probably due to increasing the brain NPL level effectively, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185, Uppsala, Sweden. .,International Experimental Central Nervous System Injury & Repair (IECNSIR), University Hospital, Uppsala University, Frödingsgatan 12, Bldg. 28, SE-75421, Uppsala, Sweden. .,Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania. .,Department of Neurosciences, University of Basque Country, Bilbao, Spain.
| | - Dafin Fior Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- Department of Neurosciences, University of Basque Country, Bilbao, Spain.,Nanoneurosurgery Group, BioCruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain.,Faculty of Health Science, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | - Ranjana Patnaik
- School of Biomedical Engineering, Department of Biomaterials, Indian Institute of technology, Banaras Hindu University, Varanasi, India
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Herbert Mössler
- "RoNeuro" Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca, Romania
| | - Aruna Sharma
- Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185, Uppsala, Sweden.,International Experimental Central Nervous System Injury & Repair (IECNSIR), University Hospital, Uppsala University, Frödingsgatan 12, Bldg. 28, SE-75421, Uppsala, Sweden.,"RoNeuro" Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca, Romania.,Department of Neurosciences, University of Basque Country, Bilbao, Spain
| |
Collapse
|
9
|
Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:145-200. [DOI: 10.1016/bs.pbr.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Abstract
Bradykinin has important physiological actions related to the regulation of blood vessel tone and renal function, and protection from ischemia reperfusion injury. However, bradykinin also contributes to pathological states such as angioedema and inflammation. Bradykinin is metabolized by many different peptidases that play a major role in the control of bradykinin levels. Peptidase inhibitor therapies such as angiotensin converting enzyme (ACE) and neprilysin inhibitors increase bradykinin levels, and the challenge for such therapies is to achieve the beneficial cardiovascular and renal effects without the adverse consequences such as angioedema that may result from increased bradykinin levels. Neprilysin also metabolizes natriuretic peptides. However, despite the potential therapeutic benefit of increased natriuretic peptide and bradykinin levels, neprilysin inhibitor therapy has only modest efficacy in essential hypertension and heart failure. Initial attempts to combine neprilysin inhibition with inhibition of the renin angiotensin system led to the development of omapatrilat, a drug that combines ACE and neprilysin inhibition. However, omapatrilat produced an unacceptably high incidence of angioedema in patients with hypertension (2.17%) in comparison with the ACE inhibitor enalapril (0.68%), although angioedema incidence was less in patients with heart failure with reduced ejection fraction (HFrEF) treated with omapatrilat (0.8%), and not different from that for enalapril therapy (0.5%). More recently, LCZ696, a drug that combines angiotensin receptor blockade and neprilysin inhibition, was approved for the treatment of HFrEF. The approval of LCZ696 therapy for HFrEF represents the first approval of long-term neprilysin inhibitor administration. While angioedema incidence was acceptably low in HFrEF patients receiving LCZ696 therapy (0.45%), it remains to be seen whether LCZ696 therapy for other conditions such as hypertension is also accompanied by an acceptable incidence of angioedema.
Collapse
Affiliation(s)
- Duncan J Campbell
- Department of Molecular Cardiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,St. Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Chamessian A, Young M, Qadri Y, Berta T, Ji RR, Van de Ven T. Transcriptional Profiling of Somatostatin Interneurons in the Spinal Dorsal Horn. Sci Rep 2018; 8:6809. [PMID: 29717160 PMCID: PMC5931607 DOI: 10.1038/s41598-018-25110-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/13/2018] [Indexed: 01/08/2023] Open
Abstract
The spinal dorsal horn (SDH) is comprised of distinct neuronal populations that process different somatosensory modalities. Somatostatin (SST)-expressing interneurons in the SDH have been implicated specifically in mediating mechanical pain. Identifying the transcriptomic profile of SST neurons could elucidate the unique genetic features of this population and enable selective analgesic targeting. To that end, we combined the Isolation of Nuclei Tagged in Specific Cell Types (INTACT) method and Fluorescence Activated Nuclei Sorting (FANS) to capture tagged SST nuclei in the SDH of adult male mice. Using RNA-sequencing (RNA-seq), we uncovered more than 13,000 genes. Differential gene expression analysis revealed more than 900 genes with at least 2-fold enrichment. In addition to many known dorsal horn genes, we identified and validated several novel transcripts from pharmacologically tractable functional classes: Carbonic Anhydrase 12 (Car12), Phosphodiesterase 11 A (Pde11a), and Protease-Activated Receptor 3 (F2rl2). In situ hybridization of these novel genes showed differential expression patterns in the SDH, demonstrating the presence of transcriptionally distinct subpopulations within the SST population. Overall, our findings provide new insights into the gene repertoire of SST dorsal horn neurons and reveal several novel targets for pharmacological modulation of this pain-mediating population and treatment of pathological pain.
Collapse
Affiliation(s)
- Alexander Chamessian
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, 27710, USA. .,Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina, 27710, USA. .,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| | - Michael Young
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Yawar Qadri
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Thomas Van de Ven
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
12
|
Abstract
Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor-neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.,University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
Bacchelli E, Cainazzo MM, Cameli C, Guerzoni S, Martinelli A, Zoli M, Maestrini E, Pini LA. A genome-wide analysis in cluster headache points to neprilysin and PACAP receptor gene variants. J Headache Pain 2016; 17:114. [PMID: 27957625 PMCID: PMC5153392 DOI: 10.1186/s10194-016-0705-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 01/03/2023] Open
Abstract
Background Cluster Headache (CH) is a severe primary headache, with a poorly understood pathophysiology. Complex genetic factors are likely to play a role in CH etiology; however, no confirmed gene associations have been identified. The aim of this study is to identify genetic variants influencing risk to CH and to explore the potential pathogenic mechanisms. Methods We have performed a genome-wide association study (GWAS) in a clinically well-defined cohort of 99 Italian patients with CH and in a control sample of 360 age-matched sigarette smoking healthy individuals, using the Infinium PsychArray (Illumina), which combines common highly-informative genome-wide tag SNPs and exonic SNPs. Genotype data were used to carry out a genome-wide single marker case-control association analysis using common SNPs, and a gene-based association analysis focussing on rare protein altering variants in 745 candidate genes with a putative role in CH. Results Although no single variant showed statistically significant association at the genome-wide threshold, we identified an interesting suggestive association (P = 9.1 × 10−6) with a common variant of the PACAP receptor gene (ADCYAP1R1). Furthermore, gene-based analysis provided significant evidence of association (P = 2.5 × 10−5) for a rare potentially damaging missense variant in the MME gene, encoding for the membrane metallo-endopeptidase neprilysin. Conclusions Our study represents the first genome-wide association study of common SNPs and rare exonic variants influencing risk for CH. The most interesting results implicate ADCYAP1R1 and MME gene variants in CH susceptibility and point to a role for genes involved in pain processing. These findings provide new insights into the pathogenesis of CH that need further investigation and replication in larger CH samples. Electronic supplementary material The online version of this article (doi:10.1186/s10194-016-0705-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Maria Michela Cainazzo
- Headache and Drug Abuse Unit, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Simona Guerzoni
- Headache and Drug Abuse Unit, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Martinelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.,Present address: School of Medicine, University of St Andrews, St Andrews, UK
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Luigi Alberto Pini
- Center for Neuroscience and Neurotechnology, Policlinico Hospital, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy.
| |
Collapse
|
14
|
Yorek MS, Obrosov A, Lu B, Gerard C, Kardon RH, Yorek MA. Effect of Inhibition or Deletion of Neutral Endopeptidase on Neuropathic Endpoints in High Fat Fed/Low Dose Streptozotocin-Treated Mice. J Neuropathol Exp Neurol 2016; 75:1072-1080. [PMID: 27634964 PMCID: PMC7714044 DOI: 10.1093/jnen/nlw083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously we demonstrated that a vasopeptidase inhibitor of angiotensin converting enzyme and neutral endopeptidase (NEP), a protease that degrades vaso- and neuro-active peptides, improves neural function in diabetic rodent models. The purpose of this study was to determine whether inhibition or deletion of NEP provides protection from neuropathy caused by diabetes with an emphasis on morphology of corneal nerves as a primary endpoint. Diabetes, modeling type 2, was induced in C57Bl/6J and NEP deficient mice through a combination of a high fat diet and streptozotocin. To inhibit NEP activity, diabetic C57Bl/6J mice were treated with candoxatril using a prevention or intervention protocol. Twelve weeks after the induction of diabetes in C57Bl/6J mice, the existence of diabetic neuropathy was determined through multiple endpoints including decrease in corneal nerves in the epithelium and sub-epithelium layer. Treatment of diabetic C57Bl/6J mice with candoxatril improved diabetic peripheral neuropathy and protected corneal nerve morphology with the prevention protocol being more efficacious than intervention. Unlike C57Bl/6J, mice deficient in NEP were protected from the development of neuropathologic alterations and loss of corneal nerves upon induction of diabetes. These studies suggest that NEP contributes to the development of diabetic neuropathy and may be a treatable target.
Collapse
Affiliation(s)
- Matthew S Yorek
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Alexander Obrosov
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Bao Lu
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Craig Gerard
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Randy H Kardon
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Mark A Yorek
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| |
Collapse
|
15
|
Auer-Grumbach M, Toegel S, Schabhüttl M, Weinmann D, Chiari C, Bennett D, Beetz C, Klein D, Andersen P, Böhme I, Fink-Puches R, Gonzalez M, Harms M, Motley W, Reilly M, Renner W, Rudnik-Schöneborn S, Schlotter-Weigel B, Themistocleous A, Weishaupt J, Ludolph A, Wieland T, Tao F, Abreu L, Windhager R, Zitzelsberger M, Strom T, Walther T, Scherer S, Züchner S, Martini R, Senderek J. Rare Variants in MME, Encoding Metalloprotease Neprilysin, Are Linked to Late-Onset Autosomal-Dominant Axonal Polyneuropathies. Am J Hum Genet 2016; 99:607-623. [PMID: 27588448 DOI: 10.1016/j.ajhg.2016.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade β-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment.
Collapse
|
16
|
Higuchi Y, Hashiguchi A, Yuan J, Yoshimura A, Mitsui J, Ishiura H, Tanaka M, Ishihara S, Tanabe H, Nozuma S, Okamoto Y, Matsuura E, Ohkubo R, Inamizu S, Shiraishi W, Yamasaki R, Ohyagi Y, Kira JI, Oya Y, Yabe H, Nishikawa N, Tobisawa S, Matsuda N, Masuda M, Kugimoto C, Fukushima K, Yano S, Yoshimura J, Doi K, Nakagawa M, Morishita S, Tsuji S, Takashima H. Mutations in MME cause an autosomal-recessive Charcot-Marie-Tooth disease type 2. Ann Neurol 2016; 79:659-72. [PMID: 26991897 PMCID: PMC5069600 DOI: 10.1002/ana.24612] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/16/2016] [Accepted: 02/03/2016] [Indexed: 01/12/2023]
Abstract
Objective The objective of this study was to identify new causes of Charcot–Marie–Tooth (CMT) disease in patients with autosomal‐recessive (AR) CMT. Methods To efficiently identify novel causative genes for AR‐CMT, we analyzed 303 unrelated Japanese patients with CMT using whole‐exome sequencing and extracted recessive variants/genes shared among multiple patients. We performed mutation screening of the newly identified membrane metalloendopeptidase (MME) gene in 354 additional patients with CMT. We clinically, genetically, pathologically, and radiologically examined 10 patients with the MME mutation. Results We identified recessive mutations in MME in 10 patients. The MME gene encodes neprilysin (NEP), which is well known to be one of the most prominent beta‐amyloid (Aβ)‐degrading enzymes. All patients had a similar phenotype consistent with late‐onset axonal neuropathy. They showed muscle weakness, atrophy, and sensory disturbance in the lower extremities. All the MME mutations could be loss‐of‐function mutations, and we confirmed a lack/decrease of NEP protein expression in a peripheral nerve. No patients showed symptoms of dementia, and 1 patient showed no excess Aβ in Pittsburgh compound‐B positron emission tomography imaging. Interpretation Our results indicate that loss‐of‐function MME mutations are the most frequent cause of adult‐onset AR‐CMT2 in Japan, and we propose that this new disease should be termed AR‐CMT2T. A loss‐of‐function MME mutation did not cause early‐onset Alzheimer's disease. Identifying the MME mutation responsible for AR‐CMT could improve the rate of molecular diagnosis and the understanding of the molecular mechanisms of CMT. Ann Neurol 2016;79:659–672
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ishihara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Cardiovascular medicine, Nephrology and Neurology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Tanabe
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryuichi Ohkubo
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Neurology, Fujimoto General Hospital, Miyazaki, Japan
| | - Saeko Inamizu
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Wataru Shiraishi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasumasa Ohyagi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hayato Yabe
- Department of Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Noriko Nishikawa
- Department of Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shinsuke Tobisawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Nozomu Matsuda
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Masuda
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Chiharu Kugimoto
- Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Fukushima
- Department of Home-Care Promotion, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoshi Yano
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masanori Nakagawa
- Director of North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
17
|
[Neuropathic pain. How to open the blackbox]. Schmerz 2015; 29:479-80, 482-5. [PMID: 26264897 DOI: 10.1007/s00482-015-0028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article, without presuming to be comprehensive, gives a brief outline of the development of research on neuropathic pain in Germany. Current clinical research on this subject focusses on the validation of human models, patient phenotyping, mechanism-based classification and treatment as well as on molecular pathomechanisms. This clinical research is based to a large extent on the work of several internationally recognized basic researchers in the 1990s. In particular, findings from system physiology led to the analysis of clinical phenotypes and the underlying pathophysiology. In parallel, basic research achieved international top levels through the development of innovative methods. Close cooperation, building of consortia and European networking made major contributions to the success of this research.
Collapse
|
18
|
THIAGARAJAN VENKATAR, SHANMUGAM PALANICHAMY, KRISHNAN UMAM, MUTHURAMAN ARUNACHALAM. Ameliorative potential of Vernonia cinerea on chronic constriction injury of sciatic nerve induced neuropathic pain in rats. AN ACAD BRAS CIENC 2014; 86:1435-50. [DOI: 10.1590/0001-3765201420130404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/17/2014] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study is to investigate the ameliorative potential of ethanolic extract of whole plant of Vernonia cinerea in the chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rats. Behavioral parameters such as a hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal, chemical and mechanical hyperalgesia and allodynia. Biochemical changes in sciatic nerve tissue were ruled out by estimating thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and total calcium levels. Ethanolic extract of Vernonia cinerea and pregabalin were administered for 14 consecutive days starting from the day of surgery. CCI of sciatic nerve has been shown to induce significant changes in behavioral, biochemical and histopathological assessments when compared to the sham control group. Vernonia cinerea attenuated in a dose dependent manner the above pathological changes induced by CCI of the sciatic nerve, which is similar to attenuation of the pregabalin pretreated group. The ameliorating effect of ethanolic extract of Vernonia cinerea against CCI of sciatic nerve induced neuropathic pain may be due to the presence of flavonoids and this effect is attributed to anti-oxidative, neuroprotective and calcium channel modulator actions of these compounds.
Collapse
|
19
|
He L, Üçeyler N, Krämer HH, Colaço MN, Lu B, Birklein F, Sommer C. Methylprednisolone prevents nerve injury-induced hyperalgesia in neprilysin knockout mice. Pain 2013; 155:574-580. [PMID: 24333776 DOI: 10.1016/j.pain.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 11/16/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
The pathophysiology of the complex regional pain syndrome involves enhanced neurogenic inflammation mediated by neuropeptides. Neutral endopeptidase (neprilysin, NEP) is a key enzyme in neuropeptide catabolism. Our previous work revealed that NEP knock out (ko) mice develop more severe hypersensitivity to thermal and mechanical stimuli after chronic constriction injury (CCI) of the sciatic nerve than wild-type (wt) mice. Because treatment with glucocorticoids is effective in early complex regional pain syndrome, we investigated whether methylprednisolone (MP) reduces pain and sciatic nerve neuropeptide content in NEP ko and wt mice with nerve injury. After CCI, NEP ko mice developed more severe thermal and mechanical hypersensitivity and hind paw edema than wt mice, confirming previous findings. Hypersensitivity was prevented by MP treatment in NEP ko but not in wt mice. MP treatment had no effect on protein levels of calcitonin-gene related peptide, substance P, and bradykinin in sciatic nerves of NEP ko mice. Endothelin-1 (ET-1) levels were higher in naïve and nerve-injured NEP ko than in wt mice, without an effect of MP treatment. Gene expression of the ET-1 receptors ETAR and ETBR was not different between genotypes and was not altered after CCI, but was increased after additional MP treatment. The ETBR agonist IRL-1620 was analgesic in NEP ko mice after CCI, and the ETBR antagonist BQ-788 showed a trend to reduce the analgesic effect of MP. The results provide evidence that MP reduces CCI-induced hyperalgesia in NEP ko mice, and that this may be related to ET-1 via analgesic actions of ETBR.
Collapse
Affiliation(s)
- Lan He
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany Department of Neurology, Johannes Gutenberg University Mainz, Mainz, Germany Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Involvement of the opioid and cannabinoid systems in pain control: new insights from knockout studies. Eur J Pharmacol 2013; 716:142-57. [PMID: 23523475 DOI: 10.1016/j.ejphar.2013.01.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 12/20/2022]
Abstract
The endogenous opioid and cannabinoid systems are involved in the physiological inhibitory control of pain and are of particular interest for the development of therapeutic approaches for pain management. The involvement of these endogenous systems in pain control has been studied from decades by the use of compounds with different affinities for each cannabinoid and opioid receptor or for the different enzymes involved in endocannabinoid and endogenous opioid metabolism. However, the selectivity of these pharmacological tools in vivo has represented an important limitation for these studies. The generation of genetically modified mice with selective mutations in specific components of the endocannabinoid and endogenous opioid system has provided important advances in the identification of the specific contribution of each component of these endogenous systems in the perception of noxious stimuli and the development of pathological pain states. Different lines of constitutive and conditional knockout mice deficient in specific cannabinoid and opioid receptors, specific precursors of the endogenous opioid peptides and the main enzymes involved in endocannabinoid and endogenous opioid degradation are now available. These knockout mice have also been used to evaluate the contribution of each component of the endocannabinoid and opioid system in the antinociceptive effects of cannabinoid and opioid agonists, including those currently used to treat pain in humans. This review summarizes the main advances provided in the last 15 years by the use of these genetic tools in the knowledge of the physiological control of pain and the pharmacology of cannabinoid and opioid compounds for pain management.
Collapse
|
21
|
Thiagarajan VRK, Shanmugam P, Krishnan UM, Muthuraman A, Singh N. Ameliorative potential of Butea monosperma on chronic constriction injury of sciatic nerve induced neuropathic pain in rats. AN ACAD BRAS CIENC 2012; 84:1091-104. [PMID: 23011113 DOI: 10.1590/s0001-37652012005000063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 04/13/2012] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to investigate the ameliorative role of ethanolic extract from leaves of Butea monosperma in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rats. Hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal hyperalgesia, cold chemical allodynia, mechanical hyperalgesia & allodynia in the left hind paw and tail thermal hyperalgesia. Further on, thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and total calcium levels were estimated to assess the biochemical changes in the sciatic nerve tissue. Histopathological changes were also observed in the sciatic nerve tissue. Ethanolic extract of Butea monosperma leaves and pregabalin (serving as positive control) were administered for 14 consecutive days starting from the day of surgery. CCI resulted in significant changes in behavioural and biochemical parameters. Pretreatment of Butea monosperma attenuated CCI induced development of behavioural, biochemical and histopathological alterations in a dose dependent manner, which is comparable to that of pregabalin pretreated group. These findings may be attributed to its potential anti-oxidative, neuroprotective and calcium channel modulatory actions of Butea monosperma.
Collapse
|
22
|
Schreiter A, Gore C, Labuz D, Fournie‐Zaluski M, Roques BP, Stein C, Machelska H. Pain inhibition by blocking leukocytic and neuronal opioid peptidases in peripheral inflamed tissue. FASEB J 2012; 26:5161-71. [DOI: 10.1096/fj.12-208678] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anja Schreiter
- Klinik für Anästhesiologie und Operative IntensivmedizinFreie Universität Berlin, Charité‐Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinGermany
| | - Carmen Gore
- Klinik für Anästhesiologie und Operative IntensivmedizinFreie Universität Berlin, Charité‐Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinGermany
| | - Dominika Labuz
- Klinik für Anästhesiologie und Operative IntensivmedizinFreie Universität Berlin, Charité‐Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinGermany
| | | | | | - Christoph Stein
- Klinik für Anästhesiologie und Operative IntensivmedizinFreie Universität Berlin, Charité‐Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinGermany
| | - Halina Machelska
- Klinik für Anästhesiologie und Operative IntensivmedizinFreie Universität Berlin, Charité‐Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinGermany
| |
Collapse
|
23
|
Nalivaeva NN, Belyaev ND, Zhuravin IA, Turner AJ. The Alzheimer's amyloid-degrading peptidase, neprilysin: can we control it? Int J Alzheimers Dis 2012; 2012:383796. [PMID: 22900228 PMCID: PMC3412116 DOI: 10.1155/2012/383796] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/01/2012] [Indexed: 02/07/2023] Open
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) postulates that accumulation in the brain of amyloid β-peptide (Aβ) is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP) and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs). During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP) is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD) opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance.
Collapse
Affiliation(s)
- N. N. Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg 194223, Russia
| | - N. D. Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - I. A. Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg 194223, Russia
| | - A. J. Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
24
|
Wei T, Guo TZ, Li WW, Hou S, Kingery WS, Clark JD. Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain. J Neuroinflammation 2012; 9:181. [PMID: 22824437 PMCID: PMC3458986 DOI: 10.1186/1742-2094-9-181] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/29/2012] [Indexed: 11/10/2022] Open
Abstract
Tibia fracture in rats followed by cast immobilization leads to nociceptive, trophic, vascular and bone-related changes similar to those seen in Complex Regional Pain Syndrome (CRPS). Substance P (SP) mediated neurogenic inflammation may be responsible for some of the signs of CRPS in humans. We therefore hypothesized that SP acting through the SP receptor (NK1) leads to the CRPS-like changes found in the rat model. In the present study, we intradermally injected rats with SP and monitored hindpaw mechanical allodynia, temperature, and thickness as well as tissue levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), and nerve growth factor-β (NGF) for 72 h. Anti-NGF antibody was utilized to block the effects of SP-induced NGF up-regulation. Fracture rats treated with the selective NK1 receptor antagonist LY303870 prior to cast removal were assessed for BrdU, a DNA synthesis marker, incorporation in skin cells to examine cellular proliferation. Bone microarchitecture was measured using micro computed tomography (μCT). We observed that: (1) SP intraplantar injection induced mechanical allodynia, warmth and edema as well as the expression of nociceptive mediators in the hindpaw skin of normal rats, (2) LY303870 administered intraperitoneally after fracture attenuated allodynia, hindpaw unweighting, warmth, and edema, as well as cytokine and NGF expression, (3) LY303870 blocked fracture-induced epidermal thickening and BrdU incorporation after fracture, (4) anti-NGF antibody blocked SP-induced allodynia but not warmth or edema, and (5) LY303870 had no effect on bone microarchitecture. Collectively our data indicate that SP acting through NK1 receptors supports the nociceptive and vascular components of CRPS, but not the bone-related changes.
Collapse
Affiliation(s)
- Tzuping Wei
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Chronic neuropathic and inflammatory pain is a major public health problem. Nociceptors undergo sensitization, first in peripheral tissues then in the central nervous sytem, via neuroimmune interactions linking neurons, glial cells (microglia and astrocytes), and immune cells. These interactions may either exacerbate or attenuate the pain and inflammation, which normally reach a state of equilibrium. With more powerful or longer lasting stimuli, specific profiles of microglial and, subsequently, astrocytic activation in the dorsal horn play a key role in neuronal plasticity and transition to chronic pain. Recent insights into the interactions between the nervous system and the immune system suggest a large number of potential therapeutic targets that could be influenced either by targeted inhibition or by directing the neuroimmune response toward the antiinflammatory and analgesic end of its spectrum.
Collapse
|
26
|
Muthuraman A, Singh N. Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: an evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 11:24. [PMID: 21426568 PMCID: PMC3072356 DOI: 10.1186/1472-6882-11-24] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/22/2011] [Indexed: 01/13/2023]
Abstract
Background Acorus calamus (family: Araceae), is an indigenous plant, traditionally it is used as an ingredient of various cocktail preparations and for the management of severe inflammatory disorders in Indian system of medicine. Present study investigated the attenuating role of Acorus calamus plant extract in chronic constriction injury (CCI) of sciatic nerve induced peripheral neuropathy in rats. Methods Hot plate, plantar, Randall Selitto, Von Frey Hair, pin prick, acetone drop, photoactometer and rota-rod tests were performed to assess degree of thermal, radiant, mechanical, chemical sensation, spontaneous motor activity and motor co-ordination changes respectively, at different time intervals i.e., day 0, 1, 3, 6, 9, 12, 15, 18 and 21. Tissue myeloperoxidase, superoxide anion and total calcium levels were determined after 21st day to assess biochemical alterations. Histopathological evaluations were also performed. Hydroalcoholic extract of Acorus calamus (HAE-AC, 100 and 200 mg/kg, p.o.) and pregabalin (10 mg/kg, p.o.) were administered from the day of surgery for 14 days. Results CCI of sciatic nerve significantly induced thermal, radiant, mechanical hyperalgesia and thermal, chemical, tactile allodynia, along with increase in the levels of superoxide anion, total calcium and myeloperoxidase activity. Moreover significant histological changes were also observed. HAE-AC attenuated CCI induced development of painful behavioural, biochemical and histological changes in a dose dependent manner similar to that of pregabalin serving as positive control. Conclusions Acorus calamus prevented CCI induced neuropathy which may be attributed to its multiple actions including anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory actions.
Collapse
|
27
|
New perspectives on the endothelin axis in pain. Pharmacol Res 2011; 63:532-40. [PMID: 21352917 DOI: 10.1016/j.phrs.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 01/14/2023]
|
28
|
Abstract
Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated network that coordinates immune responses and modulates the excitability of pain pathways. The immune system also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents. A greater understanding of the role of the immune system in pain processing and modulation reveals potential targets for analgesic drug development and new therapeutic opportunities for managing chronic pain.
Collapse
|
29
|
Coppey L, Davidson E, Lu B, Gerard C, Yorek M. Vasopeptidase inhibitor ilepatril (AVE7688) prevents obesity- and diabetes-induced neuropathy in C57Bl/6J mice. Neuropharmacology 2010; 60:259-66. [PMID: 20849865 DOI: 10.1016/j.neuropharm.2010.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/26/2010] [Accepted: 09/08/2010] [Indexed: 01/30/2023]
Abstract
Previously we demonstrated that inhibition of neutral endopeptidase (NEP), a protease that degrades vaso- and neuro-active peptides, and angiotensin converting enzyme (ACE) with a vasopeptidase inhibitor improves vascular and neural function in diabetic rat models. The purpose of this study was to determine whether inhibition of NEP and ACE or deletion of NEP provides protection from nerve impairment caused by diabetes or diet induced obesity (DIO). To determine the role of NEP and ACE inhibition in neuropathy related to insulin-deficient diabetes or DIO we used C57Bl/6J mice treated with AVE7688, a vasopeptidase inhibitor, or NEP deficient (-/-) mice. Mice at 12 weeks of age were fed a high fat diet for 12 weeks or were diabetic for duration of 12 weeks following a single injection of high dose streptozotocin. Both a prevention and intervention protocol was used for AVE7688 treatment. Glucose utilization was impaired in DIO C57Bl/6J and NEP -/- mice. However, treating DIO C57Bl/6J or NEP -/- mice with AVE7688 improved glucose tolerance. Thermal hypoalgesia and nerve conduction slowing were present in both streptozotocin-diabetic and DIO C57Bl/6J mice but not in AVE7688 treated C57Bl/6J mice or NEP -/- mice exposed to either streptozotocin-induced diabetes or a high fat diet. Intraepidermal nerve fiber (IENF) profiles were decreased in the hindpaw of C57Bl/6J diabetic or DIO mice and this improved when the mice were treated with AVE7688. IENF profiles were not decreased in diabetic or DIO NEP (-/-) mice. These studies suggest that NEP plays a role in regulating nerve function in insulin-deficient diabetes and DIO.
Collapse
Affiliation(s)
- Lawrence Coppey
- Department of Veterans Affairs Iowa City Health Care System, University of Iowa, Iowa City, IA 52246, USA
| | | | | | | | | |
Collapse
|
30
|
Huehne K, Schaal U, Leis S, Uebe S, Gosso MF, van den Maagdenberg AM, Maihöfner C, Birklein F, Rautenstrauss B, Winterpacht A. Lack of genetic association of neutral endopeptidase (NEP) with complex regional pain syndrome (CRPS). Neurosci Lett 2010; 472:19-23. [DOI: 10.1016/j.neulet.2010.01.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 11/27/2022]
|
31
|
The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. EXPERIMENTAL DIABETES RESEARCH 2010; 2009:431980. [PMID: 20148083 PMCID: PMC2817866 DOI: 10.1155/2009/431980] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/18/2009] [Indexed: 01/02/2023]
Abstract
We demonstrated that inhibition of neutral endopeptidase (NEP), a protease that degrades vaso- and neuroactive peptides, improves vascular and neural function in diabetic animal models. In this study we explored the role of NEP in neuropathy related to either insulin-deficient diabetes or diet-induced obesity using NEP deficient (−/−) mice. Initial studies showed that streptozotocin, in the absence of subsequent hyperglycemia, did not induce nerve conduction slowing or paw thermal hypoalgesia. Glucose disposal was impaired in both C57Bl/6 and NEP −/− mice fed a high fat diet. Thermal hypoalgesia and nerve conduction slowing were present in both streptozotocin-diabetic and high fat fed C57Bl/6 mice but not in NEP −/− mice exposed to either streptozotocin-induced diabetes or a high fat diet. These studies suggest that streptozotocin does not induce neurotoxicity in mice and that NEP plays a role in regulating nerve function in insulin-deficient diabetes and diet-induced obesity.
Collapse
|