1
|
Megane Penalva YC, Paschkowsky S, Yang J, Recinto SJ, Cinkorpumin J, Hernandez MR, Xiao B, Nitu A, Yee-Li Wu H, Munter HM, Michalski B, Fahnestock M, Pastor W, Bennett DA, Munter LM. Loss of the APP regulator RHBDL4 preserves memory in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.579698. [PMID: 38464180 PMCID: PMC10925189 DOI: 10.1101/2024.02.22.579698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Characteristic cerebral pathological changes of Alzheimer's disease (AD) such as glucose hypometabolism or the accumulation of cleavage products of the amyloid precursor protein (APP), known as Aβ peptides, lead to sustained endoplasmic reticulum (ER) stress and neurodegeneration. To preserve ER homeostasis, cells activate their unfolded protein response (UPR). The rhomboid-like-protease 4 (RHBDL4) is an enzyme that participates in the UPR by targeting proteins for proteasomal degradation. We demonstrated previously that RHBLD4 cleaves APP in HEK293T cells, leading to decreased total APP and Aβ. More recently, we showed that RHBDL4 processes APP in mouse primary mixed cortical cultures as well. Here, we aim to examine the physiological relevance of RHBDL4 in the brain. We first found that brain samples from AD patients and an AD mouse model (APPtg) showed increased RHBDL4 mRNA and protein expression. To determine the effects of RHBDL4's absence on APP physiology in vivo, we crossed APPtg mice to a RHBDL4 knockout (R4-/-) model. RHBDL4 deficiency in APPtg mice led to increased total cerebral APP and amyloidogenic processing when compared to APPtg controls. Contrary to expectations, as assessed by cognitive tests, RHBDL4 absence rescued cognition in 5-month-old female APPtg mice. Informed by unbiased RNAseq data, we demonstrated in vitro and in vivo that RHBDL4 absence leads to greater levels of active β-catenin due to decreased proteasomal clearance. Decreased β-catenin activity is known to underlie cognitive defects in APPtg mice and AD. Our work suggests that RHBDL4's increased expression in AD, in addition to regulating APP levels, leads to aberrant degradation of β-catenin, contributing to cognitive impairment.
Collapse
Affiliation(s)
- Ylauna Christine Megane Penalva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sherilyn Junelle Recinto
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | | | - Marina Ruelas Hernandez
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Bin Xiao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Albert Nitu
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Helen Yee-Li Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | - Hans Markus Munter
- Department of Human Genetics, McGill University, Montreal, QC, Canada H3A 0C7
| | - Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - William Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 0B1
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
2
|
Wei S, Dang L, Gao F, Wang J, Wang J, Qu Q. Effects of Simvastatin on Plasma Amyloid-β Transport in Patients with Hyperlipidemia: A 12-Week Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis 2022; 90:349-362. [DOI: 10.3233/jad-220240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Abnormal blood lipids are associated with cognitive impairment and amyloid-β (Aβ) deposition in the brain. However, the effects of statins on Alzheimer’s disease (AD) have not been determined. Objective: Considering that plasma Aβ are related to Aβ deposition in the brain, we investigated the effects of simvastatin on plasma Aβ transport. Methods: This was a randomized, double-blind, placebo-controlled trial. One hundred and twenty patients with hyperlipidemia were randomly assigned to receive 40 mg of simvastatin per day or matching placebo for 12 weeks (sixty patients per group). Plasma Aβ, sLRP1, sRAGE, and lipid levels were measured at baseline and at the 6-week and 12-week visits. Results: The ITT database ultimately included 108 participants (placebo group: n = 53; simvastatin group: n = 55) and 64 (59.3%) were women, ranging in age from 45 to 75 years (mean 57.2±6.9 years). Multiple linear regression analysis showed that, after 12 weeks of follow-up, compared with the placebo group, ΔAβ 42 levels (the change of Aβ 42 levels from baseline at week 12) increased more and ΔsRAGE levels decreased more in the simvastatin group (Aβ 42: β= 5.823, p = 0.040; sRAGE: β= –72.012, p = 0.031), and a significant negative association was found between ΔAβ 42 and ΔsRAGE levels (β= –0.115, p = 0.045). In addition, generalized estimation equation analysis showed that triglycerides levels were negatively correlated with Aβ 40 (β= –16.79, p = 0.023), Aβ 42 (β= –6.10, p = 0.001), and sRAGE (β= –51.16, p = 0.003). Conclusion: Daily oral simvastatin (40 mg/day) in patients with hyperlipidemia for 12 weeks can significantly increase plasma Aβ 42 levels compared with placebo, which was associated with reduced triglycerides and sRAGE levels, indicating that statins may affect plasma Aβ transport.
Collapse
Affiliation(s)
- Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fan Gao
- Clinical research center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:18. [PMID: 35534591 PMCID: PMC9086005 DOI: 10.1007/s13659-022-00339-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 05/02/2023]
Abstract
Human longevity has increased dramatically during the past century. More than 20% of the 9 billion population of the world will exceed the age of 60 in 2050. Since the last three decades, some interventions and many preclinical studies have been found to show slowing aging and increasing the healthy lifespan of organisms from yeast, flies, rodents to nonhuman primates. The interventions are classified into two groups: lifestyle modifications and pharmacological/genetic manipulations. Some genetic pathways have been characterized to have a specific role in controlling aging and lifespan. Thus, all genes in the pathways are potential antiaging targets. Currently, many antiaging compounds target the calorie-restriction mimetic, autophagy induction, and putative enhancement of cell regeneration, epigenetic modulation of gene activity such as inhibition of histone deacetylases and DNA methyltransferases, are under development. It appears evident that the exploration of new targets for these antiaging agents based on biogerontological research provides an incredible opportunity for the healthcare and pharmaceutical industries. The present review focus on the properties of slow aging and healthy life span extension of natural products from various biological resources, endogenous substances, drugs, and synthetic compounds, as well as the mechanisms of targets for antiaging evaluation. These bioactive compounds that could benefit healthy aging and the potential role of life span extension are discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
4
|
Tong XK, Royea J, Hamel E. Simvastatin rescues memory and granule cell maturation through the Wnt/β-catenin signaling pathway in a mouse model of Alzheimer's disease. Cell Death Dis 2022; 13:325. [PMID: 35397630 PMCID: PMC8994768 DOI: 10.1038/s41419-022-04784-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022]
Abstract
We previously showed that simvastatin (SV) restored memory in a mouse model of Alzheimer disease (AD) concomitantly with normalization in protein levels of memory-related immediate early genes in hippocampal CA1 neurons. Here, we investigated age-related changes in the hippocampal memory pathway, and whether the beneficial effects of SV could be related to enhanced neurogenesis and signaling in the Wnt/β-catenin pathway. APP mice and wild-type (WT) littermate controls showed comparable number of proliferating (Ki67-positive nuclei) and immature (doublecortin (DCX)-positive) granule cells in the dentate gyrus until 3 months of age. At 4 months, Ki67 or DCX positive cells decreased sharply and remained less numerous until the endpoint (6 months) in both SV-treated and untreated APP mice. In 6 month-old APP mice, dendritic extensions of DCX immature neurons in the molecular layer were shorter, a deficit fully normalized by SV. Similarly, whereas mature granule cells (calbindin-immunopositive) were decreased in APP mice and not restored by SV, their dendritic arborizations were normalized to control levels by SV treatment. SV increased Prox1 protein levels (↑67.7%, p < 0.01), a Wnt/β-catenin signaling target, while significantly decreasing (↓61.2%, p < 0.05) the upregulated levels of the β-catenin-dependent Wnt pathway inhibitor DKK1 seen in APP mice. In APP mice, SV benefits were recapitulated by treatment with the Wnt/β-catenin specific agonist WAY-262611, whereas they were fully abolished in mice that received the Wnt/β-catenin pathway inhibitor XAV939 during the last month of SV treatment. Our results indicate that activation of the Wnt-β-catenin pathway through downregulation of DKK1 underlies SV neuronal and cognitive benefits.
Collapse
Affiliation(s)
- Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada.,Department of Biochemistry, Microbiology, Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada.
| |
Collapse
|
5
|
Lacalle-Aurioles M, Trigiani LJ, Bourourou M, Lecrux C, Hamel E. Alzheimer's disease and cerebrovascular pathology alter brain endothelial inward rectifier potassium (K IR 2.1) channels. Br J Pharmacol 2021; 179:2259-2274. [PMID: 34820829 PMCID: PMC9304142 DOI: 10.1111/bph.15751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Inward rectifier potassium (KIR) channels are key effectors of vasodilatation in neurovascular coupling (NVC). KIR channels expressed in cerebral endothelial cells (ECs) have been confirmed as essential modulators of NVC. Alzheimer's disease (AD) and cerebrovascular disease (CVD) impact on EC‐KIR channel function, but whether oxidative stress or inflammation explains this impairment remains elusive. Experimental Approach We evaluated KIR channel function in intact and EC‐denuded pial arteries of wild‐type (WT) and transgenic mice overexpressing a mutated form of the human amyloid precursor protein (APP mice, recapitulating amyloid β‐induced oxidative stress seen in AD) or a constitutively active form of TGF‐β1 (TGF mice, recapitulating inflammation seen in cerebrovascular pathology). The benefits of antioxidant (catalase) or anti‐inflammatory (indomethacin) drugs also were investigated. Vascular and neuronal components of NVC were assessed in vivo. Key Results Our findings show that (i) KIR channel‐mediated maximal vasodilatation in APP and TGF mice reaches only 37% and 10%, respectively, of the response seen in WT mice; (ii) KIR channel dysfunction results from KIR2.1 subunit impairment; (iii) about 50% of K+‐induced artery dilatation is mediated by EC‐KIR channels; (iv) oxidative stress and inflammation impair KIR channel function, which can be restored by antioxidant and anti‐inflammatory drugs; and (v) inflammation induces KIR2.1 overexpression and impairs NVC in TGF mice. Conclusion and Implications Therapies targeting both oxidative stress and inflammation are necessary for full recovery of KIR2.1 channel function in cerebrovascular pathology caused by AD and CVD.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Lianne J Trigiani
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Miled Bourourou
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Clotilde Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
Youwakim J, Girouard H. Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. Am J Hypertens 2021; 34:1014-1030. [PMID: 34136907 DOI: 10.1093/ajh/hpab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most prevalent and modifiable risk factor for stroke, vascular cognitive impairment, and Alzheimer's disease. However, the mechanistic link between hypertension and neurodegenerative diseases remains to be understood. Recent evidence indicates that inflammation is a common pathophysiological trait for both hypertension and neurodegenerative diseases. Low-grade chronic inflammation at the systemic and central nervous system levels is now recognized to contribute to the physiopathology of hypertension. This review speculates that inflammation represents a mediator between hypertension and neurodegenerative diseases, either by a decrease in cerebral blood flow or a disruption of the blood-brain barrier which will, in turn, let inflammatory cells and neurotoxic molecules enter the brain parenchyma. This may impact brain functions including cognition and contribute to neurodegenerative diseases. This review will thus discuss the relationship between hypertension, systemic inflammation, cerebrovascular functions, neuroinflammation, and brain dysfunctions. The potential clinical future of immunotherapies against hypertension and associated cerebrovascular risks will also be presented.
Collapse
Affiliation(s)
- Jessica Youwakim
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
| | - Hélène Girouard
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériaterie de Montréal, Montreal, QC, Canada
| |
Collapse
|
7
|
Li L, Tong XK, Hosseini Kahnouei M, Vallerand D, Hamel E, Girouard H. Impaired Hippocampal Neurovascular Coupling in a Mouse Model of Alzheimer's Disease. Front Physiol 2021; 12:715446. [PMID: 34475828 PMCID: PMC8406685 DOI: 10.3389/fphys.2021.715446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia, is characterized by neuronal degeneration and cerebrovascular dysfunction. Increasing evidence indicates that cerebrovascular dysfunction may be a key or an aggravating pathogenic factor in AD. This emphasizes the importance to investigate the tight coupling between neuronal activity and cerebral blood flow (CBF) termed neurovascular coupling (NVC). NVC depends on all cell types of the neurovascular unit within which astrocytes are important players in the progression of AD. Hence, the objective of this study was to characterize the hippocampal NVC in a mouse model of AD. Hippocampal NVC was studied in 6-month-old amyloid-beta precursor protein (APP) transgenic mice and their corresponding wild-type littermates using in vivo laser Doppler flowmetry to measure CBF in area CA1 of the hippocampus in response to Schaffer collaterals stimulation. Ex vivo two-photon microscopy experiments were performed to determine astrocytic Ca2+ and vascular responses to electrical field stimulation (EFS) or caged Ca2+ photolysis in hippocampal slices. Neuronal synaptic transmission, astrocytic endfeet Ca2+ in correlation with reactive oxygen species (ROS), and vascular reactivity in the presence or absence of Tempol, a mimetic of superoxide dismutase, were further investigated using electrophysiological, caged Ca2+ photolysis or pharmacological approaches. Whisker stimulation evoked-CBF increases and ex vivo vascular responses to EFS were impaired in APP mice compared with their age-matched controls. APP mice were also characterized by decreased basal synaptic transmission, a shorter astrocytic Ca2+ increase, and altered vascular response to elevated perivascular K+. However, long-term potentiation, astrocytic Ca2+ amplitude in response to EFS, together with vascular responses to nitric oxide remained unchanged. Importantly, we found a significantly increased Ca2+ uncaging-induced ROS production in APP mice. Tempol prevented the vascular response impairment while normalizing astrocytic Ca2+ in APP mice. These findings suggest that NVC is altered at many levels in APP mice, at least in part through oxidative stress. This points out that therapies against AD should include an antioxidative component to protect the neurovascular unit.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Mohammadamin Hosseini Kahnouei
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montréal, QC, Canada.,Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Diane Vallerand
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montréal, QC, Canada.,Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
mTOR Attenuation with Rapamycin Reverses Neurovascular Uncoupling and Memory Deficits in Mice Modeling Alzheimer's Disease. J Neurosci 2021; 41:4305-4320. [PMID: 33888602 DOI: 10.1523/jneurosci.2144-20.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is a universal feature of aging and decreased cerebral blood flow has been identified as an early event in the pathogenesis of Alzheimer's disease (AD). Cerebrovascular dysfunction in AD includes deficits in neurovascular coupling (NVC), a mechanism that ensures rapid delivery of energy substrates to active neurons through the blood supply. The mechanisms underlying NVC impairment in AD, however, are not well understood. We have previously shown that mechanistic/mammalian target of rapamycin (mTOR) drives cerebrovascular dysfunction in models of AD by reducing the activity of endothelial nitric oxide synthase (eNOS), and that attenuation of mTOR activity with rapamycin is sufficient to restore eNOS-dependent cerebrovascular function. Here we show mTOR drives NVC impairments in an AD model through the inhibition of neuronal NOS (nNOS)- and non-NOS-dependent components of NVC, and that mTOR attenuation with rapamycin is sufficient to restore NVC and even enhance it above WT responses. Restoration of NVC and concomitant reduction of cortical amyloid-β levels effectively treated memory deficits in 12-month-old hAPP(J20) mice. These data indicate that mTOR is a critical driver of NVC dysfunction and underlies cognitive impairment in an AD model. Together with our previous findings, the present studies suggest that mTOR promotes cerebrovascular dysfunction in AD, which is associated with early disruption of nNOS activation, through its broad negative impact on nNOS as well as on non-NOS components of NVC. Our studies highlight the potential of mTOR attenuation as an efficacious treatment for AD and potentially other neurologic diseases of aging.SIGNIFICANCE STATEMENT Failure of the blood flow response to neuronal activation [neurovascular coupling (NVC)] in a model of AD precedes the onset of AD-like cognitive symptoms and is driven, to a large extent, by mammalian/mechanistic target of rapamycin (mTOR)-dependent inhibition of nitric oxide synthase activity. Our studies show that mTOR also drives AD-like failure of non-nitric oxide (NO)-mediated components of NVC. Thus, mTOR attenuation may serve to treat AD, where we find that neuronal NO synthase is profoundly reduced early in disease progression, and potentially other neurologic diseases of aging with cerebrovascular dysfunction as part of their etiology.
Collapse
|
9
|
Chu Z, Liu Z, Li W, Xu D, Pang L. Simvastatin attenuates delayed encephalopathy induced by carbon monoxide poisoning in rats by regulating oxidative stress, inflammation and NF-κB pathway. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Zhang Q, Song Q, Gu X, Zheng M, Wang A, Jiang G, Huang M, Chen H, Qiu Y, Bo B, Tong S, Shao R, Li B, Wang G, Wang H, Hu Y, Chen H, Gao X. Multifunctional Nanostructure RAP-RL Rescues Alzheimer's Cognitive Deficits through Remodeling the Neurovascular Unit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001918. [PMID: 33511002 PMCID: PMC7816710 DOI: 10.1002/advs.202001918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Indexed: 05/21/2023]
Abstract
Cerebrovascular dysfunction characterized by the neurovascular unit (NVU) impairment contributes to the pathogenesis of Alzheimer's disease (AD). In this study, a cerebrovascular-targeting multifunctional lipoprotein-biomimetic nanostructure (RAP-RL) constituted with an antagonist peptide (RAP) of receptor for advanced glycation end-products (RAGE), monosialotetrahexosyl ganglioside, and apolipoprotein E3 is developed to recover the functional NVU and normalize the cerebral vasculature. RAP-RL accumulates along the cerebral microvasculature through the specific binding of RAP to RAGE, which is overexpressed on cerebral endothelial cells in AD. It effectively accelerates the clearance of perivascular Aβ, normalizes the morphology and functions of cerebrovasculature, and restores the structural integrity and functions of NVU. RAP-RL markedly rescues the spatial learning and memory in APP/PS1 mice. Collectively, this study demonstrates the potential of the multifunctional nanostructure RAP-RL as a disease-modifying modality for AD treatment and provides the proof of concept that remodeling the functional NVU may represent a promising therapeutic approach toward effective intervention of AD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Qingxiang Song
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Xiao Gu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Mengna Zheng
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Antian Wang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Gan Jiang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Meng Huang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Huan Chen
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yu Qiu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Bin Bo
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shanbao Tong
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Rong Shao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Binyin Li
- Department of Neurology & Neuroscience InstituteRuijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Gang Wang
- Department of Neurology & Neuroscience InstituteRuijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Hao Wang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yongbo Hu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
- Institute of Interdisciplinary Integrative Biomedical ResearchShuguang HospitalShanghai University of Traditional Chinese Medicine1200 Cailun RoadShanghai201210China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| |
Collapse
|
11
|
Rahman SO, Hussain S, Alzahrani A, Akhtar M, Najmi AK. Effect of statins on amyloidosis in the rodent models of Alzheimer's disease: Evidence from the preclinical meta-analysis. Brain Res 2020; 1749:147115. [PMID: 32918868 DOI: 10.1016/j.brainres.2020.147115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Previous studies have shown contrasting results in determining efficacy of statins against amyloid beta accumulation. The aim of this study was to assess the impact of statin in AD. METHOD We searched PubMed and Embase for relevant preclinical studies. A meta-analysis of the statin's efficacy on amyloidosis and cognitive impairment was performed. Also, stratified analysis was performed on several covariates including the type of statin used, gender and age of rodents and duration of statin therapy, to account for the reported heterogeneity in the results obtained. The study protocol was registered in PROSPERO (CRD42018102557). RESULT 17 studies including 22 comparisons, containing a sample size of 446 rodents, participated in the meta-analysis of statin's effect on overall Aβ deposition. Although the effect of statin on overall Aβ deposition was found to be protective (p < 0.00001) but as we categorized the efficacy of statin on different Aβ species (soluble and insoluble Aβ40/42) and Aβ plaque load, we found that significance in the protection decreased. A stratified meta-analysis demonstrated a significant role in the duration of statin supplements and rodent's age on the heterogeneity of the results. Statin administered to rodents for the longest duration (>6 months) and younger rodents (<6 months of age) demonstrated significant efficacy of statin on Aβ deposition. CONCLUSION Statin showed reduction in Aβ level but stratified analysis revealed that this effect of statin was dependent on rodent's age and duration of the treatment.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulaziz Alzahrani
- Department of Pharmacology, College of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Wahl D, Anderson RM, Le Couteur DG. Antiaging Therapies, Cognitive Impairment, and Dementia. J Gerontol A Biol Sci Med Sci 2020; 75:1643-1652. [PMID: 31125402 PMCID: PMC7749193 DOI: 10.1093/gerona/glz135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 01/17/2023] Open
Abstract
Aging is a powerful risk factor for the development of many chronic diseases including dementia. Research based on disease models of dementia have yet to yield effective treatments, therefore it is opportune to consider whether the aging process itself might be a potential therapeutic target for the treatment and prevention of dementia. Numerous cellular and molecular pathways have been implicated in the aging process and compounds that target these processes are being developed to slow aging and delay the onset of age-associated conditions. A few particularly promising therapeutic agents have been shown to influence many of the main hallmarks of aging and increase life span in rodents. Here we discuss the evidence that some of these antiaging compounds may beneficially affect brain aging and thereby lower the risk for dementia.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre
- Aging and Alzheimers Institute, ANZAC Research Institute, Centre for Education and Research on Ageing, The University of Sydney, Australia
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin
- Geriatrics Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - David G Le Couteur
- Charles Perkins Centre
- Aging and Alzheimers Institute, ANZAC Research Institute, Centre for Education and Research on Ageing, The University of Sydney, Australia
| |
Collapse
|
13
|
Royea J, Hamel E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer's disease therapeutic targets. GeroScience 2020; 42:1237-1256. [PMID: 32700176 DOI: 10.1007/s11357-020-00231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is multifactorial in nature. Yet, despite being the most common form of dementia in the elderly, AD's primary cause remains unknown. As such, there is currently little to offer AD patients as the vast majority of recently tested therapies have either failed in well-controlled clinical trials or inadequately treat AD. Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accordingly, various components of the brain RAS were shown to be altered in AD patients and mouse models, including the angiotensin II type 1 (AT1R), angiotensin IV receptor (AT4R), and Mas receptors. Collectively, the changes observed within the RAS have been proposed to contribute to many of the neuropathological hallmarks of AD, including the neuronal, cognitive, and vascular dysfunctions. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression. In this review, we will discuss the emergence of the RAS's involvement in AD and highlight putative mechanisms of action underlying ARB's beneficial effects that may explain their ability to modify the risk of developing AD or AD progression. The RAS may provide novel molecular targets for recovering memory pathways, cerebrovascular function, and other pathological landmarks of AD.
Collapse
Affiliation(s)
- Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
14
|
Royea J, Lacalle-Aurioles M, Trigiani LJ, Fermigier A, Hamel E. AT2R's (Angiotensin II Type 2 Receptor's) Role in Cognitive and Cerebrovascular Deficits in a Mouse Model of Alzheimer Disease. Hypertension 2020; 75:1464-1474. [PMID: 32362228 DOI: 10.1161/hypertensionaha.119.14431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antihypertensive medications targeting the renin-angiotensin system have lowered the incidence and progression of Alzheimer disease. Understanding how these medications function could lead to novel therapeutic strategies. AT4Rs (angiotensin IV receptors) have been associated with angiotensin receptor blockers' cognitive, cerebrovascular, and neuroinflammatory rescue in Alzheimer disease models. Yet, whether AT4Rs act alone or with AT2Rs remains unknown. Here, we investigated whether AT2Rs contribute to losartan's benefits and whether chronic AT2R activation could mimic angiotensin receptor blocker benefits in transgenic mice overexpressing familial Alzheimer disease mutations of the human APP (amyloid precursor protein). Losartan-treated mice (10 mg/kg per day, drinking water, 7 months) received intracerebroventricular (1 month) administration of vehicle or AT2R antagonist PD123319 (1.6 nmol/day). PD123319 countered losartan's benefits on spatial learning and memory, neurovascular coupling, and hampered those on oxidative stress and nitric oxide bioavailability. PD123319 did not oppose losartan's benefits on short-term memory and vasodilatory function and had no benefit on neuroinflammation or Aβ (amyloid β) pathology. Mice receiving either vehicle or selective AT2R agonist compound 21 (intracerebroventricular: 1 nmol/day, 1 month or drinking water: 10 mg/kg per day, 7 months), showed no improvement in memory, vasodilatory function, or nitric oxide bioavailability. Compound 21 treatment normalized neurovascular coupling, reduced astrogliosis independent of persisting microgliosis, and exacerbated oxidative stress in APP mice. Compound 21 reduced dense core Aβ plaques, but not diffuse plaques or Aβ species. Our findings suggest that targeting AT2Rs is not an ideal strategy for restoring Aβ-related cognitive and cerebrovascular deficits.
Collapse
Affiliation(s)
- Jessika Royea
- From the Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4
| | - Maria Lacalle-Aurioles
- From the Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4
| | - Lianne J Trigiani
- From the Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4
| | - Alice Fermigier
- From the Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4
| | - Edith Hamel
- From the Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4
| |
Collapse
|
15
|
Moretti R, Caruso P. Small Vessel Disease-Related Dementia: An Invalid Neurovascular Coupling? Int J Mol Sci 2020; 21:E1095. [PMID: 32046035 PMCID: PMC7036993 DOI: 10.3390/ijms21031095] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The arteriosclerosis-dependent alteration of brain perfusion is one of the major determinants in small vessel disease, since small vessels have a pivotal role in the brain's autoregulation. Nevertheless, as far as we know, endothelium distress can potentiate the flow dysregulation and lead to subcortical vascular dementia that is related to small vessel disease (SVD), also being defined as subcortical vascular dementia (sVAD), as well as microglia activation, chronic hypoxia and hypoperfusion, vessel-tone dysregulation, altered astrocytes, and pericytes functioning blood-brain barrier disruption. The molecular basis of this pathology remains controversial. The apparent consequence (or a first event, too) is the macroscopic alteration of the neurovascular coupling. Here, we examined the possible mechanisms that lead a healthy aging process towards subcortical dementia. We remarked that SVD and white matter abnormalities related to age could be accelerated and potentiated by different vascular risk factors. Vascular function changes can be heavily influenced by genetic and epigenetic factors, which are, to the best of our knowledge, mostly unknown. Metabolic demands, active neurovascular coupling, correct glymphatic process, and adequate oxidative and inflammatory responses could be bulwarks in defense of the correct aging process; their impairments lead to a potentially catastrophic and non-reversible condition.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
16
|
Zhang DP, Lu XY, He SC, Li WY, Ao R, Leung FCY, Zhang ZM, Chen QB, Zhang SJ. Sodium tanshinone IIA sulfonate protects against Aβ-induced cell toxicity through regulating Aβ process. J Cell Mol Med 2020; 24:3328-3335. [PMID: 31989795 PMCID: PMC7131914 DOI: 10.1111/jcmm.15006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/09/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Sodium tanshinone IIA sulfonate (STS) has been reported to prevent Alzheimer's disease (AD). However, the mechanism is still unknown. In this study, two in vitro models, Aβ-treated SH-SY5Y cells and SH-SY5Y human neuroblastoma cells transfected with APPsw (SH-SY5Y-APPsw cells), were employed to investigate the neuroprotective of STS. The results revealed that pretreatment with STS (1, 10 and 100 µmol/L) for 24 hours could protect against Aβ (10 µmol/L)-induced cell toxicity in a dose-dependent manner in the SH-SY5Y cells. Sodium tanshinone IIA sulfonate decreased the concentrations of reactive oxygen species, malondialdehyde, NO and iNOS, while increased the activities of superoxide dismutase and glutathione peroxidase in the SH-SY5Y cells. Sodium tanshinone IIA sulfonate decreased the levels of inflammatory factors (IL-1β, IL-6 and TNF-α) in the SH-SY5Y cells. In addition, Western blot results revealed that the expressions of neprilysin and insulin-degrading enzyme were up-regulated in the SH-SY5Y cells after STS treatment. Furthermore, ELISA and Western blot results showed that STS could decrease the levels of Aβ. ELISA and qPCR results indicated that STS could increase α-secretase (ADAM10) activity and decrease β-secretase (BACE1) activity. In conclusion, STS could protect against Aβ-induced cell damage by modulating Aβ degration and generation. Sodium tanshinone IIA sulfonate could be a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Da-Peng Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin-Yi Lu
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Chen He
- Department of Neurology, The People's Hospital of Baiyun District Guangzhou, Guangzhou, China
| | - Wan-Yan Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Ao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feona Chung-Yin Leung
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhi-Min Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qu-Bo Chen
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Matthews DG, Caruso M, Murchison CF, Zhu JY, Wright KM, Harris CJ, Gray NE, Quinn JF, Soumyanath A. Centella Asiatica Improves Memory and Promotes Antioxidative Signaling in 5XFAD Mice. Antioxidants (Basel) 2019; 8:antiox8120630. [PMID: 31817977 PMCID: PMC6943631 DOI: 10.3390/antiox8120630] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer’s disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/− 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW’s impact on amyloid-β plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.
Collapse
Affiliation(s)
- Donald G Matthews
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Maya Caruso
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Charles F Murchison
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Y Zhu
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Kirsten M Wright
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Correspondence: ; Tel.: +1-503-494-6878
| |
Collapse
|
18
|
Royea J, Martinot P, Hamel E. Memory and cerebrovascular deficits recovered following angiotensin IV intervention in a mouse model of Alzheimer's disease. Neurobiol Dis 2019; 134:104644. [PMID: 31669735 DOI: 10.1016/j.nbd.2019.104644] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/01/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022] Open
Abstract
Angiotensin II type 1 receptor antagonists like losartan have been found to lower the incidence and progression to Alzheimer's disease (AD), as well as rescue cognitive and cerebrovascular deficits in AD mouse models. We previously found that co-administration of an angiotensin IV (AngIV) receptor (AT4R) antagonist prevented losartan's benefits, identifying AT4Rs as a possible target to counter AD pathogenesis. Therein, we investigated whether directly targeting AT4Rs could counter AD pathogenesis in a well-characterized mouse model of AD. Wild-type and human amyloid precursor protein (APP) transgenic (J20 line) mice (4.5 months old) received vehicle or AngIV (~1.3 nmol/day, 1 month) intracerebroventricularly via osmotic minipumps. AngIV restored short-term memory, spatial learning and memory in APP mice. AngIV normalized hippocampal AT4R levels, increased hippocampal subgranular zone cellular proliferation and dendritic arborization, and reduced oxidative stress. AngIV rescued whisker-evoked neurovascular coupling, endothelial- and smooth muscle cell-mediated cerebral vasodilatory responses, and cerebrovascular nitric oxide bioavailability. AngIV did not alter blood pressure, neuroinflammation or amyloid-β (Aβ) pathology. These preclinical findings identify AT4R as a promising target to counter Aβ-related cognitive and cerebrovascular deficits in AD.
Collapse
Affiliation(s)
- Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Pauline Martinot
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
19
|
Trott DW, Fadel PJ. Inflammation as a mediator of arterial ageing. Exp Physiol 2019; 104:1455-1471. [PMID: 31325339 DOI: 10.1113/ep087499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review summarizes and synthesizes what is known about the contribution of inflammation to age-related arterial dysfunction. What advances does it highlight? This review details observational evidence for the relationship of age-related inflammation and arterial dysfunction, insight from autoimmune inflammatory diseases and their effects on arterial function, interventional evidence linking inflammation and age-related arterial dysfunction, insight into age-related arterial inflammation from preclinical models and interventions to ameliorate age-related inflammation and arterial dysfunction. ABSTRACT Advanced age is a primary risk factor for cardiovascular disease, the leading cause of death in the industrialized world. Two major components of arterial ageing are stiffening of the large arteries and impaired endothelium-dependent dilatation in multiple vascular beds. These two alterations are major contributors to the development of overt cardiovascular disease. Increasing inflammation with advanced age is likely to play a role in this arterial dysfunction. The purpose of this review is to synthesize what is known about inflammation and its relationship to age-related arterial dysfunction. This review discusses both the initial observational evidence for the relationship of age-related inflammation and arterial dysfunction and the evidence that inflammatory autoimmune diseases are associated with a premature arterial ageing phenotype. We next discuss interventional and mechanistic evidence linking inflammation and age-related arterial dysfunction in older adults. We also attempt to summarize the relevant evidence from preclinical models. Lastly, we discuss interventions in both humans and animals that have been shown to ameliorate age-related arterial inflammation and dysfunction. The available evidence provides a strong basis for the role of inflammation in both large artery stiffening and impairment of endothelium-dependent dilatation; however, the specific inflammatory mediators, the initiating factors and the relative importance of the endothelium, smooth muscle cells, perivascular adipose tissue and immune cells in arterial inflammation are not well understood. With the expansion of the ageing population, ameliorating age-related arterial inflammation represents an important potential strategy for preserving vascular health in the elderly.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
20
|
Effect of pioglitazone and simvastatin in lipopolysaccharide-induced amyloidogenesis and cognitive impairment in mice: possible role of glutamatergic pathway and oxidative stress. Behav Pharmacol 2019; 30:5-15. [PMID: 29659380 DOI: 10.1097/fbp.0000000000000407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroinflammation and β-amyloid (Aβ) deposition in the brain are well known characteristics of neurodegeneration. Diabetes and hypercholesterolemia are the main risk factors leading to memory loss and cognitive impairment. Recently, it was found that statins and thiazolidinediones have promising anti-inflammatory and neuroprotective effects that could delay neurodegeneration and neuronal loss in diabetic and hypercholesterolemic patients. The aim of the present study was to investigate the protective effect of simvastatin, pioglitazone, and their combination in lipopolysaccharide (LPS)-induced neuroinflammation and amyloidogenesis. Mice were divided into five groups: group 1 received 0.9% saline, group 2 received LPS (0.8 mg/kg in saline), group 3 received LPS (0.8 mgl kg)+simvastatin (5 mg/kg in saline), group 4 received LPS (0.8 mg/kg)+pioglitazone (20 mg/kg in saline), group 5 receiving LPS (0.8 mg/kg)+simvastatin (5 mg/kg)+pioglitazone (20 mg/kg). Y-maze and novel object recognition were used to assess the spatial and nonspatial behavioral changes. Nitric oxide levels and glutamate levels were measured to elucidate the anti-glutamatergic and anti-inflammatory effects of the tested drugs. Immunohistochemistry was performed to detect the presence of Aβ1-42 in the mice brain. LPS impaired memory, and increased Aβ deposition, nitric oxide, and glutamate brain levels. Both drugs produced a significant improvement in all parameters. We conclude that simvastatin and pioglitazone may have a protective effect against cognitive impairment induced by LPS, through targeting the glutamatergic and inflammatory pathways, especially in patients having hypercholesterolemia and diabetes.
Collapse
|
21
|
Milajerdi A, Larijani B, Esmaillzadeh A. Statins influence biomarkers of low grade inflammation in apparently healthy people or patients with chronic diseases: A systematic review and meta-analysis of randomized clinical trials. Cytokine 2019; 123:154752. [PMID: 31228727 DOI: 10.1016/j.cyto.2019.154752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND No earlier study summarized findings on the effect of statins on inflammatory biomarkers in apparently healthy individuals or those with chronic diseases. This study was done to systematically review earlier publications on the effect of statins on serum concentrations of C-reactive protein (CRP) and Interleukin-6 (IL-6) in apparently healthy individuals or those with chronic diseases. METHODS We searched relevant publications published up to December 2018 in PubMed, MEDLINE, SCOPUS, EMBASE, and Google Scholar databases. For this purpose, suitable MESH and non-MESH keywords were used. Randomized placebo-controlled clinical trials that examined the effect of statins on serum concentrations of CRP and IL-6 in apparently healthy adults or those with chronic diseases were included. RESULTS Overall, 18 studies with 23 effect sizes, that enrolled 32,156 individuals (38% female and 62% male; mean age: 44.79 years) were included. When we combined 21 effect sizes from 16 studies, we observed a significant reduction in circulating levels of CRP following administration of statins [Weighted Mean Difference (WMD): -0.80; 95% CI: -1.05, -0.56]. Combining 12 effect sizes from 11 studies, a significant reduction was found in serum CRP concentrations following administration of Atorvastatin (WMD: -0.57; 95% CI: -0.78, -0.35). Pooling 5 effect sizes from 2 studies, we found a significant reduction in serum concentrations of CRP following administration of Simvastatin (WMD: -0.29; 95% CI: -0.49, -0.10; I2 = 88.5%). Combining 6 effect sizes from 5 studies, we found a significant reduction in serum IL-6 concentrations after Atorvastatin therapy (WMD: -2.13; 95% CI: -3.96, -0.30; I2 = 98.6%). CONCLUSIONS In conclusion, we found that statins administration in apparently healthy people or those with chronic diseases help reducing serum CRP concentrations. In addition, Atorvastatin administration resulted in reduced serum IL-6 concentrations in these people.
Collapse
Affiliation(s)
- Alireza Milajerdi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Ren B, Yuan T, Diao Z, Zhang C, Liu Z, Liu X. Protective effects of sesamol on systemic oxidative stress-induced cognitive impairments via regulation of Nrf2/Keap1 pathway. Food Funct 2019; 9:5912-5924. [PMID: 30375618 DOI: 10.1039/c8fo01436a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxidative stress is considered as a pivotal culprit in neurodegenerative diseases and brain aging. The aim of present study was to investigate antioxidative and neuroprotective effects of sesamol, a phenolic lignan from sesame oil, on oxidative stress induced neuron damage and memory impairments. C57BL/6J mice were treated by intraperitoneal injections of d-galactose for 8 weeks. Sesamol treatment (0.05% w/v, in drinking water) suppressed d-galactose-induced liver damages and improved HO-1 and NQO1 mRNA levels. Behavioral tests, including Y-maze test and water maze-test, revealed that sesamol significantly improved oxidative stress-induced cognitive impairments. Meanwhile, sesamol ameliorated neuronal damage and improved BDNF level in rat hippocampus. Sesamol elevated mRNA levels and protein expressions of antioxidant enzymes HO-1 and NQO1 as well as decreased inflammatory cytokines TNF-α and IL-1β in d-galactose-treated mice serum. In addition, activity of CAT and GSH level were increased in sesamol-treated mice serum. Moreover, sesamol treatment also balanced cellular redox status, protected mitochondrial dysfunction and upregulated antioxidant enzymes by activating the Nrf2 transcriptional pathway and its nuclear translocation in H2O2-treated SH-SY5Y cells. In conclusion, these results revealed that sesamol could be a potential neuroprotective agent during aging process due to its beneficial effects on liver-brain axis.
Collapse
Affiliation(s)
- Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | |
Collapse
|
23
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
24
|
Carroll CB, Wyse RKH. Simvastatin as a Potential Disease-Modifying Therapy for Patients with Parkinson's Disease: Rationale for Clinical Trial, and Current Progress. JOURNAL OF PARKINSONS DISEASE 2018; 7:545-568. [PMID: 29036837 PMCID: PMC5676977 DOI: 10.3233/jpd-171203] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many now believe the holy grail for the next stage of therapeutic advance surrounds the development of disease-modifying approaches aimed at intercepting the year-on-year neurodegenerative decline experienced by most patients with Parkinson’s disease (PD). Based on recommendations of an international committee of experts who are currently bringing multiple, potentially disease-modifying, PD therapeutics into long-term neuroprotective PD trials, a clinical trial involving 198 patients is underway to determine whether Simvastatin provides protection against chronic neurodegeneration. Statins are widely used to reduce cardiovascular risk, and act as competitive inhibitors of HMG-CoA reductase. It is also known that statins serve as ligands for PPARα, a known arbiter for mitochondrial size and number. Statins possess multiple cholesterol-independent biochemical mechanisms of action, many of which offer neuroprotective potential (suppression of proinflammatory molecules & microglial activation, stimulation of endothelial nitric oxide synthase, inhibition of oxidative stress, attenuation of α-synuclein aggregation, modulation of adaptive immunity, and increased expression of neurotrophic factors). We describe the biochemical, physiological and pharmaceutical credentials that continue to underpin the rationale for taking Simvastatin into a disease-modifying trial in PD patients. While unrelated to the Simvastatin trial (because this conducted in patients who already have PD), we discuss conflicting epidemiological studies which variously suggest that statin use for cardiovascular prophylaxis may increase or decrease risk of developing PD. Finally, since so few disease-modifying PD trials have ever been launched (compared to those of symptomatic therapies), we discuss the rationale of the trial structure we have adopted, decisions made, and lessons learnt so far.
Collapse
Affiliation(s)
- Camille B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | | |
Collapse
|
25
|
Li Y, Liu Q, Sun J, Wang J, Liu X, Gao J. Mitochondrial protective mechanism of simvastatin protects against amyloid β peptide-induced injury in SH-SY5Y cells. Int J Mol Med 2018; 41:2997-3005. [PMID: 29436584 DOI: 10.3892/ijmm.2018.3456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/25/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathology of neuronal damage during Alzheimer's disease (AD). Previous studies suggest that simvastatin (SV) ameliorates amyloid β (Aβ)‑mediated cognitive impairment in AD patients and transgenic mice; however, the mechanisms remain unknown. To investigate the potential mechanisms by which SV protects against AD neurotoxicity, the present study used a series of cellular and molecular assays to analyze the effects of SV in an in vitro model of Aβ1‑42-induced injury. The results demonstrated that SV protected against Aβ1‑42‑induced SH‑SY5Y cell injury by inhibiting the release of cytochrome c from the mitochondria to the cytoplasm, and reducing the production of intracellular reactive oxygen species. In addition, SV downregulated cleaved‑caspase‑3 protein levels, increased the ratio of B cell lymphoma 2 (Bcl-2) to Bcl-2-associated X protein, and increased the protein levels of peroxisome proliferator-activated receptor γ coactivator-1α in the Aβ1‑42‑treated cells. Furthermore, SV increased the mitochondrial membrane potential and adenosine triphosphate levels, and enhanced the cell respiratory function and mitochondrial mass of the cells. In conclusion, the present study revealed that SV protected SH‑SY5Y cells against Aβ1‑42-induced injury through regulating the mitochondrial apoptosis pathway and mitochondrial function.
Collapse
Affiliation(s)
- Yunzi Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Sun
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jin Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
26
|
Zandl-Lang M, Fanaee-Danesh E, Sun Y, Albrecher NM, Gali CC, Čančar I, Kober A, Tam-Amersdorfer C, Stracke A, Storck SM, Saeed A, Stefulj J, Pietrzik CU, Wilson MR, Björkhem I, Panzenboeck U. Regulatory effects of simvastatin and apoJ on APP processing and amyloid-β clearance in blood-brain barrier endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:40-60. [DOI: 10.1016/j.bbalip.2017.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
27
|
Trigiani LJ, Hamel E. An endothelial link between the benefits of physical exercise in dementia. J Cereb Blood Flow Metab 2017; 37:2649-2664. [PMID: 28617071 PMCID: PMC5536816 DOI: 10.1177/0271678x17714655] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/25/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
The current absence of a disease-modifying treatment for Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID) highlights the necessity for investigating the benefits of non-pharmacological approaches such as physical exercise (PE). Although evidence exists to support an association between regular PE and higher scores on cognitive function tests, and a slower rate of cognitive decline, there is no clear consensus on the underlying molecular mechanisms of the advantages of PE. This review seeks to summarize the positive effects of PE in human and animal studies while highlighting the vascular link between these benefits. Lifestyle factors such as cardiovascular diseases, metabolic syndrome, and sleep apnea will be addressed in relation to the risk they pose in developing AD and VCID, as will molecular factors known to have an impact on either the initiation or the progression of AD and/or VCID. This will include amyloid-beta clearance, oxidative stress, inflammatory responses, neurogenesis, angiogenesis, glucose metabolism, and white matter integrity. Particularly, this review will address how engaging in PE can counter factors that contribute to disease pathogenesis, and how these alterations are linked to endothelial cell function.
Collapse
Affiliation(s)
- Lianne J Trigiani
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
28
|
Papadopoulos P, Tong XK, Imboden H, Hamel E. Losartan improves cerebrovascular function in a mouse model of Alzheimer's disease with combined overproduction of amyloid-β and transforming growth factor-β1. J Cereb Blood Flow Metab 2017; 37:1959-1970. [PMID: 27389178 PMCID: PMC5464692 DOI: 10.1177/0271678x16658489] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alterations of the renin-angiotensin system have been implicated in the pathogenesis of Alzheimer's disease. We tested the efficacy of losartan (10 mg/kg/day for three months), a selective angiotensin II type 1 receptor antagonist, in alleviating cerebrovascular and cognitive deficits in double-transgenic mice (six months at endpoint) that overexpress a mutated form of the human amyloid precursor protein (APPSwe,Ind) and a constitutively active form of the transforming growth factor-β1, thereafter named A/T mice. Losartan rescued cerebrovascular reactivity, particularly the dilatory responses, but failed to attenuate astroglial activation and to normalize the neurovascular uncoupling response to sensory stimulation. The cognitive deficits of A/T mice were not restored by losartan nor were the increased brain levels of soluble and insoluble Aβ1-40 and Aβ1-42 peptides normalized. Our results are the first to demonstrate the capacity of losartan to improve cerebrovascular reactivity in an Alzheimer's disease mouse model of combined Aβ-induced vascular oxidative stress and transforming growth factor-β1-mediated vascular fibrosis. These data suggest that losartan may be promising for restoring cerebrovascular function in patients with vascular diseases at risk for vascular dementia or Alzheimer's disease. However, a combined therapy may be warranted for rescuing both vascular and cognitive deficits in a multifaceted pathology like Alzheimer's disease.
Collapse
Affiliation(s)
- Panayiota Papadopoulos
- 1 Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Xin-Kang Tong
- 1 Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Hans Imboden
- 2 Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Edith Hamel
- 1 Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
29
|
Angiotensin IV Receptors Mediate the Cognitive and Cerebrovascular Benefits of Losartan in a Mouse Model of Alzheimer's Disease. J Neurosci 2017; 37:5562-5573. [PMID: 28476949 DOI: 10.1523/jneurosci.0329-17.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/30/2017] [Accepted: 04/22/2017] [Indexed: 12/21/2022] Open
Abstract
The use of angiotensin receptor blockers (ARBs) correlates with reduced onset and progression of Alzheimer's disease (AD). The mechanism depicting how ARBs such as losartan restore cerebrovascular and cognitive deficits in AD is unknown. Here, we propose a mechanism underlying losartan's benefits by selectively blocking the effects of angiotensin IV (AngIV) at its receptor (AT4R) with divalinal in mice overexpressing the AD-related Swedish and Indiana mutations of the human amyloid precursor protein (APP mice) and WT mice. Young (3-month-old) mice were treated with losartan (∼10 mg/kg/d, 4 months), followed by intracerebroventricular administration of vehicle or divalinal in the final month of treatment. Spatial learning and memory were assessed using Morris water mazes at 3 and 4 months of losartan treatment. Cerebrovascular reactivity and whisker-evoked neurovascular coupling responses were measured at end point (∼7 months of age), together with biomarkers related to neuronal and vascular oxidative stress (superoxide dismutase-2), neuroinflammation (astroglial and microglial activation), neurogenesis (BrdU-labeled newborn cells), and amyloidosis [soluble amyloid-β (Aβ) species and Aβ plaque load]. Divalinal countered losartan's capacity to rescue spatial learning and memory and blocked losartan's benefits on dilatory function and baseline nitric oxide bioavailability. Divalinal reverted losartan's anti-inflammatory effects, but failed to modify losartan-mediated reductions in oxidative stress. Neither losartan nor divalinal affected arterial blood pressure or significantly altered the amyloid pathology in APP mice. Our findings identify activation of the AngIV/AT4R cascade as the underlying mechanism in losartan's benefits and a target that could restore Aβ-related cognitive and cerebrovascular deficits in AD.SIGNIFICANCE STATEMENT Antihypertensive medications that target the renin angiotensin system, such as angiotensin receptor blockers (ARBs), have been associated with lower incidence and progression of Alzheimer's disease (AD) in cohort studies. However, the manner by which ARBs mediate their beneficial effects is unknown. Here, the angiotensin IV receptor (AT4R) was identified as mediating the cognitive and cerebrovascular rescue of losartan, a commonly prescribed ARB, in a mouse model of AD. The AT4R was further implicated in mediating anti-inflammatory benefits. AT4R-mediated effects were independent from changes in blood pressure, amyloidosis, and oxidative stress. Overall, our results implicate the angiotensin IV/AT4R cascade as a promising candidate for AD intervention.
Collapse
|
30
|
Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells. Mediators Inflamm 2017; 2017:2582745. [PMID: 28546657 PMCID: PMC5435995 DOI: 10.1155/2017/2582745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
The anti-inflammatory effects of statins (HMG-CoA reductase inhibitors) within the cardiovascular system are well-established; however, their neuroinflammatory potential is unclear. It is currently unknown whether statins' neurological effects are lipid-dependent or due to pleiotropic mechanisms. Therefore, the assumption that all statin compounds will have the same effect within the central nervous system is potentially inappropriate, with no studies to date having compared all statins in a single model. Thus, the aim of this study was to compare the effects of the six statins (atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin) within a single in vitro model of neuroinflammation. To achieve this, PMA-differentiated THP-1 cells were used as surrogate microglial cells, and LPS was used to induce inflammatory conditions. Here, we show that pretreatment with all statins was able to significantly reduce LPS-induced interleukin (IL)-1β and tumour necrosis factor (TNF)-α release, as well as decrease LPS-induced prostaglandin E2 (PGE2). Similarly, global reactive oxygen species (ROS) and nitric oxide (NO) production were decreased following pretreatment with all statins. Based on these findings, it is suggested that more complex cellular models should be considered to further compare individual statin compounds, including translation into in vivo models of acute and/or chronic neuroinflammation.
Collapse
|
31
|
Badhwar A, Brown R, Stanimirovic DB, Haqqani AS, Hamel E. Proteomic differences in brain vessels of Alzheimer's disease mice: Normalization by PPARγ agonist pioglitazone. J Cereb Blood Flow Metab 2017; 37:1120-1136. [PMID: 27339263 PMCID: PMC5363486 DOI: 10.1177/0271678x16655172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebrovascular insufficiency appears years prior to clinical symptoms in Alzheimer's disease. The soluble, highly toxic amyloid-β species, generated from the amyloidogenic processing of amyloid precursor protein, are known instigators of the chronic cerebrovascular insufficiency observed in both Alzheimer's disease patients and transgenic mouse models. We have previously demonstrated that pioglitazone potently reverses cerebrovascular impairments in a mouse model of Alzheimer's disease overexpressing amyloid-β. In this study, we sought to characterize the effects of amyloid-β overproduction on the cerebrovascular proteome; determine how pioglitazone treatment affected the altered proteome; and analyze the relationship between normalized protein levels and recovery of cerebrovascular function. Three-month-old wildtype and amyloid precursor protein mice were treated with pioglitazone- (20 mg/kg/day, 14 weeks) or control-diet. Cerebral arteries were surgically isolated, and extracted proteins analyzed by gel-free and gel-based mass spectrometry. 193 cerebrovascular proteins were abnormally expressed in amyloid precursor protein mice. Pioglitazone treatment rescued a third of these proteins, mainly those associated with oxidative stress, promotion of cerebrovascular vasocontractile tone, and vascular compliance. Our results demonstrate that amyloid-β overproduction perturbs the cerebrovascular proteome. Recovery of cerebrovascular function with pioglitazone is associated with normalized levels of key proteins in brain vessel function, suggesting that pioglitazone-responsive cerebrovascular proteins could be early biomarkers of Alzheimer's disease.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Rebecca Brown
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Edith Hamel, Laboratory of Cerebrovascular research, Montreal Neurological Institute, 3801 University St., Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
32
|
Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Imboden H, Hamel E. Enalapril Alone or Co-Administered with Losartan Rescues Cerebrovascular Dysfunction, but not Mnemonic Deficits or Amyloidosis in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:1183-95. [PMID: 26923013 DOI: 10.3233/jad-150868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The co-administration of angiotensin converting enzyme inhibitors (ACEi) and angiotensin II (AngII) receptor blockers (ARB) that bind angiotensin type 1 receptors (AT1R) may protect from Alzheimer's disease (AD) better than each treatment taken alone. We tested the curative potential of the non brain-penetrant ACEi enalapril (3 mg/kg/day) administered for 3 months either alone or in combination with the brain penetrant ARB losartan (10 mg/kg/day) in aged (∼15 months) transgenic mice overexpressing a mutated form of the human amyloid-β protein precursor (AβPP, thereafter APP mice). We studied cerebrovascular function, protein levels of oxidative stress markers (superoxide dismutases SOD1, SOD2 and the NADPH oxidase subunit p67phox), amyloid-β (Aβ) pathology, astrogliosis, cholinergic innervation, AT1R and angiotensin IV receptor (AT4R) levels, together with cognitive performance. Both treatments normalized cerebrovascular reactivity and p67phox protein levels, but they did not reduce the cerebrovascular levels of SOD1. Combined treatment normalized cerebrovascular SOD2 levels, significantly attenuated astrogliosis, but did not reduce the increased levels of cerebrovascular AT1R. Yet, combined therapy enhanced thioflavin-S labeled Aβ plaque burden, a tendency not significant when Aβ1 - 42 plaque load was considered. None of the treatments rescued cognitive deficits, cortical AT4R or cholinergic innervation. We conclude that both treatments normalized cerebrovascular function by inhibiting the AngII-induced oxidative stress cascade, and that the positive effects of the combined therapy on astrogliosis were likely due to the ability of losartan to enter brain parenchyma. However, enalapril did not potentiate, and may even dampen, the reported cognitive benefits of losartan, raising caution when selecting the most appropriate antihypertensive therapy in AD patients.
Collapse
Affiliation(s)
- Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Nektaria Nicolakakis
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Xing-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Tahar Aboulkassim
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Hans Imboden
- Institute of Cell Biology, University of Bern, Switzerland
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
33
|
Lam V, Hackett M, Takechi R. Antioxidants and Dementia Risk: Consideration through a Cerebrovascular Perspective. Nutrients 2016; 8:nu8120828. [PMID: 27999412 PMCID: PMC5188481 DOI: 10.3390/nu8120828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/16/2022] Open
Abstract
A number of natural and chemical compounds that exert anti-oxidative properties are demonstrated to be beneficial for brain and cognitive function, and some are reported to reduce the risk of dementia. However, the detailed mechanisms by which those anti-oxidative compounds show positive effects on cognition and dementia are still unclear. An emerging body of evidence suggests that the integrity of the cerebrovascular blood-brain barrier (BBB) is centrally involved in the onset and progression of cognitive impairment and dementia. While recent studies revealed that some anti-oxidative agents appear to be protective against the disruption of BBB integrity and structure, few studies considered the neuroprotective effects of antioxidants in the context of cerebrovascular integrity. Therefore, in this review, we examine the mechanistic insights of antioxidants as a pleiotropic agent for cognitive impairment and dementia through a cerebrovascular axis by primarily focusing on the current available data from physiological studies. Conclusively, there is a compelling body of evidence that suggest antioxidants may prevent cognitive decline and dementia by protecting the integrity and function of BBB and, indeed, further studies are needed to directly examine these effects in addition to underlying molecular mechanisms.
Collapse
Affiliation(s)
- Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth WA 6845, Australia.
| | - Mark Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- Department of Chemistry, Faculty of Science and Engineering, Curtin University, Perth WA 6845, Australia.
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
34
|
Shevcehnko AV, Doronin BM, Kuznetsova VB, Amstislavskaya TG. [Lipid profile and psychometric traits in patients with psychosomatic disorders and chronic cerebral ischemia]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:52-56. [PMID: 27905389 DOI: 10.17116/jnevro20161168252-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To explore the correlation of serum cholesterol and triglycerides with psychometric traits in patients with psychosomatic disorders and chronic cerebral ischemia (CCI). MATERIAL AND METHODS One hundred and ten patients with CCI, aged from 46 to 76 years, were examined. Total cholesterol and triglycerides were measured in the blood. A battery of tests for assessment of cognitive functions and neurotic traits was used. RESULTS The level of cholesterol was higher in patients with post-infarction cardiosclerosis (PICS) compared to patients with CCI without psychosomatic disorders but did not differ from that in patients with gastric ulcer (GU). The level of triglycerides was higher in both groups with psychosomatic disorders, patients with PICS had higher levels compared to patients with GU. No differences between total cholesterol and triglycerides and assessment of cognitive functions in patients of different age were observed. CONCLUSION Patients with psychosomatic disorders had lower cognitive function and higher level of neuroticism. Results of regression analysis indicate that blood contents of cholesterol and triglycerides can be considered as a prognostic factor for cognitive decline.
Collapse
Affiliation(s)
- A V Shevcehnko
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - B M Doronin
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - V B Kuznetsova
- Novosibirsk Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - T G Amstislavskaya
- Novosibirsk Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
35
|
Rohilla A, Rohilla S, Kumar A, Khan M, Deep A. Pleiotropic effects of statins: A boulevard to cardioprotection. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2011.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Toda N, Okamura T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease. J Pharmacol Sci 2016; 131:223-32. [DOI: 10.1016/j.jphs.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023] Open
|
37
|
De Silva TM, Miller AA. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy? Front Pharmacol 2016; 7:61. [PMID: 27014073 PMCID: PMC4794483 DOI: 10.3389/fphar.2016.00061] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- T. Michael De Silva
- Department of Pharmacology, Biomedicine Discovery Institute, Monash UniversityMelbourne, VIC, Australia
| | - Alyson A. Miller
- Cerebrovascular and Stroke Laboratory, School of Health and Biomedical Sciences, RMIT UniversityMelbourne, VIC, Australia
| |
Collapse
|
38
|
Hamel E, Royea J, Ongali B, Tong XK. Neurovascular and Cognitive failure in Alzheimer's Disease: Benefits of Cardiovascular Therapy. Cell Mol Neurobiol 2016; 36:219-32. [PMID: 26993506 DOI: 10.1007/s10571-015-0285-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-β (Aβ) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.
Collapse
Affiliation(s)
- Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada.
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
39
|
Kleiman RJ, Ehlers MD. Data gaps limit the translational potential of preclinical research. Sci Transl Med 2016; 8:320ps1. [DOI: 10.1126/scitranslmed.aac9888] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Jin H, Chen T, Li G, Wang C, Zhang B, Cao X, Sha S, Wan Q, Chen L. Dose-Dependent Neuroprotection and Neurotoxicity of Simvastatin through Reduction of Farnesyl Pyrophosphate in Mice Treated with Intracerebroventricular Injection of Aβ 1-42. J Alzheimers Dis 2016; 50:501-16. [PMID: 26757191 DOI: 10.3233/jad-150782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huafeng Jin
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guoxi Li
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Conghui Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Baofeng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xinyuan Cao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Qi Wan
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Pallebage-Gamarallage M, Takechi R, Lam V, Elahy M, Mamo J. Pharmacological modulation of dietary lipid-induced cerebral capillary dysfunction: Considerations for reducing risk for Alzheimer's disease. Crit Rev Clin Lab Sci 2015; 53:166-83. [PMID: 26678521 DOI: 10.3109/10408363.2015.1115820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing body of evidence suggests that cerebrovascular dysfunction and microvessel disease precede the evolution of hallmark pathological features that characterise Alzheimer's disease (AD), consistent with a causal association for onset or progression. Recent studies, principally in genetically unmanipulated animal models, suggest that chronic ingestion of diets enriched in saturated fats and cholesterol may compromise blood-brain barrier (BBB) integrity resulting in inappropriate blood-to-brain extravasation of plasma proteins, including lipid macromolecules that may be enriched in amyloid-β (Aβ). Brain parenchymal retention of blood proteins and lipoprotein bound Aβ is associated with heightened neurovascular inflammation, altered redox homeostasis and nitric oxide (NO) metabolism. Therefore, it is a reasonable proposition that lipid-lowering agents may positively modulate BBB integrity and by extension attenuate risk or progression of AD. In addition to their robust lipid lowering properties, reported beneficial effects of lipid-lowering agents were attributed to their pleiotropic properties via modulation of inflammation, oxidative stress, NO and Aβ metabolism. The review is a contemporary consideration of a complex body of literature intended to synthesise focussed consideration of mechanisms central to regulation of BBB function and integrity. Emphasis is given to dietary fat driven significant epidemiological evidence consistent with heightened risk amongst populations consuming greater amounts of saturated fats and cholesterol. In addition, potential neurovascular benefits associated with the use of hypolipidemic statins, probucol and fenofibrate are also presented in the context of lipid-lowering and pleiotropic properties.
Collapse
Affiliation(s)
- Menuka Pallebage-Gamarallage
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Ryusuke Takechi
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Virginie Lam
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Mina Elahy
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - John Mamo
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| |
Collapse
|
42
|
Ridder DA, Wenzel J, Müller K, Töllner K, Tong XK, Assmann JC, Stroobants S, Weber T, Niturad C, Fischer L, Lembrich B, Wolburg H, Grand'Maison M, Papadopoulos P, Korpos E, Truchetet F, Rades D, Sorokin LM, Schmidt-Supprian M, Bedell BJ, Pasparakis M, Balschun D, D'Hooge R, Löscher W, Hamel E, Schwaninger M. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. ACTA ACUST UNITED AC 2015; 212:1529-49. [PMID: 26347470 PMCID: PMC4577837 DOI: 10.1084/jem.20150165] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
Ridder et al. show that deletion of NEMO, a component of NF-kB signaling, in brain endothelial cells results in increased cerebral vascular permeability and endothelial cell death, and recapitulates the neurological symptoms observed in the genetic disease incontinentia pigmenti. Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP.
Collapse
Affiliation(s)
- Dirk A Ridder
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Kristin Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Xin-Kang Tong
- Montreal Neurological Institute, McGill University, Montreal QC H3A 0G4, Canada
| | - Julian C Assmann
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - Tobias Weber
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Cristina Niturad
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Lisanne Fischer
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Beate Lembrich
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany
| | | | | | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | | | - Dirk Rades
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Marc Schmidt-Supprian
- Department of Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Barry J Bedell
- Montreal Neurological Institute, McGill University, Montreal QC H3A 0G4, Canada
| | | | - Detlef Balschun
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Edith Hamel
- Montreal Neurological Institute, McGill University, Montreal QC H3A 0G4, Canada
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| |
Collapse
|
43
|
Strom BL, Schinnar R, Karlawish J, Hennessy S, Teal V, Bilker WB. Statin Therapy and Risk of Acute Memory Impairment. JAMA Intern Med 2015; 175:1399-405. [PMID: 26054031 PMCID: PMC5487843 DOI: 10.1001/jamainternmed.2015.2092] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE Reports on the association between statins and memory impairment are inconsistent. OBJECTIVE To assess whether statin users show acute decline in memory compared with nonusers and with users of nonstatin lipid-lowering drugs (LLDs). DESIGN, SETTING, AND PARTICIPANTS Using The Health Improvement Network database during January 13, 1987, through December 16, 2013, a retrospective cohort study compared 482,543 statin users with 2 control groups: 482,543 matched nonusers of any LLDs and all 26,484 users of nonstatin LLDs. A case-crossover study of 68,028 patients with incident acute memory loss evaluated exposure to statins during the period immediately before the outcome vs 3 earlier periods. Analysis was conducted from July 7, 2013, through January 15, 2015. RESULTS When compared with matched nonusers of any LLDs (using odds ratio [95% CI]), a strong association was present between first exposure to statins and incident acute memory loss diagnosed within 30 days immediately following exposure (fully adjusted, 4.40; 3.01-6.41). This association was not reproduced in the comparison of statins vs nonstatin LLDs (fully adjusted, 1.03; 0.63-1.66) but was also present when comparing nonstatin LLDs with matched nonuser controls (adjusted, 3.60; 1.34-9.70). The case-crossover analysis showed little association. CONCLUSIONS AND RELEVANCE Both statin and nonstatin LLDs were strongly associated with acute memory loss in the first 30 days following exposure in users compared with nonusers but not when compared with each other. Thus, either all LLDs cause acute memory loss regardless of drug class or the association is the result of detection bias rather than a causal association.
Collapse
Affiliation(s)
- Brian L Strom
- Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey2Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia3Center fo
| | - Rita Schinnar
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia3Center for Pharmacoepidemiology Research and Training, University of Pennsylvania Perelm
| | - Jason Karlawish
- Penn Memory Center, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia5Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Sean Hennessy
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia3Center for Pharmacoepidemiology Research and Training, University of Pennsylvania Perelm
| | - Valerie Teal
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Warren B Bilker
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia3Center for Pharmacoepidemiology Research and Training, University of Pennsylvania Perelm
| |
Collapse
|
44
|
|
45
|
Ng F, Wijaya L, Tang BL. SIRT1 in the brain-connections with aging-associated disorders and lifespan. Front Cell Neurosci 2015; 9:64. [PMID: 25805970 PMCID: PMC4353374 DOI: 10.3389/fncel.2015.00064] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 01/23/2023] Open
Abstract
The silent mating type information regulation 2 proteins (sirtuins) 1 of class III histone deacetylases (HDACs) have been associated with health span and longevity. SIRT1, the best studied member of the mammalian sirtuins, has a myriad of roles in multiple tissues and organs. However, a significant part of SIRT1's role that impinges on aging and lifespan may lie in its activities in the central nervous system (CNS) neurons. Systemically, SIRT1 influences energy metabolism and circadian rhythm through its activity in the hypothalamic nuclei. From a cell biological perspective, SIRT1 is a crucial component of multiple interconnected regulatory networks that modulate dendritic and axonal growth, as well as survival against stress. This neuronal cell autonomous activity of SIRT1 is also important for neuronal plasticity, cognitive functions, as well as protection against aging-associated neuronal degeneration and cognitive decline. We discuss recent findings that have shed light on the various activities of SIRT1 in the brain, which collectively impinge on aging-associated disorders and lifespan.
Collapse
Affiliation(s)
- Fanny Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System Singapore, Singapore
| | - Laura Wijaya
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System Singapore, Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System Singapore, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| |
Collapse
|
46
|
Shevchenko AV, Doronin BM, Kuznetsova VB, Amstislavskaya TG. [The lipid profile and psychometric assessments in patients with psychosomatic illnesses and chronic cerebral ischemia]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:43-47. [PMID: 26978639 DOI: 10.17116/jnevro201511512243-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the correlations between plasma cholesterol and triglyceride levels and psychometric assessments in patients with psychosomatic illnesses and chronic cerebral ischemia (CCI). MATERIAL AND METHODS One hundred and ten patients (51% women, 49% men), aged from 46 to 76 years (mean 65.1 years) with CCI were examined. The study included cholesterol and triglyceride tests and a battery of tests for assessment of cognitive functions and neurotization level. RESULTS Cholesterol levels were higher in patients with post-infarct cardiosclerosis (PICS) compared to the comparison group but did not differ from those of patients with peptic ulcer disease (PUD). Triglyceride levels were high in both psychosomatic groups, with higher levels in the patients with PICS compared to the patients with PUD. Plasma cholesterol and triglyceride levels were not correlated with assessments of cognitive functions in patients of different age. CONCLUSION Cognitive impairment and higher level of neurotization were characteristic of patients with psychosomatic illnesses. Regression analysis has demonstrated that plasma cholesterol and triglyceride levels may be a prognostic factor for cognitive impairment.
Collapse
Affiliation(s)
| | - B M Doronin
- Novosibirsk State Medical University, Novosibirsk
| | - V B Kuznetsova
- Novosibirsk Research Institute of Physiology and Fundamental Medicine, Novosibirsk
| | - T G Amstislavskaya
- Novosibirsk Research Institute of Physiology and Fundamental Medicine, Novosibirsk
| |
Collapse
|
47
|
McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, Davey AK. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci 2014; 15:20607-37. [PMID: 25391045 PMCID: PMC4264186 DOI: 10.3390/ijms151120607] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.
Collapse
Affiliation(s)
| | | | - Devinder S Arora
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | - Gary D Grant
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | | | - Anthony V Perkins
- Griffith Health Institute, Griffith University, Queensland 4222, Australia.
| | - Andrew K Davey
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| |
Collapse
|
48
|
Broadstock M, Ballard C, Corbett A. Latest treatment options for Alzheimer’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Expert Opin Pharmacother 2014; 15:1797-810. [DOI: 10.1517/14656566.2014.936848] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Malnar M, Hecimovic S, Mattsson N, Zetterberg H. Bidirectional links between Alzheimer's disease and Niemann-Pick type C disease. Neurobiol Dis 2014; 72 Pt A:37-47. [PMID: 24907492 DOI: 10.1016/j.nbd.2014.05.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/17/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) and Niemann-Pick type C (NPC) disease are progressive neurodegenerative diseases with very different epidemiology and etiology. AD is a common cause of dementia with a complex polyfactorial etiology, including both genetic and environmental risk factors, while NPC is a very rare autosomal recessive disease. However, the diseases share some disease-related molecular pathways, including abnormal cholesterol metabolism, and involvement of amyloid-β (Aβ) and tau pathology. Here we review recent studies on these pathological traits, focusing on studies of Aβ and tau pathology in NPC, and the importance of the NPC1 gene in AD. Further studies of similarities and differences between AD and NPC may be useful to increase the understanding of both these devastating neurological diseases.
Collapse
Affiliation(s)
- Martina Malnar
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Silva Hecimovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
50
|
Soy isoflavone antagonizes the oxidative cerebrovascular injury induced by β-amyloid peptides 1-42 in rats. Neurochem Res 2014; 39:1374-81. [PMID: 24810766 DOI: 10.1007/s11064-014-1319-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Numerous evidences have shown that the antioxidative properties of soy isoflavone (SIF) have beneficial effects on prophylaxis of neurodegeneration, however, the mechanism is still not fully illustrated. As cerebrovascular dysfunction could initiate a cascade of events leading to pathogenesis of Alzheimer's disease, we tried to investigate whether SIF could protect the cerebrovascular system due to antagonizing oxidative damage induced by Aβ1-42 in present study. In addition, NF-E2-related factor 2 (Nrf2) signaling pathways in the cerebrovascular tissue of Wistar rats were investigated to identify the potential cerebrovascular protective targets of SIF. Research results showed that SIF reduced the excessive production of nitrotyrosine in cerebrovascular tissue induced by Aβ1-42, and maintained redox homeostasis by increasing the level of GSH and GSH/GSSG. Moreover, SIF could alleviate the down-regulation of Nrf2, γ-glutamylcysteine synthetase, Heme oxygenase-1 expressions in cerebrovascular tissue induced by Aβ1-42 and suppress the increase of Kelch like ECH protein-1 (Keap1). These data suggested that SIF might reduce the cerebrovascular oxidative damage induced by Aβ1-42 through regulating the Nrf2 signaling pathway. The mechanisms of SIF modulating the potential target Nrf2 might be associated with Keap1 expression.
Collapse
|