1
|
Han Y, Shen X, Gao Z, Han P, Bi X. Enriched environment treatment promotes neural functional recovery together with microglia polarization and remyelination after cerebral ischemia in rats. Brain Res Bull 2024; 209:110912. [PMID: 38423189 DOI: 10.1016/j.brainresbull.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Microglia activation and oligodendrocyte maturation are critical for remyelination after cerebral ischemia. Studies have shown that enriched environment (EE) can effectively alleviate stroke-induced neurological deficits. However, little is known about the mechanism associated with glial cells underlying the neuroprotection of EE. Therefore, this study focuses on investigating the effect of EE on activated microglia polarization as well as oligodendrogenesis in the progress of remyelination following cerebral ischemia. METHODS The ischemia/reperfusion (I/R) injury model was established by middle cerebral artery occlusion (MCAO) in rats. Animals executed 4 weeks of environmental intervention after performing MCAO or sham surgery and were divided into sham, MCAO, and MCAO+EE groups. Cognitive function, myelin damage, microglia activation and polarization, inflammation, oligodendrogenesis, remyelination, and protein expression of the PI3K/AKT/GSK3β signaling pathway were determined. RESULTS The staining of NeuN indicated that the infarct size of MCAO rats was decreased under EE. EE intervention improved animal performance in the Morris water maze test and novel object recognition test, promoting the recovery of cognitive function after I/R injury. EE treatment alleviated myelin damage in MCAO rats, as evidenced by the lower fluorescence intensity ratio of SMI-32/MBP in MCAO+EE group. EE increased the fluorescence intensity ratio of NG2+/Ki67+/Olig2+, MBP, and MOG, enhancing the proliferation and differentiation of OPCs and oligodendrogenesis after MCAO. In terms of remyelination, more myelinated axons and lower G/ratio were detected in MCAO+EE rats compared with MCAO group. Moreover, EE treatment decreased the number of Iba1+/CD86+ M1 microglia, increased the number of Iba1+/CD206+ M2 microglia, and suppressed the inflammation response after I/R injury, which could be attributed to the augmented expression of PI3K/AKT/GSK3β axis. CONCLUSION EE improved long‑term recovery of cognitive function after cerebral I/R injury, at least in part by promoting M2 microglia transformation through activation of the PI3K/AKT/GSK3β signaling pathway, inhibiting inflammation to provide a favorable microenvironment for oligodendrocyte maturation and remyelination. The effect of the EE on myelin and inflammation could account for the neuroprotection provided by EE.
Collapse
Affiliation(s)
- Yu Han
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China; Department of rehabilitation technology, Lianyungang maternal and Child Health Hospital, Lianyungang 222062, China
| | - Xinya Shen
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhenkun Gao
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Pingping Han
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xia Bi
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
2
|
Xuan W, Xie W, Li F, Huang D, Zhu Z, Lin Y, Lu B, Yu W, Li Y, Li P. Dualistic roles and mechanistic insights of macrophage migration inhibitory factor in brain injury and neurodegenerative diseases. J Cereb Blood Flow Metab 2023; 43:341-356. [PMID: 36369735 PMCID: PMC9941868 DOI: 10.1177/0271678x221138412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in various immune-mediated pathologies and regulates both innate and adaptive immune reactions, thus being related to several acute and chronic inflammatory diseases such as rheumatoid arthritis, septic shock, and atherosclerosis. Its role in acute and chronic brain pathologies, such as stroke and neurodegenerative diseases, has attracted increasing attention in recent years. In response to stimuli like hypoxia, inflammation or infection, different cell types can rapidly release MIF, including immune cells, endothelial cells, and neuron cells. Notably, clinical data from past decades also suggested a possible link between serum MIF levels and the severity of stroke and the evolving of neurodegenerative diseases. In this review, we summarize the major and recent findings focusing on the mechanisms of MIF modulating functions in brain injury and neurodegenerative diseases, which may provide important therapeutic targets meriting further investigation.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Wanqing Xie
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Fengshi Li
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Yuxuan Lin
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Binwei Lu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Weifeng Yu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Yan Li
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| |
Collapse
|
3
|
Walter HL, Pikhovych A, Endepols H, Rotthues S, Bärmann J, Backes H, Hoehn M, Wiedermann D, Neumaier B, Fink GR, Rüger MA, Schroeter M. Transcranial-Direct-Current-Stimulation Accelerates Motor Recovery After Cortical Infarction in Mice: The Interplay of Structural Cellular Responses and Functional Recovery. Neurorehabil Neural Repair 2022; 36:701-714. [PMID: 36124996 DOI: 10.1177/15459683221124116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) promotes recovery after stroke in humans. The underlying mechanisms, however, remain to be elucidated. Animal models suggest tDCS effects on neuroinflammation, stem cell proliferation, neurogenesis, and neural plasticity. OBJECTIVE In a longitudinal study, we employed tDCS in the subacute and chronic phase after experimental focal cerebral ischemia in mice to explore the relationship between functional recovery and cellular processes. METHODS Mice received photothrombosis in the right motor cortex, verified by Magnetic Resonance Imaging. A composite neuroscore quantified subsequent functional deficits. Mice received tDCS daily: either 5 sessions from day 5 to 9, or 10 sessions with days 12 to 16 in addition. TDCS with anodal or cathodal polarity was compared to sham stimulation. Further imaging to assess proliferation and neuroinflammation was performed by immunohistochemistry at different time points and Positron Emission Tomography at the end of the observation time of 3 weeks. RESULTS Cathodal tDCS at 198 kC/m2 (220 A/m2) between days 5 and 9 accelerated functional recovery, increased neurogenesis, decreased microglial activation, and mitigated CD16/32-expression associated with M1-phenotype. Anodal tDCS exerted similar effects on neurogenesis and microglial polarization but not on recovery of function or microglial activation. TDCS on days 12 to 16 after stroke did not induce any further effects, suggesting that the therapeutic time window was closed by then. CONCLUSION Overall, data suggest that non-invasive neuromodulation by tDCS impacts neurogenesis and microglial activation as critical cellular processes influencing functional recovery during the early phase of regeneration from focal cerebral ischemia.
Collapse
Affiliation(s)
- Helene Luise Walter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anton Pikhovych
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Steffen Rotthues
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Johannes Bärmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heiko Backes
- Multimodal Imaging Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mathias Hoehn
- Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dirk Wiedermann
- Multimodal Imaging Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Maria Adele Rüger
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
4
|
Manole MD, Hook MJA, Nicholas MA, Nelson BP, Liu AC, Stezoski QC, Rowley AP, Cheng JP, Alexander H, Moschonas EH, Bondi CO, Kline AE. Preclinical neurorehabilitation with environmental enrichment confers cognitive and histological benefits in a model of pediatric asphyxial cardiac arrest. Exp Neurol 2021; 335:113522. [PMID: 33152354 PMCID: PMC7954134 DOI: 10.1016/j.expneurol.2020.113522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Pediatric asphyxial cardiac arrest (ACA) often leaves children with physical, cognitive, and emotional disabilities that affect overall quality of life, yet rehabilitation is neither routinely nor systematically provided. Environmental enrichment (EE) is considered a preclinical model of neurorehabilitation and thus we sought to investigate its efficacy in our established model of pediatric ACA. Male Sprague-Dawley rat pups (post-natal day 16-18) were randomly assigned to ACA (9.5 min) or Sham injury. After resuscitation, the rats were assigned to 21 days of EE or standard (STD) housing during which time motor, cognitive, and anxiety-like (i.e., affective) outcomes were assessed. Hippocampal CA1 cells were quantified on post-operative day-22. Both ACA + STD and ACA + EE performed worse on beam-balance vs. Sham controls (p < 0.05) and did not differ from one another overall (p > 0.05); however, a single day analysis on the last day of testing revealed that the ACA + EE group performed better than the ACA + STD group (p < 0.05) and did not differ from the Sham controls (p > 0.05). Both Sham groups performed better than ACA + STD (p < 0.05) but did not differ from ACA + EE (p > 0.05) in the open field test. Spatial learning and declarative memory were improved and CA1 neuronal loss was attenuated in the ACA + EE vs. ACA + STD group (p < 0.05). Collectively, the data suggest that providing rehabilitation after pediatric ACA can reduce histopathology and improve motor and cognitive ability.
Collapse
Affiliation(s)
- Mioara D Manole
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Marcus J A Hook
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Melissa A Nicholas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brittany P Nelson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Adanna C Liu
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Quinn C Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Andrew P Rowley
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jeffrey P Cheng
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Henry Alexander
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care, Medicine University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eleni H Moschonas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Corina O Bondi
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anthony E Kline
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care, Medicine University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
5
|
Augestad IL, Pintana H, Larsson M, Krizhanovskii C, Nyström T, Klein T, Darsalia V, Patrone C. Regulation of Glycemia in the Recovery Phase After Stroke Counteracts the Detrimental Effect of Obesity-Induced Type 2 Diabetes on Neurological Recovery. Diabetes 2020; 69:1961-1973. [PMID: 32540876 DOI: 10.2337/db20-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022]
Abstract
The interplay between obesity and type 2 diabetes (T2D) in poststroke recovery is unclear. Moreover, the impact of glucose control during the chronic phase after stroke is undetermined. We investigated whether obesity-induced T2D impairs neurological recovery after stroke by using a clinically relevant experimental design. We also investigated the potential efficacy of two clinically used T2D drugs: the dipeptidyl peptidase 4 inhibitor linagliptin and the sulfonylurea glimepiride. We induced transient middle cerebral artery occlusion (tMCAO) in T2D/obese mice (after 7 months of high-fat diet [HFD]) and age-matched controls. After stroke, we replaced HFD with standard diet for 8 weeks to mimic the poststroke clinical situation. Linagliptin or glimepiride were administered daily from 3 days after tMCAO for 8 weeks. We assessed neurological recovery weekly by upper-limb grip strength. Brain damage, neuroinflammation, stroke-induced neurogenesis, and atrophy of parvalbumin-positive (PV+) interneurons were quantified by immunohistochemistry. T2D/obesity impaired poststroke neurological recovery in association with hyperglycemia, neuroinflammation, and atrophy of PV+ interneurons. Both drugs counteracted these effects. In nondiabetic mice, only linagliptin accelerated recovery. These findings shed light on the interplay between obesity and T2D in stroke recovery. Moreover, they promote the use of rehabilitative strategies that are based on efficacious glycemia regulation, even if initiated days after stroke.
Collapse
Affiliation(s)
- Ingrid Lovise Augestad
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hiranya Pintana
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Larsson
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Krizhanovskii
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Research, Södertälje Hospital, Karolinska Institutet, Södertälje, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Chai X, Zhang W, Li L, Wu Y, Zhu X, Zhao S. Profile of MIF in Developing Hippocampus: Association With Cell Proliferation and Neurite Outgrowth. Front Mol Neurosci 2020; 13:147. [PMID: 32903462 PMCID: PMC7434973 DOI: 10.3389/fnmol.2020.00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Proinflammatory cytokine macrophage migration inhibitory factor (MIF) is a multifunctional cytokine and has been found involved in many neurological diseases such as Alzheimer disease (AD), epilepsy, and multiple sclerosis. Previous studies have shown that MIF is expressed in neocortex, hippocampus, hypothalamus, cerebellum, and spinal cord in adult mice. It is expressed by astrocytes and activates microglias in neuroinflammation. Further studies have shown that MIF is detected in moss fibers of dentate granule cells and in apical dendrites of pyramidal neurons in adult hippocampus. Only NeuroD-positive immature granule neurons but not NeuN-positive mature neurons express MIF. These findings led us eager to know the exact role of MIF in the development of hippocampus. Therefore, we systematically checked the spatial and temporal expression pattern of MIF and characterized MIF-positive cells in hippocampus from mice aged from postnatal day 0 (P0) to 3 months. Our results showed that the lowest level of MIF protein occurred at P7 and mif mRNA increased from P0, reached a peak at P7, and stably expressed until P30 before declining dramatically at 3 months. MIF was localized in fibers of GFAP- and BLBP-positive radial glial precursor cells in dentate gyrus (DG). DCX-expressing newly generated neurons were MIF-negative. Inhibition of MIF by MIF antagonist S, R-3-(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) reduced BrdU-positive cells. Interestingly, MIF was expressed by NeuN-positive GABAergic interneurons including parvalbumin-and Reelin-expressing cells in the DG. Neither NeuN-positive granule cells nor NeuN-positive pyramidal neurons expressed MIF. In transgenic mice, POMC-EGFP–positive immature dentate granule cells and Thy1-EGFP–positive mature granule cells were MIF-negative. Treatment of neuronal cultures with ISO-1 inhibited neurite outgrowth. Therefore, we conclude that MIF might be important for feature maintenance of neural stem cells and neurite outgrowth during hippocampal development.
Collapse
Affiliation(s)
- Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lingling Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Obesity-induced type 2 diabetes impairs neurological recovery after stroke in correlation with decreased neurogenesis and persistent atrophy of parvalbumin-positive interneurons. Clin Sci (Lond) 2019; 133:1367-1386. [PMID: 31235555 DOI: 10.1042/cs20190180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023]
Abstract
Type 2 diabetes (T2D) hampers stroke recovery though largely undetermined mechanisms. Few preclinical studies have investigated the effect of genetic/toxin-induced diabetes on long-term stroke recovery. However, the effects of obesity-induced T2D are mostly unknown. We aimed to investigate whether obesity-induced T2D worsens long-term stroke recovery through the impairment of brain's self-repair mechanisms - stroke-induced neurogenesis and parvalbumin (PV)+ interneurons-mediated neuroplasticity. To mimic obesity-induced T2D in the middle-age, C57bl/6j mice were fed 12 months with high-fat diet (HFD) and subjected to transient middle cerebral artery occlusion (tMCAO). We evaluated neurological recovery by upper-limb grip strength at 1 and 6 weeks after tMCAO. Gray and white matter damage, stroke-induced neurogenesis, and survival and potential atrophy of PV-interneurons were quantitated by immunohistochemistry (IHC) at 2 and 6 weeks after tMCAO. Obesity/T2D impaired neurological function without exacerbating brain damage. Moreover, obesity/T2D diminished stroke-induced neural stem cell (NSC) proliferation and neuroblast formation in striatum and hippocampus at 2 weeks after tMCAO and abolished stroke-induced neurogenesis in hippocampus at 6 weeks. Finally, stroke resulted in the atrophy of surviving PV-interneurons 2 weeks after stroke in both non-diabetic and obese/T2D mice. However, after 6 weeks, this effect selectively persisted in obese/T2D mice. We show in a preclinical setting of clinical relevance that obesity/T2D impairs neurological functions in the stroke recovery phase in correlation with reduced neurogenesis and persistent atrophy of PV-interneurons, suggesting impaired neuroplasticity. These findings shed light on the mechanisms behind impaired stroke recovery in T2D and could facilitate the development of new stroke rehabilitative strategies for obese/T2D patients.
Collapse
|
8
|
Quattromani MJ, Pruvost M, Guerreiro C, Backlund F, Englund E, Aspberg A, Jaworski T, Hakon J, Ruscher K, Kaczmarek L, Vivien D, Wieloch T. Extracellular Matrix Modulation Is Driven by Experience-Dependent Plasticity During Stroke Recovery. Mol Neurobiol 2017; 55:2196-2213. [PMID: 28290150 PMCID: PMC5840227 DOI: 10.1007/s12035-017-0461-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/16/2017] [Indexed: 11/24/2022]
Abstract
Following stroke, complete cellular death in the ischemic brain area may ensue, with remaining brain areas undergoing tissue remodelling to various degrees. Experience-dependent brain plasticity exerted through an enriched environment (EE) promotes remodelling after central nervous system injury, such as stroke. Post-stroke tissue reorganization is modulated by growth inhibitory molecules differentially expressed within the ischemic hemisphere, like chondroitin sulfate proteoglycans found in perineuronal nets (PNNs). PNNs in the neocortex predominantly enwrap parvalbumin-containing GABAergic (PV/GABA) neurons, important in sensori-information processing. Here, we investigate how extracellular matrix (ECM) proteases and their inhibitors may participate in the regulation of PNN integrity during stroke recovery. Rats were subjected to photothrombotic stroke in the motor cortex, and functional deficits were assessed at 7 days of recovery. Sham and stroked rats were housed in either standard or EE conditions for 5 days, and infarct volumes were calculated. PNNs were visualized by immunohistochemistry and counted in the somatosensory cortex of both hemispheres. mRNA expression levels of ECM proteases and protease inhibitors were assessed by RT-qPCR and their activity analyzed by gel zymography. PNNs and protease activity were also studied in brains from stroke patients where similar results were observed. EE starting 2 days after stroke and continuing for 5 days stimulated behavioral recovery of limb-placement ability without affecting infarct size. EE promoted a decrease of PNNs around PV/GABA neurons and a concomitant modulation of the proteolytic activity and mRNA expression of ECM proteases and protease inhibitors in the somatosensory cortex. This study provides molecular targets for novel therapies that could support rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Miriana Jlenia Quattromani
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184, Lund, Sweden.
| | - Mathilde Pruvost
- INSERM UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, GIP Cyceron, F-14074, Caen, France
| | - Carla Guerreiro
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184, Lund, Sweden
| | - Fredrik Backlund
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184, Lund, Sweden
| | - Elisabet Englund
- Division of Oncology and Pathology, Lund University Hospital, 22185, Lund, Sweden
| | - Anders Aspberg
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences, Lund University, BMC C12, 22184, Lund, Sweden
| | - Tomasz Jaworski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Jakob Hakon
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184, Lund, Sweden
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Denis Vivien
- INSERM UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, GIP Cyceron, F-14074, Caen, France.,Department of Clinical Research, Caen University Hospital, CHU Caen, 14000, Caen, France
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184, Lund, Sweden
| |
Collapse
|
9
|
Yang L, Kong Y, Ren H, Li M, Wei CJ, Shi E, Jin WN, Hao J, Vandenbark AA, Offner H. Upregulation of CD74 and its potential association with disease severity in subjects with ischemic stroke. Neurochem Int 2016; 107:148-155. [PMID: 27884769 DOI: 10.1016/j.neuint.2016.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a key cytokine/chemokine in the activation and recruitment of inflammatory T lymphocytes known to exacerbate experimental stroke severity. MIF effects are mediated through its primary cellular receptor, CD74, the MHC class II invariant chain present on all class II expressing cells, including monocytes, macrophages and dendritic cells (DC). We demonstrated previously that partial MHC class II/peptide constructs (pMHC) can effectively treat mice with experimental stroke, in part through their ability to competitively inhibit MIF/CD74 interactions and downstream signaling. However, the role of MIF and CD74 in human ischemic stroke is not yet well established. To evaluate the therapeutic potential for pMHC, we assessed MIF and CD74 expression levels and their association with disease outcome in subjects with ischemic stroke. MIF levels were assessed in blood plasma by ELISA and CD74 expression was quantified by flow cytometry and qRT-PCR in peripheral blood mononuclear cells (PBMCs) obtained from subjects with ischemic stroke and age and sex-matched healthy controls (HC). MIF levels were increased in plasma and the number of CD74+ cells and CD74 mRNA expression levels were significantly increased in PBMC of subjects with ischemic stroke versus HC, mainly on CD4+ T cells, monocytes and DC. Greater increases of CD74+ cells were seen in subjects with cortical vs. subcortical infarcts and the number of CD74+ cells in blood correlated strongly with infarct size and neurological outcomes. However, differences in MIF and CD74 expression were not affected by age, gender or lesion laterality. Increased CD74 expression levels may serve as a useful biomarker for worse stroke severity and predicted outcomes in subjects with ischemic stroke and provide a rationale for potential future treatment with pMHC constructs.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Kong
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chang-Juan Wei
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Elaine Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junwei Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Benedek G, Vandenbark AA, Alkayed NJ, Offner H. Partial MHC class II constructs as novel immunomodulatory therapy for stroke. Neurochem Int 2016; 107:138-147. [PMID: 27773790 DOI: 10.1016/j.neuint.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of stroke continues to rise despite recent successes in treating acute ischemic stroke. With limited patient eligibility and associated risk of tPA and mechanical thrombectomy, new preventive and therapeutic modalities are needed to stave the rising wave of stroke. Inflammation plays a key role in brain damage after cerebral ischemia, and novel therapies that target pro-inflammatory cells have demonstrated promise for treatment for stroke. Partial MHC class II constructs have been shown to prevent and/or reverse clinical signs of various inflammatory diseases such as experimental autoimmune encephalomyelitis, collagen-induced arthritis and experimental autoimmune uveitis, by reducing the number and frequency of activated cells in the damaged CNS. Herein, we review the use of partial MHC class II constructs as a novel treatment for ischemic stroke. These constructs have been shown to reduce infarct volume and neurological deficit in various cerebral ischemia models in young adult and aging male and female mice. In addition, partial MHC class II constructs were shown to reverse stroke-associated splenic atrophy and promote a protective M2 macrophage/microglia phenotype in the CNS which contributes to tissue repair and recovery after stroke. By addressing remaining STAIR criteria, such as efficacy in large animal models of stroke, these constructs will be prime candidates for clinical trials of acute ischemic stroke.
Collapse
Affiliation(s)
- Gil Benedek
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR, 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR, 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR, 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Li YS, Chen W, Liu S, Zhang YY, Li XH. Serum macrophage migration inhibitory factor levels are associated with infarct volumes and long-term outcomes in patients with acute ischemic stroke. Int J Neurosci 2016; 127:539-546. [PMID: 27402018 DOI: 10.1080/00207454.2016.1211648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Previous studies have shown that macrophage migration inhibition factor (MIF) plays a significant role in stroke. The aim of this study was to investigate the association of the serum MIF level with both infarct volume and long-term outcome in patients with acute ischemic stroke (AIS). METHODS This study included 146 patients who were identified within 24 h of first experiencing AIS symptoms. Serum MIF levels were tested at the time of admission and three months later. Logistic regression was used to evaluate the risk and long-term outcome of stroke according to serum MIF level. RESULTS Serum MIF levels were only higher in acute-stage AIS patients compared with those of the normal controls (p < 0.0001). Chronic-stage serum MIF levels were significantly lower than acute-stage serum MIF levels (p < 0.001) and were similar to serum MIF levels in the controls (p = 0.392). The serum MIF level was positively associated with infarct volume (r = 0.5515, p < 0.0001) and NIHSS score (r = 0.5190, p < 0.0001). After adjusting for other significant outcome predictors, the serum MIF level was an independent predictor of long-term outcome, with an adjusted OR of 1.113 (p = 0.005, 95% CI: 1.051-1.238). CONCLUSIONS This study demonstrated that serum MIF levels were significantly increased after AIS. Serum MIF levels at admission were positively correlated with infarct volume and long-term outcome in patients with AIS. The serum MIF level could serve as a useful prognostic marker in patients with AIS.
Collapse
Affiliation(s)
- Yan-Shuang Li
- a Department of Neurology , Jinan Central Hospital Affiliated to Shandong University , Jinan , People's Republic of China
| | - Wen Chen
- a Department of Neurology , Jinan Central Hospital Affiliated to Shandong University , Jinan , People's Republic of China
| | - Shuang Liu
- a Department of Neurology , Jinan Central Hospital Affiliated to Shandong University , Jinan , People's Republic of China
| | - Yuan-Yuan Zhang
- a Department of Neurology , Jinan Central Hospital Affiliated to Shandong University , Jinan , People's Republic of China
| | - Xiao-Hong Li
- a Department of Neurology , Jinan Central Hospital Affiliated to Shandong University , Jinan , People's Republic of China
| |
Collapse
|
12
|
Ji MH, Wang ZY, Sun XR, Tang H, Zhang H, Jia M, Qiu LL, Zhang GF, Peng YG, Yang JJ. Repeated Neonatal Sevoflurane Exposure-Induced Developmental Delays of Parvalbumin Interneurons and Cognitive Impairments Are Reversed by Environmental Enrichment. Mol Neurobiol 2016; 54:3759-3770. [DOI: 10.1007/s12035-016-9943-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/26/2016] [Indexed: 01/13/2023]
|
13
|
Environmental Enrichment Prevent the Juvenile Hypoxia-Induced Developmental Loss of Parvalbumin-Immunoreactive Cells in the Prefrontal Cortex and Neurobehavioral Alterations Through Inhibition of NADPH Oxidase-2-Derived Oxidative Stress. Mol Neurobiol 2015; 53:7341-7350. [DOI: 10.1007/s12035-015-9656-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
|
14
|
Zhang W, Li L, Wang J, An L, Hu X, Xie J, Yan R, Chen S, Zhao S. Expression of macrophage migration inhibitory factor in the mouse neocortex and posterior piriform cortices during postnatal development. Cell Mol Neurobiol 2014; 34:1183-97. [PMID: 25118614 DOI: 10.1007/s10571-014-0094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/29/2014] [Indexed: 01/30/2023]
Abstract
Macrophage migration inhibitory factor (MIF) functions as a pleiotropic protein, participating in a vast array of cellular and biological processes. Abnormal expression of MIF has been implicated in many neurological diseases, including Parkinson's disease, epilepsy, Alzheimer's Disease, stroke, and neuropathic pain. However, the expression patterns of mif transcript and MIF protein from the early postnatal period through adulthood in the mouse brain are still poorly understood. We therefore investigated the temporal and spatial expression of MIF in the mouse neocortex during postnatal development in detail and partially in posterior piriform cortices (pPC). As determined by quantitative real-time PCR (qPCR), mif transcript gradually increased during development, with the highest level noted at postnatal day 30 (P30) followed by a sharp decline at P75. In contrast, Western blotting results showed that MIF increased constantly from P7 to P75. The highest level of MIF was at P75, while the lowest level of MIF was at P7. Immunofluorescence histochemistry revealed that MIF-immunoreactive (ir) cells were within the entire depth of the developed neocortex, and MIF was heterogeneously distributed among cortical cells, especially at P7, P14, P30, and P75; MIF was abundant in the pyramidal layer within pPC. Double immunostaining showed that all the mature neurons were MIF-ir and all the intensely stained MIF-ir cells were parvalbumin positive (Pv +) at adult. Moreover, it was demonstrated that MIF protein localized in the perikaryon, processes, presynaptic structures, and the nucleus in neurons. Taken together, the developmentally regulated expression and the subcellular localization of MIF should form a platform for an analysis of MIF neurodevelopmental biology and MIF-related nerve diseases.
Collapse
Affiliation(s)
- Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Madinier A, Quattromani MJ, Sjölund C, Ruscher K, Wieloch T. Enriched housing enhances recovery of limb placement ability and reduces aggrecan-containing perineuronal nets in the rat somatosensory cortex after experimental stroke. PLoS One 2014; 9:e93121. [PMID: 24664200 PMCID: PMC3963994 DOI: 10.1371/journal.pone.0093121] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/28/2014] [Indexed: 12/23/2022] Open
Abstract
Stroke causes life long disabilities where few therapeutic options are available. Using electrical and magnetic stimulation of the brain and physical rehabilitation, recovery of brain function can be enhanced even late after stroke. Animal models support this notion, and housing rodents in an enriched environment (EE) several days after experimental stroke stimulates lost brain function by multisensory mechanisms. We studied the dynamics of functional recovery of rats with a lesion to the fore and hind limb motor areas induced by photothrombosis (PT), and with subsequent housing in either standard (STD) or EE. In this model, skilled motor function is not significantly enhanced by enriched housing, while the speed of recovery of sensori-motor function substantially improves over the 9-week study period. In particular, this stroke lesion completely obliterates the fore and hind limb placing ability when visual and whisker guidance is prevented, a deficit that persists for up to 9 weeks of recovery, but that is markedly restored within 2 weeks by enriched housing. Enriched housing after stroke also leads to a significant loss of perineuronal net (PNN) immunoreactivity; detection of aggrecan protein backbone with AB1031 antibody was decreased by 13–22%, and labelling of a glycan moiety of aggrecan with Cat-315 antibody was reduced by 25–30% in the peri-infarct area and in the somatosensory cortex, respectively. The majority of these cells are parvalbumin/GABA inhibitory interneurons that are important in sensori-information processing. We conclude that damage to the fore and hind limb motor areas provides a model of loss of limb placing response without visual guidance, a deficit also seen in more than 50% of stroke patients. This loss is amenable to recovery induced by multiple sensory stimulation and correlates with a decrease in aggrecan-containing PNNs around inhibitory interneurons. Modulating the PNN structure after ischemic damage may provide new therapies enhancing tactile/proprioceptive function after stroke.
Collapse
Affiliation(s)
- Alexandre Madinier
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Miriana Jlenia Quattromani
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Carin Sjölund
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
16
|
Benedek G, Zhu W, Libal N, Casper A, Yu X, Meza-Romero R, Vandenbark AA, Alkayed NJ, Offner H. A novel HLA-DRα1-MOG-35-55 construct treats experimental stroke. Metab Brain Dis 2014; 29:37-45. [PMID: 24122483 PMCID: PMC3975671 DOI: 10.1007/s11011-013-9440-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 01/13/2023]
Abstract
Chemoattraction of leukocytes into the brain after induction of middle cerebral artery occlusion (MCAO) increases the lesion size and worsens disease outcome. Our previous studies demonstrated that partial MHC class II constructs can reverse this process. However, the potential application of pMHC to human stroke is limited by the need to rapidly match recipient MHC class II with the β1 domain of the pMHC construct. We designed a novel recombinant protein comprised of the HLA-DRα1 domain linked to MOG-35-55 peptide but lacking the β1 domain found in pMHC and treated MCAO after 4 h reperfusion in humanized DR2 mice. Infarct volumes were quantified after 96 h reperfusion and immune cells from the periphery and CNS were evaluated for expression of CD74 and other cell surface, cytokine and pathway markers. This study demonstrates that four daily treatments with DRα1-MOG-35-55 reduced infarct size by 40 % in the cortex, striatum and hemisphere, inhibited the migration of activated CD11b+CD45high cells from the periphery to the brain and reversed splenic atrophy. Furthermore, DRα1-MOG-35-55 bound to CD74 on monocytes and blocked both binding and downstream signaling of macrophage migration inhibition factor (MIF) that may play a key role in infarct development. The novel DRα1-MOG-35-55 construct is highly therapeutic in experimental stroke and could be given to all patients at least 4 h after stroke onset without the need for tissue typing due to universal expression of DRα1 in humans.
Collapse
Affiliation(s)
- Gil Benedek
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Nicole Libal
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Amanda Casper
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Xiaolin Yu
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA. Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, R&D-31, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA. Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA. Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
Hypoxia-induced developmental delays of inhibitory interneurons are reversed by environmental enrichment in the postnatal mouse forebrain. J Neurosci 2013; 33:13375-87. [PMID: 23946395 DOI: 10.1523/jneurosci.5286-12.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infants born premature experience hypoxic episodes due to immaturity of their respiratory and central nervous systems. This profoundly affects brain development and results in cognitive impairments. We used a mouse model to examine the impact of hypoxic rearing (9.5-10.5% O2) from postnatal day 3 to 11 (P3-P11) on GABAergic interneurons and the potential for environmental enrichment to ameliorate these developmental abnormalities. At P15 the numbers of cortical interneurons expressing immunohistochemically detectable levels of parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide were decreased in hypoxic-reared mice by 59%, 32%, and 38%, respectively, compared with normoxic controls. Hypoxia also decreased total GABA content in frontal neocortex by 31%. However, GAD67-EGFP knock-in mice reared under hypoxic conditions showed no changes in total number of GAD67-EGFP(+) cells and no evidence of increased interneuron death, suggesting that the total number of interneurons was not decreased, but rather, that hypoxic-rearing decreased interneuron marker expression in these cells. In adulthood, PV and SST expression levels were decreased in hypoxic-reared mice. In contrast, intensity of reelin (RLN) expression was significantly increased in adult hypoxic-reared mice compared with normoxic controls. Housing mice in an enriched environment from P21 until adulthood normalized phenotypic interneuron marker expression without affecting total interneuron numbers or leading to increased neurogenesis. Our data show that (1) hypoxia decreases PV and SST and increases RLN expression in cortical interneurons during postnatal cortical development and (2) enriched environment has the capacity to normalize the interneuron abnormalities in cortex.
Collapse
|
18
|
Audet MC, Anisman H. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front Cell Neurosci 2013; 7:68. [PMID: 23675319 PMCID: PMC3650474 DOI: 10.3389/fncel.2013.00068] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/22/2013] [Indexed: 01/18/2023] Open
Abstract
The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses.
Collapse
|
19
|
Turtzo LC, Li J, Persky R, Benashski S, Weston G, Bucala R, Venna VR, McCullough LD. Deletion of macrophage migration inhibitory factor worsens stroke outcome in female mice. Neurobiol Dis 2013; 54:421-31. [PMID: 23376686 DOI: 10.1016/j.nbd.2013.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/21/2012] [Accepted: 01/22/2013] [Indexed: 12/12/2022] Open
Abstract
Sex is an important factor in the response to ischemic insults in both the laboratory and the clinic. Inflammation and cell death are points where sex-specific pathways diverge in stroke, and serum estrogen level status affect the response to inflammation. The cytokine macrophage migration inhibitory factor (MIF) is detrimental in experimental stroke models in male animals. However MIF is known to have sex-specific actions on inflammation and wound healing. The role of MIF in the ischemic female brain has not been evaluated. A transient middle cerebral artery occlusion (MCAO/90min) model was used to induce stroke in male, intact female, and ovariectomized female wildtype (WT) and MIF knockout (KO) mice. Infarct size was quantified 72h after stroke. Protein and cytokine levels were assessed post stroke. Female MIF KO mice had significantly larger strokes compared to WT females (mean hemispheric infarct±SEM: 63%±2% versus 29%±3%; n=8; p<0.05). Ovariectomized female MIF KO mice also had larger infarcts than ovariectomized WT littermates (70%±3% versus 47%±4%; n=11; p<0.05). In males, however, infarct size was equivalent between MIF KO and WT mice (63%±2% versus 67%±3%; n=9; p=0.25). There were no significant differences in cytokine levels at 6h post-infarct between mice of either genotype in brain. MIF KO females displayed more microglial activation (ionized calcium binding adaptor molecule 1 (Iba1) immunofluorescence) after stroke than did WT mice or MIF KO males. The larger infarcts in MIF KO females were associated with an early increase in mitochondrial localization of Jun activation domain-binding protein 1 (JAB1). Loss of MIF exacerbated injury in the female brain after experimental stroke, which was independent of changes in pro-inflammatory cytokine levels. This response is sex-specific, and is in part independent of physiological serum levels of estrogen.
Collapse
Affiliation(s)
- L Christine Turtzo
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen Y, Wu X, Yu S, Lin X, Wu J, Li L, Zhao J, Zhao Y. Neuroprotection of tanshinone IIA against cerebral ischemia/reperfusion injury through inhibition of macrophage migration inhibitory factor in rats. PLoS One 2012; 7:e40165. [PMID: 22768247 PMCID: PMC3387137 DOI: 10.1371/journal.pone.0040165] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/02/2012] [Indexed: 12/18/2022] Open
Abstract
Background Ischemia/reperfusion (I/R) injury is associated with systemic inflammatory response. Macrophage migration inhibitory factor (MIF) has been implicated in many inflammatory processes. Tanshinone IIA (TSA) is one of the active ingredients in danshen, which derived from the dried root or rhizome of Salviae miltiorrhizae Bge. Recent studies have demonstrated that TSA has protective effects against focal cerebral I/R injury. However, little is known about the underlying mechanisms. Here we put forward the hypothesis that TSA acts through inhibition of MIF expression during focal cerebral I/R injury in rats. Methodology/Principal Findings Rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hours. This was followed by reperfusion. We measured neurological deficits, brain water content, and infarct volume, and found that neurological dysfunction, brain edema, and brain infarction were significantly attenuated by TSA 6 hours after reperfusion. We also measured myeloperoxidase (MPO) activity at 6 and 24 hours, and found that neutrophil infiltration was significantly higher in the vehicle+I/R group than in the TSA+I/R group. ELISA demonstrated that TSA could inhibit MIF expression and the release of TNF-α and IL-6 induced by I/R injury. Western blot analysis and immunofluorescence staining showed that MIF expression was significantly lower in the TSA+I/R group than in the vehicle+I/R group. MIF was found almost all located in neurons and hardly any located in astrocytes in the cerebral cortex. Western blot analysis and EMSA demonstrated that NF-κB expression and activity were significantly increased in the vehicle+I/R group. However, these changes were attenuated by TSA. Conclusion/Significance Our results suggest that TSA helps alleviate the proinflammatory responses associated with I/R-induced injury and that this neuroprotective effect may occur through down-regulation of MIF expression in neurons.
Collapse
Affiliation(s)
- Yanlin Chen
- Department of Pathology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuemei Wu
- Department of Pathology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuemei Lin
- Department of Pathology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jingxian Wu
- Department of Pathology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lan Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People’s Republic of China
- * E-mail: (YZ); (JZ)
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, People’s Republic of China
- * E-mail: (YZ); (JZ)
| |
Collapse
|
21
|
Ruscher K, Kuric E, Wieloch T. Levodopa Treatment Improves Functional Recovery After Experimental Stroke. Stroke 2012; 43:507-13. [DOI: 10.1161/strokeaha.111.638767] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background and Purpose—
Delayed treatment of patients with stroke with levodopa/benserazide contributes to enhanced functional recovery, but the mechanisms involved are poorly understood. The present study was designed to investigate if levodopa/benserazide treatment improves recovery of lost neurological function and contributes to tissue reorganization in the rat brain after stroke.
Methods—
Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (120 minutes) and treated with levodopa (1, 5, and 20 mg/kg)/benserazide (15 mg/kg) or saline for 12 consecutive days starting on Day 2 after transient occlusion of the middle cerebral artery. Infarct volume was determined and sensorimotor function was assessed using the rotating pole test, a 28-point neuroscore, and a cylinder test on Days 2, 7, and 14 after transient occlusion of the middle cerebral artery. The spatiotemporal expression pattern of dopamine-1 and dopamine-2 receptors and the dopamine- and cAMP-regulated neuronal phosphoprotein in reactive astrocytes were analyzed in the ischemic hemisphere as well as in cultured astrocytes.
Results—
Treatment with levodopa/benserazide significantly improved the recovery of sensorimotor function after transient occlusion of the middle cerebral artery without affecting the infarct volume. In addition, we found that different subpopulations of glial fibrillary acidic protein-positive astrocytes in the peri-infarct area express dopamine-1 receptors and dopamine-2 receptors as well as dopamine- and cAMP-regulated neuronal phosphoprotein.
Conclusions—
Our results strongly corroborate the concept of recovery enhancing actions of levodopa treatment after stroke. Also, astrocytes in the peri-infarct area may contribute to the dopamine enhanced recovery mechanisms.
Collapse
Affiliation(s)
- Karsten Ruscher
- From the Department of Clinical Sciences, Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Enida Kuric
- From the Department of Clinical Sciences, Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- From the Department of Clinical Sciences, Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Inácio AR, Bucala R, Deierborg T. Lack of macrophage migration inhibitory factor in mice does not affect hallmarks of the inflammatory/immune response during the first week after stroke. J Neuroinflammation 2011; 8:75. [PMID: 21714902 PMCID: PMC3152909 DOI: 10.1186/1742-2094-8-75] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 06/29/2011] [Indexed: 11/10/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) has been proposed to play a detrimental role in stroke. We recently showed that MIF promotes neuronal death and aggravates neurological deficits during the first week after experimental stroke, in mice. Since MIF regulates tissue inflammation, we studied the putative role of MIF in post-stroke inflammation. Methods We subjected C57BL/6 mice, Mif-/- (MIF-KO) or Mif+/+ (WT), to a transient occlusion of the right middle cerebral artery (tMCAo) or sham-surgery. We studied MIF expression, GFAP expression and the number of CD74-positive cells in the ischemic brain hemisphere 7 days after tMCAo using primarily immunohistochemistry. We determined IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12, KC/CXCL-1 and TNF-α protein levels in the brain (48 h after surgery) and serum (48 h and 7 days after surgery) by a multiplex immunoassay. Results We observed that MIF accumulates in neurons and astrocytes of the peri-infarct region, as well as in microglia/macrophages of the infarct core up to 7 days after stroke. Among the inflammatory mediators analyzed, we found a significant increase in cerebral IL-12 and KC levels after tMCAo, in comparison to sham-surgery. Importantly, the deletion of Mif did not significantly affect the levels of the cytokines evaluated, in the brain or serum. Moreover, the spleen weight 48 h and 7 days subsequent to tMCAo was similar in WT and MIF-KO mice. Finally, the extent of GFAP immunoreactivity and the number of MIF receptor (CD74)-positive cells within the ischemic brain hemisphere did not differ significantly between WT and MIF-KO mice subjected to tMCAo. Conclusions We conclude that MIF does not affect major components of the inflammatory/immune response during the first week after experimental stroke. Based on present and previous evidence, we propose that the deleterious MIF-mediated effects in stroke depend primarily on an intraneuronal and/or interneuronal action.
Collapse
Affiliation(s)
- Ana R Inácio
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, BMC A13, 22184 Lund, Sweden.
| | | | | |
Collapse
|