1
|
Costa-Ferro ZSM, Cunha RS, Rossi EA, Loiola EC, Cipriano BP, Figueiredo JCQ, da Silva EA, de Lima AVR, de Jesus Ribeiro AM, Moitinho Junior VS, Adanho CSA, Nonaka CKV, Silva AMDS, da Silva KN, Rocha GV, De Felice FG, do Prado-Lima PAS, Souza BSDF. Extracellular vesicles derived from mesenchymal stem cells alleviate depressive-like behavior in a rat model of chronic stress. Life Sci 2025; 366-367:123479. [PMID: 39983828 DOI: 10.1016/j.lfs.2025.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Depression is a prevalent chronic psychiatric disorder with a growing impact on global health. Current treatments often fail to achieve full remission, highlighting the need for alternative therapeutic strategies. Mesenchymal stem cells (MSCs) have attracted significant interest for their therapeutic potential in neuropsychiatric disorders, primarily due to their capacity to target neuroinflammation. This study aimed to investigate if extracellular vesicles derived from human umbilical MSCs (hucMSCs) promote behavioral beneficial actions in a rat model of chronic unpredictable mild stress (CUMS). We show that a single dose of hucMSCs or their derived EVs (hucMSC-EVs) via the tail vein alleviated depressive-like behavior in rats, reduced markers of neuroinflammation, reduced pro-inflammatory cytokines (IL-1β and TNF-α), and increased the number and dendritic complexity of DCX-positive cells in the dentate gyrus. Proteomic analysis of EVs revealed the presence of proteins involved in modulation of inflammatory processes and cell activation. Our study demonstrates EVs derived from hucMSCs can effectively mitigate depressive symptoms by modulating neuroinflammatory pathways and enhancing neurogenesis. These findings support further exploration of MSC-derived EVs as a novel therapeutic option for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zaquer Suzana Munhoz Costa-Ferro
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Rachel Santana Cunha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Erik Aranha Rossi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Erick Correia Loiola
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Barbara Porto Cipriano
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Júlio César Queiroz Figueiredo
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Elisama Araújo da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Adne Vitória Rocha de Lima
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Adlas Michel de Jesus Ribeiro
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | | | - Corynne Stephanie Ahouefa Adanho
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | | | - Kátia Nunes da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Gisele Vieira Rocha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Fernanda Guarino De Felice
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil; Centre for Neuroscience Studies, Departments of Biomedical and Molecular Sciences & Psychiatry, Queen's University, Kingston, ON, Canada; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 PMCID: PMC11410020 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
3
|
Fang Q, Zheng S, Chen Q, Chen L, Yang Y, Wang Y, Zhang H, Chen J. The protective effect of inhibiting mitochondrial fission on the juvenile rat brain following PTZ kindling through inhibiting the BCL2L13/LC3 mitophagy pathway. Metab Brain Dis 2023; 38:453-466. [PMID: 36094724 DOI: 10.1007/s11011-022-01077-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
Maintaining the balance of mitochondrial fission and mitochondrial autophagy on seizures is helpful to find a solution to control seizures and reduce brain injuries. The present study is to investigate the protective effect of inhibiting mitochondrial fission on brain injury in juvenile rat epilepsy induced by pentatetrazol (PTZ) by inhibiting the BCL2L13/LC3-mediated mitophagy pathway. PTZ was injected (40 mg/kg) to induce kindling once every other day, for a total of 15 times. In the PTZ + DMSO (DMSO), PTZ + Mdivi-1 (Mdivi-1), and PTZ + WY14643 (WY14643) groups, rats were pretreated with DMSO, Mdivi-1 and WY14643 for half an hour prior to PTZ injection. The seizure attacks of young rats were observed for 30 min after model establishment. The Morris water maze (MWM) was used to test the cognition of experimental rats. After the test, the numbers of NeuN(+) neurons and GFAP(+) astrocytes were observed and counted by immunofluorescence (IF). The protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampus of young rats were detected by immunohistochemistry (IHC) and Western blotting (WB). Compared with the PTZ and DMSO groups, the seizure latency in the Mdivi-1 group was longer (P < 0.01), and the severity degree and frequency of seizures were lower (P < 0.01). The MWM test showed that the incubation periods of crossing the platform in the Mdivi-1 group was significantly shorter. The number of platform crossings, the platform stay time, and the ratio of residence time/total stay time were significantly increased in the Mdivi-1 group (P < 0.01). The IF results showed that the number of NeuN(+) neurons in the Mdivi-1 group was greater, while the number of GFAP(+) astrocytes was lower. IHC and WB showed that the average optical density (AOD) and relative protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampi of rats in the Mdivi-1 group were higher (P < 0.05). The above results in the WY14643 group were opposite to those in the Mdivi-1 group. Inhibition of mitochondrial fission could reduce seizure attacks, protect injured neurons, and improve cognition following PTZ-induced epilepsy by inhibiting mitochondrial autophagy mediated by the BCL2L13/LC3 mitophagy pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Shaojuan Zheng
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Ying Wang
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Huixia Zhang
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jiafan Chen
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| |
Collapse
|
4
|
Rehman FU, Liu Y, Zheng M, Shi B. Exosomes based strategies for brain drug delivery. Biomaterials 2023; 293:121949. [PMID: 36525706 DOI: 10.1016/j.biomaterials.2022.121949] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/12/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Exosome application has emerged as a promising nanotechnology discipline for various diseases therapeutics and diagnoses. Owing to the natural properties of efficient drug delivery, higher biocompatibility, facile traversing of physiological barriers, and subtle side effects, exosomes shorten their way to clinical translation. Exosomes are nanoscale membrane-bound vesicles primarily involved in intercellular communication and exhibit natural blood-brain barrier (BBB) traversing ability, which enables their application as drug delivery vehicles for brain diseases treatment. Herein, we highlight recent exosome-based drug delivery endeavors for neurodegenerative diseases and brain cancer therapy, summarize the obstacles and future directions in clinical translation.
Collapse
Affiliation(s)
- Fawad Ur Rehman
- Henan-Macquire International Joint Center for Biomedical Innovations, School of Life Sciences, Henan University, JinMing Avenue, Kaifeng, 475004 PR China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Yang Liu
- Henan-Macquire International Joint Center for Biomedical Innovations, School of Life Sciences, Henan University, JinMing Avenue, Kaifeng, 475004 PR China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Henan-Macquire International Joint Center for Biomedical Innovations, School of Life Sciences, Henan University, JinMing Avenue, Kaifeng, 475004 PR China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Bingyang Shi
- Henan-Macquire International Joint Center for Biomedical Innovations, School of Life Sciences, Henan University, JinMing Avenue, Kaifeng, 475004 PR China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Department of Biomedical Sciences Faculty of Medicine and Health Sciences Macquarie University Sydney, NSW, 2109, Australia.
| |
Collapse
|
5
|
Tesiye MR, Gol M, Fadardi MR, Kani SNM, Costa AM, Ghasemi-Kasman M, Biagini G. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells 2022; 11:cells11244129. [PMID: 36552892 PMCID: PMC9777461 DOI: 10.3390/cells11244129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a life-threatening neurological disease that affects approximately 70 million people worldwide. Although the vast majority of patients may be successfully managed with currently used antiseizure medication (ASM), the search for alternative therapies is still necessary due to pharmacoresistance in about 30% of patients with epilepsy. Here, we review the effects of ASMs on stem cell treatment when they could be, as expected, co-administered. Indeed, it has been reported that ASMs produce significant effects on the differentiation and determination of stem cell fate. In addition, we discuss more recent findings on mesenchymal stem cells (MSCs) in pre-clinical and clinical investigations. In this regard, their ability to differentiate into various cell types, reach damaged tissues and produce and release biologically active molecules with immunomodulatory/anti-inflammatory and regenerative properties make them a high-potential therapeutic tool to address neuroinflammation in different neurological disorders, including epilepsy. Overall, the characteristics of MSCs to be genetically engineered, in order to replace dysfunctional elements with the aim of restoring normal tissue functioning, suggested that these cells could be good candidates for the treatment of epilepsy refractory to ASMs. Further research is required to understand the potential of stem cell treatment in epileptic patients and its interaction with ASMs.
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Gol
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | - Anna-Maria Costa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: (M.G.-K.); (G.B.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (M.G.-K.); (G.B.)
| |
Collapse
|
6
|
Costa-Ferro ZSM, do Prado-Lima PAS, Onsten GA, Oliveira GN, Brito GC, Ghilardi IM, Dos Santos PG, Bertinatto RJ, da Silva DV, Salamoni SD, Machado DC, da Cruz IBM, de Freitas Souza BS, da Costa JC. Bone marrow mononuclear cell transplant prevents rat depression and modulates inflammatory and neurogenic molecules. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110455. [PMID: 34637870 DOI: 10.1016/j.pnpbp.2021.110455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Major depressive disorder is associated with chronic inflammation and deficient production of brain-derived neurotrophic factor (BDNF). Bone marrow mononuclear cell (BMMC) transplantation has an anti-inflammatory effect and has been proven effective in restoring non-depressive behavior. This study investigated whether BMMC transplantation can prevent the development of depression or anxiety in chronic mild stress (CMS), as well as its effect on inflammatory and neurogenic molecules. METHOD Three groups of animals were compared: BMMC-transplanted animals subjected to CMS for 45 days, CMS non-transplanted rats, and control animals. After the CMS period, the three groups underwent the following behavioral tests: sucrose preference test (SPT), eating-related depression test (ERDT), social avoidance test (SAT), social interaction test (SIT), and elevated plus maze test (EPMT). Transplanted cell tracking and measurement of the expression of high-mobility group box 1 (HMGB1), interleukin-1β (IL-1β), tumor necrosis factor (TNFα), and BDNF were performed on brain and spleen tissues. RESULTS BMMC transplantation prevented the effects of CMS in the SPT, ERDT, SAT, and SIT, while prevention was less pronounced in the EPMT. It was found to prevent increased HMGB-1 expression induced by CMS in the hippocampus and spleen, increase BDNF expression in both tissues, and prevent increased IL-1β expression in the hippocampus alone, while no effect of the transplant was observed in the TNFα expression. In addition, no transplanted cells were found in either the brain or spleen. CONCLUSIONS BMMC transplantation prevents the development of depression and anxiety-like behavior triggered by CMS. It could prevent increased HMGB-1 and IL-1β expression in the hippocampus and increased BDNF expression in the same tissue. Cell treatment represents a further perspective in the research and treatment of depression and possible mood disorders.
Collapse
Affiliation(s)
| | | | - Guilherme Ary Onsten
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gutierre Neves Oliveira
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Camargo Brito
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Gabrielli Dos Santos
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ricardo Jean Bertinatto
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniele Vieira da Silva
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Denise Salamoni
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Denise Cantarelli Machado
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia, Brazil; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia, Brazil
| | - Jaderson Costa da Costa
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol Neurobiol 2022; 59:1724-1743. [PMID: 35015252 DOI: 10.1007/s12035-022-02725-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence corroborates the fundamental role of neuroinflammation in the development of epilepsy. Proinflammatory cytokines (PICs) are crucial contributors to the inflammatory reactions in the brain. It is evidenced that epileptic seizures are associated with elevated levels of PICs, particularly interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which underscores the impact of neuroinflammation and PICs on hyperexcitability of the brain and epileptogenesis. Since the pathophysiology of epilepsy is unknown, determining the possible roles of PICs in epileptogenesis could facilitate unraveling the pathophysiology of epilepsy. About one-third of epileptic patients are drug-resistant, and existing treatments only resolve symptoms and do not inhibit epileptogenesis; thus, treatment of epilepsy is still challenging. Accordingly, understanding the function of PICs in epilepsy could provide us with promising targets for the treatment of epilepsy, especially drug-resistant type. In this review, we outline the role of neuroinflammation and its primary mediators, including IL-1β, IL-1α, IL-6, IL-17, IL-18, TNF-α, and interferon-γ (IFN-γ) in the pathophysiology of epilepsy. Furthermore, we discuss the potential therapeutic targeting of PICs and cytokine receptors in the treatment of epilepsy.
Collapse
|
8
|
Upadhya D, Shetty AK. Promise of extracellular vesicles for diagnosis and treatment of epilepsy. Epilepsy Behav 2021; 121:106499. [PMID: 31636006 PMCID: PMC7165061 DOI: 10.1016/j.yebeh.2019.106499] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) released from cells play vital roles in intercellular communication. Moreover, EVs released from stem cells have therapeutic properties. This review confers the potential of brain-derived EVs in the cerebrospinal fluid (CSF) and the serum as sources of epilepsy-related biomarkers, and the promise of mesenchymal stem cell (MSC)-derived EVs for easing status epilepticus (SE)-induced adverse changes in the brain. Extracellular vesicles shed from neurons and glia in the brain can also be found in the circulating blood as EVs cross the blood-brain barrier (BBB). Evaluation of neuron and/or glia-derived EVs in the blood of patients who have epilepsy could help in identifying specific biomarkers for distinct types of epilepsies. Such a liquid biopsy approach is also amenable for repeated analysis in clinical trials for comprehending treatment efficacy, disease progression, and mechanisms of therapeutic interventions. Extracellular vesicle biomarker studies in animal prototypes of epilepsy, in addition, could help in identifying specific micro ribonucleic acid (miRNAs) contributing to epileptogenesis, seizures, or cognitive dysfunction in different types of epilepsy. Furthermore, intranasal (IN) administration of MSC-derived EVs after SE has shown efficacy for restraining SE-induced neuroinflammation, aberrant neurogenesis, and cognitive dysfunction in an animal prototype. Clinical translation of EV therapy as an adjunct to antiepileptic drugs appears attractive to counteract the progression of SE-induced epileptogenic changes, as the risk for thrombosis or tumor is minimal with nanosized EVs. Also, EVs can be engineered to deliver specific miRNAs, proteins, or antiepileptic drugs to the brain since they incorporate into neurons and glia throughout the brain after IN administration. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|
9
|
Jin T, Gu J, Li Z, Xu Z, Gui Y. Recent Advances on Extracellular Vesicles in Central Nervous System Diseases. Clin Interv Aging 2021; 16:257-274. [PMID: 33603351 PMCID: PMC7882422 DOI: 10.2147/cia.s288415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are particles released by multiple cells, encapsulated by lipid bilayers and containing a variety of biological materials, including proteins, nucleic acids, lipids and metabolites. With the advancement of separation and characterization methods, EV subtypes and their complex and diverse functions have been recognized. In the central nervous system (CNS), EVs are involved in various physiological and pathological processes, such as regulation of neuronal firing, synaptic plasticity, formation and maintenance of myelin sheath, propagation of neuroinflammation, neuroprotection, and spread and removal of toxic protein aggregates. Activity-dependent alteration of constituents enables EVs to reflect the change of cell and tissue states, and the wide distribution of EVs in biological fluids endows them with potential as diagnostic and prognostic biomarkers for CNS diseases, including neurodegenerative disease, cerebrovascular disease, traumatic brain disease, and brain tumor. Favorable biocompatibility, ability of crossing the blood–brain barrier and protecting contents from degradation, give promising therapeutic effects of EVs, either collected from mesenchymal stem cells culture conditioned media, or designed as drug delivery vehicles loaded with specific agents. In this review, we summarized EVs’ basic biological properties, and mainly focused on their applications in CNS diseases.
Collapse
Affiliation(s)
- Tao Jin
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Jiachen Gu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Zongshan Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Zhongping Xu
- Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yaxing Gui
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| |
Collapse
|
10
|
Costa-Ferro ZSM, de Oliveira GN, da Silva DV, Marinowic DR, Machado DC, Longo BM, da Costa JC. Intravenous infusion of bone marrow mononuclear cells promotes functional recovery and improves impaired cognitive function via inhibition of Rho guanine nucleotide triphosphatases and inflammatory signals in a model of chronic epilepsy. Brain Struct Funct 2020; 225:2799-2813. [PMID: 33128125 DOI: 10.1007/s00429-020-02159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Temporal lobe epilepsy is the most common form of intractable epilepsy in adults. More than 30% of individuals with epilepsy have persistent seizures and have drug-resistant epilepsy. Based on our previous findings, treatment with bone marrow mononuclear cells (BMMC) could interfere with early and chronic phase epilepsy in rats and in clinical settings. In this pilocarpine-induced epilepsy model, animals were randomly assigned to two groups: control (Con) and epileptic pre-treatment (Ep-pre-t). The latter had status epilepticus (SE) induced through pilocarpine intraperitoneal injection. Later, seizure frequency was assessed using a video-monitoring system. Ep-pre-t was further divided into epileptic treated with saline (Ep-Veh) and epileptic treated with BMMC (Ep-BMMC) after an intravenous treatment with BMMC was done on day 22 after SE. Analysis of neurobehavioral parameters revealed that Ep-BMMC had significantly lower frequency of spontaneous recurrent seizures (SRS) in comparison to Ep-pre-t and Ep-Veh groups. Hippocampus-dependent spatial and non-spatial learning and memory were markedly impaired in epileptic rats, a deficit that was robustly recovered by treatment with BMMC. Moreover, long-term potentiation-induced synaptic remodeling present in epileptic rats was restored by BMMC. In addition, BMMC was able to reduce abnormal mossy fiber sprouting in the dentate gyrus. Molecular analysis in hippocampal tissue revealed that BMMC treatment down-regulates the release of inflammatory cytokine tumor necrosis factor-α (TNF-α) and Allograft inflammatory factor-1 (AIF-1) as well as the Rho subfamily of small GTPases [Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac)]. Collectively, delayed BMMC treatment showed positive effects when intravenously infused into chronic epileptic rats.
Collapse
Affiliation(s)
- Zaquer Suzana Munhoz Costa-Ferro
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gutierre Neves de Oliveira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniele Vieira da Silva
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denise Cantarelli Machado
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Beatriz Monteiro Longo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
do Prado-Lima PAS, Onsten GA, de Oliveira GN, Brito GC, Ghilardi IM, de Souza EV, Dos Santos PG, Salamoni SD, Machado DC, Duarte MMF, Barbisan F, da Cruz IBM, Costa-Ferro ZSM, daCosta JC. The antidepressant effect of bone marrow mononuclear cell transplantation in chronic stress. J Psychopharmacol 2019; 33:632-639. [PMID: 31018809 DOI: 10.1177/0269881119841562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammation could be a risk factor for the development of depression and change the outcome of this common chronic-recurrent mental disorder. AIMS This study aimed to investigate if bone marrow mononuclear cell (BMMC) transplantation is effective in restoring sucrose preference in rats subjected to chronic stress (CS), if it has an anti-inflammatory effect and is able to restore damaged DNA. METHODS The effect of BMMC transplantation was studied in a controlled protocol (compared with a control group and a selective serotonin reuptake inhibitor escitalopram group) involving sucrose preference in CS in rats. Measurements were taken of the amygdala, hippocampus, frontal cortex, and other brain areas, the spleen and blood pro-inflammatory cytokines, namely interleukin-1β, interleukin-6, tumor necrosis factor-alpha, and interferon-gamma, as well as anti-inflammatory cytokine interleukin-10. Finally, 8-hydroxy-2'-deoxyguanosine (a DNA damage marker) was determined. RESULTS BMMC transplantation was as effective as escitalopram in restoring sucrose preference. It also had an anti-inflammatory effect and slightly improved damaged DNA after one week. CONCLUSIONS These findings suggest administration of BMMC in rats subjected to CS restores sucrose preference, resolves inflammation in both the peripheral and central nervous system, as well as diminishes DNA damage. This effect was similar to that of escitalopram, which is effective in the treatment of depressive patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fernanda Barbisan
- 2 Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | | |
Collapse
|
13
|
Karttunen J, Heiskanen M, Lipponen A, Poulsen D, Pitkänen A. Extracellular Vesicles as Diagnostics and Therapeutics for Structural Epilepsies. Int J Mol Sci 2019; 20:E1259. [PMID: 30871144 PMCID: PMC6470789 DOI: 10.3390/ijms20061259] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles involved in intercellular communication. Data is emerging that EVs and their cargo have potential as diagnostic biomarkers and treatments for brain diseases, including traumatic brain injury and epilepsy. Here, we summarize the current knowledge regarding changes in EV numbers and cargo in status epilepticus (SE) and traumatic brain injury (TBI), which are clinically significant etiologies for acquired epileptogenesis in animals and humans. We also review encouraging data, which suggests that EVs secreted by stem cells may serve as recovery-enhancing treatments for SE and TBI. Using Gene Set Enrichment Analysis, we show that brain EV-related transcripts are positively enriched in rodent models of epileptogenesis and epilepsy, and altered in response to anti-seizure drugs. These data suggest that EVs show promise as biomarkers, treatments and drug targets for epilepsy. In parallel to gathering conceptual knowledge, analytics platforms for the isolation and analysis of EV contents need to be further developed.
Collapse
Affiliation(s)
- Jenni Karttunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Mette Heiskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - David Poulsen
- University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center (CTRC), Department of Neurosurgery, Buffalo, NY 14203, USA.
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
14
|
Grant S, McMillin M, Frampton G, Petrescu AD, Williams E, Jaeger V, Kain J, DeMorrow S. Direct Comparison of the Thioacetamide and Azoxymethane Models of Type A Hepatic Encephalopathy in Mice. Gene Expr 2018; 18:171-185. [PMID: 29895352 PMCID: PMC6190119 DOI: 10.3727/105221618x15287315176503] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute liver failure is a devastating consequence of hepatotoxic liver injury that can lead to the development of hepatic encephalopathy. There is no consensus on the best model to represent these syndromes in mice, and therefore the aim of this study was to classify hepatic and neurological consequences of azoxymethane- and thioacetamide-induced liver injury. Azoxymethane-treated mice were euthanized at time points representing absence of minor and significant stages of neurological decline. Thioacetamide-treated mice had tissue collected at up to 3 days following daily injections. Liver histology, serum chemistry, bile acids, and cytokine levels were measured. Reflexes, grip strength measurement, and ataxia were calculated for all groups. Brain ammonia, bile acid levels, cerebral edema, and neuroinflammation were measured. Finally, in vitro and in vivo assessments of blood-brain barrier function were performed. Serum transaminases and liver histology demonstrate that both models generated hepatotoxic liver injury. Serum proinflammatory cytokine levels were significantly elevated in both models. Azoxymethane-treated mice had progressive neurological deficits, while thioacetamide-treated mice had inconsistent neurological deficits. Bile acids and cerebral edema were increased to a higher degree in azoxymethane-treated mice, while cerebral ammonia and neuroinflammation were greater in thioacetamide-treated mice. Blood-brain barrier permeability exists in both models but was likely not due to direct toxicity of azoxymethane or thioacetamide on brain endothelial cells. In conclusion, both models generate acute liver injury and hepatic encephalopathy, but the requirement of a single injection and the more consistent neurological decline make azoxymethane treatment a better model for acute liver failure with hepatic encephalopathy.
Collapse
Affiliation(s)
- Stephanie Grant
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | | | - Gabriel Frampton
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Anca D. Petrescu
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Elaina Williams
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Victoria Jaeger
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
- †Central Texas Veterans Healthcare System, Temple, TX, USA
- ‡Baylor Scott & White Medical Center, Temple, TX, USA
| | - Jessica Kain
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Sharon DeMorrow
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
- †Central Texas Veterans Healthcare System, Temple, TX, USA
| |
Collapse
|
15
|
Zanirati G, Azevedo PN, Venturin GT, Greggio S, Alcará AM, Zimmer ER, Feltes PK, DaCosta JC. Depression comorbidity in epileptic rats is related to brain glucose hypometabolism and hypersynchronicity in the metabolic network architecture. Epilepsia 2018; 59:923-934. [PMID: 29600825 DOI: 10.1111/epi.14057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is one of the most common types of epilepsy syndromes in the world. Depression is an important comorbidity of epilepsy, which has been reported in patients with TLE and in different experimental models of epilepsy. However, there is no established consensus on which brain regions are associated with the manifestation of depression in epilepsy. Here, we investigated the alterations in cerebral glucose metabolism and the metabolic network in the pilocarpine-induced rat model of epilepsy and correlated it with depressive behavior during the chronic phase of epilepsy. METHODS Fluorodeoxyglucose (18 F-FDG) was used to investigate the cerebral metabolism, and a cross-correlation matrix was used to examine the metabolic network in chronically epileptic rats using micro-positron emission tomography (microPET) imaging. An experimental model of epilepsy was induced by pilocarpine injection (320 mg/kg, ip). Forced swim test (FST), sucrose preference test (SPT), and eating-related depression test (ERDT) were used to evaluate depression-like behavior. RESULTS Our results show an association between epilepsy and depression comorbidity based on changes in both cerebral glucose metabolism and the functional metabolic network. In addition, we have identified a significant correlation between brain glucose hypometabolism and depressive-like behavior in chronically epileptic rats. Furthermore, we found that the epileptic depressed group presents a hypersynchronous brain metabolic network in relation to the epileptic nondepressed group. SIGNIFICANCE This study revealed relevant alterations in glucose metabolism and the metabolic network among the brain regions of interest for both epilepsy and depression pathologies. Thus it seems that depression in epileptic animals is associated with a more diffuse hypometabolism and altered metabolic network architecture and plays an important role in chronic epilepsy.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pamella Nunes Azevedo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gianina Teribele Venturin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Samuel Greggio
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Paula Kopschina Feltes
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jaderson Costa DaCosta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Fukumura S, Sasaki M, Kataoka-Sasaki Y, Oka S, Nakazaki M, Nagahama H, Morita T, Sakai T, Tsutsumi H, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells reduces epileptogenesis in a rat model of status epilepticus. Epilepsy Res 2018; 141:56-63. [PMID: 29475054 DOI: 10.1016/j.eplepsyres.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/22/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Status epilepticus (SE) causes neuronal cell death, aberrant mossy fiber sprouting (MFS), and cognitive deteriorations. The present study tested the hypothesis that systemically infused mesenchymal stem cells (MSCs) reduce epileptogenesis by inhibiting neuronal cell death and suppressing aberrant MFS, leading to cognitive function preservation in a rat model of epilepsy. METHODS SE was induced using the lithium-pilocarpine injection model. The seizure frequency was scored using a video-monitoring system and the Morris water maze test was carried out to evaluate cognitive function. Comparisons were made between MSCs- and vehicle-infused rats. Immunohistochemical staining was performed to detect Green fluorescent protein (GFP)+ MSCs and to quantify the number of GAD67+ and NeuN+ neurons in the hippocampus. Manganese-enhanced magnetic resonance imaging (MEMRI) and Timm staining were also performed to assess the MFS. RESULTS MSC infusion inhibited epileptogenesis and preserved cognitive function after SE. The infused GFP+ MSCs were accumulated in the hippocampus and were associated with the preservation of GAD67+ and NeuN+ hippocampal neurons. Furthermore, the MSC infusion suppressed the aberrant MFS in the hippocampus as evidenced by MEMRI and Timm staining. CONCLUSIONS This study demonstrated that the intravenous infusion of MSCs mitigated epileptogenesis, thus advancing MSCs as an effective approach for epilepsy in clinical practice.
Collapse
Affiliation(s)
- Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tomonori Morita
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takuro Sakai
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| |
Collapse
|
17
|
Milczarek O, Jarocha D, Starowicz-Filip A, Kwiatkowski S, Badyra B, Majka M. Multiple Autologous Bone Marrow-Derived CD271 + Mesenchymal Stem Cell Transplantation Overcomes Drug-Resistant Epilepsy in Children. Stem Cells Transl Med 2017; 7:20-33. [PMID: 29224250 PMCID: PMC5746144 DOI: 10.1002/sctm.17-0041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
There is a need among patients suffering from drug‐resistant epilepsy (DRE) for more efficient and less toxic treatments. The objective of the present study was to assess the safety, feasibility, and potential efficacy of autologous bone marrow cell transplantation in pediatric patients with DRE. Two females and two males (11 months to 6 years) were enrolled and underwent a combined therapy consisting of autologous bone marrow nucleated cells (BMNCs) transplantation (intrathecal: 0.5 × 109; intravenous: 0.38 × 109–1.72 × 109) followed by four rounds of intrathecal bone marrow mesenchymal stem cells (BMMSCs) transplantation (18.5 × 106–40 × 106) every 3 months. The BMMSCs used were a unique population derived from CD271‐positive cells. The neurological evaluation included magnetic resonance imaging, electroencephalography (EEG), and cognitive development assessment. The characteristics of BMMSCs were evaluated. Four intravenous and 20 intrathecal transplantations into the cerebrospinal fluid were performed. There were no adverse events, and the therapy was safe and feasible over 2 years of follow‐up. The therapy resulted in neurological and cognitive improvement in all patients, including a reduction in the number of epileptic seizures (from 10 per day to 1 per week) and an absence of status epilepticus episodes (from 4 per week to 0 per week). The number of discharges on the EEG evaluation was decreased, and cognitive improvement was noted with respect to reactions to light and sound, emotions, and motor function. An analysis of the BMMSCs' characteristics revealed the expression of neurotrophic, proangiogenic, and tissue remodeling factors, and the immunomodulatory potential. Our results demonstrate the safety and feasibility of BMNCs and BMMSCs transplantations and the considerable neurological and cognitive improvement in children with DRE. stemcellstranslationalmedicine2018;7:20–33
Collapse
Affiliation(s)
- Olga Milczarek
- Departments of Children Surgery, Jagiellonian University School of Medicine, Cracow, Poland
| | - Danuta Jarocha
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| | - Anna Starowicz-Filip
- Department of Medical Psychology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Stanislaw Kwiatkowski
- Departments of Children Surgery, Jagiellonian University School of Medicine, Cracow, Poland
| | - Bogna Badyra
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| | - Marcin Majka
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| |
Collapse
|
18
|
Yasuhara T, Date I, Liska MG, Kaneko Y, Vale FL. Translating regenerative medicine techniques for the treatment of epilepsy. Brain Circ 2017; 3:156-162. [PMID: 30276318 PMCID: PMC6057691 DOI: 10.4103/bc.bc_21_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is considered a chronic neurological disorder and is accompanied by persistent and diverse disturbances in electrical brain activity. While antiepileptic pharmaceuticals are still the predominant treatment for epilepsy, the advent of numerous surgical interventions has further improved outcomes for patients. Despite these advancements, a subpopulation continues to experience intractable seizures which are resistant to current conventional and nonconventional therapeutic options. In this review, we begin with an introduction to the clinical presentation of epilepsy before discussing the clinically relevant laboratory models of epilepsy. Finally, we explore the implications of regenerative medicine – including cell therapy, neuroprotective agents, and electrical stimulation – for epilepsy, supplemented with our laboratory's data. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - M Grant Liska
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| | - Fernando L Vale
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Hlebokazov F, Dakukina T, Ihnatsenko S, Kosmacheva S, Potapnev M, Shakhbazau A, Goncharova N, Makhrov M, Korolevich P, Misyuk N, Dakukina V, Shamruk I, Slobina E, Marchuk S. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: An open label study. Adv Med Sci 2017; 62:273-279. [PMID: 28500900 DOI: 10.1016/j.advms.2016.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Existing anti-epileptic drugs (AED) have limited efficiency in many patients, necessitating the search for alternative approaches such as stem cell therapy. We report the use of autologous patient-derived mesenchymal stem cells (MSC) as a therapeutic agent in symptomatic drug-resistant epilepsy in a Phase I open label clinical trial (registered as NCT02497443). PATIENTS AND METHODS The patients received either standard treatment with AED (control group), or AED supplemented with single intravenous administration of undifferentiated autologous MSC (target dose of 1×106cells/kg), followed by a single intrathecal injection of neurally induced autologous MSC (target dose of 0.1×106cells/kg). RESULTS MSC injections were well tolerated and did not cause any severe adverse effects. Seizure frequency was designated as the main outcome and evaluated at 1 year time point. 3 out of 10 patients in MSC therapy group achieved remission (no seizures for one year and more), and 5 additional patients became responders to AEDs, while only 2 out of 12 patients became responders in control group (difference significant, P=0.0135). CONCLUSIONS MSC possess unique immunomodulatory properties and are a safe and promising candidate for cell therapy in AED resistant epilepsy patients.
Collapse
|
20
|
Chen YC, Shi L, Zhu GY, Wang X, Liu DF, Liu YY, Jiang Y, Zhang X, Zhang JG. Effects of anterior thalamic nuclei deep brain stimulation on neurogenesis in epileptic and healthy rats. Brain Res 2017; 1672:65-72. [PMID: 28764934 DOI: 10.1016/j.brainres.2017.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The efficacy of anterior thalamic nuclei (ANT) deep brain stimulation (DBS) in mitigating epileptic seizures has been established. Though the neuroprotection of ANT-DBS has been illustrated, the seizure mitigating mechanism of ANT-DBS has not been thoroughly elucidated. In particular, the effect of ANT-DBS on neurogenesis has not been reported previously. METHOD Thirty-two male Sprague Dawley rats were randomly assigned to the following groups: sham-DBS-healthy (HL) (n=8), DBS-HL (n=8), sham-DBS-epilepsy (EP) (n=8) and DBS-EP (n=8). Normal saline and kainic acid were injected, respectively, into the former and later two groups, and seizures were monitored. One month later, rats received electrode implantation. Stimulation was exerted in the DBS group but not in the sham-DBS group. Next, all rats were sacrificed, and the ipsilateral hippocampus was dissected and prepared for quantitative real time PCR (qPCR) and western blot analysis in order to measure neuronal nuclear (NeuN), brain-derived neurotrophic factor (BDNF), doublecortin (DCX) and Ki-67 expressions. RESULTS A 44.4% seizure frequency reduction was obtained after ANT-DBS, and no seizures was observed in healthy rats. NeuN, BDNF, Ki-67 and DCX expression levels were significantly decreased in the epileptic rats compared to healthy rats (P<0.01 or P<0.05). Obvious increases in NeuN, Ki-67 and DCX expressions were observed in epileptic and healthy rats receiving stimulation compared to rats receiving no stimulation (all Ps<0.01). However, BDNF expression was not affected by ANT-DBS (all Ps>0.05). CONCLUSIONS (1) ANT-DBS reduces neuronal loss during the chronic stage of epilepsy. (2) Neurogenesis is elevated by ANT-DBS in both epileptic and healthy rats, and this elevation may not be regulated via a BDNF pathway.
Collapse
Affiliation(s)
- Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Beijing 100050, China.
| |
Collapse
|
21
|
DaCosta JC, Portuguez MW, Marinowic DR, Schilling LP, Torres CM, DaCosta DI, Carrion MJM, Raupp EF, Machado DC, Soder RB, Lardi SL, Garicochea B. Safety and seizure control in patients with mesial temporal lobe epilepsy treated with regional superselective intra‐arterial injection of autologous bone marrow mononuclear cells. J Tissue Eng Regen Med 2017; 12:e648-e656. [DOI: 10.1002/term.2334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 07/29/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Jaderson C. DaCosta
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Mirna W. Portuguez
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Daniel R. Marinowic
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Lucas P. Schilling
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Carolina M. Torres
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Danielle I. DaCosta
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Maria Júlia M. Carrion
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | | | - Denise C. Machado
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Ricardo B. Soder
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Silvia L. Lardi
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Bernardo Garicochea
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Teaching and Research Oncology CenterHospital Sírio Libanes São Paulo SP Brazil
| |
Collapse
|
22
|
Rao G, Mashkouri S, Aum D, Marcet P, Borlongan CV. Contemplating stem cell therapy for epilepsy-induced neuropsychiatric symptoms. Neuropsychiatr Dis Treat 2017; 13:585-596. [PMID: 28260906 PMCID: PMC5328607 DOI: 10.2147/ndt.s114786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a debilitating disease that impacts millions of people worldwide. While unprovoked seizures characterize its cardinal symptom, an important aspect of epilepsy that remains to be addressed is the neuropsychiatric component. It has been documented for millennia in paintings and literature that those with epilepsy can suffer from bouts of aggression, depression, and other psychiatric ailments. Current treatments for epilepsy include the use of antiepileptic drugs and surgical resection. Antiepileptic drugs reduce the overall firing of the brain to mitigate the rate of seizure occurrence. Surgery aims to remove a portion of the brain that is suspected to be the source of aberrant firing that leads to seizures. Both options treat the seizure-generating neurological aspect of epilepsy, but fail to directly address the neuropsychiatric components. A promising new treatment for epilepsy is the use of stem cells to treat both the biological and psychiatric components. Stem cell therapy has been shown efficacious in treating experimental models of neurological disorders, including Parkinson's disease, and neuropsychiatric diseases, such as depression. Additional research is necessary to see if stem cells can treat both neurological and neuropsychiatric aspects of epilepsy. Currently, there is no animal model that recapitulates all the clinical hallmarks of epilepsy. This could be due to difficulty in characterizing the neuropsychiatric component of the disease. In advancing stem cell therapy for treating epilepsy, experimental testing of the safety and efficacy of allogeneic and autologous transplantation will require the optimization of cell dosage, delivery, and timing of transplantation in a clinically relevant model of epilepsy with both neurological and neuropsychiatric symptoms of the disease as the primary outcome measures.
Collapse
Affiliation(s)
- Gautam Rao
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sherwin Mashkouri
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - David Aum
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paul Marcet
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
23
|
Calice da Silva C, Azevedo BN, Machado DC, Zimmer ER, Martins LAM, da Costa JC. Dissociation between dopaminergic response and motor behavior following intrastriatal, but not intravenous, transplant of bone marrow mononuclear stem cells in a mouse model of Parkinson's disease. Behav Brain Res 2017; 324:30-40. [PMID: 28167338 DOI: 10.1016/j.bbr.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 01/29/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is characterized by the progressive loss of dopaminergic neurons from the substantia nigra, a process that leads to a dopamine deficiency in the striatum. This deficiency is responsible for the development of motor symptoms, including resting tremor, bradykinesia, rigidity and postural instability. Based on the observation of substantial neuronal death, alternatives to Parkinson's disease treatment have been studied, including cell-based therapies. The present study aimed to assess the therapeutic potential of intravenous and intrastriatal transplant of bone marrow mononuclear cells in a mouse model of Parkinson's disease. Animals underwent stereotaxic surgery and received an injection of 6-hydroxydopamine into their medial forebrain bundle. Three weeks later, mice were injected with bone marrow mononuclear cells or saline through the caudal vein or directly into their right striatum. Motor function was assessed using the rotarod and apomorphine-induced rotation tests. Our results showed that intrastriatal bone marrow mononuclear cells, but not intravenous, have a short-term therapeutic effect on dopaminergic response in this mice model of parkinsonism assessed by the apomorphine-induced rotation test. This phenomenon was not identified on the rotarod test, showing dissociation between dopaminergic response and motor behavior. Further experiments are needed to elucidate the precise mechanisms involved in these effects.
Collapse
Affiliation(s)
- Caroline Calice da Silva
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil; Laboratory of Neurosciences and Cellular Signaling, Institute of Biomedical Research and Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil
| | - Bárbara Nunes Azevedo
- Laboratory of Neurosciences and Cellular Signaling, Institute of Biomedical Research and Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil
| | - Denise Cantarelli Machado
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil; Laboratory of Molecular and Cellular Biology, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil
| | - Eduardo R Zimmer
- Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Leo Anderson Meira Martins
- Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Jaderson Costa da Costa
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil; Laboratory of Neurosciences and Cellular Signaling, Institute of Biomedical Research and Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
24
|
Shakhbazau A, Potapnev M. Autologous mesenchymal stromal cells as a therapeutic in ALS and epilepsy patients: Treatment modalities and ex vivo neural differentiation. Cytotherapy 2016; 18:1245-55. [DOI: 10.1016/j.jcyt.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/07/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
|
25
|
Li Y, Chen CH, Yin Y, Mao WW, Hua XM, Cheng J. Neuroprotection by intravenous transplantation of bone marrow mononuclear cells from 5-fluorouracil pre-treated rats in a model of ischemic stroke. Neurol Res 2016; 38:921-8. [PMID: 27486676 DOI: 10.1080/01616412.2016.1215031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our previous studies showed that bone marrow mononuclear cells (BMMNCs) from 5-fluorouracil (5-FU) pre-treated rats (named BMRMNCs) had a better therapeutic efficacy in ischemia/reperfusion rats as compared to BMMNCs from untreated rats. This study was undertaken to further explore the potential mechanisms underlying the neuroprotective effects of BMRMNCs in the same model. Rats were intravenously pre-treated with 5-FU, and BMRMNCs were collected 7 days later and subjected to flow cytometry for detection of CD34, CD45 and CD90. Middle cerebral artery occlusion (MCAO) was induced in rats, and BMMNCs and BMRMNCs were independently transplanted via the tail vein at 24 h after MCAO. NISSL staining was performed 14 days after cell transplantation and the viable cells in the hippocampus were counted. Stromal cell-derived factor 1 (SDF-1) mRNA expression was detected in the penumbra at 7 and 14 days after treatment. The contents of pro-inflammatory cytokines and growth factors as well as microvessel density (MVD) were determined at 14 days. Results showed more BMRMNCs were positive for CD34, CD45 and CD90. After transplantation, more viable cells were observed in the hippocampus of BMRMNCs treated rats. In addition, BMRMNCs transplantation significantly increased MVD, reduced pro-inflammatory cytokines and raised growth factors in the penumbra. However, the SDF-1 mRNA expression was comparable between BMRMNCs group and BMMNCs group. Our results indicate that BMRMNCs are likely to more effectively improve the local microenvironment to increase viable cells and elevate angiogenesis, exerting neuroprotective effects on cerebral ischemia in rats.
Collapse
Affiliation(s)
- Yi Li
- a Department of Neurosurgery, School of Medicine, Xinhua Hospital , Shanghai Jiao Tong University , Shanghai , China
| | - Chun-Hua Chen
- b Department of Anatomy and Embryology , School of Basic Medical Sciences, Peking University Health Science Center , Beijing , China
| | - Yu Yin
- c Laboratory of Microbiology and Biochemical Pharmaceutics, School of Pharmacy , Shanghai Jiaotong University , Shanghai , China
| | - Wen-Wei Mao
- c Laboratory of Microbiology and Biochemical Pharmaceutics, School of Pharmacy , Shanghai Jiaotong University , Shanghai , China
| | - Xu-Ming Hua
- a Department of Neurosurgery, School of Medicine, Xinhua Hospital , Shanghai Jiao Tong University , Shanghai , China
| | - Juan Cheng
- d Department of Ultrasound, School of Medicine, Xinhua Hospital , Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
26
|
Huang PY, Shih YH, Tseng YJ, Ko TL, Fu YS, Lin YY. Xenograft of human umbilical mesenchymal stem cells from Wharton's jelly as a potential therapy for rat pilocarpine-induced epilepsy. Brain Behav Immun 2016; 54:45-58. [PMID: 26732826 DOI: 10.1016/j.bbi.2015.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/15/2015] [Accepted: 12/24/2015] [Indexed: 02/06/2023] Open
Abstract
We evaluated the effects of intra-hippocampal transplantation of human umbilical mesenchymal stem cells (HUMSCs) on pilocarpine-treated rats. Sprague-Dawley rats were divided into the following three groups: (1) a normal group of rats receiving only PBS, (2) a status epilepticus (SE) group of rats with pilocarpine-induced SE and PBS injected into the hippocampi, and (3) a SE+HUMSC group of SE rats with HUMSC transplantation. Spontaneous recurrent motor seizures (SRMS) were monitored using simultaneous video and electroencephalographic recordings at two to four weeks after SE induction. The results showed that the number of SRMS within two to four weeks after SE was significantly decreased in SE+HUMSCs rats compared with SE rats. All of the rats were sacrificed on Day 29 after SE. Hippocampal morphology and volume were evaluated using Nissl staining and magnetic resonance imaging. The results showed that the volume of the dorsal hippocampus was smaller in SE rats compared with normal and SE+HUMSCs rats. The pyramidal neuron loss in CA1 and CA3 regions was more severe in the SE rats than in normal and SE+HUMSCs rats. No significant differences were found in the hippocampal neuronal loss or in the number of dentate GABAergic neurons between normal and SE+HUMSCs rats. Compared with the SE rats, the SE+HUMSCs rats exhibited a suppression of astrocyte activity and aberrant mossy fiber sprouting. Implanted HUMSCs survived in the hippocampus and released cytokines, including FGF-6, amphiregulin, glucocorticoid-induced tumor necrosis factors receptor (GITR), MIP-3β, and osteoprotegerin. In an in vitro study, exposure of cortical neurons to glutamate showed a significant decrease in cell viability, which was preventable by co-culturing with HUMSCs. Above all, the expression of human osteoprotegerin and amphiregulin were significantly increased in the media of the co-culture of neurons and HUMSCs. Our results demonstrate the therapeutic benefits of HUMSC transplantation for the development of epilepsy, which are likely due to the ability of the cells to produce neuroprotective and anti-inflammatory cytokines. Thus, HUMSC transplantation may be an effective therapy in the future.
Collapse
Affiliation(s)
- Pei-Yu Huang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Laboratory of Neurophysiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Anatomy, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jhan Tseng
- Division of medical research, MacKay Memorial Hospital, HsinChu Branch, Taiwan
| | - Tsui-Ling Ko
- Department of Optometry, Shu-Zen College of Medicine and Management, Kaohsiung City, Taiwan
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| | - Yung-Yang Lin
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Laboratory of Neurophysiology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
27
|
Alsharafi WA, Xiao B, Abuhamed MM, Bi FF, Luo ZH. Correlation Between IL-10 and microRNA-187 Expression in Epileptic Rat Hippocampus and Patients with Temporal Lobe Epilepsy. Front Cell Neurosci 2015; 9:466. [PMID: 26696826 PMCID: PMC4667084 DOI: 10.3389/fncel.2015.00466] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/16/2015] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence is emerging that microRNAs (miRNAs) are key regulators in controlling neuroinflammatory responses that are known to play a potential role in the pathogenesis of temporal lobe epilepsy (TLE). The aim of the present study was to investigate the dynamic expression pattern of interleukin (IL)-10 as an anti-inflammatory cytokine and miR-187 as a post-transcriptional inflammation-related miRNA in the hippocampus of a rat model of status epilepticus (SE) and patients with TLE. We performed a real-time quantitative PCR and western blot on rat hippocampus 2 h, 7 days, 21 days and 60 days following pilocarpine-induced SE, and on hippocampus obtained from TLE patients and normal controls. To detect the relationship between IL-10 and miR-187 on neurons, lipopolysaccharide (LPS) and IL-10-stimulated neurons were performed. Furthermore, we identified the effect of antagonizing miR-187 by its antagomir on IL-10 secretion. Here, we reported that IL-10 secretion and miR-187 expression levels are inversely correlated after SE. In patients with TLE, the expression of IL-10 was also significantly upregulated, whereas miR-187 expression was significantly downregulated. Moreover, miR-187 expression was significantly reduced following IL-10 stimulation in an IL-10-dependent manner. On the other hand, antagonizing miR-187 promoted the production of IL-10 in hippocampal tissues of rat model of SE. Our findings demonstrate a critical role of miR-187 in the physiological regulation of IL-10 anti-inflammatory responses and elucidate the role of neuroinflammation in the pathogenesis of TLE. Therefore, modulation of the IL-10 / miR-187 axis may be a new therapeutic approach for TLE.
Collapse
Affiliation(s)
- Walid A Alsharafi
- Department of Neurology, Xiangya Hospital, Central South University Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University Changsha, Hunan, China
| | | | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University Changsha, Hunan, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University Changsha, Hunan, China
| |
Collapse
|
28
|
MRI tracking of bone marrow mesenchymal stem cells labeled with ultra-small superparamagnetic iron oxide nanoparticles in a rat model of temporal lobe epilepsy. Neurosci Lett 2015; 606:30-5. [PMID: 26318841 DOI: 10.1016/j.neulet.2015.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/25/2022]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) is a promising approach for treatment of epilepsy. To our knowledge, there is little research on magnetic resonance imaging (MRI) tracking of BMSCs labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in a rat model of temporal lobe epilepsy (TLE). In this study, BMSCs were pre-labeled with USPIO nanoparticles, and then the cell apoptosis, proliferation, surface antigens, and multipotency were investigated. Lithium chloride-pilocarpine induced TLE models were administered by USPIO-labeled BMSCs (U-BMSCs), BMSCs, and saline through lateral ventricle injection as the experimental group, control I group and control II group, respectively, followed by MRI examination, electroencephalography (EEG) and Prussian blue staining. The cell experimental results showed that the labeled USPIO did not affect the biological characteristics and multiple potential of BMSCs. The U-BMSCs can be detected using MRI in vitro and in vivo, and observed in the hippocampus and adjacent parahippocampal cortical areas of the epileptic model. Moreover, electroencephalographic results showed that transplanted U-BMSCs, as well as BMSCs, were capable of reducing the number of epileptiform waves significantly (P<0.01) compared with control II group. All of these findings suggest that it is feasible to track transplanted BMSCs using MRI in a rat model of TLE, and support that USPIO labeling is a valuable tool for cell tracking in the study of seizure disorders.
Collapse
|
29
|
Agadi S, Shetty AK. Concise Review: Prospects of Bone Marrow Mononuclear Cells and Mesenchymal Stem Cells for Treating Status Epilepticus and Chronic Epilepsy. Stem Cells 2015; 33:2093-103. [PMID: 25851047 DOI: 10.1002/stem.2029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/16/2015] [Indexed: 12/22/2022]
Abstract
Mononuclear cells (MNCs) and mesenchymal stem cells (MSCs) derived from the bone marrow and other sources have received significant attention as donor cells for treating various neurological disorders due to their robust neuroprotective and anti-inflammatory effects. Moreover, it is relatively easy to procure these cells from both autogenic and allogenic sources. Currently, there is considerable interest in examining the usefulness of these cells for conditions such as status epilepticus (SE) and chronic epilepsy. A prolonged seizure activity in SE triggers neurodegeneration in the limbic brain areas, which elicits epileptogenesis and evolves into a chronic epileptic state. Because of their potential for providing neuroprotection, diminishing inflammation and curbing epileptogenesis, early intervention with MNCs or MSCs appears attractive for treating SE as such effects may restrain the development of chronic epilepsy typified by spontaneous seizures and learning and memory impairments. Delayed administration of these cells after SE may also be useful for easing spontaneous seizures and cognitive dysfunction in chronic epilepsy. This concise review evaluates the current knowledge and outlook pertaining to MNC and MSC therapies for SE and chronic epilepsy. In the first section, the behavior of these cells in animal models of SE and their efficacy to restrain neurodegeneration, inflammation, and epileptogenesis are discussed. The competence of these cells for suppressing seizures and improving cognitive function in chronic epilepsy are conferred in the next section. The final segment ponders issues that need to be addressed to pave the way for clinical application of these cells for SE and chronic epilepsy.
Collapse
Affiliation(s)
- Satish Agadi
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA.,Department of Pediatrics, McLane's Children's Hospital, Baylor Scott & White Health, Temple, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA.,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| |
Collapse
|
30
|
Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 2015; 56:895-905. [PMID: 25847097 DOI: 10.1111/epi.12960] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To characterize the changes in microglial proinflammatory M1 and antiinflammatory M2 marker expression during epileptogenesis in the chronic pilocarpine and intrahippocampal kainate models. METHODS M1-activated microglia express proinflammatory cytokines driving infiltration of cells, whereas M2-activated microglia are more reparative, promoting phagocytosis of debris and expression of proteins associated with cellular stability and repair. Microglial markers were characterized as acute (3 days after status epilepticus [SE]), early chronic (21 days post-SE), and late chronic epileptic (5-12 months post-SE) time points. Following pilocarpine-SE, microglial markers were assessed by flow cytometry. Quantitative real-time polymerase chain reaction (RT-PCR) was used to measure messenger RNA (mRNA) levels of selected M1 (interleukin [IL] 1β, tumor necrosis factor α [TNFα] cluster of differentiation [CD],CD16, and CD86), interleukin-6 [IL-6], interleukin-12 [IL-12], Fc receptors 16, and CD86) and M2 (arginase 1 [Arg1], chitinase-3-like protein [Ym1], found in inflammatory zone [FIZZ-1] [FIZZ-1], mannose receptor C type-1 [CD206], interleukin-4 [IL-4], and interleukin-10 (IL-10)) markers in both models. Video-electroencephalography (EEG) recordings were used to quantify late chronic seizure frequency. RESULTS Three days post-SE microglia in the pilocarpine model expressed M1 and M2 markers, but only M1 markers were upregulated after kainate-induced SE. After 3 weeks, M1/M2 marker expression was largely ablated in the hippocampal formation of both models. Small mRNA level increases of CD11b, glial fibrillary acidic protein (GFAP), and IL-1β were found in the pilocarpine model, consistent with IL-1β contributing to spontaneous seizures, whereas mRNA levels of TNFα and Ym1 were decreased. In the late chronic phase, some M1/M2 markers, IL-1β, TNFα, Arg1, Ym1, and CD206, resurged in the kainate, but not pilocarpine model, which may reflect and/or contribute to highly frequent seizures in kainate-SE mice. SIGNIFICANCE The common M1 upregulation acutely post-SE may signal a role early in epileptogenesis, with a more pure "inflamed" central nervous system state after kainate-SE, potentially contributing to the development of more frequent seizures. The difference may also be due to the contribution of peripheral inflammation after pilocarpine injection. In summary, the microglial inflammatory response during epileptogenesis is complex, varies between models, and appears to correlate with chronic seizure frequency.
Collapse
Affiliation(s)
- Melissa J Benson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Silvia Manzanero
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Karin Borges
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Zanirati G, Azevedo PN, Marinowic DR, Rodrigues F, de Oliveira Dias AC, Venturin GT, Greggio S, Simão F, DaCosta JC. Transplantation of bone marrow mononuclear cells modulates hippocampal expression of growth factors in chronically epileptic animals. CNS Neurosci Ther 2015; 21:463-71. [PMID: 25645708 DOI: 10.1111/cns.12382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 12/26/2014] [Accepted: 12/27/2014] [Indexed: 12/27/2022] Open
Abstract
AIMS In previous studies, transplantation of bone marrow mononuclear cells (BMMCs) in epileptic animals has been found to be neuroprotective. However, the mechanism by which the BMMCs act remains unclear. We hypothesize that BMMCs may provide neuroprotection to the epileptic brain through trophic support. To test our hypothesis, we studied the temporal expression of neurotrophins after BMMC transplantation in the epileptic rat hippocampus. METHODS Chronically epileptic rats were intravenously transplanted with 1 × 10(7) BMMCs isolated from GFP transgenic mice. Expression levels of BDNF, GDNF, NGF, VEGF, and TGF-β1, and their receptors, were evaluated by ELISA and/or qRT-PCR analysis. RESULTS Our data revealed increased protein expression of BDNF, GDNF, NGF, and VEGF and reduced levels of TGF-β1 in the hippocampus of transplanted epileptic animals. Additionally, an increase in the mRNA expression of BDNF, GDNF, and VEGF, a reduction in TGF-β1, and a decrease in mRNA levels of the TrkA and TGFR-β1 receptors were also observed. CONCLUSION The gain provided by transplanted BMMCs in the epileptic brain may be related to the ability of these cells in modulating the network of neurotrophins and angiogenic signals.
Collapse
Affiliation(s)
- Gabriele Zanirati
- PUCRS, Pós-Graduação em Medicina e Ciências da Saúde, Instituto do Cérebro do Rio Grande do Sul (InsCer), Instituto de Pesquisas Biomódicas, Laboratório de Neurociências e Sinalização Celular, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Falsaperla R, Pavone P, Miceli Sopo S, Mahmood F, Scalia F, Corsello G, Lubrano R, Vitaliti G. Epileptic seizures as a manifestation of cow's milk allergy: a studied relationship and description of our pediatric experience. Expert Rev Clin Immunol 2014; 10:1597-609. [PMID: 25394911 DOI: 10.1586/1744666x.2014.977259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse reactions after ingestion of cow's milk proteins can occur at any age, from birth and even amongst exclusively breast-fed infants, although not all of these are hypersensitivity reactions. The most common presentations related to cow's milk protein allergy are skin reactions, failure to thrive, anaphylaxis as well as gastrointestinal and respiratory disorders. In addition, several cases of cow's milk protein allergy in the literature have documented neurological involvement, manifesting with convulsive seizures in children. This may be due to CNS spread of a peripheral inflammatory response. Furthermore, there is evidence that pro-inflammatory cytokines are responsible for disrupting the blood-brain barrier, causing focal CNS inflammation thereby triggering seizures, although further studies are needed to clarify the pathogenic relationship between atopy and its neurological manifestations. This review aims to analyze current published data on the link between cow's milk protein allergy and epileptic events, highlighting scientific evidence for any potential pathogenic mechanism and describing our clinical experience in pediatrics.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Paediatric Acute and Emergency Department and Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Via Plebiscito n. 628, 95100, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Leung A, Ahn S, Savvidis G, Kim Y, Iskandar D, Luna MJ, Kim KS, Cunningham M, Chung S. Optimization of pilocarpine-mediated seizure induction in immunodeficient NodScid mice. Epilepsy Res 2014; 109:114-8. [PMID: 25524850 DOI: 10.1016/j.eplepsyres.2014.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/28/2014] [Indexed: 11/25/2022]
Abstract
Temporal lobe epilepsy (TLE) has been modeled in mice using pilocarpine induction, with variable results depending on specific strains. To allow efficient xenotransplantation for the purpose of optimizing potential cell-based therapy of human TLE, we have determined the optimal dosing strategy to produce spontaneous recurring seizures in immunodeficient NodScid mice. Multiple 100mg/kg injections of pilocarpine have been shown to be more effective than single 300-400mg/kg injections for inducing spontaneous seizures in NodScid mice. Under our optimal conditions, 88.1 ± 2.9% of the mice experienced status epilepticus (SE) with a survival rate of 61.8 ± 5.9%. Surviving SE mice displayed spontaneous recurrent seizures at a frequency of 2.8 ± 0.9 seizures/day for a duration of 41.1 ± 3.5s. The widely used method of a single injection of pilocarpine was significantly less efficient in inducing seizures in NodScid mice. Therefore, we have determined that a multiple injection "ramping up" of 100mg/kg of pilocarpine is optimal for inducing TLE-like spontaneous seizures in NodScid mice. Using this method, mice with SE efficiently developed SRS and expressed mossy fiber sprouting, a signature histopathological feature of TLE.
Collapse
Affiliation(s)
- Amanda Leung
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sandra Ahn
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - George Savvidis
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Yeachan Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Danielle Iskandar
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Maria Jose Luna
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Miles Cunningham
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Sangmi Chung
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
34
|
Amini E, Rezaei M, Mohamed Ibrahim N, Golpich M, Ghasemi R, Mohamed Z, Raymond AA, Dargahi L, Ahmadiani A. A Molecular Approach to Epilepsy Management: from Current Therapeutic Methods to Preconditioning Efforts. Mol Neurobiol 2014; 52:492-513. [PMID: 25195699 DOI: 10.1007/s12035-014-8876-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/25/2014] [Indexed: 01/16/2023]
Abstract
Epilepsy is the most common and chronic neurological disorder characterized by recurrent unprovoked seizures. The key aim in treating patients with epilepsy is the suppression of seizures. An understanding of focal changes that are involved in epileptogenesis may therefore provide novel approaches for optimal treatment of the seizure. Although the actual pathogenesis of epilepsy is still uncertain, recently growing lines of evidence declare that microglia and astrocyte activation, oxidative stress and reactive oxygen species (ROS) production, mitochondria dysfunction, and damage of blood-brain barrier (BBB) are involved in its pathogenesis. Impaired GABAergic function in the brain is probably the most accepted hypothesis regarding the pathogenesis of epilepsy. Clinical neuroimaging of patients and experimental modeling have demonstrated that seizures may induce neuronal apoptosis. Apoptosis signaling pathways are involved in the pathogenesis of several types of epilepsy such as temporal lobe epilepsy (TLE). The quality of life of patients is seriously affected by treatment-related problems and also by unpredictability of epileptic seizures. Moreover, the available antiepileptic drugs (AED) are not significantly effective to prevent epileptogenesis. Thus, novel therapies that are proficient to control seizure in people who are suffering from epilepsy are needed. The preconditioning method promises to serve as an alternative therapeutic approach because this strategy has demonstrated the capability to curtail epileptogenesis. For this reason, understanding of molecular mechanisms underlying brain tolerance induced by preconditioning is crucial to delineate new neuroprotective ways against seizure damage and epileptogenesis. In this review, we summarize the work to date on the pathogenesis of epilepsy and discuss recent therapeutic strategies in the treatment of epilepsy. We will highlight that novel therapy targeting such as preconditioning process holds great promise. In addition, we will also highlight the role of gene reprogramming and mitochondrial biogenesis in the preconditioning-mediated neuroprotective events.
Collapse
Affiliation(s)
- Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Costa-Ferro ZSM, de Borba Cunha F, de Freitas Souza BS, Leal MMT, da Silva AA, de Bellis Kühn TIB, Forte A, Sekiya EJ, Soares MBP, dos Santos RR. Antiepileptic and neuroprotective effects of human umbilical cord blood mononuclear cells in a pilocarpine-induced epilepsy model. Cytotechnology 2014; 66:193-9. [PMID: 23929461 PMCID: PMC3918271 DOI: 10.1007/s10616-013-9557-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/18/2013] [Indexed: 12/27/2022] Open
Abstract
Status epilepticus (SE) is a condition of persistent seizure that leads to brain damage and, frequently, to the establishment of chronic epilepsy. Cord blood is an important source of adult stem cells for the treatment of neurological disorders. The present study aimed to evaluate the effects of human umbilical cord blood mononuclear cells (HUCBC) transplanted into rats after induction of SE by the administration of lithium and pilocarpine chloride. Transplantation of HUCBC into epileptic rats protected against neuronal loss in the hippocampal subfields CA1, CA3 and in the hilus of the dentate gyrus, up to 300 days after SE induction. Moreover, transplanted rats had reduced frequency and duration of spontaneous recurrent seizures (SRS) 15, 120 and 300 days after the SE. Our study shows that HUCBC provide prominent antiepileptic and neuroprotective effects in the experimental model of epilepsy and reinforces that early interventions can protect the brain against the establishment of epilepsy.
Collapse
Affiliation(s)
| | | | - Bruno Solano de Freitas Souza
- />Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Av. S Rafael, Salvador, BA 2152-41253-190 Brazil
- />Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA Brazil
| | | | | | | | - Andresa Forte
- />CordCell, Umbilical Cord Blood Stem Cell Center, São Paulo, Brazil
| | | | - Milena Botelho Pereira Soares
- />Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Av. S Rafael, Salvador, BA 2152-41253-190 Brazil
- />Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA Brazil
| | - Ricardo Ribeiro dos Santos
- />Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Av. S Rafael, Salvador, BA 2152-41253-190 Brazil
| |
Collapse
|
36
|
Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci 2014; 37:55-65. [PMID: 24355813 PMCID: PMC3977596 DOI: 10.1016/j.tins.2013.11.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022]
Abstract
Epilepsy refers to a cluster of neurological diseases characterized by seizures. Although many forms of epilepsy have a well-defined immune etiology, in other forms of epilepsy an altered immune response is only suspected. In general, the hypothesis that inflammation contributes to seizures is supported by experimental results. Additionally, antiepileptic maneuvers may act as immunomodulators and anti-inflammatory therapies can treat seizures. Triggers of seizure include a bidirectional communication between the nervous system and organs of immunity. Thus, a crucial cellular interface protecting from immunological seizures is the blood-brain barrier (BBB). Here, we summarize recent advances in the understanding and treatment of epileptic seizures that derive from a non-neurocentric viewpoint and suggest key avenues for future research.
Collapse
Affiliation(s)
- Nicola Marchi
- Department of Molecular Medicine, Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA; Department of Neurobiology, Institute of Functional Genomics, Centre National de la Recherche Scientifique, Montpellier, France
| | | | - Damir Janigro
- Department of Molecular Medicine, Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA; Department of Neurological Surgery, Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| |
Collapse
|
37
|
Leal MMT, Costa-Ferro ZSM, Souza BSDF, Azevedo CM, Carvalho TM, Kaneto CM, Carvalho RH, Dos Santos RR, Soares MBP. Early transplantation of bone marrow mononuclear cells promotes neuroprotection and modulation of inflammation after status epilepticus in mice by paracrine mechanisms. Neurochem Res 2013; 39:259-68. [PMID: 24343530 DOI: 10.1007/s11064-013-1217-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/29/2013] [Accepted: 12/07/2013] [Indexed: 12/13/2022]
Abstract
Status epilepticus (SE) is a severe clinical manifestation of epilepsy associated with intense neuronal loss and inflammation, two key factors involved in the pathophysiology of temporal lobe epilepsy. Bone marrow mononuclear cells (BMMC) attenuated the consequences of pilocarpine-induced SE, including neuronal loss, in addition to frequency and duration of seizures. Here we investigated the effects of BMMC transplanted early after the onset of SE in mice, as well as the involvement of soluble factors produced by BMMC in the effects of the cell therapy. Mice were injected with pilocarpine for SE induction and randomized into three groups: transplanted intravenously with 1 × 10(7) BMMC isolated from GFP transgenic mice, injected with BMMC lysate, and saline-treated controls. Cell tracking, neuronal counting in hippocampal subfields and cytokine analysis in the serum and brain were performed. BMMC were found in the brain 4 h following transplantation and their numbers progressively decreased until 24 h following transplantation. A reduction in hippocampal neuronal loss after SE was found in mice treated with live BMMC and BMMC lysate when compared to saline-treated, SE-induced mice. Moreover, the expression of inflammatory cytokines IL-1β, TNF-α, IL-6 was decreased after injection of live BMMC and to a lesser extent, of BMMC lysate, when compared to SE-induced controls. In contrast, IL-10 expression was increased. Analysis of markers for microglia activation demonstrated a reduction of the expression of genes related to type 1-activation. BMMC transplantation promotes neuroprotection and mediates anti-inflammatory effects following SE in mice, possibly through the secretion of soluble factors.
Collapse
|
38
|
Yasuhara T, Agari T, Kameda M, Kondo A, Kuramoto S, Jing M, Sasaki T, Toyoshima A, Sasada S, Sato K, Shinko A, Wakamori T, Okuma Y, Miyoshi Y, Tajiri N, Borlongan CV, Date I. Regenerative medicine for epilepsy: from basic research to clinical application. Int J Mol Sci 2013; 14:23390-401. [PMID: 24287913 PMCID: PMC3876052 DOI: 10.3390/ijms141223390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 11/15/2013] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurological disorder, which presents with various forms of seizures. Traditional treatments, including medication using antiepileptic drugs, remain the treatment of choice for epilepsy. Recent development in surgical techniques and approaches has improved treatment outcomes. However, several epileptic patients still suffer from intractable seizures despite the advent of the multimodality of therapies. In this article, we initially provide an overview of clinical presentation of epilepsy then describe clinically relevant animal models of epilepsy. Subsequently, we discuss the concepts of regenerative medicine including cell therapy, neuroprotective agents, and electrical stimulation, which are reviewed within the context of our data.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-86-235-7336; Fax: +81-86-227-0191
| | - Takashi Agari
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Akihiko Kondo
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Satoshi Kuramoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Meng Jing
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Atsuhiko Toyoshima
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Kenichiro Sato
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Aiko Shinko
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Takaaki Wakamori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Yu Okuma
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Yasuyuki Miyoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Naoki Tajiri
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; E-Mails: (N.T.); (C.V.B.)
| | - Cesario V. Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; E-Mails: (N.T.); (C.V.B.)
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| |
Collapse
|
39
|
Ferrazoli EG, Blanco MM, Bittencourt S, Bachi ALL, Bahia L, Soares MBP, Ribeiro-Dos-Santos R, Mello LE, Longo BM. Anticonvulsant activity of bone marrow cells in electroconvulsive seizures in mice. BMC Neurosci 2013; 14:97. [PMID: 24011127 PMCID: PMC3846761 DOI: 10.1186/1471-2202-14-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 09/03/2013] [Indexed: 11/16/2022] Open
Abstract
Background Bone marrow is an accessible source of progenitor cells, which have been investigated as treatment for neurological diseases in a number of clinical trials. Here we evaluated the potential benefit of bone marrow cells in protecting against convulsive seizures induced by maximum electroconvulsive shock (MES), a widely used model for screening of anti-epileptic drugs. Behavioral and inflammatory responses were measured after MES induction in order to verify the effects promoted by transplantation of bone marrow cells. To assess the anticonvulsant effects of bone marrow cell transplantation, we measured the frequency and duration of tonic seizure, the mortality rate, the microglial expression and the blood levels of cytokine IL-1, IL-6, IL-10 and TNF-α after MES induction. We hypothesized that these behavioral and inflammatory responses to a strong stimulus such as a convulsive seizure could be modified by the transplantation of bone marrow cells. Results Bone marrow transplanted cells altered the convulsive threshold and showed anticonvulsant effect by protecting from tonic seizures. Bone marrow cells modified the microglial expression in the analyzed brain areas, increased the IL-10 and attenuate IL-6 levels. Conclusions Bone marrow cells exert protective effects by blocking the course of electroconvulsive seizures. Additionally, electroconvulsive seizures induced acute inflammatory responses by altering the pattern of microglia expression, as well as in IL-6 and IL-10 levels. Our findings also indicated that the anticonvulsant effects of these cells can be tested with the MES model following the same paradigm used for drug testing in pharmacological screening. Studies on the inflammatory reaction in response to acute seizures in the presence of transplanted bone marrow cells might open a wide range of discussions on the mechanisms relevant to the pathophysiology of epilepsies.
Collapse
Affiliation(s)
- Enéas Galdini Ferrazoli
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Federal University of São Paulo - UNIFESP, R, Botucatu, 862 5 andar, V, Clementino - CEP, 04023-066, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Marques FS, Silva JS, Couto RD, Junior EPDSB, Ribeiro-dos-Santos R, Santos WLCD, Soares MBP. Transplantation of Bone Marrow Mononuclear Cells Reduces Mortality and Improves Renal Function on Mercury-Induced Kidney Injury in Mice. Ren Fail 2013; 35:776-81. [DOI: 10.3109/0886022x.2013.780660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Gubert F, Zaverucha-do-Valle C, Figueiredo FR, Bargas-Rega M, Paredes BD, Mencalha AL, Abdelhay E, Gutfilen B, Barbosa da Fonseca LM, Mendez-Otero R, Santiago MF. Bone-marrow cell therapy induces differentiation of radial glia-like cells and rescues the number of oligodendrocyte progenitors in the subventricular zone after global cerebral ischemia. Stem Cell Res 2013; 10:241-56. [DOI: 10.1016/j.scr.2012.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/29/2012] [Accepted: 11/30/2012] [Indexed: 01/17/2023] Open
|
42
|
Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 2012; 53:1877-86. [PMID: 22905812 DOI: 10.1111/j.1528-1167.2012.03637.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier (BBB) is located within a unique anatomic interface and has functional ramifications to most of the brain and blood cells. In the past, the BBB was considered a pharmacokinetic impediment to antiepileptic drug penetration into the brain; nowadays it is becoming increasingly evident that targeting of the damaged or dysfunctional BBB may represent a therapeutic approach to reduce seizure burden. Several studies have investigated the mechanisms linking the onset and sustainment of seizures to BBB dysfunction. These studies have shown that the BBB is at the crossroad of a multifactorial pathophysiologic process that involves changes in brain milieu, altered neuroglial physiology, development of brain inflammation, leukocyte-endothelial interactions, faulty angiogenesis, and hemodynamic changes leading to energy mismatch. A number of knowledge gaps, conflicting points of view, and discordance between clinical and experimental data currently characterize this field of neuroscience. As more pieces are added to this puzzle, it is apparent that each mechanism needs to be validated in an appropriate clinical context. We now offer a BBB-centric view of seizure disorders, linking several aspects of seizures and epilepsy physiopathology to BBB dysfunction. We have reviewed the therapeutic, antiseizure effect of drugs that promote BBB repair. We also present BBB neuroimaging as a tool to correlate BBB restoration to seizure mitigation. Add-on cerebrovascular drug could be of efficacy in reducing seizure burden when used in association with neuronal antiepileptic drugs.
Collapse
Affiliation(s)
- Nicola Marchi
- Departments of Molecular Medicine Cell Biology, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, U.S.A.
| | | | | | | |
Collapse
|
43
|
de Freitas Souza BS, Nascimento RC, de Oliveira SA, Vasconcelos JF, Kaneto CM, de Carvalho LFPP, Ribeiro-Dos-Santos R, Soares MBP, de Freitas LAR. Transplantation of bone marrow cells decreases tumor necrosis factor-α production and blood-brain barrier permeability and improves survival in a mouse model of acetaminophen-induced acute liver disease. Cytotherapy 2012; 14:1011-21. [PMID: 22809224 DOI: 10.3109/14653249.2012.684445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Acute liver failure (ALF), although rare, remains a rapidly progressive and frequently fatal condition. Acetaminophen (APAP) poisoning induces a massive hepatic necrosis and often leads to death as a result of cerebral edema. Cell-based therapies are currently being investigated for liver injuries. We evaluated the therapeutic potential of transplantation of bone marrow mononuclear cells (BMC) in a mouse model of acute liver injury. METHODS ALF was induced in C57Bl/6 mice submitted to an alcoholic diet followed by fasting and injection of APAP. Mice were transplanted with 10(7) BMC obtained from enhanced green fluorescent protein (GFP) transgenic mice. RESULTS BMC transplantation caused a significant reduction in APAP-induced mortality. However, no significant differences in serum aminotransferase concentrations, extension of liver necrosis, number of inflammatory cells and levels of cytokines in the liver were found when BMC- and saline-injected groups were compared. Moreover, recruitment of transplanted cells to the liver was very low and no donor-derived hepatocytes were observed. Mice submitted to BMC therapy had some protection against disruption of the blood-brain barrier, despite their hyperammonemia, and serum metalloproteinase (MMP)-9 activity similar to the saline-injected group. Tumor necrosis factor (TNF)-α concentrations were decreased in the serum of BMC-treated mice. This reduction was associated with an early increase in interleukin (IL)-10 mRNA expression in the spleen and bone marrow after BMC treatment. CONCLUSIONS BMC transplantation protects mice submitted to high doses of APAP and is a potential candidate for ALF treatment, probably via an immunomodulatory effect on TNF-α production.
Collapse
Affiliation(s)
- Bruno Solano de Freitas Souza
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|