1
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
2
|
Liu X, Dong L, Jiang Z, Song M, Yan P. Identifying the differentially expressed peripheral blood microRNAs in psychiatric disorders: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1390366. [PMID: 38827444 PMCID: PMC11140110 DOI: 10.3389/fpsyt.2024.1390366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024] Open
Abstract
Background Evidence has suggested that microRNAs (miRNAs) may play an important role in the pathogenesis of psychiatric disorders (PDs), but the results remain inconclusive. We aimed to identify specific differentially expressed miRNAs and their overlapping miRNA expression profiles in schizophrenia (SZ), major depression disorder (MDD), and bipolar disorder (BD), the three major PDs. Methods The literatures up to September 30, 2023 related to peripheral blood miRNAs and PDs were searched and screened from multiple databases. The differences in miRNA levels between groups were illustrated by the standardized mean difference (SMD) and 95% confidence interval (95% CI). Results In total, 30 peripheral blood miRNAs were included in the meta-analysis, including 16 for SZ, 12 for MDD, and 2 for BD, each was reported in more than 3 independent studies. Compared with the control group, miR-181b-5p, miR-34a-5p, miR-195-5p, miR-30e-5p, miR-7-5p, miR-132-3p, miR-212-3p, miR-206, miR-92a-3p and miR-137-3p were upregulated in SZ, while miR-134-5p, miR-107 and miR-99b-5p were downregulated. In MDD, miR-124-3p, miR-132-3p, miR-139-5p, miR-182-5p, miR-221-3p, miR-34a-5p and miR-93-5p were upregulated, while miR-144-5p and miR-135a-5p were downregulated. However, we failed to identify statistically differentially expressed miRNAs in BD. Interestingly, miR-132-3p and miR-34a-5p were upregulated in both SZ and MDD. Conclusions Our study identified 13 differentially expressed miRNAs in SZ and 9 in MDD, among which miR-132-3p and miR-34a-5p were upregulated in both SZ and MDD by systematically analyzing qualified studies. These miRNAs may be used as potential biomarkers for the diagnosis of SZ and MDD in the future. Systematic Review Registration http://www.crd.york.ac.uk/PROSPERO, identifier CRD42023486982.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liying Dong
- Internal Medicine of Traditional Chinese Medicine, The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaowei Jiang
- Internal Medicine of Traditional Chinese Medicine, The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingfen Song
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yan
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Luan X, Xing H, Guo F, Liu W, Jiao Y, Liu Z, Wang X, Gao S. The role of ncRNAs in depression. Heliyon 2024; 10:e27307. [PMID: 38496863 PMCID: PMC10944209 DOI: 10.1016/j.heliyon.2024.e27307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Depressive disorders have a significant impact on public health, and depression have an unsatisfactory recurrence rate and are challenging to treat. Non-coding RNAs (ncRNAs) are RNAs that do not code protein, which have been shown to be crucial for transcriptional regulation. NcRNAs are important to the onset, progress and treatment of depression because they regulate various physiological functions. This makes them distinctively useful as biomarkers for diagnosing and tracking responses to therapy among individuals with depression. It is important to seek out and summarize the research findings on the impact of ncRNAs on depression since significant advancements have been made in this area recently. Hence, we methodically outlined the findings of published researches on ncRNAs and depression, focusing on microRNAs. Above all, this review aims to improve our understanding of ncRNAs and provide new insights of the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Xinchi Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Xing
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weiyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yang Jiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhenyu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xuezhe Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Xu L, Zhai X, Shi D, Zhang Y. Depression and coronary heart disease: mechanisms, interventions, and treatments. Front Psychiatry 2024; 15:1328048. [PMID: 38404466 PMCID: PMC10884284 DOI: 10.3389/fpsyt.2024.1328048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Coronary heart disease (CHD), a cardiovascular condition that poses a significant threat to human health and life, has imposed a substantial economic burden on the world. However, in contrast to conventional risk factors, depression emerges as a novel and independent risk factor for CHD. This condition impacts the onset and progression of CHD and elevates the risk of adverse cardiovascular prognostic events in those already affected by CHD. As a result, depression has garnered increasing global attention. Despite this growing awareness, the specific mechanisms through which depression contributes to the development of CHD remain unclear. Existing research suggests that depression primarily influences the inflammatory response, Hypothalamic-pituitary-adrenocortical axis (HPA) and Autonomic Nervous System (ANS) dysfunction, platelet activation, endothelial dysfunction, lipid metabolism disorders, and genetics, all of which play pivotal roles in CHD development. Furthermore, the effectiveness and safety of antidepressant treatment in CHD patients with comorbid depression and its potential impact on the prognosis of CHD patients have become subjects of controversy. Further investigation is warranted to address these unresolved questions.
Collapse
Affiliation(s)
- Linjie Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xu Zhai
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Bhuvaneshwar K, Gusev Y. Translational bioinformatics and data science for biomarker discovery in mental health: an analytical review. Brief Bioinform 2024; 25:bbae098. [PMID: 38493340 PMCID: PMC10944574 DOI: 10.1093/bib/bbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health (MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular data and described challenges and areas of opportunities in this space.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| |
Collapse
|
6
|
Gareeva AE, Borodina LS, Pozdnyakov SA, Timerbulatov IF. [Pharmacogenomic and pharmacometabolomic biomarkers of the efficacy and safety of antidepressants: focus on selective serotonin reuptake inhibitors]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:26-35. [PMID: 39072563 DOI: 10.17116/jnevro202412406126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The efficacy and safety of psychopharmacotherapy with antidepressants is of great medical importance. The search for clinical and biological predictors for choosing the optimal psychopharmacotherapy with antidepressants is actively underway all over the world. Research is mainly devoted to searching for associations of polymorphic gene variants with the efficacy and safety of therapy. However, information about a patient's genetic polymorphism is often insufficient to predict the efficacy and safety of a drug. Modern research on the personalization of pharmacotherapy should include, in addition to genetic, phenotypic biomarkers. This is important because genotyping, for example, cannot accurately predict the actual metabolic activity of an isoenzyme. To personalize therapy, a combination of methods is required to obtain the most complete profile of the efficacy and safety of the drug. Successful treatment of depression remains a challenge, and inter-individual differences in response to antidepressants are common. About half of patients with depressive disorders do not respond to the first attempt at antidepressant therapy. Serious side-effects of antidepressant pharmacotherapy and discontinuation of treatment due to their intolerance are associated with ineffective therapy. This review presents the results of the latest studies of «omics» biomarkers of the efficacy and safety of antidepressants.
Collapse
Affiliation(s)
- A E Gareeva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia
- Kemerovo State University, Kemerovo, Russia
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - L S Borodina
- Republican Narcological Dispensary No. 1, Ufa, Russia
| | - S A Pozdnyakov
- Moscow Scientific and Practical Center for Narcology of the Moscow Health Department, Moscow, Russia
| | - I F Timerbulatov
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
- Usoltsev Central Clinical Psychiatric Hospital, Moscow, Russia
- Russian University of Medicine, Moscow, Russia
| |
Collapse
|
7
|
Chen C, Xu YJ, Zhang SR, Wang XH, Hu Y, Guo DH, Zhou XJ, Zhu WY, Wen AD, Tan QR, Dong XZ, Liu P. MiR-1281 is involved in depression disorder and the antidepressant effects of Kai-Xin-San by targeting ADCY1 and DVL1. Heliyon 2023; 9:e14265. [PMID: 36938448 PMCID: PMC10020002 DOI: 10.1016/j.heliyon.2023.e14265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Kai-Xin-San (KXS) is a Chinese medicine formulation that is commonly used to treat depression caused by dual deficiencies in the heart and spleen. Recent studies indicated that miRNAs were involved in the pathophysiology of depression. However, there have been few studies on the mechanism underlying the miRNAs directly mediating antidepressant at clinical level, especially in nature drugs and TCM compound. In this study, we identified circulating miRNAs defferentially expressed among the depression patients (DPs), DPs who underwent 8weeks of KXS treatment and health controls (HCs). A total of 45 miRNAs (17 were up-regulated and 28 were down-regulated) were significantly differentially expressed among three groups. Subsequently, qRT-PCR was used to verify 10 differentially expressed candidate miRNAs in more serum samples, and the results showed that 6 miRNAs (miR-1281, miR-365a-3p, miR-2861, miR-16-5p, miR-1202 and miR-451a) were consistent with the results of microarray. Among them, miR-1281, was the novel dynamically altered and appeared to be specifically related to depression and antidepressant effects of KXS. MicroRNA-gene-pathway-net analysis showed that miR-1281-regulated genes are mostly key nodes in the classical signaling pathway related to depression. Additionally, our data suggest that ADCY1 and DVL1 were the targets of miR-1281. Thus, based on the discovery of miRNA expression profiles in vivo, our findings suggest a new role for miR-1281 related to depression and demonstrated in vitro that KXS may activate cAMP/PKA/ERK/CREB and Wnt/β-catenin signal transduction pathways by down-regulating miR-1281 that targets ADCY1 and DVL1 to achieve its role in neuronal cell protection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yuan-jie Xu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Shang-rong Zhang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Xiao-hui Wang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Dai-hong Guo
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiao-jiang Zhou
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Wei-yu Zhu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, People's Republic of China
- Corresponding author. Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing 100053, China.
| | - Ping Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
- Corresponding author.Department of Pharmacy, the General Hospital of the People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
8
|
Relationship between the expression level of miRNA-4485 and the severity of depressive symptoms in major depressive disorder patients. THE EUROPEAN JOURNAL OF PSYCHIATRY 2022. [DOI: 10.1016/j.ejpsy.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Qin G, Li Z. Effects of miR-124-3p Silencing on Neuronal Damage in the Hippocampus of Depression Rats by Regulating STAT3 Gene. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3733656. [PMID: 35813421 PMCID: PMC9262509 DOI: 10.1155/2022/3733656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/17/2022]
Abstract
Objective A large amount of evidence shows that the abnormal expression of miRNA plays an important role in the development of depression. Therefore, we investigated the effect of miR-124-3p on neuronal damage in the hippocampus of depression rats. Methods The target genes of miR-124-3p were predicted by the database; the depression model was prepared by subcutaneous injection of corticosterone (CORT), and LV-miR-124-3p asponge lentiviral suspension was given to determine the weight of rats and open-field test, sugar preference experiment, Serum CORT, 5-HT, DA, and NE were measured, observe and record the behavior of rats, including behavior, diet, and hair. The expression of miR-124-3p, STAT3, Bcl-2, and Bax in rat hippocampus was measured. The rat hippocampal neuron cells were extracted and transfected with miR-124-3p inhibitor; the cells were cultured with CORT, and the cell survival rate was evaluated by MTT experiment, and the expressions of miR-124-3p, STAT3, Bcl-2, and Bax in the cells were detected. Luciferase reporter gene verifies the targeted regulation of miR-124-3p on STAT3. Results Compared with depression rats, silencing miR-124-3p increased the weight of the rats, increased the number of open-field activities, and significantly improved the general state and pathological state of the rats. The sugar water preference rate was significantly increased, the CORT content in the serum of rats decreased significantly, and the levels of 5-HT, DA, and NE increased significantly. After the treatment of silencing miR-124-3p, the expression level of miR-124-3p was decreased, while the STAT3 mRNA and protein expression levels were increased. And the protein and mRNA expression levels of Bcl-2 were increased, and the Bax protein and mRNA expression were decreased. Cell experiments verified that silencing miR-124-3p increased cell survival, the expression level of miR-124-3p decreased remarkably, while the expression levels of STAT3 mRNA and protein increased significantly. Silencing miR-124-3p reversed the effects of CORT treatment on miR-124-3p and STAT3 in neuronal cells. The luciferase reporter gene experiment confirmed that miR-124-3p targets and regulates STAT3 expression. Conclusion Silencing miR-124-3p may protect hippocampal neurons from damage in depression rats by upregulating STAT3 gene.
Collapse
Affiliation(s)
- Guangping Qin
- Department of Neurology, Shinan District People's Hospital, Qingdao, Shandong 266100, China
| | - Zhuo Li
- Second Department of Encephalopathy, Penglai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, China
| |
Collapse
|
10
|
Synaptic plasticity and depression: the role of miRNAs dysregulation. Mol Biol Rep 2022; 49:9759-9765. [PMID: 35441941 DOI: 10.1007/s11033-022-07461-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been recently shown to exert several functional roles in the development and function of neurons. Moreover, numerous miRNAs are present in high abundance in presynaptic and postsynaptic sites regulating synaptic plasticity and activity through different mechanisms. METHODS We searched PubMed and Google Scholar databases with key words "Synaptic plasticity", "miRNA" and "major depressive disorder. RESULTS Synaptic plasticity has an essential role in the ability of the brain to integrate transitory experiences into constant memory traces. Thus, it participates in the development of neuropsychiatric diseases such as major depressive disorder (MDD). Most notably, MDD-related alterations in synaptic function have been found to be closely related with abnormal expression of miRNAs. CONCLUSIONS Several miRNAs such as miR-9-5p, miR-204-5p, miR-128-3, miR-26a-3p, miR-218, miR-22-3p, miR-124-3p, miR-136-3p, miR-154-5p, miR-323a-3p, miR-425-5p, miR-34a, miR-137, miR-204-5p, miR-99a, miR-134, miR-124-3p and miR-3130-5p have been shown to be involved in the regulation of synaptic plasticity in the context of MDD. In the current review, we elaborate the role of miRNAs in regulation of this important neuronal feature in MDD.
Collapse
|
11
|
CircDYM ameliorates CUMS mice depressive-like behavior and inhibits hippocampal neurons injury via miR-497a-5p/NR3C1 axis. Brain Res 2022; 1787:147911. [DOI: 10.1016/j.brainres.2022.147911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
12
|
Emerging role of microRNAs as novel targets of antidepressants. Asian J Psychiatr 2021; 66:102906. [PMID: 34740127 DOI: 10.1016/j.ajp.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
|
13
|
Smartphone-Based Device for Colorimetric Detection of MicroRNA Biomarkers Using Nanoparticle-Based Assay. SENSORS 2021; 21:s21238044. [PMID: 34884049 PMCID: PMC8659705 DOI: 10.3390/s21238044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/15/2023]
Abstract
The detection of microRNAs (miRNAs) is emerging as a clinically important tool for the non-invasive detection of a wide variety of diseases ranging from cancers and cardiovascular illnesses to infectious diseases. Over the years, miRNA detection schemes have become accessible to clinicians, but they still require sophisticated and bulky laboratory equipment and trained personnel to operate. The exceptional computing ability and ease of use of modern smartphones coupled with fieldable optical detection technologies can provide a useful and portable alternative to these laboratory systems. Herein, we present the development of a smartphone-based device called Krometriks, which is capable of simple and rapid colorimetric detection of microRNA (miRNAs) using a nanoparticle-based assay. The device consists of a smartphone, a 3D printed accessory, and a custom-built dedicated mobile app. We illustrate the utility of Krometriks for the detection of an important miRNA disease biomarker, miR-21, using a nanoplasmonics-based assay developed by our group. We show that Krometriks can detect miRNA down to nanomolar concentrations with detection results comparable to a laboratory-based benchtop spectrophotometer. With slight changes to the accessory design, Krometriks can be made compatible with different types of smartphone models and specifications. Thus, the Krometriks device offers a practical colorimetric platform that has the potential to provide accessible and affordable miRNA diagnostics for point-of-care and field applications in low-resource settings.
Collapse
|
14
|
Mingardi J, La Via L, Tornese P, Carini G, Trontti K, Seguini M, Tardito D, Bono F, Fiorentini C, Elia L, Hovatta I, Popoli M, Musazzi L, Barbon A. miR-9-5p is involved in the rescue of stress-dependent dendritic shortening of hippocampal pyramidal neurons induced by acute antidepressant treatment with ketamine. Neurobiol Stress 2021; 15:100381. [PMID: 34458512 PMCID: PMC8379501 DOI: 10.1016/j.ynstr.2021.100381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown. Here, we found that miR-9-5p levels were selectively reduced in the hippocampus of rats vulnerable to Chronic Mild Stress (CMS), while acute subanesthetic ketamine restored its levels to basal condition in just 24h; miR-9-5p expression inversely correlated with the anhedonic phenotype. A decrease of miR-9-5p was reproduced in an in vitro model of stress, based on primary hippocampal neurons incubated with the stress hormone corticosterone. In both CMS animals and primary neurons, decreased miR-9-5p levels were associated with dendritic simplification, while treatment with ketamine completely rescued the changes. In vitro modulation of miR-9-5p expression showed a direct role of miR-9-5p in regulating dendritic length and spine density in mature primary hippocampal neurons. Among the putative target genes tested, Rest and Sirt1 were validated as biological targets in primary neuronal cultures. Moreover, in line with miR-9-5p changes, REST protein expression levels were remarkably increased in both CMS vulnerable animals and corticosterone-treated neurons, while ketamine completely abolished this alteration. Finally, the shortening of dendritic length in corticosterone-treated neurons was shown to be partly rescued by miR-9-5p overexpression and dependent on REST protein expression. Overall, our data unveiled the functional role of miR-9-5p in the remodeling of dendritic arbor induced by stress/corticosterone in vulnerable animals and its rescue by acute antidepressant treatment with ketamine.
Collapse
Affiliation(s)
- Jessica Mingardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kalevi Trontti
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mara Seguini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Daniela Tardito
- Department of Technical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Leonardo Elia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, MI, Italy
| | - Iiris Hovatta
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Circulating microRNAs and Molecular Oxidative Stress in Older Adults with Neuroprogression Disorders. DISEASE MARKERS 2021; 2021:4409212. [PMID: 34721735 PMCID: PMC8556086 DOI: 10.1155/2021/4409212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND circulating microRNAs are potential blood biomarkers differentially expressed in many diseases including neuro depression disorders. It controls the expression of human genes and associated cellular and physiological processes in normal and diseased cells. We aimed to evaluate the potential role of circulating miRNAs and their association with both stress hormones and cellular oxidative stress in neuro depression disorders occurred among older adults. METHODS a total of 70 healthy subjects were included in this study. Based upon the profile of mood states (POMS-32 score), the participants classified into two groups; healthy subjects (n =30) and depression (n =40). The expression of microRNAs; miR-124, miR-34a-5p, miR-135, and miR-451-a and their correlation with cellular oxidative stress parameters; cellular NO, genes of SOD2, CAT and iNOS, and hormones; cortisol and serotonin were estimated by a quantitative real-time RT-PCR, high-performance liquid chromatography, and ELISA Immunoassay techniques, respectively. RESULTS depression was reported in 57.14% of the participants. The results showed a significant increase (p =0.01) in the total mood scores, and relative depression domains in older adults with depression compared to healthy controls. The relative expression levels of miR-124, miR-34a-5p significantly increased and the expression levels of miR-135, and miR-451-a significantly decreased in older adults with depression compared to healthy controls. In addition, the levels of cortisol significantly increased and serotonin (5HT) significantly reduced in all participants with depression. Cellular oxidative stress analysis for depressed subjects showed that serum NO levels and the expression of iNO gene significantly increased conversely with a decline in the molecular expression antioxidative genes; SOD2, CAT, respectively. The results showed that cellular oxidative stress parameters correlated positively with depression scores, cortisol, and negatively with cellular serotonin levels. In depressed subjects, the relative expression of microRNAs correlated positively with depression score, NO, iNOS, cortisol, and negatively associated with SOD2, CAT, and serotonin. CONCLUSION The combination of cellular oxidative stress and hormonal levels strongly supports a role for circulating miRNAs; miR-124, miR-34a-5p, miR-135, and miR-451-a in the regulation of depression and mood disorders among older adults. The expressed microRNAs with their related association to cellular oxidative stress and adrenal hormones are a step towards understanding the role of these small RNA molecules in the progression of depression among older adults. Thus, cellular miRNAs might have a prognostic role in the diagnosis and as a target for treatment strategies in depressed subjects.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Lan T, Li Y, Fan C, Wang L, Wang W, Chen S, Yu SY. MicroRNA-204-5p reduction in rat hippocampus contributes to stress-induced pathology via targeting RGS12 signaling pathway. J Neuroinflammation 2021; 18:243. [PMID: 34674723 PMCID: PMC8532383 DOI: 10.1186/s12974-021-02299-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background Neuroinflammation occupies a pivotal position in the pathogenesis of most nervous system diseases, including depression. However, the underlying molecular mechanisms of neuroinflammation associated with neuronal injury in depression remain largely uncharacterized. Therefore, identifying potential molecular mechanisms and therapeutic targets would serve to better understand the progression of this condition. Methods Chronic unpredictable stress (CUS) was used to induce depression-like behaviors in rats. RNA-sequencing was used to detect the differentially expressed microRNAs. Stereotactic injection of AAV virus to overexpress or knockdown the miR-204-5p. The oxidative markers and inflammatory related proteins were verified by immunoblotting or immunofluorescence assay. The oxidative stress enzyme and products were verified using enzyme-linked assay kit. Electron microscopy analysis was used to observe the synapse and ultrastructural pathology. Finally, electrophysiological recording was used to analyze the synaptic transmission. Results Here, we found that the expression of miR-204-5p within the hippocampal dentate gyrus (DG) region of rats was significantly down-regulated after chronic unpredicted stress (CUS), accompanied with the oxidative stress-induced neuronal damage within DG region of these rats. In contrast, overexpression of miR-204-5p within the DG region of CUS rats alleviated oxidative stress and neuroinflammation by directly targeting the regulator of G protein signaling 12 (RGS12), effects which were accompanied with amelioration of depressive-like behaviors in these CUS rats. In addition, down-regulation of miR-204-5p induced neuronal deterioration in DG regions and depressive-like behaviors in rats. Conclusion Taken together, these results suggest that miR-204-5p plays a key role in regulating oxidative stress damage in CUS-induced pathological processes of depression. Such findings provide evidence of the involvement of miR-204-5p in mechanisms underlying oxidative stress associated with depressive phenotype. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02299-5.
Collapse
Affiliation(s)
- Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong, 250012, People's Republic of China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong, 250012, People's Republic of China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong, 250012, People's Republic of China
| | - Liyan Wang
- Morphological Experimental Center, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China.
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
17
|
Liu W, Zhang F, Zheng Y, He S, Zhang T, Guo Q, Xu H, Chen H, Liu C, Yu S, Jiang K, Li H, Li G, Wang X, Liu X. The role of circulating blood microRNA-374 and microRNA-10 levels in the pathogenesis and therapeutic mechanisms of major depressive disorder. Neurosci Lett 2021; 763:136184. [PMID: 34418506 DOI: 10.1016/j.neulet.2021.136184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
Compelling recent evidence suggests that microRNAs (miRNAs) regulate specific mRNA transcripts at the transcriptomic level and coordinately influence complex regulatory networks, which may play a crucial role in the pathogenesis of major depressive disorder (MDD) and the treatment effects of antidepressants. To evaluate the possible involvement of miRNAs in the pathophysiology and therapeutic response of MDD, we conducted a miRNA expression array analysis of the peripheral blood mononuclear cells (PBMCs) of 5 depressed patients and 5 healthy controls (HCs). Subsequently, we chose 2 miRNAs for validation with real-time PCR (RT-PCR) analysis pre- and post-treatment in another group of 25 MDD patients and 25 HCs. In the array, 5 miRNAs were differentially expressed in medication-naïve MDD patients compared to HCs, of which 2 miRNAs were upregulated and 3 were downregulated. Furthermore, in comparison with HCs, MDD patients showed significantly lower expression levels of miR-374b and miR-10a before treatment. After 8 weeks of antidepressant treatment, both miR-374b and the miR-10a expression levels in MDD patients were significantly elevated only in responders. In conclusion, these results indicate the involvement of miR-374b and miR-10a in the biological mechanisms and therapeutic response of MDD, and provide new insights for exploring miRNAs as potential biomarkers for MDD.
Collapse
Affiliation(s)
- Wanying Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Fuxu Zhang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yanqun Zheng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Tianhong Zhang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hua Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Haiying Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Caiping Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kaida Jiang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institution of Drug Clinical Trials, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guanjun Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoliang Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaohua Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
18
|
Shvarts-Serebro I, Sheinin A, Gottfried I, Adler L, Schottlender N, Ashery U, Barak B. miR-128 as a Regulator of Synaptic Properties in 5xFAD Mice Hippocampal Neurons. J Mol Neurosci 2021; 71:2593-2607. [PMID: 34151409 DOI: 10.1007/s12031-021-01862-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease's progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA's expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function.
Collapse
Affiliation(s)
| | - Anton Sheinin
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gottfried
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lior Adler
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Schottlender
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ashery
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Suento WJ, Kunisawa K, Wulaer B, Kosuge A, Iida T, Fujigaki S, Fujigaki H, Yamamoto Y, Tanra AJ, Saito K, Mouri A, Nabeshima T. Prefrontal cortex miR-874-3p prevents lipopolysaccharide-induced depression-like behavior through inhibition of indoleamine 2,3-dioxygenase 1 expression in mice. J Neurochem 2020; 157:1963-1978. [PMID: 33095942 DOI: 10.1111/jnc.15222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is the first rate-limiting enzyme that metabolizes tryptophan to the kynurenine pathway. Its activity is highly inducible by pro-inflammatory cytokines and correlates with the severity of major depressive disorder (MDD). MicroRNAs (miRNAs) are involved in gene regulation and the development of neuropsychiatric disorders including MDD. However, the role of miRNAs in targeting IDO1 in the pathophysiology of MDD is still unknown. In this study, we investigated the role of novel miRNAs in the regulation of IDO1 activity and its effect on lipopolysaccharide (LPS)-induced depression-like behavior in mice. LPS up-regulated miR-874-3p concomitantly with increase in IDO1 expression in the prefrontal cortex (PFC), increase in immobility in the forced swimming test as depression-like behavior and decrease in locomotor activity as sickness behavior without motor dysfunction. The miR-874-3p increased in both neuron and microglia after LPS. Its mimic significantly suppressed LPS-induced IDO1 expression in the PFC. Infusion of IDO1 inhibitor (1-methyl-l-tryptophan) and miR-874-3p into PFC prevented an increase in immobility in the forced swimming test, but did not decrease in locomotor activity induced by LPS. These results suggest that miR-874-3p may play an important role in preventing the LPS-induced depression-like behavior through inhibition of IDO1 expression. This may also serve as a novel potential target molecule for the treatment of MDD.
Collapse
Affiliation(s)
- Willy Jaya Suento
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Department of Psychiatry, Hasanuddin University Faculty of Medicine, South Sulawesi, Indonesia
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Bolati Wulaer
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Aika Kosuge
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Tsubasa Iida
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Suwako Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Andi Jayalangkara Tanra
- Department of Psychiatry, Hasanuddin University Faculty of Medicine, South Sulawesi, Indonesia
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| |
Collapse
|
20
|
Deng ZF, Zheng HL, Chen JG, Luo Y, Xu JF, Zhao G, Lu JJ, Li HH, Gao SQ, Zhang DZ, Zhu LQ, Zhang YH, Wang F. miR-214-3p Targets β-Catenin to Regulate Depressive-like Behaviors Induced by Chronic Social Defeat Stress in Mice. Cereb Cortex 2020. [PMID: 29522177 DOI: 10.1093/cercor/bhy047] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
β-Catenin has been implicated in major depressive disorder (MDD), which is associated with synaptic plasticity and dendritic arborization. MicroRNAs (miRNA) are small noncoding RNAs containing about 22 nucleotides and involved in a variety of physiological and pathophysiological process, but their roles in MDD remain largely unknown. Here, we investigated the expression and function of miRNAs in the mouse model of chronic social defeat stress (CSDS). The regulation of β-catenin by selected miRNA was validated by silico prediction, target gene luciferase reporter assay, and transfection experiment in neurons. We demonstrated that the levels of miR-214-3p, which targets β-catenin transcripts were significantly increased in the medial prefrontal cortex (mPFC) of CSDS mice. Antagomir-214-3p, a neutralizing inhibitor of miR-214-3p, increased the levels of β-catenin and reversed the depressive-like behavior in CSDS mice. Meanwhile, antagomir-214-3p increased the amplitude of miniature excitatory postsynaptic current (mEPSC) and the number of dendritic spines in mPFC of CSDS mice, which may be related to the elevated expression of cldn1. Furthermore, intranasal administered antagomir-214-3p also significantly increased the level of β-catenin and reversed the depressive-like behaviors in CSDS mice. These results may represent a new therapeutic target for MDD.
Collapse
Affiliation(s)
- Zhi-Fang Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Ling Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| | - Yi Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang-Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng-Zheng Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Yong-Hui Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| |
Collapse
|
21
|
Li S, Ma H, Yuan X, Zhou X, Wan Y, Chen S. MicroRNA-382-5p Targets Nuclear Receptor Subfamily 3 Group C Member 1 to Regulate Depressive-Like Behaviors Induced by Chronic Unpredictable Mild Stress in Rats. Neuropsychiatr Dis Treat 2020; 16:2053-2061. [PMID: 32982244 PMCID: PMC7490101 DOI: 10.2147/ndt.s243920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Depression is an emotional disorder characterized by depression, lack of pleasure, and cognitive and sleep disorders. It is a systemic disease with a complex pathogenesis. In this study, we will be focused to investigate their associations and the exact functional mechanisms of miR-382-5p and NR3C1 in depression. MATERIALS AND METHODS We measured the expressions of microRNA-382-5p (miR-382-5p) and NR3C1 in the hippocampus by chronic unpredictable mild stress (CUMS). Depression behavior test including novelty-suppressed feeding test (NSFT), sucrose preference test (SPT), and forced swim test (FST) on rats have been conducted to examine the roles and functions of miR-382-5p and NR3C1 on depression-like behaviors by lentivirus vectors. RESULTS Up-regulation of miR-382-5p and down-regulation of NR3C1 were observed in rats' hippocampus induced by CUMS. miR-382-5p targeted NR3C1 and inhibited the expressions of NR3C1 in rats' hippocampus. miR-382-5p could significantly change the depression behaviors induced by CUMS. NR3C1 downstream BDNF and p-TrkB were also oppositely associated with miR-382-5p in rats' hippocampus. CONCLUSION Through our experiments and analysis, we found that the associations between miR-382-5p and NR3C1 could affect the depression-like behaviors.
Collapse
Affiliation(s)
- Shuqian Li
- Department of Rehabilitation, People's Hospital of Shenzhen Baoan District, Shenzhen 518100, People's Republic of China
| | - Hong Ma
- Department of Rehabilitation, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Xu Yuan
- Department of Rehabilitation, People's Hospital of Shenzhen Baoan District, Shenzhen 518100, People's Republic of China
| | - Xiaomei Zhou
- Department of Rehabilitation, People's Hospital of Shenzhen Baoan District, Shenzhen 518100, People's Republic of China
| | - Yiwen Wan
- Department of Rehabilitation, People's Hospital of Shenzhen Baoan District, Shenzhen 518100, People's Republic of China
| | - Shangjie Chen
- Department of Rehabilitation, People's Hospital of Shenzhen Baoan District, Shenzhen 518100, People's Republic of China
| |
Collapse
|
22
|
Ferrúa CP, Giorgi R, da Rosa LC, do Amaral CC, Ghisleni GC, Pinheiro RT, Nedel F. MicroRNAs expressed in depression and their associated pathways: A systematic review and a bioinformatics analysis. J Chem Neuroanat 2019; 100:101650. [PMID: 31125682 PMCID: PMC6996133 DOI: 10.1016/j.jchemneu.2019.101650] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 01/14/2023]
Abstract
Depression is a debilitating mental illness, one of the most prevalent worldwide. MicroRNAs have been studied to better understand the biological mechanisms that regulate this disease. This study review systematically the literature to identify which microRNAs are currently being associated with depression and their related pathways. The electronic search was conducted in PubMed, Scopus, Scielo, ISI Web of Knowledge, and PsycINFO databases, using the search terms "Depressive Disorder" or "Depression" and "MicroRNAs". After, microRNAs that were up and down-regulated in depression were analyzed by bioinformatics. We observed that among the 77 microRNAs cited by included studies, 54 had their levels altered in depressed individuals compared to controls, 30 being up-regulated and 24 down-regulated. The bioinformatics analysis revealed that among the up-regulated microRNAs there were 81 total and 43 union pathways, with 15 presenting a significant difference. Among the down-regulated microRNAs, 67 total and 45 union pathways were found, with 14 presenting a significant difference. The miR-17-5p and let-7a-5p were the most frequently found microRNAs in the statistically significant pathways. In this study a panel of altered microRNAs in depression was created with their related pathways, which is a step towards understanding the complex network of microRNAs in depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fernanda Nedel
- Corresponding author at: Programa de Pós-graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Rua Félix da Cunha, 412, 96010-901, Pelotas, RS, Brazil.
| |
Collapse
|
23
|
Ma K, Zhang H, Wang S, Wang H, Wang Y, Liu J, Song X, Dong Z, Han X, Zhang Y, Li H, Rahaman A, Wang S, Baloch Z. The molecular mechanism underlying GABAergic dysfunction in nucleus accumbens of depression-like behaviours in mice. J Cell Mol Med 2019; 23:7021-7028. [PMID: 31430030 PMCID: PMC6787457 DOI: 10.1111/jcmm.14596] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/24/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022] Open
Abstract
Depression is the most frequent psychiatric disorder in the world. Recent evidence has shown that stress‐induced GABAergic dysfunction in the nucleus accumbens (NAc) contributed to the pathophysiology of depression. However, the molecular mechanisms underlying these pathological changes remain unclear. In this study, mice were constantly treated with the chronic unpredictable mild stress (CUMS) till showing depression‐like behaviours expression. GABA synthesis, release and uptake in the NAc tissue were assessed by analysing the expression level of genes and proteins of Gad‐1, VGAT and GAT‐3 by qRT‐PCR and Western blotting. The miRNA/mRNA network regulating GABA was constructed based on the bioinformatics prediction software and further validated by dual‐luciferase reporter assay in vitro and qRT‐PCR in vivo, respectively. Our results showed that the expression level of GAT‐3, Gad‐1 and VGAT mRNA and protein significantly decreased in the NAc tissue from CUMS‐induced depression‐like mice than that of control mice. However, miRNA‐144‐3p, miRNA‐879‐5p, miR‐15b‐5p and miRNA‐582‐5p that directly down‐regulated the expression of Gad‐1, VGAT and GAT‐3 were increased. In the mRNA/miRNA regulatory GABA network, Gad‐1 and VGAT were directly regulated by binding seed sequence of miR‐144‐3p, and miR‐15b‐5p, miR‐879‐5p could be served negative post‐regulators by binding to the different sites of VGAT 3′‐UTR. Chronic stress causes the impaired GABA synthesis, release and uptake by up‐regulating miRNAs and down‐regulating mRNAs and proteins, which may reveal the molecular mechanisms for the decreased GABA concentrations in the NAc tissue of CUMS‐induced depression.
Collapse
Affiliation(s)
- Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongxiu Zhang
- Jinan Center for Disease Control and Prevention, Institute of Virology, Jinan, China
| | - Shiyuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaxin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juhai Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaobin Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenfei Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaochun Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honglei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University and Technology, Guangzhou, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zulqarnain Baloch
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
24
|
Khandelwal N, Dey SK, Chakravarty S, Kumar A. miR-30 Family miRNAs Mediate the Effect of Chronic Social Defeat Stress on Hippocampal Neurogenesis in Mouse Depression Model. Front Mol Neurosci 2019; 12:188. [PMID: 31440139 PMCID: PMC6694739 DOI: 10.3389/fnmol.2019.00188] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
Depression is a debilitating psychiatric disorder with a high rate of relapse and a low rate of response to antidepressant treatment. There is a dearth of new antidepressants due to an incomplete understanding of the molecular mechanisms involved in its etiopathology. Chronic stress appears to be one of the foremost underlying causes of depression. Studies in animal models in the past decade have implicated epigenetic mechanisms in mediating the negative effects of chronic stressful events on the progression/manifestation of depression and other co-morbid neuropsychiatric disorders. However, non-coding RNAs, another layer of epigenetic regulation is relatively less studied in depression. Here, using the chronic social defeat stress (CSDS)-induced depression model, we hypothesized dysregulation in miRNA-mRNA networks in the neurogenic dentate gyrus (DG) region of male C57BL/6 mice. Among several dysregulated miRNAs identified via miRNA arrays, the most striking finding was the downregulation of miRNAs of the miR-30 family in stressed/defeated mice. To investigate miRNAs in the DG-resident neural stem/progenitor cells (NSCs/NPCs), we used the in vitro neurosphere culture, where proliferating NSCs/NPCs were subjected to differentiation. Among several differentially expressed miRNAs, we observed an upregulation of miR-30 family miRNAs upon differentiation. To search for the gene targets of these miRNAs, we performed gene arrays followed by bioinformatics analysis, miRNA manipulations and luciferase assays. Our results suggest that miR-30 family miRNAs mediate chronic stress-induced depression-like phenotype by altering hippocampal neurogenesis and neuroplasticity via controlling the epigenetic and transcription regulators such as Mll3 and Runx1; and cell signaling regulators like Socs3, Ppp3r1, Gpr125, and Nrp1.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sandeep Kumar Dey
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Department of Cell Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Division of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India.,Division of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Feng J, Wang M, Li M, Yang J, Jia J, Liu L, Zhou J, Zhang C, Wang X. Serum miR-221-3p as a new potential biomarker for depressed mood in perioperative patients. Brain Res 2019; 1720:146296. [PMID: 31211948 DOI: 10.1016/j.brainres.2019.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) modulate various genes associated with brain disorders and circulating miRNAs may therefore serve as biomarkers for these neurological diseases. We previously found that the miRNA miR-221-3p was highly expressed in cerebrospinal fluid and the serum of major depressive disorder (MDD) patients. Here, we examined whether miR-221-3p could be used as a biomarker for depressed mood in perioperative patients. We first examined the relative expression of serum miR-221-3p by real-time quantitative PCR in perioperative patients with different degrees of depressive mood assessed by the Patient Health Questionnaire-9 (PHQ-9) diagnostic form. We found that miR-221-3p expression in the mild depressive mood group (PHQ-9 scores 5-9) was 2.21 fold that of the normal group (PHQ-9 scores 0-4) and the moderate&severe depressive mood group (PHQ-9 scores ≥ 10) showed miR-221-3p expression levels 3.66 fold that of the normal group. Then the absolute quantification of serum miR-221-3p was obtained using an miRNA standard curve. We found that the amount of serum miR-221-3p was positively correlated with depressed mood; when serum miR-221-3p > 1.7 × 107 copies/μg RNA, all indicated PHQ-9 scores were higher than 6. Subsequently, we found that miR-221-3p could indirectly increase the expression of IFN-α (Interferon alpha) in astrocytes by targeting IRF2 (Interferon Regulatory Factor 2) and that miR-221-3p participated in the anti-neuroinflammatory signaling cascades induced by ketamine and paroxetine via the IRF2/IFN-α pathway. Our results indicate that elevated serum miR-221-3p can be used as a biomarker for depressed mood in perioperative patients and that IFN-α-induced NF-κB activation in astrocytes mediated by miR-221-3p targeting of IRF2 may be one of the potential mechanisms.
Collapse
Affiliation(s)
- Jianguo Feng
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Maozhou Wang
- Department of Intensive Care Unit, The Affiliated Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Mao Li
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jimei Yang
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Jia
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chunxiang Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
26
|
Tang CZ, Zhang DF, Yang JT, Liu QH, Wang YR, Wang WS. Overexpression of microRNA-301b accelerates hippocampal microglia activation and cognitive impairment in mice with depressive-like behavior through the NF-κB signaling pathway. Cell Death Dis 2019; 10:316. [PMID: 30962417 PMCID: PMC6453902 DOI: 10.1038/s41419-019-1522-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022]
Abstract
Depression is a condition with a complex etiological pattern, whose effective treatments are highly limited. MicroRNAs (miRNAs) have been investigated in intensive studies owing to their involvement in pathophysiology of mood disorders. The current study aimed to elucidate the role of miR-301b in hippocampus in mouse models of depressive-like behavior. Microarray-based prediction identified the differentially expressed gene neuronal pentraxin II (NPTX2) related to mental depression. Next, the putative miR-301b binding sites on the 3'UTR of NPTX2 were verified. Then the effect of miR-301b on cognitive function of mice with depressive-like behavior was analyzed using the Morris water maze test. In addition, the regulation of miR-301b to NPTX2 and activation of NF-κB signaling pathway was assessed. Following that, the microglia activation and inflammation in hippocampus were evaluated, with the expressions of inflammatory factors being examined. At last, microglia were flow cytometrically sorted and the inflammatory reaction was also assessed in vitro. The obtained findings revealed that miR-301b targeted and negatively regulated NPTX2. Moreover, overexpressed miR-301b activated the NF-κB signaling pathway, as reflected by increasing protein expressions of p-NF-κB. Upregulated miR-301b accelerated cognitive impairment in mice with depressive-like behavior. In addition, overexpression of miR-301b activated microglia and stimulated inflammation in hippocampus, accompanied by enhanced release of tumor necrosis factor-α (TNF-α), interleukin-Iβ (IL-Iβ) and cyclooxygenase-2(COX-2). Taken together, the evidence provided by the current study indicated that overexpression of miR-301b augmented hippocampal microglia activation, thus exacerbating cognitive impairment and inflammation in mice with depressive-like behavior by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chao-Zhi Tang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Dong-Fang Zhang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Jun-Tang Yang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Qing-Hui Liu
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Ya-Ru Wang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Wen-Sheng Wang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China.
| |
Collapse
|
27
|
Wu Y, Zhu B, Chen Z, Duan J, Luo A, Yang L, Yang C. New Insights Into the Comorbidity of Coronary Heart Disease and Depression. Curr Probl Cardiol 2019; 46:100413. [PMID: 31005351 DOI: 10.1016/j.cpcardiol.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
Abstract
Coronary heart disease (CHD) and depression are common disorders that markedly impair quality of life and impose a great financial burden on society. They are also frequently comorbid, exacerbating patient condition, and worsening prognosis. This comorbidity strongly suggests shared pathologic mechanisms. This review focuses on the incidence of depression in patients with CHD, deleterious effects of depression on CHD symptoms, and the potential mechanisms underlying comorbidity. In addition to the existing frequent mechanisms that are well known for decades, this review summarized interesting and original potential mechanisms to underlie the comorbidity, such as endocrine substances, gut microbiome, and microRNA. Finally, there are several treatment strategies for the comorbidity, involving drugs and psychotherapy, which may provide a theoretical basis for further basic research and clinical investigations on improved therapeutic interventions.
Collapse
|
28
|
Mustafin RN, Enikeeva RF, Davydova YD, Khusnutdinova EK. The Role of Epigenetic Factors in the Development of Depressive Disorders. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Fan C, Song Q, Wang P, Li Y, Yang M, Liu B, Yu SY. Curcumin Protects Against Chronic Stress-induced Dysregulation of Neuroplasticity and Depression-like Behaviors via Suppressing IL-1β Pathway in Rats. Neuroscience 2018; 392:92-106. [DOI: 10.1016/j.neuroscience.2018.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022]
|
30
|
Hacimusalar Y, Eşel E. Suggested Biomarkers for Major Depressive Disorder. ACTA ACUST UNITED AC 2018; 55:280-290. [PMID: 30224877 DOI: 10.5152/npa.2017.19482] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Currently, the diagnosis of major depressive disorder (MDD) mainly relies on clinical examination and subjective evaluation of depressive symptoms. There is no non-invasive, quantitative test available today for the diagnosis of MDD. In MDD, exploration of biomarkers will be helpful in diagnosing the disorder as well as in choosing a treatment, and predicting the treatment response. In this article, it is aimed to review the findings of suggested biomarkers such as growth factors, cytokines and other inflammatory markers, oxidative stress markers, endocrine markers, energy balance hormones, genetic and epigenetic features, and neuroimaging in MDD and to evaluate how these findings contribute to the pathophysiology of MDD, the prediction of treatment response, severity of the disorder, and identification of subtypes. Among these, the findings related to the brain-derived neurotrophic factor, the hypothalamo-pituitary-adrenal axis, cytokines, and neuroimaging may be strong candidates for being biomarkers MDD, and may provide critical information in understanding biological etiology of depression. Although the findings are not sufficient yet, we think that the results of epigenetic studies will also provide very important contributions to the biomarker research in MDD. The availability of biomarkers in MDD will be an advancement that will facilitate the diagnosis of the disorder, treatment choices in the early stages, and prediction of the course of the disorder.
Collapse
Affiliation(s)
- Yunus Hacimusalar
- Department of Psychiatry, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Ertuğrul Eşel
- Department of Psychiatry, Erciyes University Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
31
|
Kuang WH, Dong ZQ, Tian LT, Li J. MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Braz J Med Biol Res 2018; 51:e7212. [PMID: 29791588 PMCID: PMC5972018 DOI: 10.1590/1414-431x20187212] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
Aberrant expression of microRNAs (miRNAs) has been shown to be involved in early observations of depression. The aim of this study was to determine if serum levels of miRNA-451a, miRNA-34a-5p, and miRNA-221-3p can serve as indicators of disease progression or therapeutic efficacy in depression. We collected data from 84 depressed patients and 78 control volunteers recruited from the medical staff at the West China Hospital. Depression severity was rated using the 24-item Hamilton Depression Scale (HAMD). Serum miRNA-451a, miRNA-34a-5p, and miRNA-221-3p levels were determined in samples from the depressed patients before and 8 weeks after antidepressant treatment as well as in samples from controls. Compared with the controls, the patients had lower miRNA-451a levels, higher miRNA-34a-5p and miRNA-221-3p levels, and increased HAMD scores whether they underwent antidepressant treatment or not. Eight weeks after antidepressant treatment, the patients exhibited increased miRNA-451a levels, decreased miRNA-34a-5p and miRNA-221-3p levels, and reduced HAMD scores. The serum level of miRNA-451a was negatively correlated with HAMD scores of the patients, while the serum levels of miRNA-34a-5p and miRNA-221-3p were positively correlated with HAMD scores whether the patients underwent antidepressant treatment or not. Paroxetine was markedly effective in 50 patients who also displayed an increased level of miRNA-451a but reduced levels of miRNA-34a-5p and miRNA-221-3p. In contrast, paroxetine was moderately effective or ineffective in 34 patients. In conclusion, depressed patients had lower serum miRNA-451a but higher serum miRNA-34a-5p and miRNA-221-3p, and these miRNAs are potential predictors of the efficacy of antidepressants.
Collapse
Affiliation(s)
- Wei-Hong Kuang
- Department of Psychiatry and Mental Health Center, West China
Hospital, Sichuan University, Chengdu, China
| | - Zai-Quan Dong
- Department of Psychiatry and Mental Health Center, West China
Hospital, Sichuan University, Chengdu, China
| | - Lian-Tian Tian
- Research Centre for Public Health and Preventive Medicine, West
China School of Public Health, No. 4 West China Teaching Hospital, Sichuan
University, Chengdu, China
| | - Jin Li
- Department of Psychiatry and Mental Health Center, West China
Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Jiménez KM, Pereira-Morales AJ, Forero DA. A Functional Polymorphism in the DRD1 Gene, That Modulates Its Regulation by miR-504, Is Associated with Depressive Symptoms. Psychiatry Investig 2018; 15:402-406. [PMID: 29614853 PMCID: PMC5912498 DOI: 10.30773/pi.2017.10.16.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/28/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine a possible association between depressive symptoms and a functional polymorphism (rs686) that modulates the regulation of DRD1 gene by miR-504. METHODS A total of 239 young Colombian subjects were evaluated with the Patient Health Questionnaire-9 (PHQ-9) scale and genotyped for the rs686 polymorphism. A linear regression model, corrected by age and gender, was used. RESULTS A significant association between the rs686 polymorphism and PHQ-9 scores was found, under a dominant genetic model (p=0.0094). CONCLUSION These results provide novel evidence about the growing role of inherited variants in binding sites for brain-expressed miRNAs on depressive symptomatology.
Collapse
Affiliation(s)
- Karen M Jiménez
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Angela J Pereira-Morales
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
33
|
Alam M, Najmi AK, Ahmad I, Ahmad FJ, Akhtar MJ, Imam SS, Akhtar M. Formulation and evaluation of nano lipid formulation containing CNS acting drug: molecular docking, in-vitro assessment and bioactivity detail in rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:46-57. [DOI: 10.1080/21691401.2018.1451873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mahtab Alam
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Iqbal Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Syed Sarim Imam
- Department of Pharmaceutics, Glocal School of Pharmacy, The Glocal University, Saharnpur, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| |
Collapse
|
34
|
Qi S, Yang X, Zhao L, Calhoun VD, Perrone-Bizzozero N, Liu S, Jiang R, Jiang T, Sui J, Ma X. MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain 2018; 141:916-926. [PMID: 29408968 PMCID: PMC5837315 DOI: 10.1093/brain/awx366] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/22/2017] [Accepted: 11/09/2017] [Indexed: 02/05/2023] Open
Abstract
There is compelling evidence that epigenetic factors contribute to the manifestation of depression, in which microRNA132 (miR-132) is suggested to play a pivotal role in the pathogenesis and neuronal mechanisms underlying the symptoms of depression. Additionally, several depression-associated genes [MECP2, ARHGAP32 (p250GAP), CREB, and period genes] were experimentally validated as miR-132 targets. However, most studies regarding miR-132 in major depressive disorder are based on post-mortem, animal models or genetic comparisons. This work will be the first attempt to investigate how miR-132 dysregulation may impact covariation of multimodal brain imaging data in 81 unmedicated major depressive patients and 123 demographically-matched healthy controls, as well as in a medication-naïve subset of major depressive patients. MiR-132 values in blood (patients > controls) was used as a prior reference to guide fusion of three MRI features: fractional amplitude of low frequency fluctuations, grey matter volume, and fractional anisotropy. The multimodal components correlated with miR-132 also show significant group difference in loadings. Results indicate that (i) higher miR-132 levels in major depressive disorder are associated with both lower fractional amplitude of low frequency fluctuations and lower grey matter volume in fronto-limbic network; and (ii) the identified brain regions linked with increased miR-132 levels were also associated with poorer cognitive performance in attention and executive function. Using a data-driven, supervised-learning method, we determined that miR-132 dysregulation in major depressive disorder is associated with multi-facets of brain function and structure in fronto-limbic network (the key network for emotional regulation and memory), which deepens our understanding of how miR-132 dysregulation in major depressive disorders contribute to the loss of specific brain areas and is linked to relevant cognitive impairments.
Collapse
Affiliation(s)
- Shile Qi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electronical and Computer Engineering, University of New Mexico, USA
- Department of Neurosciences and Psychiatry, University of New Mexico, USA
- Department of Psychiatry, Yale University, CT, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences and Psychiatry, University of New Mexico, USA
- Department of Psychiatry, Yale University, CT, USA
| | - Shengfeng Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
| | - Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
- CAS Centre for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, China
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
- The Mind Research Network, Albuquerque, NM, USA
- CAS Centre for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, China
| |
Collapse
|
35
|
Fang Y, Qiu Q, Zhang S, Sun L, Li G, Xiao S, Li X. Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J Affect Disord 2018; 227:745-751. [PMID: 29689690 DOI: 10.1016/j.jad.2017.11.090] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neurotrophins including brain-derived neurotropic factor (BDNF) are implicated in the pathogenesis of major depressive disorder (MDD). Yet, the roles of brain-specific BDNF-related miRNAs miR-132 and miR-124 are unclear. METHODS We enrolled 45 treatment-free patients with MDD, 32 citalopram-treated patients with MDD, and 32 healthy control subjects. Participants were assessed with the Hamilton Depression Scale (HAMD) and Hamilton Anxiety Scale (HAMA). In a case-control sub-study, we followed 14 treatment-free patients who were subsequently treated with citalopram for 2 months. Enzyme-linked immunosorbent assay was used to detect plasma BDNF, and real-time polymerase chain reaction was used to quantify relative plasma miR-132 and miR-124 expression. RESULTS Patients with MDD had significantly higher HAMA and HAMD scores than the control group, with the highest scores in the treatment-free MDD group. Plasma miR-132 in the treatment-free MDD group was 2.4-fold that in the control group and significantly higher than that in the citalopram-treated MDD group. Plasma miR-124 in the treatment-free MDD and citalopram-treated MDD groups was 1.8-fold and 4-fold that in the control group, respectively. Compared to the control group, plasma BDNF levels were increased in both MDD groups, but not significantly different between them. There was a positive correlation between miR-132 and HAMD and HAMA scores, whereas no significant correlations were identified for plasma miR-124 or BDNF. LIMITATIONS The range of neurotrophin-related MiRNAs and the number of follow-up cases were limited. CONCLUSIONS BDNF and miR-124 in plasma increase with depression and antidepressants. Plasma MiR-132 might be an indication for depression status.
Collapse
Affiliation(s)
- Yuan Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Qi Qiu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Shengyu Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice, No. 1347, Guangfu West Road, Putuo District, Shanghai 200063, China
| | - Lin Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Guanjun Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Shifu Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China.
| |
Collapse
|
36
|
Wang Q, Zhao G, Yang Z, Liu X, Xie P. Downregulation of microRNA‑124‑3p suppresses the mTOR signaling pathway by targeting DDIT4 in males with major depressive disorder. Int J Mol Med 2018; 41:493-500. [PMID: 29115444 DOI: 10.3892/ijmm.2017.3235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022] Open
Abstract
Recent investigations have suggested that microRNAs (miRNAs or miRs) are involved in several pathways that may contribute to the pathomechanism of major depressive disorder (MDD). Sex may not only act as a demographic factor in clinical practive, but may also play a vital role in the molecular heterogeneity of MDD. Although many molecular changes correlated with MDD are found in males, the molecular mechanisms of MDD remain poorly understood. The present study performed bioinformatics analysis to investigate the pathomechanism of MDD in males. The present study identified miR‑124‑3p as one of the most dysregulated miRNAs in MDD, with decreased expression in the post‑mortem BA44 brain area of male patients with MDD. In addition, miR‑124‑3p targets DNA damage‑inducible transcript 4 (DDIT4) and specificity protein 1 (SP1), a DDIT4 transcription factor, in the validated target module of the miRWalk 2.0 database. This is concurrent with an increase in the expression level of DDIT4, which is an inhibitor of the mammalian target of rapamycin (mTOR) signaling pathway. It was also demonstrated that miR‑124‑3p expression was positively associated with mTOR signaling and this relationship was dependent on the tuberous sclerosis proteins 1/2 complex. Taken together, these results provided a novel insight on miR‑124‑3p involvement in the biological alterations of male patients with MDD and suggested that this miRNA may also serve as a male‑specific target for antidepressant treatment.
Collapse
Affiliation(s)
- Qiuling Wang
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Gaofeng Zhao
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Zhenzhen Yang
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Xia Liu
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Ping Xie
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
37
|
Major depression and its treatment: microRNAs as peripheral biomarkers of diagnosis and treatment response. Curr Opin Psychiatry 2018; 31:7-16. [PMID: 29076893 DOI: 10.1097/yco.0000000000000379] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Major depressive disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Despite its considerable burden, our understanding of its pathophysiology remains rudimentary, and a validated biomarker has yet to be identified. Antidepressants are the most common treatment for MDD, yet roughly one-third of patients experience an inadequate response. Thus, there is a great need for not only identifying biomarkers of MDD but also those that can predict and monitor or just monitor response to treatment. RECENT FINDINGS MicroRNAs (miRNAs) act as endogenous fine-tuners and on-off switches of gene expression. Several lines of evidence now suggest that miRNAs are involved in the pathogenesis of neuropsychiatric disorders. As such, miRNAs offer great hope as biomarkers of disease and response to treatment. SUMMARY In this review, we discuss the growing field, investigating peripheral miRNAs as potential biomarkers of major depression and treatment response. A noninvasive and validated biomarker of MDD or treatment response will help clinicians guide treatment selection. Ultimately, these findings provide important steps in the development of early diagnostic tools, preventive strategies, and effective pharmacological treatment for psychiatric disorders.
Collapse
|
38
|
Oved K, Farberov L, Gilam A, Israel I, Haguel D, Gurwitz D, Shomron N. MicroRNA-Mediated Regulation of ITGB3 and CHL1 Is Implicated in SSRI Action. Front Mol Neurosci 2017; 10:355. [PMID: 29163031 PMCID: PMC5682014 DOI: 10.3389/fnmol.2017.00355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/18/2017] [Indexed: 01/05/2023] Open
Abstract
Background: Selective serotonin reuptake inhibitor (SSRI) antidepressant drugs are the first-line of treatment for major depressive disorder (MDD) but are effective in <70% of patients. Our earlier genome-wide studies indicated that two genes encoding for cell adhesion proteins, close homolog of L1 (CHL1) and integrin beta-3 (ITGB3), and microRNAs, miR-151a-3p and miR-221/222, are implicated in the variable sensitivity and response of human lymphoblastoid cell lines (LCL) from unrelated individuals to SSRI drugs. Methods: The microRNAs miR-221, miR-222, and miR-151-a-3p, along with their target gene binding sites, were explored in silico using miRBase, TargetScan, microRNAviewer, and the UCSC Genome Browser. Luciferase reporter assays were conducted for demonstrating the direct functional regulation of ITGB3 and CHL1 expression by miR-221/222 and miR-151a-3p, respectively. A human LCL exhibiting low sensitivity to paroxetine was utilized for studying the phenotypic effect of CHL1 regulation by miR-151a-3p on SSRI response. Results: By showing direct regulation of CHL1 and ITGB3 by miR-151a-3p and miR-221/222, respectively, we link these microRNAs and genes with cellular SSRI sensitivity phenotypes. We report that miR-151a-3p increases cell sensitivity to paroxetine via down-regulating CHL1 expression. Conclusions: miR-151a-3p, miR-221/222 and their (here confirmed) respective target-genes, CHL1 and ITGB3, are implicated in SSRI responsiveness, and possibly in the clinical response to antidepressant drugs.
Collapse
Affiliation(s)
- Keren Oved
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Luba Farberov
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avial Gilam
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Israel
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Danielle Haguel
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - David Gurwitz
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Forero DA, Guio-Vega GP, González-Giraldo Y. A comprehensive regional analysis of genome-wide expression profiles for major depressive disorder. J Affect Disord 2017; 218:86-92. [PMID: 28460316 DOI: 10.1016/j.jad.2017.04.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/30/2017] [Accepted: 04/16/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a global health challenge. In recent years, a large number of genome-wide expression studies (GWES) have been carried out to identify the transcriptomic profiles for MDD. The objective of this work was to carry out a comprehensive meta-analysis of available GWES for MDD. METHODS GWES for MDD with available raw data were searched in NCBI GEO, Array Express and Stanley databases. Raw GWES data were preprocessed and normalized and meta-analytical procedures were carried out with the Network Analyst program. 743 samples from 24 primary studies were included in our meta-analyses for blood (Blo), amygdala (Amy), cerebellum (Cer), anterior cingulate cortex (ACC) and prefrontal cortex (PFC) regions. A functional enrichment analysis was carried out. RESULTS We identified 35, 793, 231, 668 and 252 differentially expressed (DE) genes for Blo, Amy, Cer, ACC and PFC regions. A region-dependent significant enrichment for several functional categories, such as gene ontologies, signaling pathways and topographic parameters, was identified. There was convergence with other available genome-wide studies, such as GWAS, DNA methylation analyses and miRNA expression studies. LIMITATIONS Raw data were not available for several primary studies that have been published previously. CONCLUSIONS This is the largest meta-analysis for GWES in MDD. The examination of convergence of genome-wide evidence and of the functional enrichment analysis provides a global overview of potential neural signaling mechanisms dysregulated in MDD. Our comprehensive analysis of several brain regions identified lists of DE genes for MDD that are interesting candidates for further studies.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.
| | - Gina P Guio-Vega
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
40
|
Šatrauskienė A, Navickas R, Laucevičius A, Huber HJ. Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data. BMC Cardiovasc Disord 2017; 17:173. [PMID: 28666417 PMCID: PMC5493858 DOI: 10.1186/s12872-017-0609-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023] Open
Abstract
Background Numerous recent studies suggest the potential of circulating MicroRNAs (miRs) in peripheral blood samples as diagnostic or prognostic markers for coronary artery disease (CAD), acute coronary syndrome (ACS) and heart failure (HF). However, literature often remains inconclusive regarding as to which markers are most indicative for which of the above diseases. This shortcoming is mainly due to the lack of a systematic analyses and absence of information on the functional pathophysiological role of these miRs and their target genes. Methods We here provide an-easy-to-use scoring approach to investigate the likelihood of regulation of several miRs and their target genes from literature by identifying consensus patterns of regulation. We therefore have screened over 1000 articles that study mRNA markers in cardiovascular and metabolic diseases, and devised a scoring algorithm to identify consensus means for miRs and genes regulation across several studies. We then aimed to identify differential markers between CAD, ACS and HF. Results We first identified miRs (miR-122, −126, −223, −138 and −370) as commonly regulated within a group of metabolic disease, while investigating cardiac-related pathologies (CAD, ACS, HF) revealed a decisive role of miR-1, −499, −208b, and -133a. Looking at differential markers between cardiovascular disease revealed miR-1, miR-208a and miR-133a to distinguish ACS and CAD to HF. Relating differentially expressed miRs to their putative gene targets using MirTarBase, we further identified HCN2/4 and LASP1 as potential markers of CAD and ACS, but not in HF. Likewise, BLC-2 was found oppositely regulated between CAD and HF. Interestingly, while studying overlap in target genes between CAD, ACS and HF only revealed little similarities, mapping these genes to gene ontology terms revealed a surprising similarity between CAD and ACS compared to HF. Conclusion We conclude that our analysis using gene and miR scores allows the extraction of meaningful markers and the elucidation of differential pathological functions between cardiac diseases and provides a novel approach for literature screening for miR and gene consensus patterns. The analysis is easy to use and extendable upon further emergent literature as we provide an Excel sheet for this analysis to the community. Electronic supplementary material The online version of this article (doi:10.1186/s12872-017-0609-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnė Šatrauskienė
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Rokas Navickas
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Aleksandras Laucevičius
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Heinrich J Huber
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. .,Institute for Automation Engineering (IFAT), Laboratory for Systems Theory and Automatic Control, Otto-von-Guericke University Magdeburg, 39106, Magdeburg, Germany.
| |
Collapse
|
41
|
Singh RK, Chamachi NG, Chakrabarty S, Mukherjee A. Mechanism of Unfolding of Human Prion Protein. J Phys Chem B 2017; 121:550-564. [PMID: 28030950 DOI: 10.1021/acs.jpcb.6b11416] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Misfolding and aggregation of prion proteins are associated with several neurodegenerative diseases. Therefore, understanding the mechanism of the misfolding process is of enormous interest in the scientific community. It has been speculated and widely discussed that the native cellular prion protein (PrPC) form needs to undergo substantial unfolding to a more stable PrPC* state, which may further oligomerize into the toxic scrapie (PrPSc) form. Here, we have studied the mechanism of the unfolding of the human prion protein (huPrP) using a set of extensive well-tempered metadynamics simulations. Through multiple microsecond-long metadynamics simulations, we find several possible unfolding pathways. We show that each pathway leads to an unfolded state of lower free energy than the native state. Thus, our study may point to the signature of a PrPC* form that corresponds to a global minimum on the conformational free-energy landscape. Moreover, we find that these global minima states do not involve an increased β-sheet content, as was assumed to be a signature of PrPSc formation in previous simulation studies. We have further analyzed the origin of metastability of the PrPC form through free-energy surfaces of the chopped helical segments to show that the helices, particularly H2 and H3 of the prion protein, have the tendency to form either a random coil or a β-structure. Therefore, the secondary structural elements of the prion protein are only weakly stabilized by tertiary contacts and solvation forces so that relatively weak perturbations induced by temperature, pressure, pH, and so forth can lead to substantial unfolding with characteristics of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Reman K Singh
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| | - Neharika G Chamachi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| |
Collapse
|
42
|
Abstract
The brain is considered a major site for microRNA (miRNA) expression; as evidenced by several studies reporting microarray data of different brain substructures. The hypothalamus is among the brain regions that plays a crucial role in integrating signals from other brain nuclei as well as environmental, hormonal, metabolic and neuronal signals from the periphery in order to deliver an adequate response. The hypothalamus controls vital functions such as reproduction, energy homeostasis, water balance, circadian rhythm and stress. These functions need a high neuronal plasticity to adequately respond to physiological, environmental and psychological stimuli that could be limited to a specific temporal period during life or are cyclic events. In this context, miRNAs constitute major regulators and coordinators of gene expression. Indeed, in response to specific stimuli, changes in miRNA expression profiles finely tune specific mRNA targets to adequately fit to the immediate needs through mainly the modulation of neuronal plasticity.
Collapse
Affiliation(s)
- Mohammed Taouis
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University Paris-Sud, Orsay, France; NMPA, Neurosciences Paris Saclay Institute (NeuroPSI), Department Molecules & Circuits, CNRS UMR 9197, Orsay, France.
| |
Collapse
|
43
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
44
|
MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl Psychiatry 2016; 6:e862. [PMID: 27483380 PMCID: PMC5022079 DOI: 10.1038/tp.2016.131] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/19/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023] Open
Abstract
There is a growing emphasis in the field of psychiatry on the need to identify candidate biomarkers to aid in diagnosis and clinical management of depression, particularly with respect to predicting response to specific therapeutic strategies. MicroRNAs are small nucleotide sequences with the ability to regulate gene expression at the transcriptomic level and emerging evidence from a range of studies has highlighted their biomarker potential. Here we compared healthy controls (n=20) with patients diagnosed with major depression (n=40) and who were treatment-resistant to identify peripheral microRNA biomarkers, which could be used for diagnosis and to predict response to electroconvulsive therapy (ECT) and ketamine (KET) infusions, treatments that have previously shown to be effective in treatment-resistant depression (TRD). At baseline and after treatment, blood samples were taken and symptom severity scores rated using the Hamilton Depression Rating Scale (HDRS). Samples were analyzed for microRNA expression using microarray and validated using quantitative PCR. As expected, both treatments reduced HDRS scores. Compared with controls, the baseline expression of the microRNA let-7b was less by ~40% in TRD patients compared with controls. The baseline expression of let-7c was also lower by ~50% in TRD patients who received ECT. Bioinformatic analysis revealed that let-7b and let-7c regulates the expression of 27 genes in the PI3k-Akt-mTOR signaling pathway, which has previously been reported to be dysfunctional in depression. The expression of miR-16, miR-182, miR-451 and miR-223 were similar to that in controls. Baseline microRNA expression could not predict treatment response and microRNAs were unaffected by treatment. Taken together, we have identified let-7b and let-7c as candidate biomarkers of major depression.
Collapse
|
45
|
Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression. Transl Psychiatry 2016; 6:e869. [PMID: 27529677 PMCID: PMC5022082 DOI: 10.1038/tp.2016.136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/12/2016] [Accepted: 06/19/2016] [Indexed: 12/30/2022] Open
Abstract
Elevation of the proinflammatory cytokine IL-6 has been implicated in depression; however, the mechanisms remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression post-transcriptionally. The lethal-7 (let-7) miRNA family was suggested to be involved in the inflammation process and IL-6 was shown to be one of its targets. In the present study, we report elevation of Il6 in the prefrontal cortex (PFC) of a genetic rat model of depression, the Flinders Sensitive Line (FSL) compared to the control Flinders Resistant Line. This elevation was associated with an overexpression of LIN28B and downregulation of let-7 miRNAs, the former an RNA-binding protein that selectively represses let-7 synthesis. Also DROSHA, a key enzyme in miRNA biogenesis was downregulated in FSL. Running was previously shown to have an antidepressant-like effect in the FSL rat. We found that running reduced Il6 levels and selectively increased let-7i and miR-98 expression in the PFC of FSL, although there were no differences in LIN28B and DROSHA expression. Pri-let-7i was upregulated in the running FSL group, which associated with increased histone H4 acetylation. In conclusion, the disturbance of let-7 family biogenesis may underlie increased proinflammatory markers in the depressed FSL rats while physical activity could reduce their expression, possibly through regulating primary miRNA expression via epigenetic mechanisms.
Collapse
|
46
|
Negative regulation of microRNA-132 in expression of synaptic proteins in neuronal differentiation of embryonic neural stem cells. Neurochem Int 2016; 97:26-33. [DOI: 10.1016/j.neuint.2016.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/07/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
|
47
|
Bahi A. Sustained lentiviral-mediated overexpression of microRNA124a in the dentate gyrus exacerbates anxiety- and autism-like behaviors associated with neonatal isolation in rats. Behav Brain Res 2016; 311:298-308. [PMID: 27211062 DOI: 10.1016/j.bbr.2016.05.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorders (ASD) are highly disabling psychiatric disorders. Despite a strong genetic etiology, there are no efficient therapeutic interventions that target the core symptoms of ASD. Emerging evidence suggests that dysfunction of microRNA (miR) machinery may contribute to the underlying molecular mechanisms involved in ASD. Here, we report a stress model demonstrating that neonatal isolation-induced long-lasting hippocampal elevation of miR124a was associated with reduced expression of its target BDNF mRNA. In addition, we investigated the impact of lentiviral-mediated overexpression of miR124a into the dentate gyrus (DG) on social interaction, repetitive- and anxiety-like behaviors in the neonatal isolation (Iso) model of autism. Rats isolated from the dams on PND 1 to PND 11 were assessed for their social interaction, marble burying test (MBT) and repetitive self-grooming behaviors as adults following miR124a overexpression. Also, anxiety-like behavior and locomotion were evaluated in the elevated plus maze (EPM) and open-field (OF) tests. Results show that, consistent with previously published reports, Iso rats displayed decreased social interaction contacts but increased repetitive- and anxiety-like behaviors. Interestingly, across both autism- and anxiety-like behavioral assays, miR124a overexpression in the DG significantly exacerbated repetitive behaviors, social impairments and anxiety with no effect on locomotor activity. Our novel findings attribute neonatal isolation-inducible cognitive impairments to induction of miR124a and consequently suppressed BDNF mRNA, opening venues for intercepting these miR124a-mediated damages. They also highlight the importance of studying microRNAs in the context of ASD and identify miR124a as a novel potential therapeutic target for improving mood disorders.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
48
|
Dynamic Alterations of miR-34c Expression in the Hypothalamus of Male Rats after Early Adolescent Traumatic Stress. Neural Plast 2016; 2016:5249893. [PMID: 26925271 PMCID: PMC4746392 DOI: 10.1155/2016/5249893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/13/2023] Open
Abstract
Several types of microRNA (miRNA) overexpression in the brain are associated with stress. One of the targets of miR-34c is the stress-related corticotrophin releasing factor receptor 1 mRNA (CRFR1 mRNA). Here we will probe into the short-term effect and long-term effect of early adolescent traumatic stress on the expression of miR-34c and CRFR1 mRNA. Traumatic stress was established by electric foot shock for six consecutive days using 28-day rats. The anxiety-like behaviors, memory damage, CRFR1 protein, CRFR1 mRNA, and miR-34c expression were detected in our study. The results of our study proved that exposure to acute traumatic stress in early adolescent can cause permanent changes in neural network, resulting in dysregulation of CRFR1 expression and CRFR1 mRNA and miR-34c expression in hypothalamus, anxiety-like behavior, and memory impairment, suggesting that the miR-34c expression in hypothalamus may be an important factor involved in susceptibility to PTSD.
Collapse
|
49
|
Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress - An animal model of depression. Eur Neuropsychopharmacol 2016; 26:23-36. [PMID: 26628105 DOI: 10.1016/j.euroneuro.2015.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/24/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are involved in stress-related pathologies. However, the molecular mechanisms underlying stress resilience are elusive. Using chronic mild stress (CMS), an animal model of depression, we identified animals exhibiting a resilient phenotype. We investigated serum levels of corticosterone, melatonin and 376 mature miRNAs to find peripheral biomarkers associated with the resilient phenotype. miR-16, selected during screening step, was assayed in different brain regions in order to find potential relationship between brain and peripheral alterations in response to stress. Two CMS experiments that lasted for 2 and 7 consecutive weeks were performed. During both CMS procedures, sucrose consumption levels were significantly decreased in anhedonic-like animals (p<0.0001) compared with unstressed animals, whereas the drinking profiles of resilient rats did not change despite the rats being stressed. Serum corticosterone measurements indicated that anhedonic-like animals had blunted hypothalamic-pituitary-adrenal (HPA) axis activity, whereas resilient animals exhibited dynamic responses to stress. miRNA profiling revealed that resilient animals had elevated serum levels of miR-16 after 7 weeks of CMS (adjusted p-value<0.007). Moreover, resilient animals exhibited reciprocal changes in miR-16 expression level in mesocortical pathway after 2 weeks of CMS (p<0.008). A bioinformatic analysis showed that miR-16 regulates genes involved in the functioning of the nervous system in both humans and rodents. Resilient animals can actively cope with stress on a biochemical level and miR-16 may contribute to a "stress-resistant" behavioral phenotype by pleiotropic modulation of the expression of genes involved in the function of the nervous system.
Collapse
|
50
|
Liu Y, Yang X, Zhao L, Zhang J, Li T, Ma X. Increased miR-132 level is associated with visual memory dysfunction in patients with depression. Neuropsychiatr Dis Treat 2016; 12:2905-2911. [PMID: 27877044 PMCID: PMC5108558 DOI: 10.2147/ndt.s116287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Impaired visual memory seems to be a core feature of depression, while increased microRNA-132 (miR-132) levels have been widely reported in depression patients. The authors aimed to explore the relationship between miR-132 changes and visual memory deficits in unmedicated patients with major depressive disorder (MDD). PATIENTS AND METHODS A total of 62 medication-free MDD patients and 73 matched healthy controls (HCs) were tested for miR-132 expression level in peripheral blood using quantitative real-time polymerase chain reaction. We used a computerized neurocognitive task from the Cambridge Neuropsychological Test Automated Battery (CANTAB) - pattern recognition memory (PRM) task - as a measurement of visual memory. The relationship between visual memory, miR-132 expression level, and clinical symptoms was explored in patients with MDD. RESULTS Upregulated miR-132 expression levels were seen in MDD patients but not in HCs. Two-sample t-tests showed that MDD patients had decreased visual memory, mainly memory delayed compared to that of HCs. Correlation analyses revealed that in MDD patients, increased miR-132 expression levels were significantly correlated with visual memory as measured by the CANTABPRM. Hamilton Rating Scale for Anxiety scores were negatively correlated with PRM - number correct (immediate) and PRM - percent correct (immediate). LIMITATIONS The main limitations were missing data and lack of follow-up studies. CONCLUSION Our study suggests that increased miR-132 expression levels were associated with visual memory deficits, which may underlie the pathophysiology of MDD. In individuals with depression, immediate visual memory defects were positively correlated with anxiety symptoms.
Collapse
Affiliation(s)
- Ye Liu
- Psychiatric Laboratory, Department of Psychiatry; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiao Yang
- Psychiatric Laboratory, Department of Psychiatry; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liansheng Zhao
- Psychiatric Laboratory, Department of Psychiatry; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jian Zhang
- Psychiatric Laboratory, Department of Psychiatry; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tao Li
- Psychiatric Laboratory, Department of Psychiatry; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaohong Ma
- Psychiatric Laboratory, Department of Psychiatry; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|