1
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Manzoor U, Ali A, Ali SL, Abdelkarem O, Kanwal S, Alotaibi SS, Baazeem A, Baiduissenova A, Yktiyarov A, Hajar A, Olzhabay A. Mutational screening of GDAP1 in dysphonia associated with Charcot-Marie-Tooth disease: clinical insights and phenotypic effects. J Genet Eng Biotechnol 2023; 21:119. [PMID: 37966693 PMCID: PMC10651813 DOI: 10.1186/s43141-023-00568-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION Mutations in GDAP1 (Ganglioside-induced differentiation-associated protein 1) gene are linked to Charcot-Marie-Tooth disease (CMT), a Heterogenous group of disorders with multiple phenotypes, characterized by peripheral nerve dysfunction that can lead to vocal cord paralysis and diaphragmatic dysfunction. MAIN BODY All three affected children of this chosen family have manifested the same clinical symptoms with progressive weakness, mild sensory impairment, and absent tendon reflexes in their early years. Electrodiagnostic analysis displayed an axonal type of neuropathy in affected patients. Sequencing of the GDAP1 gene was requested for all members of the family. Diagnostic assessments included pulmonary and vocal cord function tests, as well as phrenic and peripheral nerve conduction studies. Pathogenicity of GDAP1 variant p.Pro419Leu with axonal CMT2 and autosomal recessive inheritance was confirmed via in silico analysis. Patients with GDAP1 mutations showed dysphonia, speech difficulties, and the characteristic symptoms of CMT. The severity of symptoms correlated with the presence of a type of GDAP1 mutation. Patients with normal vocal cords and pulmonary function exhibited milder symptoms compared to those with GDAP1 mutations. Our study provides clinical insights into the phenotypic effects of GDAP1 mutations in CMT patients. The findings highlight the adverse clinical course and severe disability associated with GDAP1 mutations, including weak limb and laryngeal muscles. CONCLUSION Patients with GDAP1 mutations and autosomal recessive neuropathy present with dysphonia and require interventions such as surgery, braces, physical therapy, and exercise. Early diagnosis and comprehensive clinical evaluations are crucial for managing CMT patients with GDAP1 mutations.
Collapse
Affiliation(s)
- Uzma Manzoor
- Department of Clinical Biochemistry, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan.
| | - Awais Ali
- Department of Biochemistry, Abdul wali Khan University Mardan, Mardan, 23200, Pakistan
| | - S Luqman Ali
- Department of Biochemistry, Abdul wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Omneya Abdelkarem
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sumaira Kanwal
- Department of Clinical Biochemistry, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O.Box 11099, 21944, Taif, Saudi Arabia
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Aliya Baiduissenova
- Department of Microbiology and Virology, Astana Medical University, Astana City, 010000, Kazakhstan
| | - Ayaz Yktiyarov
- Department of Microbiology and Virology, Astana Medical University, Astana City, 010000, Kazakhstan
| | - Azraida Hajar
- Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Abay Olzhabay
- Department of Otorhinolaryngology, Astana Medical University, Astana City, 010000, Kazakhstan
| |
Collapse
|
3
|
Benslimane N, Miressi F, Loret C, Richard L, Nizou A, Pyromali I, Faye PA, Favreau F, Lejeune F, Lia AS. Amlexanox: Readthrough Induction and Nonsense-Mediated mRNA Decay Inhibition in a Charcot-Marie-Tooth Model of hiPSCs-Derived Neuronal Cells Harboring a Nonsense Mutation in GDAP1 Gene. Pharmaceuticals (Basel) 2023; 16:1034. [PMID: 37513945 PMCID: PMC10385573 DOI: 10.3390/ph16071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Nonsense mutations are involved in multiple peripheral neuropathies. These mutations induce the presence of a premature termination codon (PTC) at the mRNA level. As a result, a dysfunctional or truncated protein is synthesized, or even absent linked to nonsense-mediated mRNA degradation (NMD) system activation. Readthrough molecules or NMD inhibitors could be innovative therapies in these hereditary neuropathies, particularly molecules harboring the dual activity as amlexanox. Charcot-Marie-Tooth (CMT) is the most common inherited pathology of the peripheral nervous system, affecting 1 in 2500 people worldwide. Nonsense mutations in the GDAP1 gene have been associated with a severe form of CMT, prompting us to investigate the effect of readthrough and NMD inhibitor molecules. Although not clearly defined, GDAP1 could be involved in mitochondrial functions, such as mitophagy. We focused on the homozygous c.581C>G (p.Ser194*) mutation inducing CMT2H using patient human induced pluripotent stem cell (hiPSC)-derived neuronal cells. Treatment during 20 h with 100 µM of amlexanox on this cell model stabilized GDAP1 mRNAs carrying UGA-PTC and induced a restoration of the mitochondrial morphology. These results highlight the potential of readthrough molecules associated to NMD inhibitors for the treatment of genetic alterations in CMT, opening the way for future investigations and a potential therapy.
Collapse
Affiliation(s)
- Nesrine Benslimane
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Federica Miressi
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Camille Loret
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Laurence Richard
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Angélique Nizou
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Ioanna Pyromali
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Frédéric Favreau
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Fabrice Lejeune
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
| | - Anne-Sophie Lia
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
- Centre Hospitalo-Universitaire (CHU) Limoges, UF de Bioinformatique, F-87000 Limoges, France
| |
Collapse
|
4
|
León M, Prieto J, Molina-Navarro MM, García-García F, Barneo-Muñoz M, Ponsoda X, Sáez R, Palau F, Dopazo J, Izpisua Belmonte JC, Torres J. Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response. Cell Death Discov 2023; 9:217. [PMID: 37393339 DOI: 10.1038/s41420-023-01531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein. Mouse and insect models with mutations in Gdap1 have reproduced several traits of the human disease. However, the precise function in the cell types affected by the disease remains unknown. Here, we use induced-pluripotent stem cells derived from a Gdap1 knockout mouse model to better understand the molecular and cellular phenotypes of the disease caused by the loss-of-function of this gene. Gdap1-null motor neurons display a fragile cell phenotype prone to early degeneration showing (1) altered mitochondrial morphology, with an increase in the fragmentation of these organelles, (2) activation of autophagy and mitophagy, (3) abnormal metabolism, characterized by a downregulation of Hexokinase 2 and ATP5b proteins, (4) increased reactive oxygen species and elevated mitochondrial membrane potential, and (5) increased innate immune response and p38 MAP kinase activation. Our data reveals the existence of an underlying Redox-inflammatory axis fueled by altered mitochondrial metabolism in the absence of Gdap1. As this biochemical axis encompasses a wide variety of druggable targets, our results may have implications for developing therapies using combinatorial pharmacological approaches and improving therefore human welfare. A Redox-immune axis underlying motor neuron degeneration caused by the absence of Gdap1. Our results show that Gdap1-/- motor neurons have a fragile cellular phenotype that is prone to degeneration. Gdap1-/- iPSCs differentiated into motor neurons showed an altered metabolic state: decreased glycolysis and increased OXPHOS. These alterations may lead to hyperpolarization of mitochondria and increased ROS levels. Excessive amounts of ROS might be the cause of increased mitophagy, p38 activation and inflammation as a cellular response to oxidative stress. The p38 MAPK pathway and the immune response may, in turn, have feedback mechanisms, leading to the induction of apoptosis and senescence, respectively. CAC, citric acid cycle; ETC, electronic transport chain; Glc, glucose; Lac, lactate; Pyr, pyruvate.
Collapse
Affiliation(s)
- Marian León
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - María Micaela Molina-Navarro
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francisco García-García
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Manuela Barneo-Muñoz
- Unitat Predepartamental de Medicina, Universidad Jaume I, Castellón de la Plana, Castellón, Spain
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Rosana Sáez
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francesc Palau
- Institut de Recerca and Hospital San Joan de Déu, 08950, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Joaquín Dopazo
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, 5510 Morehouse Drive, San Diego, CA, 92121, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain.
- Instituto de Investigación Sanitaria (INCLIVA), 46010, València, Spain.
| |
Collapse
|
5
|
Cantarero L, García-Vargas G, Hoenicka J, Palau F. Differential effects of Mendelian GDAP1 clinical variants on mitochondria-lysosome membrane contacts sites. Biol Open 2023; 12:bio059707. [PMID: 36912213 PMCID: PMC10110396 DOI: 10.1242/bio.059707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
GDAP1 pathogenic variants cause Charcot-Marie-Tooth (CMT) disease, the most common hereditary motor and sensory neuropathy. CMT-GDAP1 can be axonal or demyelinating, with autosomal dominant or recessive inheritance, leading to phenotypic heterogeneity. Recessive GDAP1 variants cause a severe phenotype, whereas dominant variants are associated with a milder disease course. GDAP1 is an outer mitochondrial membrane protein involved in mitochondrial membrane contact sites (MCSs) with the plasmatic membrane, the endoplasmic reticulum (ER), and lysosomes. In GDAP1-deficient models, the pathophysiology includes morphological defects in mitochondrial network and ER, impaired Ca2+ homeostasis, oxidative stress, and mitochondrial MCSs defects. Nevertheless, the underlying pathophysiology of dominant variants is less understood. Here, we study the effect upon mitochondria-lysosome MCSs of two GDAP1 clinical variants located in the α-loop interaction domain of the protein. p.Thr157Pro dominant variant causes the increase in these MCSs that correlates with a hyper-fissioned mitochondrial network. In contrast, p.Arg161His recessive variant, which is predicted to significantly change the contact surface of GDAP1, causes decreased contacts with more elongated mitochondria. Given that mitochondria-lysosome MCSs regulate Ca2+ transfer from the lysosome to mitochondria, our results support that GDAP1 clinical variants have different consequences for Ca2+ handling and that could be primary insults determining differences in severity between dominant and recessive forms of the disease.
Collapse
Affiliation(s)
- Lara Cantarero
- Laboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 08950, Barcelona, Spain
| | - Gisela García-Vargas
- Laboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 08950, Barcelona, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 08950, Barcelona, Spain
- Department of Genetic Medicine – IPER, Hospital Sant Joan de Déu, 08950, Barcelona, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, 08036, Barcelona, Spain
- ERN-ITHACA
| |
Collapse
|
6
|
Overduin M, Kervin TA, Klarenbach Z, Adra TRC, Bhat RK. Comprehensive classification of proteins based on structures that engage lipids by COMPOSEL. Biophys Chem 2023; 295:106971. [PMID: 36801589 DOI: 10.1016/j.bpc.2023.106971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Structures can now be predicted for any protein using programs like AlphaFold and Rosetta, which rely on a foundation of experimentally determined structures of architecturally diverse proteins. The accuracy of such artificial intelligence and machine learning (AI/ML) approaches benefits from the specification of restraints which assist in navigating the universe of folds to converge on models most representative of a given protein's physiological structure. This is especially pertinent for membrane proteins, with structures and functions that depend on their presence in lipid bilayers. Structures of proteins in their membrane environments could conceivably be predicted from AI/ML approaches with user-specificized parameters that describe each element of the architecture of a membrane protein accompanied by its lipid environment. We propose the Classification Of Membrane Proteins based On Structures Engaging Lipids (COMPOSEL), which builds on existing nomenclature types for monotopic, bitopic, polytopic and peripheral membrane proteins as well as lipids. Functional and regulatory elements are also defined in the scripts, as shown with membrane fusing synaptotagmins, multidomain PDZD8 and Protrudin proteins that recognize phosphoinositide (PI) lipids, the intrinsically disordered MARCKS protein, caveolins, the β barrel assembly machine (BAM), an adhesion G-protein coupled receptor (aGPCR) and two lipid modifying enzymes - diacylglycerol kinase DGKε and fatty aldehyde dehydrogenase FALDH. This demonstrates how COMPOSEL communicates lipid interactivity as well as signaling mechanisms and binding of metabolites, drug molecules, polypeptides or nucleic acids to describe the operations of any protein. Moreover COMPOSEL can be scaled to express how genomes encode membrane structures and how our organs are infiltrated by pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Trixie Rae C Adra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Rakesh K Bhat
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Fujita Y, Iketani M, Ito M, Ohsawa I. Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts. Exp Gerontol 2022; 165:111866. [DOI: 10.1016/j.exger.2022.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
8
|
GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton. Commun Biol 2022; 5:541. [PMID: 35662277 PMCID: PMC9166793 DOI: 10.1038/s42003-022-03487-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology. GDAP1 mutations effect Charcot-Marie-Tooth disease 4A by inhibiting the pyruvate dehydrogenase complex and restricting mitochondrial localization of dynamin-related protein 1 through alterations of the actin cytoskeleton.
Collapse
|
9
|
Sutinen A, Nguyen GTT, Raasakka A, Muruganandam G, Loris R, Ylikallio E, Tyynismaa H, Bartesaghi L, Ruskamo S, Kursula P. Structural insights into Charcot-Marie-Tooth disease-linked mutations in human GDAP1. FEBS Open Bio 2022; 12:1306-1324. [PMID: 35509130 PMCID: PMC9249340 DOI: 10.1002/2211-5463.13422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral polyneuropathy in humans, and its different subtypes are linked to mutations in dozens of different genes. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause two types of CMT, demyelinating CMT4A and axonal CMT2K. The GDAP1-linked CMT genotypes are mainly missense point mutations. Despite clinical profiling and in vivo studies on the mutations, the etiology of GDAP1-linked CMT is poorly understood. Here, we describe the biochemical and structural properties of the Finnish founding CMT2K mutation H123R as well as CMT2K-linked R120W, both of which are autosomal dominant mutations. The disease variant proteins retain close to normal structure and solution behaviour, but both present a significant decrease in thermal stability. Using GDAP1 variant crystal structures, we identify a side chain interaction network between helices ⍺3, ⍺6, and ⍺7, which is affected by CMT mutations, as well as a hinge in the long helix ⍺6, which is linked to structural flexibility. Structural analysis of GDAP1 indicates that CMT may arise from disruption of specific intra- and intermolecular interaction networks, leading to alterations in GDAP1 structure and stability, and eventually, insufficient motor and sensory neuron function.
Collapse
Affiliation(s)
- Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Giang Thi Tuyet Nguyen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Norway
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland.,Clinical Neurosciences, Helsinki University Hospital, Neurology, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | | | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
10
|
Zaman M, Shutt TE. The Role of Impaired Mitochondrial Dynamics in MFN2-Mediated Pathology. Front Cell Dev Biol 2022; 10:858286. [PMID: 35399520 PMCID: PMC8989266 DOI: 10.3389/fcell.2022.858286] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
The Mitofusin 2 protein (MFN2), encoded by the MFN2 gene, was first described for its role in mediating mitochondrial fusion. However, MFN2 is now recognized to play additional roles in mitochondrial autophagy (mitophagy), mitochondrial motility, lipid transfer, and as a tether to other organelles including the endoplasmic reticulum (ER) and lipid droplets. The tethering role of MFN2 is an important mediator of mitochondrial-ER contact sites (MERCs), which themselves have many important functions that regulate mitochondria, including calcium homeostasis and lipid metabolism. Exemplifying the importance of MFN2, pathogenic variants in MFN2 are established to cause the peripheral neuropathy Charcot-Marie-Tooth Disease Subtype 2A (CMT2A). However, the mechanistic basis for disease is not clear. Moreover, additional pathogenic phenotypes such as lipomatosis, distal myopathy, optic atrophy, and hearing loss, can also sometimes be present in patients with CMT2A. Given these variable patient phenotypes, and the many cellular roles played by MFN2, the mechanistic underpinnings of the cellular impairments by which MFN2 dysfunction leads to disease are likely to be complex. Here, we will review what is known about the various functions of MFN2 that are impaired by pathogenic variants causing CMT2A, with a specific emphasis on the ties between MFN2 variants and MERCs.
Collapse
Affiliation(s)
- Mashiat Zaman
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Timothy E Shutt
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 2022; 135:274270. [PMID: 35129196 DOI: 10.1242/jcs.248534] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093, Nantes, France
| | - Sandra María Martín-Guerrero
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| |
Collapse
|
12
|
Rodríguez LR, Lapeña-Luzón T, Benetó N, Beltran-Beltran V, Pallardó FV, Gonzalez-Cabo P, Navarro JA. Therapeutic Strategies Targeting Mitochondrial Calcium Signaling: A New Hope for Neurological Diseases? Antioxidants (Basel) 2022; 11:antiox11010165. [PMID: 35052668 PMCID: PMC8773297 DOI: 10.3390/antiox11010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange is mediated by appositions, termed endoplasmic reticulum-mitochondria-associated membranes (MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the development of multiple human diseases, including neurological disorders, such as amyotrophic lateral sclerosis, Friedreich's ataxia, and Charcot-Marie-Tooth. A common hallmark in these disorders is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for neurological diseases.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Tamara Lapeña-Luzón
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Noelia Benetó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Vicent Beltran-Beltran
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Juan Antonio Navarro
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| |
Collapse
|
13
|
Miressi F, Benslimane N, Favreau F, Rassat M, Richard L, Bourthoumieu S, Laroche C, Magy L, Magdelaine C, Sturtz F, Lia AS, Faye PA. GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of hiPSCs-Derived Motor Neurons. Biomedicines 2021; 9:biomedicines9080945. [PMID: 34440148 PMCID: PMC8393985 DOI: 10.3390/biomedicines9080945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) gene have been associated with demyelinating and axonal forms of Charcot-Marie-Tooth (CMT) disease, the most frequent hereditary peripheral neuropathy in humans. Previous studies reported the prevalent GDAP1 expression in neural tissues and cells, from animal models. Here, we described the first GDAP1 functional study on human induced-pluripotent stem cells (hiPSCs)-derived motor neurons, obtained from normal subjects and from a CMT2H patient, carrying the GDAP1 homozygous c.581C>G (p.Ser194*) mutation. At mRNA level, we observed that, in normal subjects, GDAP1 is mainly expressed in motor neurons, while it is drastically reduced in the patient’s cells containing a premature termination codon (PTC), probably degraded by the nonsense-mediated mRNA decay (NMD) system. Morphological and functional investigations revealed in the CMT patient’s motor neurons a decrease of cell viability associated to lipid dysfunction and oxidative stress development. Mitochondrion is a key organelle in oxidative stress generation, but it is also mainly involved in energetic metabolism. Thus, in the CMT patient’s motor neurons, mitochondrial cristae defects were observed, even if no deficit in ATP production emerged. This cellular model of hiPSCs-derived motor neurons underlines the role of mitochondrion and oxidative stress in CMT disease and paves the way for new treatment evaluation.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- Correspondence:
| | - Nesrine Benslimane
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Marion Rassat
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Laurence Richard
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Sylvie Bourthoumieu
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Cytogénétique, F-87000 Limoges, France
| | - Cécile Laroche
- CHU Limoges, Service de Pédiatrie, F-87000 Limoges, France;
- CHU Limoges, Centre de Compétence des Maladies Héréditaires du Métabolisme, F-87000 Limoges, France
| | - Laurent Magy
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
- CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| |
Collapse
|
14
|
Nuevo-Tapioles C, Santacatterina F, Sánchez-Garrido B, Arenas CN, Robledo-Bérgamo A, Martínez-Valero P, Cantarero L, Pardo B, Hoenicka J, Murphy MP, Satrústegui J, Palau F, Cuezva JM. Effective therapeutic strategies in a pre-clinical mouse model of Charcot-Marie-tooth disease. Hum Mol Genet 2021; 30:2441-2455. [PMID: 34274972 PMCID: PMC8643506 DOI: 10.1093/hmg/ddab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is a neuropathy that lacks effective therapy. CMT patients show degeneration of peripheral nerves, leading to muscle weakness and loss of proprioception. Loss of mitochondrial oxidative phosphorylation proteins and enzymes of the antioxidant response accompany degeneration of nerves in skin biopsies of CMT patients. Herein, we followed a drug-repurposing approach to find drugs in a Food and Drug Administration-approved library that could prevent development of CMT disease in the Gdap1-null mouse model. We found that the antibiotic florfenicol is a mitochondrial uncoupler that prevents the production of reactive oxygen species and activates respiration in human GDAP1-knockdown neuroblastoma cells and in dorsal root ganglion neurons of Gdap1-null mice. Treatment of CMT-affected Gdap1-null mice with florfenicol has no beneficial effect in the course of the disease. However, administration of florfenicol, or the antioxidant MitoQ, to pre-symptomatic GDAP1-null mice prevented weight gain and ameliorated the motor coordination deficiencies that developed in the Gdap1-null mice. Interestingly, both florfenicol and MitoQ halted the decay in mitochondrial and redox proteins in sciatic nerves of Gdap1-null mice, supporting that oxidative damage is implicated in the etiology of the neuropathy. These findings support the development of clinical trials for translation of these drugs for treatment of CMT patients.
Collapse
Affiliation(s)
- Cristina Nuevo-Tapioles
- Departamento de Biología Molecular.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII.,Instituto de Investigación Hospital 12 de Octubre; 28041, Madrid
| | - Fulvio Santacatterina
- Departamento de Biología Molecular.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII.,Instituto de Investigación Hospital 12 de Octubre; 28041, Madrid
| | - Brenda Sánchez-Garrido
- Departamento de Biología Molecular.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII.,Instituto de Investigación Hospital 12 de Octubre; 28041, Madrid
| | - Cristina Núñez Arenas
- Departamento de Biología Molecular.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII.,Instituto de Investigación Hospital 12 de Octubre; 28041, Madrid
| | | | - Paula Martínez-Valero
- Departamento de Biología Molecular.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
| | - Lara Cantarero
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII.,Laboratorio de Neurogenética y Medicina Molecular- IPER, Institut de Recerca Sant Joan de Déu, Barcelona
| | - Beatriz Pardo
- Departamento de Biología Molecular.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
| | - Janet Hoenicka
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII.,Laboratorio de Neurogenética y Medicina Molecular- IPER, Institut de Recerca Sant Joan de Déu, Barcelona
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, University of Cambridge CB2 0XY, UK
| | - Jorgina Satrústegui
- Departamento de Biología Molecular.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
| | - Francesc Palau
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII.,Laboratorio de Neurogenética y Medicina Molecular- IPER, Institut de Recerca Sant Joan de Déu, Barcelona.,Departament of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu.,Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona.,Division of Pediatrics, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - José M Cuezva
- Departamento de Biología Molecular.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII.,Instituto de Investigación Hospital 12 de Octubre; 28041, Madrid
| |
Collapse
|
15
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
17
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
18
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
19
|
Navaratnarajah T, Anand R, Reichert AS, Distelmaier F. The relevance of mitochondrial morphology for human disease. Int J Biochem Cell Biol 2021; 134:105951. [PMID: 33610749 DOI: 10.1016/j.biocel.2021.105951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Mitochondria are highly dynamic organelles, which undergo frequent structural and metabolic changes to fulfil cellular demands. To facilitate these processes several proteins are required to regulate mitochondrial shape and interorganellar communication. These proteins include the classical mitochondrial fusion (MFN1, MFN2, and OPA1) and fission proteins (DRP1, MFF, FIS1, etc.) as well as several other proteins that are directly or indirectly involved in these processes (e.g. YME1L, OMA1, INF2, GDAP1, MIC13, etc.). During the last two decades, inherited genetic defects in mitochondrial fusion and fission proteins have emerged as an important class of neurodegenerative human diseases with variable onset ranging from infancy to adulthood. So far, no causal treatment strategies are available for these disorders. In this review, we provide an overview about the current knowledge on mitochondrial dynamics under physiological conditions. Moreover, we describe human diseases, which are associated with genetic defects in these pathways.
Collapse
Affiliation(s)
- Tharsini Navaratnarajah
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
20
|
Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model. Neurobiol Dis 2021; 152:105300. [PMID: 33582224 DOI: 10.1016/j.nbd.2021.105300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ganglioside-induced differentiation associated protein 1 (GDAP1) gene encodes a protein of the mitochondrial outer membrane and of the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs) and lysosomes. Since mutations in GDAP1 cause Charcot-Marie-Tooth, an inherited motor and sensory neuropathy, its function is essential for peripheral nerve physiology. Our previous studies showed structural and functional defects in mitochondria and their contacts when GDAP1 is depleted. Nevertheless, the underlying axonal pathophysiological events remain unclear. Here, we have used embryonic motor neurons (eMNs) cultures from Gdap1 knockout (Gdap1-/-) mice to investigate in vivo mitochondria and calcium homeostasis in the axons. We imaged mitochondrial axonal transport and we found a defective pattern in the Gdap1-/- eMNs. We also detected pathological and functional mitochondria membrane abnormalities with a drop in ATP production and a deteriorated bioenergetic status. Another consequence of the loss of GDAP1 in the soma and axons of eMNs was the in vivo increase calcium levels in both basal conditions and during recovery after neuronal stimulation with glutamate. Further, we found that glutamate-stimulation of respiration was lower in Gdap1-/- eMNs showing that the basal bioenergetics failure jeopardizes a full respiratory response and prevents a rapid return of calcium to basal levels. Together, our results demonstrate that the loss of GDAP1 critically compromises the morphology and function of mitochondria and its relationship with calcium homeostasis in the soma and axons, offering important insight into the cellular mechanisms associated with axonal degeneration of GDAP1-related CMT neuropathies and the relevance that axon length may have.
Collapse
|
21
|
Nguyen GTT, Sutinen A, Raasakka A, Muruganandam G, Loris R, Kursula P. Structure of the Complete Dimeric Human GDAP1 Core Domain Provides Insights into Ligand Binding and Clustering of Disease Mutations. Front Mol Biosci 2021; 7:631232. [PMID: 33585569 PMCID: PMC7873046 DOI: 10.3389/fmolb.2020.631232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders. Despite the common involvement of ganglioside-induced differentiation-associated protein 1 (GDAP1) in CMT, the protein structure and function, as well as the pathogenic mechanisms, remain unclear. We determined the crystal structure of the complete human GDAP1 core domain, which shows a novel mode of dimerization within the glutathione S-transferase (GST) family. The long GDAP1-specific insertion forms an extended helix and a flexible loop. GDAP1 is catalytically inactive toward classical GST substrates. Through metabolite screening, we identified a ligand for GDAP1, the fatty acid hexadecanedioic acid, which is relevant for mitochondrial membrane permeability and Ca2+ homeostasis. The fatty acid binds to a pocket next to a CMT-linked residue cluster, increases protein stability, and induces changes in protein conformation and oligomerization. The closest homologue of GDAP1, GDAP1L1, is monomeric in its full-length form. Our results highlight the uniqueness of GDAP1 within the GST family and point toward allosteric mechanisms in regulating GDAP1 oligomeric state and function.
Collapse
Affiliation(s)
- Giang Thi Tuyet Nguyen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Cantarero L, Juárez-Escoto E, Civera-Tregón A, Rodríguez-Sanz M, Roldán M, Benítez R, Hoenicka J, Palau F. Mitochondria-lysosome membrane contacts are defective in GDAP1-related Charcot-Marie-Tooth disease. Hum Mol Genet 2021; 29:3589-3605. [PMID: 33372681 PMCID: PMC7823109 DOI: 10.1093/hmg/ddaa243] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. GDAP1 is an atypical glutathione S-transferase (GST) of the outer mitochondrial membrane and the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs). Here, we investigate the role of this GST in the autophagic flux and the membrane contact sites (MCSs) between mitochondria and lysosomes in the cellular pathophysiology of GDAP1 deficiency. We demonstrate that GDAP1 participates in basal autophagy and that its depletion affects LC3 and PI3P biology in autophagosome biogenesis and membrane trafficking from MAMs. GDAP1 also contributes to the maturation of lysosome by interacting with PYKfyve kinase, a pH-dependent master lysosomal regulator. GDAP1 deficiency causes giant lysosomes with hydrolytic activity, a delay in the autophagic lysosome reformation, and TFEB activation. Notably, we found that GDAP1 interacts with LAMP-1, which supports that GDAP1-LAMP-1 is a new tethering pair of mitochondria and lysosome membrane contacts. We observed mitochondria-lysosome MCSs in soma and axons of cultured mouse embryonic motor neurons and human neuroblastoma cells. GDAP1 deficiency reduces the MCSs between these organelles, causes mitochondrial network abnormalities, and decreases levels of cellular glutathione (GSH). The supply of GSH-MEE suffices to rescue the lysosome membranes and the defects of the mitochondrial network, but not the interorganelle MCSs nor early autophagic events. Overall, we show that GDAP1 enables the proper function of mitochondrial MCSs in both degradative and nondegradative pathways, which could explain primary insults in GDAP1-related CMT pathophysiology, and highlights new redox-sensitive targets in axonopathies where mitochondria and lysosomes are involved.
Collapse
Affiliation(s)
- Lara Cantarero
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
| | - Elena Juárez-Escoto
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
| | - Azahara Civera-Tregón
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
| | - María Rodríguez-Sanz
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
| | - Mónica Roldán
- Confocal Microscopy Unit, IPER, Department of Genetic and Molecular Medicine, and Department of Pathology, Hospital Sant Joan de Déu, Barcelona 08950, Spain
| | - Raúl Benítez
- Biomedical Engineering Research Center (CREB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Automatic Control Department and Biomedical Engineering Research Center, Universitat Politècnica de Catalunya, Barcelona 08028, Spain
| | - Janet Hoenicka
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
| | - Francesc Palau
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Barcelona 08950, Spain
- Department of General Internal Medicine, Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona 08036, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona 08036, Spain
| |
Collapse
|
23
|
Mutations in GDAP1 Influence Structure and Function of the Trans-Golgi Network. Int J Mol Sci 2021; 22:ijms22020914. [PMID: 33477664 PMCID: PMC7831947 DOI: 10.3390/ijms22020914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease that displays great genetic heterogeneity. The genes and mutations that underlie this heterogeneity have been extensively characterized by molecular genetics. However, the molecular pathogenesis of the vast majority of CMT subtypes remains terra incognita. Any attempts to perform experimental therapy for CMT disease are limited by a lack of understanding of the pathogenesis at a molecular level. In this study, we aim to identify the molecular pathways that are disturbed by mutations in the gene encoding GDAP1 using both yeast and human cell, based models of CMT-GDAP1 disease. We found that some mutations in GDAP1 led to a reduced expression of the GDAP1 protein and resulted in a selective disruption of the Golgi apparatus. These structural alterations are accompanied by functional disturbances within the Golgi. We screened over 1500 drugs that are available on the market using our yeast-based CMT-GDAP1 model. Drugs were identified that had both positive and negative effects on cell phenotypes. To the best of our knowledge, this study is the first report of the Golgi apparatus playing a role in the pathology of CMT disorders. The drugs we identified, using our yeast-based CMT-GDAP1 model, may be further used in translational research.
Collapse
|
24
|
Chen CX, Li JQ, Dong HL, Liu GL, Bai G, Wu ZY. Identification and functional characterization of novel GDAP1 variants in Chinese patients with Charcot-Marie-Tooth disease. Ann Clin Transl Neurol 2020; 7:2381-2392. [PMID: 33136338 PMCID: PMC7732252 DOI: 10.1002/acn3.51233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To identify and characterize the pathogenicity of novel variants in Chinese patients with Charcot–Marie–Tooth disease. Methods Multiplex ligation‐dependent probe amplification (MLPA) and whole‐exome sequencing (WES) were performed in 30 unrelated CMT patients. Minigene assay was used to verify the effect of a novel splicing variant (c.694+1G>A) on pre‐mRNA. Primary fibroblast cell lines were established from skin biopsies to characterize the biological effects of the novel variants p.L26R and p.S169fs. The mitochondrial structure was observed by an electron microscope. The expression level of protein was analyzed by Western Blotting. Mitochondrial dynamics and mitochondrial membrane potential (MMP, Δψm) were analyzed via immunofluorescence study. Mitochondrial ATP levels were analyzed via bioluminescence assay. The rate of oxygen consumption was measured with a Seahorse Bioscience XF‐96 extracellular flux analyzer. Results We identified 10 pathogenic variants in three known CMT related genes, including three novel variants (p.L26R, p.S169fs, c.694+1G>A) and one known pathogenic variant (p.R120W) in GDAP1. Further, we described the clinical features of patients carrying pathogenic variants in GDAP1 and found that almost all Chinese CMT patients with GDAP1 variants present axonal type. The effect of c.694+1G>A on pre‐mRNA was verified via minigene splice assay. Cellular biological effects showed ultrastructure damage of mitochondrial, reduced protein levels, different patterns of mitochondrial dynamics, decreased mitochondrial membrane potential (Δψm), ATP content, and defects in respiratory capacity in the patient carrying p.L26R and p.S169fs in GDAP1. Interpretation Our results broaden the genetic spectrum of GDAP1 and provided functional evidence for mitochondrial pathways in the pathogenesis of GDAP1 variants.
Collapse
Affiliation(s)
- Cong-Xin Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jia-Qi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ge Bai
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Magalhães Rebelo AP, Dal Bello F, Knedlik T, Kaar N, Volpin F, Shin SH, Giacomello M. Chemical Modulation of Mitochondria-Endoplasmic Reticulum Contact Sites. Cells 2020; 9:cells9071637. [PMID: 32646031 PMCID: PMC7408517 DOI: 10.3390/cells9071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which the two organelles are in close proximity. Due to their structural and functional complexity, their exploitation as pharmacological targets has never been considered so far. Notwithstanding, the number of compounds described to target proteins residing at these interfaces either directly or indirectly is rising. Here we provide original insight into mitochondria–ER contact sites (MERCs), with a comprehensive overview of the current MERCs pharmacology. Importantly, we discuss the considerable potential of MERCs to become a druggable target for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ana Paula Magalhães Rebelo
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Federica Dal Bello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Tomas Knedlik
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Natasha Kaar
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Fabio Volpin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Sang Hun Shin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Marta Giacomello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: ; Tel.: +39-049-827-6300
| |
Collapse
|
26
|
Googins MR, Woghiren-Afegbua AO, Calderon M, St. Croix CM, Kiselyov KI, VanDemark AP. Structural and functional divergence of GDAP1 from the glutathione S-transferase superfamily. FASEB J 2020; 34:7192-7207. [PMID: 32274853 PMCID: PMC9394736 DOI: 10.1096/fj.202000110r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 11/11/2022]
Abstract
Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) alter mitochondrial morphology and result in several subtypes of the inherited peripheral neuropathy Charcot-Marie-Tooth disease; however, the mechanism by which GDAP1 functions has remained elusive. GDAP1 contains primary sequence homology to the GST superfamily; however, the question of whether GDAP1 is an active GST has not been clearly resolved. Here, we present biochemical evidence, suggesting that GDAP1 has lost the ability to bind glutathione without a loss of substrate binding activity. We have revealed that the α-loop, located within the H-site motif is the primary determinant for substrate binding. Using structural data of GDAP1, we have found that critical residues and configurations in the G-site which canonically interact with glutathione are altered in GDAP1, rendering it incapable of binding glutathione. Last, we have found that the overexpression of GDAP1 in HeLa cells results in a mitochondrial phenotype which is distinct from oxidative stress-induced mitochondrial fragmentation. This phenotype is dependent on the presence of the transmembrane domain, as well as a unique hydrophobic domain that is not found in canonical GSTs. Together, we data point toward a non-enzymatic role for GDAP1, such as a sensor or receptor.
Collapse
Affiliation(s)
- Matthew R. Googins
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michael Calderon
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kirill I. Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew P. VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Rzepnikowska W, Kaminska J, Kabzińska D, Kochański A. Pathogenic Effect of GDAP1 Gene Mutations in a Yeast Model. Genes (Basel) 2020; 11:genes11030310. [PMID: 32183277 PMCID: PMC7140815 DOI: 10.3390/genes11030310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
The question of whether a newly identified sequence variant is truly a causative mutation is a central problem of modern clinical genetics. In the current era of massive sequencing, there is an urgent need to develop new tools for assessing the pathogenic effect of new sequence variants. In Charcot-Marie-Tooth disorders (CMT) with their extreme genetic heterogeneity and relatively homogenous clinical presentation, addressing the pathogenic effect of rare sequence variants within 80 CMT genes is extremely challenging. The presence of multiple rare sequence variants within a single CMT-affected patient makes selection for the strongest one, the truly causative mutation, a challenging issue. In the present study we propose a new yeast-based model to evaluate the pathogenic effect of rare sequence variants found within the one of the CMT-associated genes, GDAP1. In our approach, the wild-type and pathogenic variants of human GDAP1 gene were expressed in yeast. Then, a growth rate and mitochondrial morphology and function of GDAP1-expressing strains were studied. Also, the mutant GDAP1 proteins localization and functionality were assessed in yeast. We have shown, that GDAP1 was not only stably expressed but also functional in yeast cell, as it influenced morphology and function of mitochondria and altered the growth of a mutant yeast strain. What is more, the various GDAP1 pathogenic sequence variants caused the specific for them effect in the tests we performed. Thus, the proposed model is suitable for validating the pathogenic effect of known GDAP1 mutations and may be used for testing of unknown sequence variants found in CMT patients.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.)
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.)
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.)
- Correspondence: ; Tel.: +48-22-60-86-526
| |
Collapse
|
28
|
Prieto J, Ponsoda X, Izpisua Belmonte JC, Torres J. Mitochondrial dynamics and metabolism in induced pluripotency. Exp Gerontol 2020; 133:110870. [PMID: 32045634 DOI: 10.1016/j.exger.2020.110870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are controlled during the phenotypic transformation of a somatic cell into a pluripotent stem cell will be discussed.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain.
| |
Collapse
|
29
|
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front Neurosci 2020; 14:48. [PMID: 32116502 PMCID: PMC7025499 DOI: 10.3389/fnins.2020.00048] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.
Collapse
Affiliation(s)
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
30
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
31
|
Fernandez-Lizarbe S, Civera-Tregón A, Cantarero L, Herrer I, Juarez P, Hoenicka J, Palau F. Neuroinflammation in the pathogenesis of axonal Charcot-Marie-Tooth disease caused by lack of GDAP1. Exp Neurol 2019; 320:113004. [PMID: 31271761 DOI: 10.1016/j.expneurol.2019.113004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/17/2023]
Abstract
Mutations in the GDAP1 mitochondrial outer membrane gene cause Charcot-Marie-Tooth (CMT) neuropathy. Reduction or absence of GDAP1 has been associated with abnormal changes in the mitochondrial morphology and dynamics, oxidative stress and changes in calcium homeostasis. Neuroinflammation has been described in rodent models of genetic demyelinating CMT neuropathies but not in CMT primarily associated with axonopathy. Inflammatory processes have also been related to mitochondrial changes and oxidative stress in central neurodegenerative disorders. Here we investigated the presence of neuroinflammation in the axonal neuropathy of the Gdap1-/- mice. We showed by transcriptome profile of spinal cord and the in vivo detection of activated phagocytes that the absence of GDAP1 is associated with upregulation of inflammatory pathways. We observed reactive gliosis in spinal cord with increase of the astroglia markers GFAP and S100B, and the microglia marker IBA1. Additionally, we found significant increase of inflammatory mediators such as TNF-α and pERK, and C1qa and C1qb proteins of the complement system. Importantly, we observed an increased expression of CD206 and CD86 as M2 and M1 microglia and macrophage response markers, respectively, in Gdap1-/- mice. These inflammatory changes were also associated with abnormal molecular changes in synapses. In summary, we demonstrate that inflammation in spinal cord and sciatic nerve, but not in brain and cerebellum, is part of the pathophysiology of axonal GDAP1-related CMT.
Collapse
Affiliation(s)
| | - Azahara Civera-Tregón
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Lara Cantarero
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Isabel Herrer
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Paula Juarez
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBESAM), Barcelona, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu, Barcelona, Spain; Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona, Spain; Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Eijkenboom I, Vanoevelen JM, Hoeijmakers JG, Wijnen I, Gerards M, Faber CG, Smeets HJ. A zebrafish model to study small-fiber neuropathy reveals a potential role for GDAP1. Mitochondrion 2019; 47:273-281. [DOI: 10.1016/j.mito.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 01/10/2023]
|
33
|
de Anda‐Jáuregui G, McGregor BA, Guo K, Hur J. A Network Pharmacology Approach for the Identification of Common Mechanisms of Drug-Induced Peripheral Neuropathy. CPT Pharmacometrics Syst Pharmacol 2019; 8:211-219. [PMID: 30762308 PMCID: PMC6482281 DOI: 10.1002/psp4.12383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023] Open
Abstract
Drug-induced peripheral neuropathy is a side effect of a variety of therapeutic agents that can affect therapeutic adherence and lead to regimen modifications, impacting patient quality of life. The molecular mechanisms involved in the development of this condition have yet to be completely described in the literature. We used a computational network pharmacology approach to explore the Connectivity Map, a large collection of transcriptional profiles from drug perturbation experiments to identify common genes affected by peripheral neuropathy-inducing drugs. Consensus profiles for 98 of these drugs were used to construct a drug-gene perturbation network. We identified 27 genes significantly associated with neuropathy-inducing drugs. These genes may have a potential role in the action of neuropathy-inducing drugs. Our results suggest that molecular mechanisms, including alterations in mitochondrial function, microtubule and cytoskeleton function, ion channels, transcriptional regulation including epigenetic mechanisms, signal transduction, and wound healing, may play a critical role in drug-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Guillermo de Anda‐Jáuregui
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
- Present address:
Computational Genomics DivisionNational Institute of Genomic MedicineColonia Arenal TepepanDelegación TlalpanMéxico DFMexico
| | - Brett A. McGregor
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Kai Guo
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Junguk Hur
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
34
|
Calcium Deregulation and Mitochondrial Bioenergetics in GDAP1-Related CMT Disease. Int J Mol Sci 2019; 20:ijms20020403. [PMID: 30669311 PMCID: PMC6359725 DOI: 10.3390/ijms20020403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/17/2022] Open
Abstract
The pathology of Charcot-Marie-Tooth (CMT), a disease arising from mutations in different genes, has been associated with an impairment of mitochondrial dynamics and axonal biology of mitochondria. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause several forms of CMT neuropathy, but the pathogenic mechanisms involved remain unclear. GDAP1 is an outer mitochondrial membrane protein highly expressed in neurons. It has been proposed to play a role in different aspects of mitochondrial physiology, including mitochondrial dynamics, oxidative stress processes, and mitochondrial transport along the axons. Disruption of the mitochondrial network in a neuroblastoma model of GDAP1-related CMT has been shown to decrease Ca2+ entry through the store-operated calcium entry (SOCE), which caused a failure in stimulation of mitochondrial respiration. In this review, we summarize the different functions proposed for GDAP1 and focus on the consequences for Ca2+ homeostasis and mitochondrial energy production linked to CMT disease caused by different GDAP1 mutations.
Collapse
|
35
|
Wilson ER, Kugathasan U, Abramov AY, Clark AJ, Bennett DLH, Reilly MM, Greensmith L, Kalmar B. Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiol Dis 2018; 117:1-14. [PMID: 29778900 PMCID: PMC6060082 DOI: 10.1016/j.nbd.2018.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/23/2018] [Accepted: 05/16/2018] [Indexed: 01/03/2023] Open
Abstract
Hereditary sensory neuropathy type 1 (HSN-1) is a peripheral neuropathy most frequently caused by mutations in the SPTLC1 or SPTLC2 genes, which code for two subunits of the enzyme serine palmitoyltransferase (SPT). SPT catalyzes the first step of de novo sphingolipid synthesis. Mutations in SPT result in a change in enzyme substrate specificity, which causes the production of atypical deoxysphinganine and deoxymethylsphinganine, rather than the normal enzyme product, sphinganine. Levels of these abnormal compounds are elevated in blood of HSN-1 patients and this is thought to cause the peripheral motor and sensory nerve damage that is characteristic of the disease, by a largely unresolved mechanism. In this study, we show that exogenous application of these deoxysphingoid bases causes dose- and time-dependent neurotoxicity in primary mammalian neurons, as determined by analysis of cell survival and neurite length. Acutely, deoxysphingoid base neurotoxicity manifests in abnormal Ca2+ handling by the endoplasmic reticulum (ER) and mitochondria as well as dysregulation of cell membrane store-operated Ca2+ channels. The changes in intracellular Ca2+ handling are accompanied by an early loss of mitochondrial membrane potential in deoxysphingoid base-treated motor and sensory neurons. Thus, these results suggest that exogenous deoxysphingoid base application causes neuronal mitochondrial dysfunction and Ca2+ handling deficits, which may play a critical role in the pathogenesis of HSN-1.
Collapse
Affiliation(s)
- Emma R Wilson
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Umaiyal Kugathasan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Alex J Clark
- Neural Injury Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David L H Bennett
- Neural Injury Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
36
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
37
|
Kagiava A, Karaiskos C, Richter J, Tryfonos C, Lapathitis G, Sargiannidou I, Christodoulou C, Kleopa KA. Intrathecal gene therapy in mouse models expressing CMT1X mutations. Hum Mol Genet 2018; 27:1460-1473. [PMID: 29462293 DOI: 10.1093/hmg/ddy056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 11/14/2022] Open
Abstract
Gap junction beta-1 (GJB1) gene mutations affecting the gap junction protein connexin32 (Cx32) cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a common inherited neuropathy. Targeted expression of virally delivered Cx32 in Schwann cells following intrathecal injection of lentiviral vectors in the Cx32 knockout (KO) mouse model of the disease has led to morphological and functional improvement. To examine whether this approach could be effective in CMT1X patients expressing different Cx32 mutants, we treated transgenic Cx32 KO mice expressing the T55I, R75W or N175D CMT1X mutations. All three mutants were localized in the perinuclear compartment of myelinating Schwann cells consistent with retention in the ER (T55I) or Golgi (R75W, N175D) and loss of physiological expression in the non-compact myelin. Following intrathecal delivery of the GJB1 gene we detected the virally delivered wild-type (WT) Cx32 in non-compact myelin of T55I KO mice, but only rarely in N175D KO or R75W KO mice, suggesting dominant-negative effects of the R75W and N175D mutants but not of the T55I mutant on co-expressed WT Cx32. GJB1 treated T55I KO mice showed improved motor performance, lower ratios of abnormally myelinated fibers and reduction of inflammatory cells in spinal roots and peripheral nerves compared with mock-treated littermates. Either partial (N175D KO) or no (R75W KO) improvement was observed in the other two mutant lines. Thus, certain CMT1X mutants may interfere with gene addition therapy for CMT1X. Whereas gene addition can be used for non-interfering CMT1X mutations, further studies will be needed to develop treatments for patients harboring interfering mutations.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - G Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| |
Collapse
|
38
|
Secondo A, Bagetta G, Amantea D. On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases. Front Mol Neurosci 2018; 11:87. [PMID: 29623030 PMCID: PMC5874322 DOI: 10.3389/fnmol.2018.00087] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
In both excitable and non-excitable cells, calcium (Ca2+) signals are maintained by a highly integrated process involving store-operated Ca2+ entry (SOCE), namely the opening of plasma membrane (PM) Ca2+ channels following the release of Ca2+ from intracellular stores. Upon depletion of Ca2+ store, the stromal interaction molecule (STIM) senses Ca2+ level reduction and migrates from endoplasmic reticulum (ER)-like sites to the PM where it activates the channel proteins Orai and/or the transient receptor potential channels (TRPC) prompting Ca2+ refilling. Accumulating evidence suggests that SOCE dysregulation may trigger perturbation of intracellular Ca2+ signaling in neurons, glia or hematopoietic cells, thus participating to the pathogenesis of diverse neurodegenerative diseases. Under acute conditions, such as ischemic stroke, neuronal SOCE can either re-establish Ca2+ homeostasis or mediate Ca2+ overload, thus providing a non-excitotoxic mechanism of ischemic neuronal death. The dualistic role of SOCE in brain ischemia is further underscored by the evidence that it also participates to endothelial restoration and to the stabilization of intravascular thrombi. In Parkinson's disease (PD) models, loss of SOCE triggers ER stress and dysfunction/degeneration of dopaminergic neurons. Disruption of neuronal SOCE also underlies Alzheimer's disease (AD) pathogenesis, since both in genetic mouse models and in human sporadic AD brain samples, reduced SOCE contributes to synaptic loss and cognitive decline. Unlike the AD setting, in the striatum from Huntington's disease (HD) transgenic mice, an increased STIM2 expression causes elevated synaptic SOCE that was suggested to underlie synaptic loss in medium spiny neurons. Thus, pharmacological inhibition of SOCE is beneficial to synapse maintenance in HD models, whereas the same approach may be anticipated to be detrimental to cortical and hippocampal pyramidal neurons. On the other hand, up-regulation of SOCE may be beneficial during AD. These intriguing findings highlight the importance of further mechanistic studies to dissect the molecular pathways, and their corresponding targets, involved in synaptic dysfunction and neuronal loss during aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| |
Collapse
|
39
|
Filadi R, Greotti E, Pizzo P. Highlighting the endoplasmic reticulum-mitochondria connection: Focus on Mitofusin 2. Pharmacol Res 2018; 128:42-51. [PMID: 29309902 DOI: 10.1016/j.phrs.2018.01.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/16/2022]
Abstract
The endoplasmic reticulum (ER) and the mitochondrial network are two highly interconnected cellular structures. By proteinaceous tethers, specialized membrane domains of the ER are tightly associated with the outer membrane of mitochondria, allowing the assembly of signaling platforms where different cell functions take place or are modulated, such as lipid biosynthesis, Ca2+ homeostasis, inflammation, autophagy and apoptosis. The ER-mitochondria coupling is highly dynamic and contacts between the two organelles can be modified in their number, extension and thickness by different stimuli. Importantly, several pathological conditions, such as cancer, neurodegenerative diseases and metabolic syndromes show alterations in this feature, underlining the key role of ER-mitochondria crosstalk in cell physiology. In this contribution, we will focus on one of the major modulator of ER-mitochondria apposition, Mitofusin 2, discussing the structure of the protein and its debated role on organelles tethering. Moreover, we will critically describe different techniques commonly used to investigate this crucial issue, highlighting their advantages, drawbacks and limits.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua, 35121, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua, 35121, Italy.
| |
Collapse
|
40
|
Rzepnikowska W, Kochański A. A role for the GDAP1 gene in the molecular pathogenesis of Charcot-Marie-Tooth disease. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Yamaguchi M, Takashima H. Drosophila Charcot-Marie-Tooth Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:97-117. [PMID: 29951817 DOI: 10.1007/978-981-13-0529-0_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) was initially described in 1886. It is characterized by defects in the peripheral nervous system, including sensory and motor neurons. Although more than 80 CMT-causing genes have been identified to date, an effective therapy has not yet been developed for this disease. Since Drosophila does not have axons surrounded by myelin sheaths or Schwann cells, the establishment of a demyelinating CMT model is not appropriate. In this chapter, after overviewing CMT, examples of Drosophila CMT models with axonal neuropathy and other animal CMT models are described.
Collapse
Affiliation(s)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
42
|
González-Sánchez P, Del Arco A, Esteban JA, Satrústegui J. Store-Operated Calcium Entry Is Required for mGluR-Dependent Long Term Depression in Cortical Neurons. Front Cell Neurosci 2017; 11:363. [PMID: 29311823 PMCID: PMC5735122 DOI: 10.3389/fncel.2017.00363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/03/2017] [Indexed: 01/13/2023] Open
Abstract
Store-operated calcium entry (SOCE) is a Calcium (Ca2+) influx pathway activated by depletion of intracellular stores that occurs in eukaryotic cells. In neurons, the presence and functions of SOCE are still in question. Here, we show evidences for the existence of SOCE in primary mouse cortical neurons. Endoplasmic reticulum (ER)-Ca2+ depletion using thapsigargin (Tg) triggered a maintained cytosolic Ca2+ increase, which rapidly returned to basal level in the presence of the SOCE blockers 2-Aminoethoxydiphenyl borate (2-APB) and YM-58483. Neural SOCE is also engaged by activation of metabotropic glutamate receptors (mGluRs) with (S)-3,5-dihydroxyphenylglycine (DHPG) (agonist of group I mGluRs), being an essential mechanism to maintain the mGluR-driven Ca2+ signal. Activation of group I of mGluRs triggers long-term depression (LTD) in many brain regions, but the underlying mechanism and, specifically, the necessity of Ca2+ increase in the postsynaptic neuron is controversial. In primary cortical neurons, we now show that the inhibition of Ca2+ influx through SOCE impaired DHPG-LTD, pointing out a key function of calcium and SOCE in synaptic plasticity.
Collapse
Affiliation(s)
- Paloma González-Sánchez
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Araceli Del Arco
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo, Spain
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Jorgina Satrústegui
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
43
|
Erpapazoglou Z, Mouton-Liger F, Corti O. From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration. Neurochem Int 2017; 109:171-183. [DOI: 10.1016/j.neuint.2017.03.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022]
|
44
|
Sivera R, Frasquet M, Lupo V, García-Sobrino T, Blanco-Arias P, Pardo J, Fernández-Torrón R, de Munain AL, Márquez-Infante C, Villarreal L, Carbonell P, Rojas-García R, Segovia S, Illa I, Frongia AL, Nascimento A, Ortez C, García-Romero MDM, Pascual SI, Pelayo-Negro AL, Berciano J, Guerrero A, Casasnovas C, Camacho A, Esteban J, Chumillas MJ, Barreiro M, Díaz C, Palau F, Vílchez JJ, Espinós C, Sevilla T. Distribution and genotype-phenotype correlation of GDAP1 mutations in Spain. Sci Rep 2017; 7:6677. [PMID: 28751717 PMCID: PMC5532232 DOI: 10.1038/s41598-017-06894-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
Mutations in the GDAP1 gene can cause Charcot-Marie-Tooth disease. These mutations are quite rare in most Western countries but not so in certain regions of Spain or other Mediterranean countries. This cross-sectional retrospective multicenter study analyzed the clinical and genetic characteristics of patients with GDAP1 mutations across Spain. 99 patients were identified, which were distributed across most of Spain, but especially in the Northwest and Mediterranean regions. The most common genotypes were p.R120W (in 81% of patients with autosomal dominant inheritance) and p.Q163X (in 73% of autosomal recessive patients). Patients with recessively inherited mutations had a more severe phenotype, and certain clinical features, like dysphonia or respiratory dysfunction, were exclusively detected in this group. Dominantly inherited mutations had prominent clinical variability regarding severity, including 29% of patients who were asymptomatic. There were minor clinical differences between patients harboring specific mutations but not when grouped according to localization or type of mutation. This is the largest clinical series to date of patients with GDAP1 mutations, and it contributes to define the genetic distribution and genotype-phenotype correlation in this rare form of CMT.
Collapse
Affiliation(s)
- Rafael Sivera
- Department of Neurology, Hospital Francesc de Borja, Gandía, Spain.
| | - Marina Frasquet
- Department of Neurology, Hospital Universitari i Politécnic La Fe, Valencia, Spain.,Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders and Service of Genomics and Traslational Geneticis, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | - Patricia Blanco-Arias
- Neurogenetics Research Group, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain
| | - Julio Pardo
- Department of Neurology, Hospital Clínico, Santiago de Compostela, Spain
| | - Roberto Fernández-Torrón
- Neuromuscular Disorders Unit, Neurology Department, Hospital Donostia, San Sebastián, Spain.,The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Instituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Disorders Unit, Neurology Department, Hospital Donostia, San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Instituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Neurosciences, School of Medicine, University of the Basque Country (EHU-UPV), San Sebastián, Spain
| | - Celedonio Márquez-Infante
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Liliana Villarreal
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Pilar Carbonell
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Ricard Rojas-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sonia Segovia
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain
| | - Isabel Illa
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Lia Frongia
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundacion Sant Joan de Deu, Barcelona, Spain
| | - Andrés Nascimento
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundacion Sant Joan de Deu, Barcelona, Spain
| | - Carlos Ortez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundacion Sant Joan de Deu, Barcelona, Spain
| | | | - Samuel Ignacio Pascual
- Neuropaediatrics Department, Hospital la Paz, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Lara Pelayo-Negro
- Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Instituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Neurology, University Hospital "Marqués de Valdecilla (IDIVAL)", Santander, Spain.,University of Cantabria (UC), Santander, Spain
| | - José Berciano
- Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Instituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Neurology, University Hospital "Marqués de Valdecilla (IDIVAL)", Santander, Spain.,University of Cantabria (UC), Santander, Spain
| | - Antonio Guerrero
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Clínico San Carlos, Madrid, Spain
| | - Carlos Casasnovas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, Barcelona, Spain
| | - Ana Camacho
- Child Neurology Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jesús Esteban
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Neurology, Hospital Ruber Internacional, Madrid, Spain
| | - María José Chumillas
- Department of Neurophysiology, Hospital Universitari I Politécnic La Fe, Valencia, Spain
| | - Marisa Barreiro
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
| | - Carmen Díaz
- Department of Neurology, Hospital General de Alicante, Alicante, Spain
| | - Francesc Palau
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Institut de Recerca Sant Joan de Déu and Hospital Sant Joan de Déu, Barcelona, Spain.,Hospital Clínic, Barcelona, Spain.,Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Juan Jesús Vílchez
- Department of Neurology, Hospital Universitari i Politécnic La Fe, Valencia, Spain.,Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders and Service of Genomics and Traslational Geneticis, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Teresa Sevilla
- Department of Neurology, Hospital Universitari i Politécnic La Fe, Valencia, Spain.,Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
45
|
Mitochondrial Dynamics: In Cell Reprogramming as It Is in Cancer. Stem Cells Int 2017; 2017:8073721. [PMID: 28484497 PMCID: PMC5412136 DOI: 10.1155/2017/8073721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/19/2017] [Indexed: 12/29/2022] Open
Abstract
Somatic cells can be reprogrammed into a pluripotent cellular state similar to that of embryonic stem cells. Given the significant physiological differences between the somatic and pluripotent cells, cell reprogramming is associated with a profound reorganization of the somatic phenotype at all levels. The remodeling of mitochondrial morphology is one of these dramatic changes that somatic cells have to undertake during cell reprogramming. Somatic cells transform their tubular and interconnected mitochondrial network to the fragmented and isolated organelles found in pluripotent stem cells early during cell reprogramming. Accordingly, mitochondrial fission, the process whereby the mitochondria divide, plays an important role in the cell reprogramming process. Here, we present an overview of the importance of mitochondrial fission in both cell reprogramming and cellular transformation.
Collapse
|
46
|
González-Sánchez P, Pla-Martín D, Martínez-Valero P, Rueda CB, Calpena E, Del Arco A, Palau F, Satrústegui J. CMT-linked loss-of-function mutations in GDAP1 impair store-operated Ca 2+ entry-stimulated respiration. Sci Rep 2017; 7:42993. [PMID: 28220846 PMCID: PMC5318958 DOI: 10.1038/srep42993] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
GDAP1 is an outer mitochondrial membrane protein involved in Charcot-Marie-Tooth (CMT) disease. Lack of GDAP1 gives rise to altered mitochondrial networks and endoplasmic reticulum (ER)-mitochondrial interactions resulting in a decreased ER-Ca2+ levels along with a defect on store-operated calcium entry (SOCE) related to a misallocation of mitochondria to subplasmalemmal sites. The defect on SOCE is mimicked by MCU silencing or mitochondrial depolarization, which prevent mitochondrial calcium uptake. Ca2+ release from de ER and Ca2+ inflow through SOCE in neuroblastoma cells result in a Ca2+-dependent upregulation of respiration which is blunted in GDAP1 silenced cells. Reduced SOCE in cells with CMT recessive missense mutations in the α-loop of GDAP1, but not dominant mutations, was associated with smaller SOCE-stimulated respiration. These cases of GDAP1 deficiency also resulted in a decreased ER-Ca2+ levels which may have pathological implications. The results suggest that CMT neurons may be under energetic constraints upon stimulation by Ca2+ mobilization agonists and point to a potential role of perturbed mitochondria-ER interaction related to energy metabolism in forms of CMT caused by some of the recessive or null mutations of GDAP1.
Collapse
Affiliation(s)
- Paloma González-Sánchez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain
| | - David Pla-Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Paula Martínez-Valero
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain
| | - Carlos B Rueda
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain
| | - Eduardo Calpena
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Araceli Del Arco
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain.,Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo, 45071, Spain
| | - Francesc Palau
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain.,Institut de Recerca Sant Joan de Déu and Hospital Sant Joan de Déu, Barcelona 08950, Spain.,Pediatrics Division, University of Barcelona School of Medicine, Barcelona, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain
| |
Collapse
|
47
|
De Mario A, Quintana-Cabrera R, Martinvalet D, Giacomello M. (Neuro)degenerated Mitochondria-ER contacts. Biochem Biophys Res Commun 2017; 483:1096-1109. [DOI: 10.1016/j.bbrc.2016.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
|
48
|
López Del Amo V, Palomino-Schätzlein M, Seco-Cervera M, García-Giménez JL, Pallardó FV, Pineda-Lucena A, Galindo MI. A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration. Biochim Biophys Acta Mol Basis Dis 2017; 1863:801-809. [PMID: 28065847 DOI: 10.1016/j.bbadis.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023]
Abstract
Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdap1 gene. In order to get an overview about the changes that Gdap1 mutations cause in our disease model, we have combined a comprehensive determination of the metabolic profile in the flies by nuclear magnetic resonance spectroscopy with gene expression analyses and biophysical tests. Our results revealed that both up- and down-regulation of Gdap1 results in an early systemic inactivation of the insulin pathway before the onset of neuromuscular degeneration, followed by an accumulation of carbohydrates and an increase in the β-oxidation of lipids. Our findings are in line with emerging reports of energy metabolism impairments linked to different types of neural pathologies caused by defective mitochondrial function, which is not surprising given the central role of mitochondria in the control of energy metabolism. The relationship of mitochondrial dynamics with metabolism during neurodegeneration opens new avenues to understand the cause of the disease, and for the discovery of new biomarkers and treatments.
Collapse
Affiliation(s)
- Víctor López Del Amo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain
| | | | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Federico Vicente Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Antonio Pineda-Lucena
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Máximo Ibo Galindo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; IDM-Institute of Molecular Recognition, Universidad Politécnica de Valencia, 46022 Valencia, Spain; UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, Valencia, Spain.
| |
Collapse
|
49
|
Huber N, Bieniossek C, Wagner KM, Elsässer HP, Suter U, Berger I, Niemann A. Glutathione-conjugating and membrane-remodeling activity of GDAP1 relies on amphipathic C-terminal domain. Sci Rep 2016; 6:36930. [PMID: 27841286 PMCID: PMC5107993 DOI: 10.1038/srep36930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) cause severe peripheral motor and sensory neuropathies called Charcot-Marie-Tooth disease. GDAP1 expression induces fission of mitochondria and peroxisomes by a currently elusive mechanism, while disease causing mutations in GDAP1 impede the protein's role in mitochondrial dynamics. In silico analysis reveals sequence similarities of GDAP1 to glutathione S-transferases (GSTs). However, a proof of GST activity and its possible impact on membrane dynamics are lacking to date. Using recombinant protein, we demonstrate for the first time theta-class-like GST activity for GDAP1, and it's activity being regulated by the C-terminal hydrophobic domain 1 (HD1) of GDAP1 in an autoinhibitory manner. Moreover, we show that the HD1 amphipathic pattern is required to induce membrane dynamics by GDAP1. As both, fission and GST activities of GDAP1, are critically dependent on HD1, we propose that GDAP1 undergoes a molecular switch, turning from a pro-fission active to an auto-inhibited inactive conformation.
Collapse
Affiliation(s)
- Nina Huber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Bieniossek
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Konstanze Marion Wagner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Hans-Peter Elsässer
- Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, 35033 Marburg, Germany
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
- School of Biochemistry, Bristol University, Bristol BS8 1TD, United Kingdom
| | - Axel Niemann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
50
|
Prieto J, León M, Ponsoda X, García-García F, Bort R, Serna E, Barneo-Muñoz M, Palau F, Dopazo J, López-García C, Torres J. Dysfunctional mitochondrial fission impairs cell reprogramming. Cell Cycle 2016; 15:3240-3250. [PMID: 27753531 DOI: 10.1080/15384101.2016.1241930] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered a G2/M growth arrest in Gdap1-null cells undergoing reprogramming. High-Content analysis showed that this growth arrest was DNA damage-independent. We propose that lack of efficient mitochondrial fission impairs cell reprogramming by interfering with cell cycle progression in a DNA damage-independent manner.
Collapse
Affiliation(s)
- Javier Prieto
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| | - Marian León
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| | - Xavier Ponsoda
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| | - Francisco García-García
- b Computational Genomics Department , Centro de Investigación Principe Felipe , Valencia , Spain.,c CIBER de Enfermedades Raras (CIBERER), ISCIII , Valencia , Spain
| | - Roque Bort
- d Unidad de Hepatología Experimental, CIBEREHD, IIS La Fe. , Valencia , Spain
| | - Eva Serna
- e Unidad Central de Investigación-INCLIVA, Universidad de Valencia , Valencia , Spain
| | - Manuela Barneo-Muñoz
- c CIBER de Enfermedades Raras (CIBERER), ISCIII , Valencia , Spain.,f Institut de Recerca Pediàtrica Hospital San Joan de Déu , Barcelona , Spain
| | - Francesc Palau
- c CIBER de Enfermedades Raras (CIBERER), ISCIII , Valencia , Spain.,f Institut de Recerca Pediàtrica Hospital San Joan de Déu , Barcelona , Spain
| | - Joaquín Dopazo
- b Computational Genomics Department , Centro de Investigación Principe Felipe , Valencia , Spain.,c CIBER de Enfermedades Raras (CIBERER), ISCIII , Valencia , Spain
| | - Carlos López-García
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| | - Josema Torres
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| |
Collapse
|