1
|
Ding Y, Yang H, Gao J, Tang C, Peng YY, Ma XM, Li S, Wang HY, Lu XM, Wang YT. Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration. Mol Cell Biochem 2025:10.1007/s11010-025-05209-y. [PMID: 39841406 DOI: 10.1007/s11010-025-05209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Wu W, Yuan S, Tang Y, Meng X, Peng M, Hu Z, Liu W. Effect of Exercise and Oral Niacinamide Mononucleotide on Improving Mitochondrial Autophagy in Alzheimer's Disease. Nutrients 2023; 15:2851. [PMID: 37447179 DOI: 10.3390/nu15132851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Oral niacinamide mononucleotide (NMN) and aerobic exercise have been shown to enhance niacinamide adenine dinucleotide (NAD+) in the body. NAD+ plays a critical role in the body and can directly and indirectly affect many key cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cell aging, and immune cell function. It is noteworthy that the level of NAD+ decreases gradually with increasing age. Decreased levels of NAD+ have been causally associated with a number of diseases associated with aging, including cognitive decline, cancer, metabolic diseases, sarcopenia, and frailty. Many diseases related to aging can be slowed down or even reversed by restoring NAD+ levels. For example, oral NMN or exercise to increase NAD+ levels in APP/PS1 mice have been proven to improve mitochondrial autophagy, but currently, there is no regimen combining oral NMN with exercise. This review summarizes recent studies on the effect of oral NMN on the enhancement of NAD+ in vivo and the improvements in mitochondrial autophagy abnormalities in AD through aerobic exercise, focusing on (1) how oral NMN improves the internal NAD+ level; (2) how exercise regulates the content of NAD+ in the body; (3) the relationship between exercise activation of NAD+ and AMPK; (4) how SIRT1 is regulated by NAD+ and AMPK and activates PGC-1α to mediate mitochondrial autophagy through changes in mitochondrial dynamics. By summarizing the results of the above four aspects, and combined with the synthesis of NAD+ in vivo, we can infer how exercise elevates the level of NAD+ in vivo to mediate mitochondrial autophagy, so as to propose a new hypothesis that exercise interferes with Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Almasieh M, Faris H, Levin LA. Pivotal roles for membrane phospholipids in axonal degeneration. Int J Biochem Cell Biol 2022; 150:106264. [PMID: 35868612 DOI: 10.1016/j.biocel.2022.106264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Membrane phospholipids are critical components of several signaling pathways. Maintained in a variety of asymmetric distributions, their trafficking across the membrane can be induced by intra-, extra-, and intercellular events. A familiar example is the externalization of phosphatidylserine from the inner leaflet to the outer leaflet in apoptosis, inducing phagocytosis of the soma. Recently, it has been recognized that phospholipids in the axonal membrane may be a signal for axonal degeneration, regeneration, or other processes. This review focuses on key recent developments and areas for ongoing investigations. KEY FACTS: Phosphatidylserine externalization propagates along an axon after axonal injury and is delayed in the Wallerian degeneration slow (WldS) mutant. The ATP8A2 flippase mutant has spontaneous axonal degeneration. Microdomains of axonal degeneration in spheroid bodies have differential externalization of phosphatidylserine and phosphatidylethanolamine. Phospholipid trafficking could represent a mechanism for coordinated axonal degeneration and elimination, i.e. axoptosis, analogous to apoptosis of the cell body.
Collapse
Affiliation(s)
- Mohammadali Almasieh
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Hannah Faris
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022; 110:1899-1923. [PMID: 35429433 PMCID: PMC9233091 DOI: 10.1016/j.neuron.2022.03.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria generate ATP essential for neuronal growth, function, and regeneration. Due to their polarized structures, neurons face exceptional challenges to deliver mitochondria to and maintain energy homeostasis throughout long axons and terminal branches where energy is in high demand. Chronic mitochondrial dysfunction accompanied by bioenergetic failure is a pathological hallmark of major neurodegenerative diseases. Brain injury triggers acute mitochondrial damage and a local energy crisis that accelerates neuron death. Thus, mitochondrial maintenance defects and axonal energy deficits emerge as central problems in neurodegenerative disorders and brain injury. Recent studies have started to uncover the intrinsic mechanisms that neurons adopt to maintain (or reprogram) axonal mitochondrial density and integrity, and their bioenergetic capacity, upon sensing energy stress. In this review, we discuss recent advances in how neurons maintain a healthy pool of axonal mitochondria, as well as potential therapeutic strategies that target bioenergetic restoration to power neuronal survival, function, and regeneration.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
6
|
Cao Y, Wang Y, Yang J. NAD +-dependent mechanism of pathological axon degeneration. CELL INSIGHT 2022; 1:100019. [PMID: 37193131 PMCID: PMC10120281 DOI: 10.1016/j.cellin.2022.100019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/18/2023]
Abstract
Pathological axon degeneration is broadly observed in neurodegenerative diseases. This unique process of axonal pathology could directly interfere with the normal functions of neurocircuitries and contribute to the onset of clinical symptoms in patients. It has been increasingly recognized that functional preservation of axonal structures is an indispensable part of therapeutic strategies for treating neurological disorders. In the past decades, the research field has witnessed significant breakthroughs in understanding the stereotyped self-destruction of axons upon neurodegenerative insults, which is distinct from all the known types of programmed cell death. In particular, the novel NAD+-dependent mechanism involving the WLDs, NMNAT2, and SARM1 proteins has emerged. This review summarizes the landmark discoveries elucidating the molecular pathway of pathological axon degeneration and highlights the evolving concept that neurodegeneration would be intrinsically linked to NAD+ and energy metabolism.
Collapse
Affiliation(s)
- Ying Cao
- Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yi Wang
- Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jing Yang
- Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing, 102206, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| |
Collapse
|
7
|
Zhu Y, Jin L, Shi R, Li J, Wang Y, Zhang L, Liang CZ, Narayana VK, De Souza DP, Thorne RF, Zhang LR, Zhang XD, Wu M. The long noncoding RNA glycoLINC assembles a lower glycolytic metabolon to promote glycolysis. Mol Cell 2022; 82:542-554.e6. [PMID: 35081364 DOI: 10.1016/j.molcel.2021.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 01/27/2023]
Abstract
Non-covalent complexes of glycolytic enzymes, called metabolons, were postulated in the 1970s, but the concept has been controversial. Here we show that a c-Myc-responsive long noncoding RNA (lncRNA) that we call glycoLINC (gLINC) acts as a backbone for metabolon formation between all four glycolytic payoff phase enzymes (PGK1, PGAM1, ENO1, and PKM2) along with lactate dehydrogenase A (LDHA). The gLINC metabolon enhances glycolytic flux, increases ATP production, and enables cell survival under serine deprivation. Furthermore, gLINC overexpression in cancer cells promotes xenograft growth in mice fed a diet deprived of serine, suggesting that cancer cells employ gLINC during metabolic reprogramming. We propose that gLINC makes a functional contribution to cancer cell adaptation and provide the first example of a lncRNA-facilitated metabolon.
Collapse
Affiliation(s)
- Youming Zhu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; Department of Dental Implant Center, Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Lei Jin
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Ronghua Shi
- The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Cell and Molecular Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China
| | - Yan Wang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Vinod K Narayana
- Bio21 Institute and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Metabolomics Australia, University of Melbourne, Parkville, VIC 3010, Australia
| | - David P De Souza
- Bio21 Institute and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Metabolomics Australia, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW 2258, Australia
| | - Li Rong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China.
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Cell and Molecular Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Ueda R, Hara H, Hata J, Senoo A. White matter degeneration in diffuse axonal injury and mild traumatic brain injury observed with automatic tractography. Neuroreport 2021; 32:936-941. [PMID: 34132707 DOI: 10.1097/wnr.0000000000001688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A better understanding of white matter tract damage in patients with diffuse axonal injury (DAI) and mild traumatic brain injury (MTBI) is important to obtain an objective basis for sequelae. The purpose of this study was to clarify the characteristics of white matter tract degeneration in DAI and MTBI using automated tractography. T1-weighted and diffusion tensor imaging (DTI) was performed on seven DAI and seven MTBI patients as well as on nine healthy subjects. Automated probabilistic tractography analysis was performed using FreeSurfer and TRACULA (tracts constrained by underlying anatomy) for the reconstruction of major nerve fibers. We investigated the difference between DTI quantitative values in each white matter nerve fiber between groups and attempted to evaluate the classification accuracy of DAI and MTBI using receiver operator curve analysis. Both DAI and MTBI appeared to exhibit axonal degeneration along the nerve fiber tract in a scattered manner. The mean diffusivity of the ampulla of the corpus callosum was significantly higher in DAI than that in MTBI patients, suggesting axonal degeneration of the corpus callosum in DAI patients. Using mean diffusivity of the right cingulum-angular bundle, DAI and MTBI could be discriminated with an area under the curve of 94%. Both DAI and MTBI exhibited scattered axonal degeneration; however, DAI appeared to exhibit more pronounced axonal degeneration in the ampulla of the corpus callosum than MTBI. Our results suggest that DAI and MTBI can be accurately distinguished using DTI.
Collapse
Affiliation(s)
- Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo
| | - Hiroyoshi Hara
- Neurorehabilitation Center, Ainomiyako Neurosurgery Hospital, Osaka
| | - Junichi Hata
- Division of Regenerative Medicine, Jikei University Graduate School of Medicine
| | - Atsushi Senoo
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
9
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
10
|
Zou X, Xie L, Wang W, Zhao G, Tian X, Chen M. FK866 alleviates cerebral pyroptosis and inflammation mediated by Drp1 in a rat cardiopulmonary resuscitation model. Int Immunopharmacol 2020; 89:107032. [PMID: 33045576 DOI: 10.1016/j.intimp.2020.107032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Dynamin-related protein 1 (Drp1) mediates mitochondrial fission and triggers NLRP3 inflammasome activation. FK866 (a NAMPT inhibitor) exerts a neuroprotective effect in ischemia/reperfusion injury through the suppression of mitochondrial dysfunction. We explored the effects of FK866 on pyroptosis and inflammation mediated by Drp1 in a cardiac arrest/cardiopulmonary resuscitation (CA/CPR) rat model. METHODS Healthy male Sprague-Dawley rats were subjected to 7 min CA by trans-esophageal electrical stimulation followed by CPR. The surviving rats were treated with FK866 (a selective inhibitor of NAMPT), Mdivi-1 (Drp1 inhibitor), FK866 + Mdivi-1, or vehicle and then underwent 24 h reperfusion. Hematoxylin and eosin staining and immunohistochemistry (to detect NSE) were used to evaluate brain injury. We performed immunofluorescent staining to analyze NLRP3 and GSDMD expression in microglia or astrocytes and western blot to determine expression of NLRP3, IL-1β, GSDMD, Drp1, and Mfn2. Transmission electron microscopy was used to observe mitochondria. RESULTS FK866 significantly decreased pathological damage to brain tissue, inhibited the activation of NLRP3 in microglia or astrocytes, downregulated the expression of NLRP3, IL-1β, GSDMD, p-Drp1 protein, upregulated Mfn2 and improve mitochondrial morphology. CONCLUSIONS Our results demonstrated that FK866 protects the brain against ischemia-reperfusion injury in rats after CA/CPR by inhibiting pyroptosis and inflammation mediated by Drp1.
Collapse
Affiliation(s)
- Xinsen Zou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Lu Xie
- Department of Physiology, Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Wenyan Wang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Gaoyang Zhao
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Xinyue Tian
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Menghua Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China.
| |
Collapse
|
11
|
Tezel G. A broad perspective on the molecular regulation of retinal ganglion cell degeneration in glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 256:49-77. [PMID: 32958215 PMCID: PMC11822681 DOI: 10.1016/bs.pbr.2020.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glaucoma is a complex neurodegenerative disease involving RGC axons, somas, and synapses at dendrites and axon terminals. Recent research advancements in the field have revealed a bigger picture of glaucomatous neurodegeneration that encompasses multiple stressors, multiple injury sites, multiple cell types, and multiple signaling pathways for asynchronous degeneration of RGCs during a chronic disease period. Optic nerve head is commonly viewed as the critical site of injury in glaucoma, where early injurious insults initiate distal and proximal signaling for axonal and somatic degeneration. Despite compartmentalized processes for degeneration of RGC axons and somas, there are intricate interactions between the two compartments and mechanistic overlaps between the molecular pathways that mediate degeneration in axonal and somatic compartments. This review summarizes the recent progress in the molecular understanding of RGC degeneration in glaucoma and highlights various etiological paths with biomechanical, metabolic, oxidative, and inflammatory components. Through this growing body of knowledge, the glaucoma community moves closer toward causative treatment of this blinding disease.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, New York, NY, United States.
| |
Collapse
|
12
|
Moss KR, Höke A. Targeting the programmed axon degeneration pathway as a potential therapeutic for Charcot-Marie-Tooth disease. Brain Res 2019; 1727:146539. [PMID: 31689415 DOI: 10.1016/j.brainres.2019.146539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The programmed axon degeneration pathway has emerged as an important process contributing to the pathogenesis of several neurological diseases. The most crucial events in this pathway include activation of the central executioner SARM1 and NAD+ depletion, which leads to an energetic failure and ultimately axon destruction. Given the prevalence of this pathway, it is not surprising that inhibitory therapies are currently being developed in order to treat multiple neurological diseases with the same therapy. Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of neurological diseases that may also benefit from this therapeutic approach. To evaluate the appropriateness of this strategy, the contribution of the programmed axon degeneration pathway to the pathogenesis of different CMT subtypes is being actively investigated. The subtypes CMT1A, CMT1B and CMT2D are the first to have been examined. Based on the results from these studies and advances in developing therapies to block the programmed axon degeneration pathway, promising therapeutics for CMT are now on the horizon.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
13
|
Llobet Rosell A, Neukomm LJ. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol 2019; 9:190118. [PMID: 31455157 PMCID: PMC6731592 DOI: 10.1098/rsob.190118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axon loss is a shared feature of nervous systems being challenged in neurological disease, by chemotherapy or mechanical force. Axons take up the vast majority of the neuronal volume, thus numerous axonal intrinsic and glial extrinsic support mechanisms have evolved to promote lifelong axonal survival. Impaired support leads to axon degeneration, yet underlying intrinsic signalling cascades actively promoting the disassembly of axons remain poorly understood in any context, making the development to attenuate axon degeneration challenging. Wallerian degeneration serves as a simple model to study how axons undergo injury-induced axon degeneration (axon death). Severed axons actively execute their own destruction through an evolutionarily conserved axon death signalling cascade. This pathway is also activated in the absence of injury in diseased and challenged nervous systems. Gaining insights into mechanisms underlying axon death signalling could therefore help to define targets to block axon loss. Herein, we summarize features of axon death at the molecular and subcellular level. Recently identified and characterized mediators of axon death signalling are comprehensively discussed in detail, and commonalities and differences across species highlighted. We conclude with a summary of engaged axon death signalling in humans and animal models of neurological conditions. Thus, gaining mechanistic insights into axon death signalling broadens our understanding beyond a simple injury model. It harbours the potential to define targets for therapeutic intervention in a broad range of human axonopathies.
Collapse
Affiliation(s)
- Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| |
Collapse
|
14
|
Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. J Neurosci 2018; 38:5122-5139. [PMID: 29760184 DOI: 10.1523/jneurosci.3652-17.2018] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 01/05/2023] Open
Abstract
Axon degeneration can arise from metabolic stress, potentially a result of mitochondrial dysfunction or lack of appropriate substrate input. In this study, we investigated whether the metabolic vulnerability observed during optic neuropathy in the DBA/2J (D2) model of glaucoma is due to dysfunctional mitochondria or impaired substrate delivery to axons, the latter based on our observation of significantly decreased glucose and monocarboxylate transporters in D2 optic nerve (ON), human ON, and mice subjected to acute glaucoma injury. We placed both sexes of D2 mice destined to develop glaucoma and mice of a control strain, the DBA/2J-Gpnmb+, on a ketogenic diet to encourage mitochondrial function. Eight weeks of the diet generated mitochondria, improved energy availability by reversing monocarboxylate transporter decline, reduced glial hypertrophy, protected retinal ganglion cells and their axons from degeneration, and maintained physiological signaling to the brain. A robust antioxidant response also accompanied the response to the diet. These results suggest that energy compromise and subsequent axon degeneration in the D2 is due to low substrate availability secondary to transporter downregulation.SIGNIFICANCE STATEMENT We show axons in glaucomatous optic nerve are energy depleted and exhibit chronic metabolic stress. Underlying the metabolic stress are low levels of glucose and monocarboxylate transporters that compromise axon metabolism by limiting substrate availability. Axonal metabolic decline was reversed by upregulating monocarboxylate transporters as a result of placing the animals on a ketogenic diet. Optic nerve mitochondria responded capably to the oxidative phosphorylation necessitated by the diet and showed increased number. These findings indicate that the source of metabolic challenge can occur upstream of mitochondrial dysfunction. Importantly, the intervention was successful despite the animals being on the cusp of significant glaucoma progression.
Collapse
|
15
|
Whitehead MJ, McGonigal R, Willison HJ, Barnett SC. Heparanase attenuates axon degeneration following sciatic nerve transection. Sci Rep 2018; 8:5219. [PMID: 29581478 PMCID: PMC5980233 DOI: 10.1038/s41598-018-23070-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/02/2018] [Indexed: 02/01/2023] Open
Abstract
Axon degeneration underlies many nervous system diseases; therefore understanding the regulatory signalling pathways is fundamental to identifying potential therapeutics. Previously, we demonstrated heparan sulphates (HS) as a potentially new target for promoting CNS repair. HS modulate cell signalling by both acting as cofactors in the formation of ligand-receptor complexes and in sequestering ligands in the extracellular matrix. The enzyme heparanase (Hpse) negatively regulates these processes by cleaving HS and releasing the attached proteins, thereby attenuating their ligand-receptor interaction. To explore a comparative role for HS in PNS axon injury/repair we data mined published microarrays from distal sciatic nerve injury. We identified Hpse as a previously unexplored candidate, being up-regulated following injury. We confirmed these results and demonstrated inhibition of Hpse led to an acceleration of axonal degeneration, accompanied by an increase in β-catenin. Inhibition of β-catenin and the addition of Heparinase I both attenuated axonal degeneration. Furthermore the inhibition of Hpse positively regulates transcription of genes associated with peripheral neuropathies and Schwann cell de-differentiation. Thus, we propose Hpse participates in the regulation of the Schwann cell injury response and axo-glia support, in part via the regulation of Schwann cell de-differentiation and is a potential therapeutic that warrants further investigation.
Collapse
Affiliation(s)
- Michael J Whitehead
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Rhona McGonigal
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
16
|
Feinberg K, Kolaj A, Wu C, Grinshtein N, Krieger JR, Moran MF, Rubin LL, Miller FD, Kaplan DR. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria. J Cell Biol 2017; 216:3655-3675. [PMID: 28877995 PMCID: PMC5674898 DOI: 10.1083/jcb.201705085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022] Open
Abstract
The pan-kinase inhibitor foretinib is identified as a potent suppressor of sympathetic, sensory, and motor neuron axon degeneration, acting in part by inhibiting the activity of the unliganded TrkA/nerve growth factor receptor and by preserving mitochondria in die-back and Wallerian degeneration models. Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Adelaida Kolaj
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chen Wu
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Natalie Grinshtein
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan R Krieger
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Henderson DJP, Miranda JL, Emerson BM. The β-NAD + salvage pathway and PKC-mediated signaling influence localized PARP-1 activity and CTCF Poly(ADP)ribosylation. Oncotarget 2017; 8:64698-64713. [PMID: 29029387 PMCID: PMC5630287 DOI: 10.18632/oncotarget.19841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/06/2017] [Indexed: 01/03/2023] Open
Abstract
Poly(ADP)ribosylation (PARylation) of the chromatin architectural protein CTCF is critical for CTCF-dependent regulation of chromatin boundary and insulator elements. Loss of CTCF PARylation results in epigenetic silencing of certain tumor suppressor genes through destabilization of nearby chromatin boundaries. We investigated the metabolic and mechanistic processes that regulate PARP-1-mediated CTCF PARylation in human cancer cell lines and discovered a key role for the expression and activity of β-NAD+ salvage enzymes, NAMPT and NMNAT-1. These enzymes are downregulated in cells that exhibit reduced CTCF PARylation, resulting in a decreased concentration of nuclear β-NAD+. In these cells, decreased NMNAT-1 expression is enforced by a proteasome-mediated feedback loop resulting in degradation of NMNAT-1, transcriptional repression of NAMPT, and suppression of PARP-1 activity. Interestingly, dePARylated CTCF is associated in a stable protein complex with PARP-1 and NMNAT-1 in cancer cells harboring silenced tumor suppressor genes. Although the metabolic context in these cells favors suppression of PARP-1 activity, CTCF PARylation can be restored by Protein Kinase C (PKC) signaling. PKC induces dissociation of the catalytically inactive PARP-1/NMNAT-1/CTCF protein complex and phosphorylation of NMNAT-1, which stimulates its proteasome-mediated degradation. Our findings suggest that CTCF PARylation is underpinned by a cellular metabolic context engendered by regulation of the β-NAD+ salvage pathway in which NMNAT-1 acts as a rheostat to control localized β-NAD+ synthesis at CTCF/PARP-1 complexes.
Collapse
Affiliation(s)
| | - Jj L Miranda
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
18
|
NAMPT inhibitor protects ischemic neuronal injury in rat brain via anti-neuroinflammation. Neuroscience 2017; 356:193-206. [DOI: 10.1016/j.neuroscience.2017.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022]
|
19
|
Ashrafi G, Ryan TA. Glucose metabolism in nerve terminals. Curr Opin Neurobiol 2017; 45:156-161. [PMID: 28605677 DOI: 10.1016/j.conb.2017.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/16/2017] [Indexed: 12/25/2022]
Abstract
Nerve terminals in the brain carry out the primary form of intercellular communication between neurons. Neurotransmission, however, requires adequate supply of ATP to support energetically demanding steps, including the maintenance of ionic gradients, reversing changes in intracellular Ca2+ that arise from opening voltage-gated Ca2+ channels, as well recycling synaptic vesicles. The energy demands of the brain are primarily met by glucose which is oxidized through glycolysis and oxidative phosphorylation to produce ATP. The pathways of ATP production have to respond rapidly to changes in energy demand at the synapse to sustain neuronal activity. In this review, we discuss recent progress in understanding the mechanisms regulating glycolysis at nerve terminals, their contribution to synaptic function, and how dysregulation of glycolysis may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Ghazaleh Ashrafi
- Department of Biochemistry, Weill Cornell Medical College, New York, USA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
20
|
Inman DM, Harun-Or-Rashid M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front Neurosci 2017; 11:146. [PMID: 28424571 PMCID: PMC5371671 DOI: 10.3389/fnins.2017.00146] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Axons can be several orders of magnitude longer than neural somas, presenting logistical difficulties in cargo trafficking and structural maintenance. Keeping the axon compartment well supplied with energy also presents a considerable challenge; even seemingly subtle modifications of metabolism can result in functional deficits and degeneration. Axons require a great deal of energy, up to 70% of all energy used by a neuron, just to maintain the resting membrane potential. Axonal energy, in the form of ATP, is generated primarily through oxidative phosphorylation in the mitochondria. In addition, glial cells contribute metabolic intermediates to axons at moments of high activity or according to need. Recent evidence suggests energy disruption is an early contributor to pathology in a wide variety of neurodegenerative disorders characterized by axonopathy. However, the degree to which the energy disruption is intrinsic to the axon vs. associated glia is not clear. This paper will review the role of energy availability and utilization in axon degeneration in glaucoma, a chronic axonopathy of the retinal projection.
Collapse
Affiliation(s)
- Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA
| | | |
Collapse
|
21
|
NMN Deamidase Delays Wallerian Degeneration and Rescues Axonal Defects Caused by NMNAT2 Deficiency In Vivo. Curr Biol 2017; 27:784-794. [PMID: 28262487 DOI: 10.1016/j.cub.2017.01.070] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/22/2022]
Abstract
Axons require the axonal NAD-synthesizing enzyme NMNAT2 to survive. Injury or genetically induced depletion of NMNAT2 triggers axonal degeneration or defective axon growth. We have previously proposed that axonal NMNAT2 primarily promotes axon survival by maintaining low levels of its substrate NMN rather than generating NAD; however, this is still debated. NMN deamidase, a bacterial enzyme, shares NMN-consuming activity with NMNAT2, but not NAD-synthesizing activity, and it delays axon degeneration in primary neuronal cultures. Here we show that NMN deamidase can also delay axon degeneration in zebrafish larvae and in transgenic mice. Like overexpressed NMNATs, NMN deamidase reduces NMN accumulation in injured mouse sciatic nerves and preserves some axons for up to three weeks, even when expressed at a low level. Remarkably, NMN deamidase also rescues axonal outgrowth and perinatal lethality in a dose-dependent manner in mice lacking NMNAT2. These data further support a pro-degenerative effect of accumulating NMN in axons in vivo. The NMN deamidase mouse will be an important tool to further probe the mechanisms underlying Wallerian degeneration and its prevention.
Collapse
|
22
|
Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci 2016; 39:311-324. [PMID: 27040729 PMCID: PMC5405046 DOI: 10.1016/j.tins.2016.03.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Traumatic axonal injury (TAI) is an important pathoanatomical subgroup of traumatic brain injury (TBI) and a major driver of mortality and functional impairment. Experimental models have provided insights into the effects of mechanical deformation on the neuronal cytoskeleton and the subsequent processes that drive axonal injury. There is also increasing recognition that axonal or white matter loss may progress for years post-injury and represent one mechanistic framework for progressive neurodegeneration after TBI. Previous trials of novel therapies have failed to make an impact on clinical outcome, in both TBI in general and TAI in particular. Recent advances in understanding the cellular and molecular mechanisms of injury have the potential to translate into novel therapeutic targets. Multiple therapeutic targets are emerging that offer the potential to reduce secondary brain injury at a cellular level. These include cytoskeletal and membrane stabilisation, control of calcium flux and calpain activation, optimisation of cellular energetics, and modulation of the inflammatory response. Wallerian degeneration, as occurs following an axonal injury, is an active, cell-autonomous death pathway that involves failure of axonal transport to deliver key enzymes involved in NAD biosynthesis. Chronic microglial activation occurs following traumatic brain injury (TBI) and may persist for decades afterwards. This ongoing response has been linked to long-term neurodegeneration, particularly of white matter tracts. Phagoptosis is the process whereby physiologically stressed but otherwise viable neurons are phagocytosed by microglia in response to a range of eat-me signals induced by tissue injury.
Collapse
|
23
|
Cashman CR, Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 2015; 596:33-50. [PMID: 25617478 PMCID: PMC4428955 DOI: 10.1016/j.neulet.2015.01.048] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wld(S)) and Sarm knockout animal models. These studies have shown axonal degeneration to occur through a programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Christopher R Cashman
- Departments of Neuroscience and Neurology, USA; MSTP- MD/PhD Program, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Departments of Neuroscience and Neurology, USA.
| |
Collapse
|
24
|
The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury. J Mol Neurosci 2014; 55:865-71. [PMID: 25352062 PMCID: PMC4353883 DOI: 10.1007/s12031-014-0440-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
The axon-protective Wallerian degeneration slow (WLDS) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLDS partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLDS after cut, suggesting that the maintenance of NAD levels in WldS neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1−/−), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.
Collapse
|
25
|
A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ 2014; 22:731-42. [PMID: 25323584 PMCID: PMC4392071 DOI: 10.1038/cdd.2014.164] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/20/2022] Open
Abstract
NAD metabolism regulates diverse biological processes, including ageing, circadian rhythm and axon survival. Axons depend on the activity of the central enzyme in NAD biosynthesis, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2), for their maintenance and degenerate rapidly when this activity is lost. However, whether axon survival is regulated by the supply of NAD or by another action of this enzyme remains unclear. Here we show that the nucleotide precursor of NAD, nicotinamide mononucleotide (NMN), accumulates after nerve injury and promotes axon degeneration. Inhibitors of NMN-synthesising enzyme NAMPT confer robust morphological and functional protection of injured axons and synapses despite lowering NAD. Exogenous NMN abolishes this protection, suggesting that NMN accumulation within axons after NMNAT2 degradation could promote degeneration. Ectopic expression of NMN deamidase, a bacterial NMN-scavenging enzyme, prolongs survival of injured axons, providing genetic evidence to support such a mechanism. NMN rises prior to degeneration and both the NAMPT inhibitor FK866 and the axon protective protein WldS prevent this rise. These data indicate that the mechanism by which NMNAT and the related WldS protein promote axon survival is by limiting NMN accumulation. They indicate a novel physiological function for NMN in mammals and reveal an unexpected link between new strategies for cancer chemotherapy and the treatment of axonopathies.
Collapse
|
26
|
Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 2014; 15:394-409. [DOI: 10.1038/nrn3680] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Sodium and potassium currents influence Wallerian degeneration of injured Drosophila axons. J Neurosci 2014; 33:18728-39. [PMID: 24285879 DOI: 10.1523/jneurosci.1007-13.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Axons degenerate after injury and in neuropathies and disease via a self-destruction program whose mechanism is poorly understood. Axons that have lost connection to their cell bodies have altered electrical and synaptic activities, but whether such changes play a role in the axonal degeneration process is not clear. We have used a Drosophila model to study the Wallerian degeneration of motoneuron axons and their neuromuscular junction synapses. We found that degeneration of the distal nerve stump after a nerve crush is greatly delayed when there is increased potassium channel activity (by overexpression of two different potassium channels, Kir2.1 and dORKΔ-C) or decreased voltage-gated sodium channel activity (using mutations in the para sodium channel). Conversely, degeneration is accelerated when potassium channel activity is decreased (by expressing a dominant-negative mutation of Shaker). Despite the effect of altering voltage-gated sodium and potassium channel activity, recordings made after nerve crush demonstrated that the distal stump does not fire action potentials. Rather, a variety of lines of evidence suggest that the sodium and potassium channels manifest their effects upon degeneration through changes in the resting membrane potential, which in turn regulates the level of intracellular free calcium within the isolated distal axon.
Collapse
|
28
|
Beirowski B. Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 2013; 7:256. [PMID: 24391540 PMCID: PMC3867696 DOI: 10.3389/fncel.2013.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS).
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|