1
|
Crayle JI, Rampersaud E, Myers JR, Wuu J, Taylor JP, Wu G, Benatar M, Bedlack RS. Genetic Associations With an Amyotrophic Lateral Sclerosis Reversal Phenotype. Neurology 2024; 103:e209696. [PMID: 39079071 PMCID: PMC11286288 DOI: 10.1212/wnl.0000000000209696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The term "ALS Reversal" describes patients who initially meet diagnostic criteria for amyotrophic lateral sclerosis (ALS) or had clinical features most consistent with progressive muscular atrophy (PMA) but subsequently demonstrated substantial and sustained clinical improvement. The objective of this genome-wide association study (GWAS) was to identify correlates of this unusual clinical phenotype. METHODS Participants were recruited from a previously created database of individuals with the ALS Reversal phenotype. Whole-genome sequencing (WGS) data were compared with ethnicity-matched patients with typically progressive ALS enrolled through the CReATe Consortium's Phenotype-Genotype-Biomarker (PGB) study. These results were replicated using an independent ethnically matched WGS data set from Target ALS. Significant results were further explored with available databases of genetic regulatory markers and expression quantitative trait loci (eQTL) analysis. RESULTS WGS from 22 participants with documented ALS Reversals was compared with the PGB primary cohort (n = 103) and the Target ALS validation cohort (n = 140). Two genetic loci met predefined criteria for statistical significance (two-sided permutation p ≤ 0.01) and remained plausible after fine-mapping. The lead single nucleotide variant (SNV) from the first locus was rs4242007 (primary cohort GWAS OR = 12.0, 95% CI 4.1 to 34.6), which is in an IGFBP7 intron and is in near-perfect linkage disequilibrium with a SNV in the IGFBP7 promoter region. Both SNVs are associated with decreased frontal cortex IGFBP7 expression in eQTL data sets. Notably, 3 Reversals, but none of the typically progressive individuals (n = 243), were homozygous for rs4242007. The importance of the second locus, located near GRIP1, is uncertain given the absence of an associated effect on nearby gene transcription. DISCUSSION We found a significant association between the Reversal phenotype and an IGFBP7 noncoding SNV that is associated with IGFBP7 expression. This is biologically relevant as IGFBP7 is a reported inhibitor of the insulin growth factor-1 (IGF-1) receptor that activates the possibly neuroprotective IGF-1 signaling pathway. This finding is limited by small sample size but suggests that there may be merit in further exploration of IGF-1 pathway signaling as a therapeutic mechanism for ALS. TRIAL REGISTRATION INFORMATION This study was registered with ClinicalTrials.gov (NCT03464903) on March 14, 2018. The first participant was enrolled on June 22, 2018.
Collapse
Affiliation(s)
- Jesse I Crayle
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Evadnie Rampersaud
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Jason R Myers
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Joanne Wuu
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - J Paul Taylor
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Gang Wu
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Michael Benatar
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Richard S Bedlack
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
2
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
3
|
Zhang Q, Liu J, Liu H, Ao L, Xi Y, Chen D. Genome-wide epistasis analysis reveals gene-gene interaction network on an intermediate endophenotype P-tau/Aβ 42 ratio in ADNI cohort. Sci Rep 2024; 14:3984. [PMID: 38368488 PMCID: PMC10874417 DOI: 10.1038/s41598-024-54541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly worldwide. The exact etiology of AD, particularly its genetic mechanisms, remains incompletely understood. Traditional genome-wide association studies (GWAS), which primarily focus on single-nucleotide polymorphisms (SNPs) with main effects, provide limited explanations for the "missing heritability" of AD, while there is growing evidence supporting the important role of epistasis. In this study, we performed a genome-wide SNP-SNP interaction detection using a linear regression model and employed multiple GPUs for parallel computing, significantly enhancing the speed of whole-genome analysis. The cerebrospinal fluid (CSF) phosphorylated tau (P-tau)/amyloid-[Formula: see text] (A[Formula: see text]) ratio was used as a quantitative trait (QT) to enhance statistical power. Age, gender, and clinical diagnosis were included as covariates to control for potential non-genetic factors influencing AD. We identified 961 pairs of statistically significant SNP-SNP interactions, explaining a high-level variance of P-tau/A[Formula: see text] level, all of which exhibited marginal main effects. Additionally, we replicated 432 previously reported AD-related genes and found 11 gene-gene interaction pairs overlapping with the protein-protein interaction (PPI) network. Our findings may contribute to partially explain the "missing heritability" of AD. The identified subnetwork may be associated with synaptic dysfunction, Wnt signaling pathway, oligodendrocytes, inflammation, hippocampus, and neuronal cells.
Collapse
Affiliation(s)
- Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Junfeng Liu
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Hongwei Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, China
| | - Lang Ao
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Dandan Chen
- School of Automation Engineering, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China.
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, China.
| |
Collapse
|
4
|
Fernández-Pereira C, Penedo MA, Rivera-Baltanás T, Pérez-Márquez T, Alves-Villar M, Fernández-Martínez R, Veiga C, Salgado-Barreira Á, Prieto-González JM, Ortolano S, Olivares JM, Agís-Balboa RC. Protein Plasma Levels of the IGF Signalling System Are Altered in Major Depressive Disorder. Int J Mol Sci 2023; 24:15254. [PMID: 37894932 PMCID: PMC10607273 DOI: 10.3390/ijms242015254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
The Insulin-like growth factor 2 (IGF-2) has been recently proven to alleviate depressive-like behaviors in both rats and mice models. However, its potential role as a peripheral biomarker has not been evaluated in depression. To do this, we measured plasma IGF-2 and other members of the IGF family such as Binding Proteins (IGFBP-1, IGFBP-3, IGFBP-5 and IGFBP-7) in a depressed group of patients (n = 51) and in a healthy control group (n = 48). In some of these patients (n = 15), we measured these proteins after a period (19 ± 6 days) of treatment with antidepressants. The Hamilton Depressive Rating Scale (HDRS) and the Self-Assessment Anhedonia Scale (SAAS) were used to measure depression severity and anhedonia, respectively. The general cognition state was assessed by the Mini-Mental State Examination (MMSE) test and memory with the Free and Cued Selective Reminding Test (FCSRT). The levels of both IGF-2 and IGFBP-7 were found to be significantly increased in the depressed group; however, only IGF-2 remained significantly elevated after correction by age and sex. On the other hand, the levels of IGF-2, IGFBP-3 and IGFBP-5 were significantly decreased after treatment, whereas only IGFBP-7 was significantly increased. Therefore, peripheral changes in the IGF family and their response to antidepressants might represent alterations at the brain level in depression.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain; (C.F.-P.); (M.A.P.)
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (T.P.-M.); (M.A.-V.); (S.O.)
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain; (C.F.-P.); (M.A.P.)
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain; (C.F.-P.); (M.A.P.)
| | - Tania Pérez-Márquez
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (T.P.-M.); (M.A.-V.); (S.O.)
| | - Marta Alves-Villar
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (T.P.-M.); (M.A.-V.); (S.O.)
| | - Rafael Fernández-Martínez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain; (C.F.-P.); (M.A.P.)
| | - César Veiga
- Cardiovascular Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36213 Vigo, Spain
| | - Ángel Salgado-Barreira
- Department of Preventive Medicine and Public Health, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP, 28029 Madrid, Spain
| | - José María Prieto-González
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| | - Saida Ortolano
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (T.P.-M.); (M.A.-V.); (S.O.)
| | - José Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain; (C.F.-P.); (M.A.P.)
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci 2023; 46:488-502. [PMID: 37031050 PMCID: PMC10192130 DOI: 10.1016/j.tins.2023.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Insulin-like growth factor 2 (IGF2) emerged as a critical mechanism of synaptic plasticity and learning and memory. Deficits in IGF2 in the brain, serum, or cerebrospinal fluid (CSF) are associated with brain diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Increasing IGF2 levels enhances memory in healthy animals and reverses numerous symptoms in laboratory models of aging, neurodevelopmental disorders, and neurodegenerative diseases. These effects occur via the IGF2 receptor (IGF2R) - a receptor that is highly expressed in neurons and regulates protein trafficking, synthesis, and degradation. Here, I summarize the current knowledge regarding IGF2 expression and functions in the brain, particularly in memory, and propose a novel conceptual model for IGF2/IGF2R mechanisms of action in brain health and diseases.
Collapse
|
6
|
Zhou J, Singh N, Galske J, Hudobenko J, Hu X, Yan R. BACE1 regulates expression of Clusterin in astrocytes for enhancing clearance of β-amyloid peptides. Mol Neurodegener 2023; 18:31. [PMID: 37143090 PMCID: PMC10161466 DOI: 10.1186/s13024-023-00611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Abnormal accumulation of amyloid beta peptide (Aβ) in the brain induces a cascade of pathological changes in Alzheimer's disease (AD), and inhibiting BACE1, which is required for Aβ generation, is therefore being explored for the treatment of AD by reducing Aβ accumulation. As Bace1 knockout mice exhibit increased number of reactive astrocytes and AD brains have reactive astrocytes that surround amyloid plaques, we investigated the role of BACE1 in astrocytes and determined whether BACE1 regulates astrocytic functions. METHODS We conducted unbiased single cell RNA-seq (scRNA-seq) using purified astrocytes from Bace1 KO mice and wild type control littermates. Similar scRNA-seq was also conducted using AD mice with conditional deletion of Bace1 in the adult stage (5xFAD;Bace1fl/fl;UBC-creER compared to 5xFAD;Bace1fl/fl controls). We compared the transcriptomes of astrocyte and reactive astrocyte clusters and identified several differentially expressed genes, which were further validated using Bace1 KO astrocyte cultures. Mice with astrocyte-specific Bace1 knockout in 5xFAD background were used to compare amyloid deposition. Mechanistic studies using cultured astrocytes were used to identify BACE1 substrates for changes in gene expression and signaling activity. RESULTS Among altered genes, Clusterin (Clu) and Cxcl14 were significantly upregulated and validated by measuring protein levels. Moreover, BACE1 deficiency enhanced both astrocytic Aβ uptake and degradation, and this effect was significantly attenuated by siRNA knockdown of Clu. Mechanistic study suggests that BACE1 deficiency abolishes cleavage of astrocytic insulin receptors (IR), and this may enhance expression of Clu and Cxcl14. Acutely isolated astrocytes from astrocyte-specific knockout of Bace1 mice (Bace1 fl/fl;Gfap-cre) show similar increases in CLU and IR. Furthermore, astrocyte-specific knockout of Bace1 in a 5xFAD background resulted in a significant attenuation in cortical Aβ plaque load through enhanced clearance. CONCLUSION Together, our study suggests that BACE1 in astrocytes regulates expression of Clu and Cxcl14, likely via the control of insulin receptor pathway, and inhibition of astrocytic BACE1 is a potential alternative strategy for enhancing Aβ clearance.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Neeraj Singh
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - James Galske
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Jacob Hudobenko
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
7
|
Fitzgerald GS, Chuchta TG, McNay EC. Insulin‐like growth factor‐2 is a promising candidate for the treatment and prevention of Alzheimer's disease. CNS Neurosci Ther 2023; 29:1449-1469. [PMID: 36971212 PMCID: PMC10173726 DOI: 10.1111/cns.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Current AD treatments slow the rate of cognitive decline, but do not restore lost function. One reason for the low efficacy of current treatments is that they fail to target neurotrophic processes, which are thought to be essential for functional recovery. Bolstering neurotrophic processes may also be a viable strategy for preventative treatment, since structural losses are thought to underlie cognitive decline in AD. The challenge of identifying presymptomatic patients who might benefit from preventative treatment means that any such treatment must meet a high standard of safety and tolerability. The neurotrophic peptide insulin-like growth factor-2 (IGF2) is a promising candidate for both treating and preventing AD-induced cognitive decline. Brain IGF2 expression declines in AD patients. In rodent models of AD, exogenous IGF2 modulates multiple aspects of AD pathology, resulting in (1) improved cognitive function; (2) stimulation of neurogenesis and synaptogenesis; and, (3) neuroprotection against cholinergic dysfunction and beta amyloid-induced neurotoxicity. Preclinical evidence suggests that IGF2 is likely to be safe and tolerable at therapeutic doses. In the preventative treatment context, the intranasal route of administration is likely to be the preferred method for achieving the therapeutic effect without risking adverse side effects. For patients already experiencing AD dementia, routes of administration that deliver IGF2 directly access the CNS may be necessary. Finally, we discuss several strategies for improving the translational validity of animal models used to study the therapeutic potential of IGF2.
Collapse
Affiliation(s)
| | | | - E C McNay
- University at Albany, Albany, New York, USA
| |
Collapse
|
8
|
Zhang L, Smyth D, Al-Khalaf M, Blet A, Du Q, Bernick J, Gong M, Chi X, Oh Y, Roba-Oshin M, Coletta E, Feletou M, Gramolini AO, Kim KH, Coutinho T, Januzzi JL, Tyl B, Ziegler A, Liu PP. Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1195-1214. [PMID: 39196168 PMCID: PMC11358005 DOI: 10.1038/s44161-022-00181-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2022] [Indexed: 08/29/2024]
Abstract
Heart failure (HF) is a rising global cardiovascular epidemic driven by aging and chronic inflammation. As elderly populations continue to increase, precision treatments for age-related cardiac decline are urgently needed. Here we report that cardiac and blood expression of IGFBP7 is robustly increased in patients with chronic HF and in an HF mouse model. In a pressure overload mouse HF model, Igfbp7 deficiency attenuated cardiac dysfunction by reducing cardiac inflammatory injury, tissue fibrosis and cellular senescence. IGFBP7 promoted cardiac senescence by stimulating IGF-1R/IRS/AKT-dependent suppression of FOXO3a, preventing DNA repair and reactive oxygen species (ROS) detoxification, thereby accelerating the progression of HF. In vivo, AAV9-shRNA-mediated cardiac myocyte Igfbp7 knockdown indicated that myocardial IGFBP7 directly regulates pathological cardiac remodeling. Moreover, antibody-mediated IGFBP7 neutralization in vivo reversed IGFBP7-induced suppression of FOXO3a, restored DNA repair and ROS detoxification signals and attenuated pressure-overload-induced HF in mice. Consequently, selectively targeting IGFBP7-regulated senescence pathways may have broad therapeutic potential for HF.
Collapse
Affiliation(s)
- Liyong Zhang
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Smyth
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Alice Blet
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Qiujiang Du
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jordan Bernick
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Michael Gong
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Xu Chi
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Michel Feletou
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Anthony O Gramolini
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thais Coutinho
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, MA, USA
| | - Benoit Tyl
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Andre Ziegler
- Roche Diagnostics International, Ltd., Rotkreuz, Switzerland
| | - Peter P Liu
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Maffioli E, Murtas G, Rabattoni V, Badone B, Tripodi F, Iannuzzi F, Licastro D, Nonnis S, Rinaldi AM, Motta Z, Sacchi S, Canu N, Tedeschi G, Coccetti P, Pollegioni L. Insulin and serine metabolism as sex-specific hallmarks of Alzheimer's disease in the human hippocampus. Cell Rep 2022; 40:111271. [PMID: 36070700 DOI: 10.1016/j.celrep.2022.111271] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Healthy aging is an ambitious aspiration for humans, but neurodegenerative disorders, such as Alzheimer's disease (AD), strongly affect quality of life. Using an integrated omics approach, we investigate alterations in the molecular composition of postmortem hippocampus samples of healthy persons and individuals with AD. Profound differences are apparent between control and AD male and female cohorts in terms of up- and downregulated metabolic pathways. A decrease in the insulin response is evident in AD when comparing the female with the male group. The serine metabolism (linked to the glycolytic pathway and generating the N-methyl-D-aspartate [NMDA] receptor coagonist D-serine) is also significantly modulated: the D-Ser/total serine ratio represents a way to counteract age-related cognitive decline in healthy men and during AD onset in women. These results show how AD changes and, in certain respects, almost reverses sex-specific proteomic and metabolomic profiles, highlighting how different pathophysiological mechanisms are active in men and women.
Collapse
Affiliation(s)
- Elisa Maffioli
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Beatrice Badone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Filomena Iannuzzi
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Simona Nonnis
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy
| | - Anna Maria Rinaldi
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy; Istituto di Biochimica e Biologia Cellulare (IBBC) CNR, 00015 Monterotondo Scalo, Italy.
| | - Gabriella Tedeschi
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
10
|
Insulin-like Growth Factor 2 (IGF-2) and Insulin-like Growth Factor Binding Protein 7 (IGFBP-7) Are Upregulated after Atypical Antipsychotics in Spanish Schizophrenia Patients. Int J Mol Sci 2022; 23:ijms23179591. [PMID: 36076984 PMCID: PMC9455262 DOI: 10.3390/ijms23179591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin-like growth factor 2 (IGF-2) and IGF binding protein 7 (IGFBP-7) have been related to schizophrenia (SZ) due to their implication in neurodevelopment. The purpose of this study was to assess whether the alterations in IGF-2 and IGFBP-7 in SZ patients are intrinsically related to the psychiatric disorder itself or are a secondary phenomenon due to antipsychotic treatment. In order to test this hypothesis, we measured plasma IGF-2 and IGFBP-7 in drug-naïve first episode (FE) and multiple episodes or chronic (ME) SZ Caucasian patients who have been following treatment for years. A total of 55 SZ patients (FE = 15, ME = 40) and 45 healthy controls were recruited. The Positive and Negative Syndrome Scale (PANSS) and the Self-Assessment Anhedonia Scale (SAAS) were employed to check schizophrenic symptomatology and anhedonia, respectively. Plasma IGF-2 and IGFBP-7 levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA). The FE SZ patients had much lower IGF-2, but not IGFBP-7, than controls. Moreover, both IGF-2 and IGFBP-7 significantly increased after atypical antipsychotic treatment (aripiprazole, olanzapine, or risperidone) in these patients. On the other hand, chronic patients showed higher levels of both proteins when compared to controls. Our study suggests that circulatory IGF-2 and IGFBP-7 increase after antipsychotic treatment, regardless of long-term conditions and being lower in drug-naïve FE patients.
Collapse
|
11
|
Rauskolb S, Andreska T, Fries S, von Collenberg CR, Blum R, Monoranu CM, Villmann C, Sendtner M. Insulin-like growth factor 5 associates with human Aß plaques and promotes cognitive impairment. Acta Neuropathol Commun 2022; 10:68. [PMID: 35513854 PMCID: PMC9074221 DOI: 10.1186/s40478-022-01352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Risk factors such as dysregulation of Insulin-like growth factor (IGF) signaling have been linked to Alzheimer's disease. Here we show that Insulin-like Growth Factor Binding Protein 5 (Igfbp5), an inhibitory binding protein for insulin-like growth factor 1 (Igf-1) accumulates in hippocampal pyramidal neurons and in amyloid plaques in brains of Alzheimer patients. We investigated the pathogenic relevance of this finding with transgenic mice overexpressing Igfbp5 in pyramidal neurons of the brain. Neuronal overexpression of Igfbp5 prevents the training-induced increase of hippocampal and cortical Bdnf expression and reduces the effects of exercise on memory retention, but not on learning acquisition. Hence, elevated IGFBP5 expression could be responsible for some of the early cognitive deficits that occur during the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Stefanie Rauskolb
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Sophie Fries
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Cora Ruedt von Collenberg
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany.
| |
Collapse
|
12
|
Naskar A, Stezin A, Dharmappa A, Hegde S, Philip M, Kamble N, Saini J, Sandhya K, Tatu U, Yadav R, Pal PK, Alladi PA. Fibrinogen and Complement Factor H Are Promising CSF Protein Biomarkers for Parkinson's Disease with Cognitive Impairment─A Proteomics-ELISA-Based Study. ACS Chem Neurosci 2022; 13:1030-1045. [PMID: 35200010 DOI: 10.1021/acschemneuro.2c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) with cognitive impairment (PDCI) is essentially diagnosed through clinical and neuropsychological examinations. There is a need to identify biomarkers to foresee cognitive decline in them. We performed label-free unbiased nontargeted proteomics (Q-TOF LC/MS-MS) on the CSF of non-neurological control; PDCI; PD; and normal pressure hydrocephalus (NPH) patients, followed by targeted ELISA for validation. Of the 281 proteins identified, 42 were differentially altered in PD, PDCI, and NPH. With a certain overlap, 28 proteins were altered in PDCI and 25 proteins were altered in NPH. Five significantly upregulated proteins in PDCI were fibrinogen, gelsolin, complement factor-H, and apolipoproteins A-I and A-IV, whereas carnosine dipeptidase-1, carboxypeptidase-E, dickkopf-3, and secretogranin-3 precursor proteins were downregulated. Those uniquely altered in NPH were the insulin-like growth factor-binding protein, ceruloplasmin, α-1 antitrypsin, VGF nerve growth factor, and neural cell adhesion molecule L1-like protein. The ELISA-derived protein concentrations correlated with neuropsychological scores of certain cognitive domains. In PDCI, the Wisconsin card sorting percentile correlated negatively with fibrinogen. Intraperitoneal injection of native fibrinogen caused motor deficits in C57BL/6J mice as assessed by the pole test. Thus, a battery of proteins such as fibrinogen-α-chain, CFAH, and APOA-I/APOA-IV alongside neuropsychological assessment could be reliable biomarkers to distinguish PDCI and NPH.
Collapse
Affiliation(s)
- Aditi Naskar
- Department of Clinical Psychopharmacology & Neurotoxicology, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - Albert Stezin
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - Arpitha Dharmappa
- Department of Clinical Psychology, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - Shantala Hegde
- Department of Clinical Psychology, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - Mariamma Philip
- Department of Biostatistics, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - K. Sandhya
- Department of Anaesthesiology, Bangalore Medical College and Research Institute, Bengaluru 560002, India
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| | - Phalguni Anand Alladi
- Department of Clinical Psychopharmacology & Neurotoxicology, National Institute of Mental Health and Neuro Sciences, Bengaluru 560029, India
| |
Collapse
|
13
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
14
|
Lu L, Kong W, Zhou K, Chen J, Hou Y, Dou H, Liang J. Association of lipoproteins and thyroid hormones with cognitive dysfunction in patients with systemic lupus erythematosus. BMC Rheumatol 2021; 5:18. [PMID: 34103098 PMCID: PMC8188676 DOI: 10.1186/s41927-021-00190-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Background Neuropsychiatric manifestations occur in up to 75% of adult systemic lupus erythematosus (SLE) patients and are one of the major causes of death in SLE patients. Cognitive dysfunction is a typical clinical feature of neuropsychiatric SLE (NPSLE), which seriously affects the quality of life of patients. Dyslipidaemia and thyroid symptoms, which are prevalent in SLE patients, have both been related to neuropsychiatric disturbances, including significant psychiatric and cognitive disturbances. This study aimed to investigate whether cognitive dysfunction in patients with SLE was related to the expression of serum thyroid hormone and lipoprotein levels. Methods A total of 121 patients with SLE and 65 healthy controls (HCs) at Nanjing Drum Tower Hospital completed a cognitive function test, and 81 SLE patients were divided into a high-cognition (n = 33) group and a low-cognition group (n = 48). The clinical and laboratory characteristics of the patients were compared; moreover, correlations between serum HDL-C, LDL-C, F-T3 and F-T4 levels and cognitive function were analysed. Serum levels of APOE, APOA1, IGF-1, and IGFBP7 in 81 patients were detected by ELISA, and the correlation between these four proteins and cognition was analysed separately. Results The patients with SLE with abnormal cognitive function were less educated than the HCs. For low-cognition patients, the levels of albumin, F-T3 (P < 0.05) and F-T4 decreased, while D-dimer, anti-dsDNA antibody, and IgM levels increased. Serum F-T3 and F-T4 levels positively correlated with cognition. Furthermore, serum protein levels of APOE and APOA1 showed no difference between the high- and low-cognition groups. However, the serum APOE levels were negatively correlated with line orientation scores, and APOA1 levels were positively correlated with coding scores. Conclusions Serum F-T3 and F-T4 levels were both positively correlated with four indexes of cognition (language was the exception), while serum APOE levels were negatively correlated with line orientation scores, APOA1 levels were positively correlated with coding scores, and IGFBP7 levels were negatively correlated with figure copy scores. These results demonstrated that F-T3 and F-T4 might be clinical biomarkers of cognitive dysfunction in SLE. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-021-00190-7.
Collapse
Affiliation(s)
- Li Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Wei Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Kangxing Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jinglei Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Yayi Hou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China. .,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Huan Dou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China. .,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China. .,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
15
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
16
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
17
|
Ausó E, Gómez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease Early Diagnosis. J Pers Med 2020; 10:E114. [PMID: 32899797 PMCID: PMC7563965 DOI: 10.3390/jpm10030114] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.
Collapse
Affiliation(s)
| | | | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain; (E.A.); (V.G.-V.)
| |
Collapse
|
18
|
Yang YJ, Luo T, Zhao Y, Jiang SZ, Xiong JW, Zhan JQ, Yu B, Yan K, Wei B. Altered insulin-like growth factor-2 signaling is associated with psychopathology and cognitive deficits in patients with schizophrenia. PLoS One 2020; 15:e0226688. [PMID: 32191705 PMCID: PMC7081987 DOI: 10.1371/journal.pone.0226688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/03/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schizophrenia is linked with abnormal brain neurodevelopment, on which IGF-2 (insulin-like growth factor-2) has a great impact. The purpose of this study was to assess the levels of serum IGF-2 and its binding proteins IGFBP-3 and IGFBP-7 in schizophrenia patients and the associations of these proteins with schizophrenia psychopathology and cognitive deficits. METHODS Thirty-two schizophrenia patients and 30 healthy controls were recruited. The PANSS and a neurocognitive test battery were used to assess schizophrenic symptomatology and cognition, respectively. Serum IGF-2, IGFBP-3 and IGFBP-7 levels were determined using ELISA. RESULTS The schizophrenia patients had a much lower content of serum IGF-2, IGFBP-3 and IGFBP-7 than controls. For the patients, IGF-2 levels were negatively correlated with the PANSS negative scores and positively associated with working memory, attention, and executive function. The correlations between IGF-2 and the PANSS negative scores, working memory or executive function were still significant after controlling for age, sex, education level, BMI, illness history and age of onset. No significant associations of IGFBP-3 or IGFBP-7 with the PANSS scores and cognitive function were observed in the patients. CONCLUSIONS Our study demonstrates that serum IGF-2 was significantly correlated with negative and cognitive symptoms in patients with schizophrenia, suggesting that altered IGF-2 signaling may be implicated in the psychopathology and cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yuan-Jian Yang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Tao Luo
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Ying Zhao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shu-Zhen Jiang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Jian-Wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Bin Yu
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Kun Yan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Bo Wei
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- * E-mail:
| |
Collapse
|
19
|
Yao F, Hong X, Li S, Zhang Y, Zhao Q, Du W, Wang Y, Ni J. Urine-Based Biomarkers for Alzheimer’s Disease Identified Through Coupling Computational and Experimental Methods. J Alzheimers Dis 2018; 65:421-431. [DOI: 10.3233/jad-180261] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fang Yao
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoyu Hong
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Shuiming Li
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Yan Zhang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital, Changchun, China
| | - Wei Du
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Polak T, Herrmann MJ, Müller LD, Zeller JBM, Katzorke A, Fischer M, Spielmann F, Weinmann E, Hommers L, Lauer M, Fallgatter AJ, Deckert J. Near-infrared spectroscopy (NIRS) and vagus somatosensory evoked potentials (VSEP) in the early diagnosis of Alzheimer’s disease: rationale, design, methods, and first baseline data of the Vogel study. J Neural Transm (Vienna) 2017; 124:1473-1488. [DOI: 10.1007/s00702-017-1781-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023]
|
21
|
Delgado-Morales R, Agís-Balboa RC, Esteller M, Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin Epigenetics 2017; 9:67. [PMID: 28670349 PMCID: PMC5493012 DOI: 10.1186/s13148-017-0365-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022] Open
Abstract
Ageing is the main risk factor for human neurological disorders. Among the diverse molecular pathways that govern ageing, epigenetics can guide age-associated decline in part by regulating gene expression and also through the modulation of genomic instability and high-order chromatin architecture. Epigenetic mechanisms are involved in the regulation of neural differentiation as well as in functional processes related to memory consolidation, learning or cognition during healthy lifespan. On the other side of the coin, many neurodegenerative diseases are associated with epigenetic dysregulation. The reversible nature of epigenetic factors and, especially, their role as mediators between the genome and the environment make them exciting candidates as therapeutic targets. Rather than providing a broad description of the pathways epigenetically deregulated in human neurological disorders, in this review, we have focused on the potential use of epigenetic enzymes as druggable targets to ameliorate neural decline during normal ageing and especially in neurological disorders. We will firstly discuss recent progress that supports a key role of epigenetic regulation during healthy ageing with an emphasis on the role of epigenetic regulation in adult neurogenesis. Then, we will focus on epigenetic alterations associated with ageing-related human disorders of the central nervous system. We will discuss examples in the context of psychiatric disorders, including schizophrenia and posttraumatic stress disorders, and also dementia or Alzheimer's disease as the most frequent neurodegenerative disease. Finally, methodological limitations and future perspectives are discussed.
Collapse
Affiliation(s)
- Raúl Delgado-Morales
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Roberto Carlos Agís-Balboa
- Psychiatric Diseases Research Group, Galicia Sur Health Research Institute, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM, Vigo, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain
| |
Collapse
|
22
|
Delgado-Morales R, Esteller M. Opening up the DNA methylome of dementia. Mol Psychiatry 2017; 22:485-496. [PMID: 28044062 PMCID: PMC5378809 DOI: 10.1038/mp.2016.242] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023]
Abstract
Dementia is a complex clinical condition characterized by several cognitive impairments that interfere with patient independence in executing everyday tasks. Various neurodegenerative disorders have dementia in common among their clinical manifestations. In addition, these diseases, such as Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies and frontotemporal dementia, share molecular alterations at the neuropathological level. In recent years, the field of neuroepigenetics has expanded massively and it is now clear that epigenetic processes, such as DNA methylation, are mechanisms involved in both normal and pathological brain function. Despite the persistent methodological and conceptual caveats, it has been reported that several genes fundamental to the development of neurodegenerative disorders are deregulated by aberrant methylation patterns of their promoters, and even common epigenetic signatures for some dementia-associated pathologies have been identified. Therefore, understanding the epigenetic mechanisms that are altered in dementia, especially those associated with the initial phases, will allow us not only to understand the etiopathology of dementia and its progression but also to design effective therapies to reduce this global public health problem. This review provides an in-depth summary of our current knowledge about DNA methylation in dementia, focusing exclusively on the analyses performed in human brain.
Collapse
Affiliation(s)
- R Delgado-Morales
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Modulated DISP3/PTCHD2 expression influences neural stem cell fate decisions. Sci Rep 2017; 7:41597. [PMID: 28134287 PMCID: PMC5278513 DOI: 10.1038/srep41597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Neural stem cells (NSCs) are defined by their dual ability to self-renew through mitotic cell division or differentiate into the varied neural cell types of the CNS. DISP3/PTCHD2 is a sterol-sensing domain-containing protein, highly expressed in neural tissues, whose expression is regulated by thyroid hormone. In the present study, we used a mouse NSC line to investigate what effect DISP3 may have on the self-renewal and/or differentiation potential of the cells. We demonstrated that NSC differentiation triggered significant reduction in DISP3 expression in the resulting astrocytes, neurons and oligodendrocytes. Moreover, when DISP3 expression was disrupted, the NSC "stemness" was suppressed, leading to a larger population of cells undergoing spontaneous neuronal differentiation. Conversely, overexpression of DISP3 resulted in increased NSC proliferation. When NSCs were cultured under differentiation conditions, we observed that the lack of DISP3 augmented the number of NSCs differentiating into each of the neural cell lineages and that neuronal morphology was altered. In contrast, DISP3 overexpression resulted in impaired cell differentiation. Taken together, our findings imply that DISP3 may help dictate the NSC cell fate to either undergo self-renewal or switch to the terminal differentiation cell program.
Collapse
|
24
|
Smith RG, Lunnon K. DNA Modifications and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:303-319. [PMID: 28523553 DOI: 10.1007/978-3-319-53889-1_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting millions of people worldwide. While a number of studies have focused on identifying genetic variants that contribute to the development and progression of late-onset AD, the majority of these only have a relatively small effect size. There are also a number of other risk factors, for example, age, gender, and other comorbidities; however, how these influence disease risk is not known. Therefore, in recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we discuss the current state of play for research into DNA modifications in AD, the most well studied being 5-methylcytosine (5-mC). We describe the earlier studies of candidate genes and global measures of DNA modifications in human AD samples, in addition to studies in mouse models of AD. We focus on recent epigenome-wide association studies (EWAS) in human AD, using microarray technology, examining a number of key study design issues pertinent to such studies. Finally, we discuss how new technological advances could further progress the research field.
Collapse
Affiliation(s)
- Rebecca G Smith
- University of Exeter Medical School, RILD, Barrack Road, Exeter, Devon, UK
| | - Katie Lunnon
- University of Exeter Medical School, RILD, Barrack Road, Exeter, Devon, UK.
| |
Collapse
|
25
|
Grzybek M, Golonko A, Walczak M, Lisowski P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 2016; 99:84-120. [PMID: 27890672 DOI: 10.1016/j.nbd.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.
Collapse
Affiliation(s)
- Maciej Grzybek
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Aleksandra Golonko
- Department of Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Marta Walczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; iPS Cell-Based Disease Modelling Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
26
|
A-to-I RNA editing of the IGFBP7 transcript increases during aging in porcine brain tissues. Biochem Biophys Res Commun 2016; 479:596-601. [DOI: 10.1016/j.bbrc.2016.09.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023]
|
27
|
Jiang J, Chen Z, Liang B, Yan J, Zhang Y, Jiang H. Insulin-like growth factor-1 and insulin-like growth factor binding protein 3 and risk of postoperative cognitive dysfunction. SPRINGERPLUS 2015; 4:787. [PMID: 26702376 PMCID: PMC4684561 DOI: 10.1186/s40064-015-1586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/04/2015] [Indexed: 01/16/2023]
Abstract
Insulin-like growth factor (IGF)-1 is implicated in learning and memory. Experimental studies have suggested that the IGF-1 system is beneficial in cognition, especially in Alzheimer’s disease (AD), by opposing Aβ amyloid processing and hyperphosphorylated tau toxicity. Low IGF-I and insulin-like growth factor binding protein (IGFBP)-3 serum levels are significantly associated with AD. To assess the relationship between circulating IGF-I and IGFBP3 levels and change of postoperative cognition. The study was performed in patients scheduled for elective head and neck carcinoma surgery under general anesthesia. On the day before the operation and postoperative days 1, 3 and 7, mini-mental state examination (MMSE) was performed by the same doctor, and blood samples were collected at 08:00 h after overnight fasting. The circulating levels of IGF-1 and IGFBP3 were measured by enzyme-linked immunosorbent assay. One hundred and two patients completed all four MMSE tests and forty-four of them completed all the four blood samples collection. Postoperative circulating IGF-1 level, ratio of IGF-1/IGFBP3 and MMSE score significantly decreased, whereas IGFBP3 level significantly increased compared with preoperative values in total patients. The change trends of circulating IGF-1 level and MMSE score were similar. Preoperative circulating IGF-1 level, ratio and MMSE score were significantly lower in POCD group compared to non-POCD group. There was no significant difference in preoperative level of circulating IGFBP3 between the two groups. Preoperative circulating IGF-1 level was negatively correlated with age and positively with MMSE. Logistic regression analysis revealed that lower preoperative IGF-1 level and elderly patients increased the odds of POCD. Down-regulation of circulating IGF-1 level may be involved in the mechanism of postoperative cognitive dysfunction. Older patients had lower circulating IGF-1 levels and were more susceptible to POCD.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Zhifeng Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Bing Liang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Ying Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| |
Collapse
|
28
|
Sanchez-Mut JV, Gräff J. Epigenetic Alterations in Alzheimer's Disease. Front Behav Neurosci 2015; 9:347. [PMID: 26734709 PMCID: PMC4681781 DOI: 10.3389/fnbeh.2015.00347] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.
Collapse
Affiliation(s)
- Jose V Sanchez-Mut
- Neuroepigenetics Laboratory - UPGRAEFF, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Johannes Gräff
- Neuroepigenetics Laboratory - UPGRAEFF, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
29
|
West S, Bhugra P. Emerging drug targets for Aβ and tau in Alzheimer's disease: a systematic review. Br J Clin Pharmacol 2015; 80:221-34. [PMID: 25753046 DOI: 10.1111/bcp.12621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 01/20/2023] Open
Abstract
AIMS Currently, treatment for Alzheimer's disease (AD) focuses on the cholinergic hypothesis and provides limited symptomatic effects. Research currently focuses on other factors that are thought to contribute to AD development such as tau proteins and Aβ deposits, and how modification of the associated pathology affects outcomes in patients. This systematic review summarizes and appraises the evidence for the emerging drugs affecting Aβ and tau pathology in AD. METHODS A comprehensive, systematic online database search was conducted using the databases ScienceDirect and PubMed to include original research articles. A systematic review was conducted following a minimum set of standards, as outlined by The PRISMA Group . Specific inclusion and exclusion criteria were followed and studies fitting the criteria were selected. No human trials were included in this review. In vitro and in vivo AD models were used to assess efficacy to ensure studied agents were emerging targets without large bodies of evidence. RESULTS The majority of studies showed statistically significant improvement (P < 0.05) of Aβ and/or tau pathology, or cognitive effects. Many studies conducted in AD animal models have shown a reduction in Aβ peptide burden and a reduction in tau phosphorylation post-intervention. This has the potential to reduce plaque formation and neuronal degeneration. CONCLUSIONS There are many emerging targets showing promising results in the effort to modify the pathological effects associated with AD. Many of the trials also provided evidence of the clinical effects of such drugs reducing pathological outcomes, which was often demonstrated as an improvement of cognition.
Collapse
Affiliation(s)
- Sophie West
- Sunderland Pharmacy School, Department of Pharmacy, Health and Wellbeing, The University of Sunderland, City Campus, Chester Road, Sunderland, SR1 3SD, United Kingdom
| | - Praveen Bhugra
- Sunderland Pharmacy School, Department of Pharmacy, Health and Wellbeing, The University of Sunderland, City Campus, Chester Road, Sunderland, SR1 3SD, United Kingdom
| |
Collapse
|
30
|
Iwamoto T, Ouchi Y. Emerging evidence of insulin-like growth factor 2 as a memory enhancer: a unique animal model of cognitive dysfunction with impaired adult neurogenesis. Rev Neurosci 2015; 25:559-74. [PMID: 24778346 DOI: 10.1515/revneuro-2014-0010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/28/2014] [Indexed: 12/29/2022]
Abstract
In the current aging society, cognitive dysfunction is one of the most serious issues that should be urgently resolved. It also affects a wide range of age groups harboring neurological and psychiatric disorders, such as Alzheimer's disease and schizophrenia. Although the molecular mechanism of memory impairment still remains to be determined, neuronal loss and dysfunction has been revealed to mainly attribute to its pathology. The discovery of neural stem cells in the adult brain that are proliferating and able to generate functional neurons has given rise to the idea that neuronal loss could be rescued by manipulating endogenous neural progenitor and stem cells. To this end, we must characterize them in detail and their developmental programming must be better understood. A growing body of evidence has indicated that insulin-like peptides are involved in learning and memory and maintenance of neural progenitor and stem cells, and clinical trials of insulin as a memory enhancer have begun. In contrast to the expectation of insulin and IGF1, the roles of IGF2 in cognitive ability have been poorly understood. However, recent evidence demonstrated in rodents suggests that IGF2 may play a pivotal role in adult neurogenesis and cognitive function. Here, we would like to review the rapidly growing world of IGF2 in cognitive neuroscience and introduce the evidence that its deficit is indeed involved in the impairment of the hippocampal neurogenesis and cognitive dysfunction in the model mouse of 22q11.2 deletion syndrome, which deletes Dgcr8, a critical gene for microRNA processing.
Collapse
|
31
|
Abstract
Recent data support the view that epigenetic processes play a role in memory consolidation and help to transmit acquired memories even across generations in a Lamarckian manner. Drugs that target the epigenetic machinery were found to enhance memory function in rodents and ameliorate disease phenotypes in models for brain diseases such as Alzheimer's disease, Chorea Huntington, Depression or Schizophrenia. In this review, I will give an overview on the current knowledge of epigenetic processes in memory function and brain disease with a focus on Morbus Alzheimer as the most common neurodegenerative disease. I will address the question whether an epigenetic therapy could indeed be a suitable therapeutic avenue to treat brain diseases and discuss the necessary steps that should help to take neuroepigenetic research to the next level.
Collapse
Affiliation(s)
- Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|