1
|
Armirola-Ricaurte C, Morant L, Adant I, Hamed SA, Pipis M, Efthymiou S, Amor-Barris S, Atkinson D, Van de Vondel L, Tomic A, de Vriendt E, Zuchner S, Ghesquiere B, Hanna M, Houlden H, Lunn MP, Reilly MM, Rasic VM, Jordanova A. Biallelic variants in COX18 cause a mitochondrial disorder primarily manifesting as peripheral neuropathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309787. [PMID: 39006432 PMCID: PMC11245062 DOI: 10.1101/2024.07.03.24309787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Defects in mitochondrial dynamics are a common cause of Charcot-Marie-Tooth disease (CMT), while primary deficiencies in the mitochondrial respiratory chain (MRC) are rare and atypical for this etiology. This study aims to report COX18 as a novel CMT-causing gene. This gene encodes an assembly factor of mitochondrial Complex IV (CIV) that translocates the C-terminal tail of MTCO2 across the mitochondrial inner membrane. Exome sequencing was performed in four affected individuals. The patients and available family members underwent thorough neurological and electrophysiological assessment. The impact of one of the identified variants on splicing, protein levels, and mitochondrial bioenergetics was investigated in patient-derived lymphoblasts. The functionality of the mutant protein was assessed using a Proteinase K protection assay and immunoblotting. Neuronal relevance of COX18 was assessed in a Drosophila melanogaster knockdown model. Exome sequencing coupled with homozygosity mapping revealed a homozygous splice variant c.435-6A>G in COX18 in two siblings with early-onset progressive axonal sensory-motor peripheral neuropathy. By querying external databases, we identified two additional families with rare deleterious biallelic variants in COX18 . All affected individuals presented with axonal CMT and some patients also exhibited central nervous system symptoms, such as dystonia and spasticity. Functional characterization of the c.435-6A>G variant demonstrated that it leads to the expression of an alternative transcript that lacks exon 2, resulting in a stable but defective COX18 isoform. The mutant protein impairs CIV assembly and activity, leading to a reduction in mitochondrial membrane potential. Downregulation of the COX18 homolog in Drosophila melanogaster displayed signs of neurodegeneration, including locomotor deficit and progressive axonal degeneration of sensory neurons. Our study presents genetic and functional evidence that supports COX18 as a newly identified gene candidate for autosomal recessive axonal CMT with or without central nervous system involvement. These findings emphasize the significance of peripheral neuropathy within the spectrum of primary mitochondrial disorders and the role of mitochondrial CIV in the development of CMT. Our research has important implications for the diagnostic workup of CMT patients.
Collapse
|
2
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. Neurobiol Dis 2024; 195:106501. [PMID: 38583640 DOI: 10.1016/j.nbd.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK.
| |
Collapse
|
3
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.09.536152. [PMID: 38559020 PMCID: PMC10979848 DOI: 10.1101/2023.04.09.536152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| |
Collapse
|
4
|
Van de Vondel L, De Winter J, Timmerman V, Baets J. Overarching pathomechanisms in inherited peripheral neuropathies, spastic paraplegias, and cerebellar ataxias. Trends Neurosci 2024; 47:227-238. [PMID: 38360512 DOI: 10.1016/j.tins.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
5
|
Morant L, Petrovic-Erfurth ML, Jordanova A. An Adapted GeneSwitch Toolkit for Comparable Cellular and Animal Models: A Proof of Concept in Modeling Charcot-Marie-Tooth Neuropathy. Int J Mol Sci 2023; 24:16138. [PMID: 38003325 PMCID: PMC10670994 DOI: 10.3390/ijms242216138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Investigating the impact of disease-causing mutations, their affected pathways, and/or potential therapeutic strategies using disease modeling often requires the generation of different in vivo and in cellulo models. To date, several approaches have been established to induce transgene expression in a controlled manner in different model systems. Several rounds of subcloning are, however, required, depending on the model organism used, thus bringing labor-intensive experiments into the technical approach and analysis comparison. The GeneSwitch™ technology is an adapted version of the classical UAS-GAL4 inducible system, allowing the spatial and temporal modulation of transgene expression. It consists of three components: a plasmid encoding for the chimeric regulatory pSwitch protein, Mifepristone as an inducer, and an inducible plasmid. While the pSwitch-containing first plasmid can be used both in vivo and in cellulo, the inducible second plasmid can only be used in cellulo. This requires a specific subcloning strategy of the inducible plasmid tailored to the model organism used. To avoid this step and unify gene expression in the transgenic models generated, we replaced the backbone vector with standard pUAS-attB plasmid for both plasmids containing either the chimeric GeneSwitch™ cDNA sequence or the transgene cDNA sequence. We optimized this adapted system to regulate transgene expression in several mammalian cell lines. Moreover, we took advantage of this new system to generate unified cellular and fruit fly models for YARS1-induced Charco-Marie-Tooth neuropathy (CMT). These new models displayed the expected CMT-like phenotypes. In the N2a neuroblastoma cells expressing YARS1 transgenes, we observed the typical "teardrop" distribution of the synthetase that was perturbed when expressing the YARS1CMT mutation. In flies, the ubiquitous expression of YARS1CMT induced dose-dependent developmental lethality and pan-neuronal expression caused locomotor deficit, while expression of the wild-type allele was harmless. Our proof-of-concept disease modeling studies support the efficacy of the adapted transgenesis system as a powerful tool allowing the design of studies with optimal data comparability.
Collapse
Affiliation(s)
- Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
6
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Sleigh JN, Villarroel-Campos D, Surana S, Wickenden T, Tong Y, Simkin RL, Vargas JNS, Rhymes ER, Tosolini AP, West SJ, Zhang Q, Yang XL, Schiavo G. Boosting peripheral BDNF rescues impaired in vivo axonal transport in CMT2D mice. JCI Insight 2023; 8:e157191. [PMID: 36928301 PMCID: PMC10243821 DOI: 10.1172/jci.insight.157191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Gain-of-function mutations in the housekeeping gene GARS1, which lead to the expression of toxic versions of glycyl-tRNA synthetase (GlyRS), cause the selective motor and sensory pathology characterizing Charcot-Marie-Tooth disease (CMT). Aberrant interactions between GlyRS mutants and different proteins, including neurotrophin receptor tropomyosin receptor kinase receptor B (TrkB), underlie CMT type 2D (CMT2D); however, our pathomechanistic understanding of this untreatable peripheral neuropathy remains incomplete. Through intravital imaging of the sciatic nerve, we show that CMT2D mice displayed early and persistent disturbances in axonal transport of neurotrophin-containing signaling endosomes in vivo. We discovered that brain-derived neurotrophic factor (BDNF)/TrkB impairments correlated with transport disruption and overall CMT2D neuropathology and that inhibition of this pathway at the nerve-muscle interface perturbed endosome transport in wild-type axons. Accordingly, supplementation of muscles with BDNF, but not other neurotrophins, completely restored physiological axonal transport in neuropathic mice. Together, these findings suggest that selectively targeting muscles with BDNF-boosting therapies could represent a viable therapeutic strategy for CMT2D.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - Tahmina Wickenden
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Jose Norberto S. Vargas
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | | | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| |
Collapse
|
8
|
Ermanoska B, Asselbergh B, Morant L, Petrovic-Erfurth ML, Hosseinibarkooie S, Leitão-Gonçalves R, Almeida-Souza L, Bervoets S, Sun L, Lee L, Atkinson D, Khanghahi A, Tournev I, Callaerts P, Verstreken P, Yang XL, Wirth B, Rodal AA, Timmerman V, Goode BL, Godenschwege TA, Jordanova A. Tyrosyl-tRNA synthetase has a noncanonical function in actin bundling. Nat Commun 2023; 14:999. [PMID: 36890170 PMCID: PMC9995517 DOI: 10.1038/s41467-023-35908-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/06/2023] [Indexed: 03/10/2023] Open
Abstract
Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.
Collapse
Affiliation(s)
- Biljana Ermanoska
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
- Division of Endocrinology and Metabolism and Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ricardo Leitão-Gonçalves
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Frontiers Media SA, Lausanne, Switzerland
| | - Leonardo Almeida-Souza
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Helsinki Institute of Life Science, Institute of Biotechnology & Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sven Bervoets
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangdong, China
| | - LaTasha Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
- Center for Social and Clinical Research, National Minority Quality Forum, Washington, DC, USA
| | - Derek Atkinson
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Akram Khanghahi
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Ivaylo Tournev
- Department of Neurology, Medical University-Sofia, 1431, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618, Sofia, Bulgaria
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brunhilde Wirth
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Vincent Timmerman
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431, Sofia, Bulgaria.
| |
Collapse
|
9
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
10
|
Zhang H, Zhou ZW, Sun L. Aminoacyl-tRNA synthetases in Charcot-Marie-Tooth disease: A gain or a loss? J Neurochem 2020; 157:351-369. [PMID: 33236345 PMCID: PMC8247414 DOI: 10.1111/jnc.15249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Charcot‐Marie‐Tooth disease (CMT) is one of the most common inherited neurodegenerative disorders with an increasing number of CMT‐associated variants identified as causative factors, however, there has been no effective therapy for CMT to date. Aminoacyl‐tRNA synthetases (aaRS) are essential enzymes in translation by charging amino acids onto their cognate tRNAs during protein synthesis. Dominant monoallelic variants of aaRSs have been largely implicated in CMT. Some aaRSs variants affect enzymatic activity, demonstrating a loss‐of‐function property. In contrast, loss of aminoacylation activity is neither necessary nor sufficient for some aaRSs variants to cause CMT. Instead, accumulating evidence from CMT patient samples, animal genetic studies or protein conformational analysis has pinpointed toxic gain‐of‐function of aaRSs variants in CMT, suggesting complicated mechanisms underlying the pathogenesis of CMT. In this review, we summarize the latest advances in studies on CMT‐linked aaRSs, with a particular focus on their functions. The current challenges, future direction and the promising candidates for potential treatment of CMT are also discussed. ![]()
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease. Int J Mol Sci 2020; 21:ijms21197419. [PMID: 33049996 PMCID: PMC7582988 DOI: 10.3390/ijms21197419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.
Collapse
|
12
|
Guillaud L, El-Agamy SE, Otsuki M, Terenzio M. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Front Mol Neurosci 2020; 13:556175. [PMID: 33071754 PMCID: PMC7531239 DOI: 10.3389/fnmol.2020.556175] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons are highly polarized cells with an elongated axon that extends far away from the cell body. To maintain their homeostasis, neurons rely extensively on axonal transport of membranous organelles and other molecular complexes. Axonal transport allows for spatio-temporal activation and modulation of numerous molecular cascades, thus playing a central role in the establishment of neuronal polarity, axonal growth and stabilization, and synapses formation. Anterograde and retrograde axonal transport are supported by various molecular motors, such as kinesins and dynein, and a complex microtubule network. In this review article, we will primarily discuss the molecular mechanisms underlying anterograde axonal transport and its role in neuronal development and maturation, including the establishment of functional synaptic connections. We will then provide an overview of the molecular and cellular perturbations that affect axonal transport and are often associated with axonal degeneration. Lastly, we will relate our current understanding of the role of axonal trafficking concerning anterograde trafficking of mRNA and its involvement in the maintenance of the axonal compartment and disease.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Miki Otsuki
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
13
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
14
|
Transcriptional dysregulation by a nucleus-localized aminoacyl-tRNA synthetase associated with Charcot-Marie-Tooth neuropathy. Nat Commun 2019; 10:5045. [PMID: 31695036 PMCID: PMC6834567 DOI: 10.1038/s41467-019-12909-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a length-dependent peripheral neuropathy. The aminoacyl-tRNA synthetases constitute the largest protein family implicated in CMT. Aminoacyl-tRNA synthetases are predominantly cytoplasmic, but are also present in the nucleus. Here we show that a nuclear function of tyrosyl-tRNA synthetase (TyrRS) is implicated in a Drosophila model of CMT. CMT-causing mutations in TyrRS induce unique conformational changes, which confer capacity for aberrant interactions with transcriptional regulators in the nucleus, leading to transcription factor E2F1 hyperactivation. Using neuronal tissues, we reveal a broad transcriptional regulation network associated with wild-type TyrRS expression, which is disturbed when a CMT-mutant is expressed. Pharmacological inhibition of TyrRS nuclear entry with embelin reduces, whereas genetic nuclear exclusion of mutant TyrRS prevents hallmark phenotypes of CMT in the Drosophila model. These data highlight that this translation factor may contribute to transcriptional regulation in neurons, and suggest a therapeutic strategy for CMT. Tyrosyl-tRNA synthetase (TyrRS) is a translation factor and predominantly cytoplasmic, but can also be found in the nucleus. Here authors show using a fly model of Charcot-Marie-Tooth (CMT) disease that nuclear localization of mutant TyrRS contributes to the CMT-like phenotype.
Collapse
|
15
|
Benoy V, Van Helleputte L, Prior R, d'Ydewalle C, Haeck W, Geens N, Scheveneels W, Schevenels B, Cader MZ, Talbot K, Kozikowski AP, Vanden Berghe P, Van Damme P, Robberecht W, Van Den Bosch L. HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain 2019; 141:673-687. [PMID: 29415205 PMCID: PMC5837793 DOI: 10.1093/brain/awx375] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Peripheral nerve axons require a well-organized axonal microtubule network for efficient transport to ensure the constant crosstalk between soma and synapse. Mutations in more than 80 different genes cause Charcot-Marie-Tooth disease, which is the most common inherited disorder affecting peripheral nerves. This genetic heterogeneity has hampered the development of therapeutics for Charcot-Marie-Tooth disease. The aim of this study was to explore whether histone deacetylase 6 (HDAC6) can serve as a therapeutic target focusing on the mutant glycyl-tRNA synthetase (GlyRS/GARS)-induced peripheral neuropathy. Peripheral nerves and dorsal root ganglia from the C201R mutant Gars mouse model showed reduced acetylated α-tubulin levels. In primary dorsal root ganglion neurons, mutant GlyRS affected neurite length and disrupted normal mitochondrial transport. We demonstrated that GlyRS co-immunoprecipitated with HDAC6 and that this interaction was blocked by tubastatin A, a selective inhibitor of the deacetylating function of HDAC6. Moreover, HDAC6 inhibition restored mitochondrial axonal transport in mutant GlyRS-expressing neurons. Systemic delivery of a specific HDAC6 inhibitor increased α-tubulin acetylation in peripheral nerves and partially restored nerve conduction and motor behaviour in mutant Gars mice. Our study demonstrates that α-tubulin deacetylation and disrupted axonal transport may represent a common pathogenic mechanism underlying Charcot-Marie-Tooth disease and it broadens the therapeutic potential of selective HDAC6 inhibition to other genetic forms of axonal Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Veronick Benoy
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Lawrence Van Helleputte
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Robert Prior
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Constantin d'Ydewalle
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Wanda Haeck
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Natasja Geens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Wendy Scheveneels
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Begga Schevenels
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.,The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alan P Kozikowski
- Department of Medicinal Chemistry and Pharmacognosy, Drug Discovery Program, University of Illinois at Chicago, Chicago, USA
| | - Pieter Vanden Berghe
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
16
|
Wei N, Zhang Q, Yang XL. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5321-5339. [PMID: 30643024 DOI: 10.1074/jbc.rev118.002955] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that catalyze the first reaction in protein biosynthesis, namely the charging of transfer RNAs (tRNAs) with their cognate amino acids. aaRSs have been increasingly implicated in dominantly and recessively inherited human diseases. The most common aaRS-associated monogenic disorder is the incurable neurodegenerative disease Charcot-Marie-Tooth neuropathy (CMT), caused by dominant mono-allelic mutations in aaRSs. With six currently known members (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, and MetRS), aaRSs represent the largest protein family implicated in CMT etiology. After the initial discovery linking aaRSs to CMT, the field has progressed from understanding whether impaired tRNA charging is a critical component of this disease to elucidating the specific pathways affected by CMT-causing mutations in aaRSs. Although many aaRS CMT mutants result in loss of tRNA aminoacylation function, animal genetics studies demonstrated that dominant mutations in GlyRS cause CMT through toxic gain-of-function effects, which also may apply to other aaRS-linked CMT subtypes. The CMT-causing mechanism is likely to be multifactorial and involves multiple cellular compartments, including the nucleus and the extracellular space, where the normal WT enzymes also appear. Thus, the association of aaRSs with neuropathy is relevant to discoveries indicating that aaRSs also have nonenzymatic regulatory functions that coordinate protein synthesis with other biological processes. Through genetic, functional, and structural analyses, commonalities among different mutations and different aaRS-linked CMT subtypes have begun to emerge, providing insights into the nonenzymatic functions of aaRSs and the pathogenesis of aaRS-linked CMT to guide therapeutic development to treat this disease.
Collapse
Affiliation(s)
- Na Wei
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Qian Zhang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Xiang-Lei Yang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
17
|
Grice SJ, Sleigh JN, Zameel Cader M. Plexin-Semaphorin Signaling Modifies Neuromuscular Defects in a Drosophila Model of Peripheral Neuropathy. Front Mol Neurosci 2018. [PMID: 29520219 PMCID: PMC5827687 DOI: 10.3389/fnmol.2018.00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dominant mutations in GARS, encoding the ubiquitous enzyme glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and Charcot-Marie-Tooth disease type 2D (CMT2D). This genetic disorder exemplifies a recurring paradigm in neurodegeneration, in which mutations in essential genes cause selective degeneration of the nervous system. Recent evidence suggests that the mechanism underlying CMT2D involves extracellular neomorphic binding of mutant GlyRS to neuronally-expressed proteins. Consistent with this, our previous studies indicate a non-cell autonomous mechanism, whereby mutant GlyRS is secreted and interacts with the neuromuscular junction (NMJ). In this Drosophila model for CMT2D, we have previously shown that mutant gars expression decreases viability and larval motor function, and causes a concurrent build-up of mutant GlyRS at the larval neuromuscular presynapse. Here, we report additional phenotypes that closely mimic the axonal branching defects of Drosophila plexin transmembrane receptor mutants, implying interference of plexin signaling in gars mutants. Individual dosage reduction of two Drosophila Plexins, plexin A (plexA) and B (plexB) enhances and represses the viability and larval motor defects caused by mutant GlyRS, respectively. However, we find plexB levels, but not plexA levels, modify mutant GlyRS association with the presynaptic membrane. Furthermore, increasing availability of the plexB ligand, Semaphorin-2a (Sema2a), alleviates the pathology and the build-up of mutant GlyRS, suggesting competition for plexB binding may be occurring between these two ligands. This toxic gain-of-function and subversion of neurodevelopmental processes indicate that signaling pathways governing axonal guidance could be integral to neuropathology and may underlie the non-cell autonomous CMT2D mechanism.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - M Zameel Cader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Boczonadi V, Jennings MJ, Horvath R. The role of tRNA synthetases in neurological and neuromuscular disorders. FEBS Lett 2018; 592:703-717. [PMID: 29288497 PMCID: PMC5873386 DOI: 10.1002/1873-3468.12962] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Aminoacyl‐tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for charging tRNAs with their cognate amino acids, therefore essential for the first step in protein synthesis. Although the majority of protein synthesis happens in the cytosol, an additional translation apparatus is required to translate the 13 mitochondrial DNA‐encoded proteins important for oxidative phosphorylation. Most ARS genes in these cellular compartments are distinct, but two genes are common, encoding aminoacyl‐tRNA synthetases of glycine (GARS) and lysine (KARS) in both mitochondria and the cytosol. Mutations in the majority of the 37 nuclear‐encoded human ARS genes have been linked to a variety of recessive and dominant tissue‐specific disorders. Current data indicate that impaired enzyme function could explain the pathogenicity, however not all pathogenic ARSs mutations result in deficient catalytic function; thus, the consequences of mutations may arise from other molecular mechanisms. The peripheral nerves are frequently affected, as illustrated by the high number of mutations in cytosolic and bifunctional tRNA synthetases causing Charcot–Marie–Tooth disease (CMT). Here we provide insights on the pathomechanisms of CMT‐causing tRNA synthetases with specific focus on the two bifunctional tRNA synthetases (GARS, KARS).
Collapse
Affiliation(s)
- Veronika Boczonadi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Jennings
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Mothersill C, Smith R, Wang J, Rusin A, Fernandez-Palomo C, Fazzari J, Seymour C. Biological Entanglement-Like Effect After Communication of Fish Prior to X-Ray Exposure. Dose Response 2018; 16:1559325817750067. [PMID: 29479295 PMCID: PMC5818098 DOI: 10.1177/1559325817750067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022] Open
Abstract
The phenomenon by which irradiated organisms including cells in vitro communicate with unirradiated neighbors is well established in biology as the radiation-induced bystander effect (RIBE). Generally, the purpose of this communication is thought to be protective and adaptive, reflecting a highly conserved evolutionary mechanism enabling rapid adjustment to stressors in the environment. Stressors known to induce the effect were recently shown to include chemicals and even pathological agents. The mechanism is unknown but our group has evidence that physical signals such as biophotons acting on cellular photoreceptors may be implicated. This raises the question of whether quantum biological processes may occur as have been demonstrated in plant photosynthesis. To test this hypothesis, we decided to see whether any form of entanglement was operational in the system. Fish from 2 completely separate locations were allowed to meet for 2 hours either before or after which fish from 1 location only (group A fish) were irradiated. The results confirm RIBE signal production in both skin and gill of fish, meeting both before and after irradiation of group A fish. The proteomic analysis revealed that direct irradiation resulted in pro-tumorigenic proteomic responses in rainbow trout. However, communication from these irradiated fish, both before and after they had been exposed to a 0.5 Gy X-ray dose, resulted in largely beneficial proteomic responses in completely nonirradiated trout. The results suggest that some form of anticipation of a stressor may occur leading to a preconditioning effect or temporally displaced awareness after the fish become entangled.
Collapse
Affiliation(s)
| | | | - Jiaxi Wang
- Department of Chemistry, Mass Spectrometry Facility, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Yamaguchi M, Takashima H. Drosophila Charcot-Marie-Tooth Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:97-117. [PMID: 29951817 DOI: 10.1007/978-981-13-0529-0_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) was initially described in 1886. It is characterized by defects in the peripheral nervous system, including sensory and motor neurons. Although more than 80 CMT-causing genes have been identified to date, an effective therapy has not yet been developed for this disease. Since Drosophila does not have axons surrounded by myelin sheaths or Schwann cells, the establishment of a demyelinating CMT model is not appropriate. In this chapter, after overviewing CMT, examples of Drosophila CMT models with axonal neuropathy and other animal CMT models are described.
Collapse
Affiliation(s)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
21
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
22
|
Bansagi B, Griffin H, Whittaker RG, Antoniadi T, Evangelista T, Miller J, Greenslade M, Forester N, Duff J, Bradshaw A, Kleinle S, Boczonadi V, Steele H, Ramesh V, Franko E, Pyle A, Lochmüller H, Chinnery PF, Horvath R. Genetic heterogeneity of motor neuropathies. Neurology 2017; 88:1226-1234. [PMID: 28251916 PMCID: PMC5373778 DOI: 10.1212/wnl.0000000000003772] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/06/2017] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. METHODS Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). RESULTS The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. CONCLUSIONS Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies.
Collapse
Affiliation(s)
- Boglarka Bansagi
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Helen Griffin
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Roger G Whittaker
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Thalia Antoniadi
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Teresinha Evangelista
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - James Miller
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Mark Greenslade
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Natalie Forester
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Jennifer Duff
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Anna Bradshaw
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Stephanie Kleinle
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Veronika Boczonadi
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Hannah Steele
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Venkateswaran Ramesh
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Edit Franko
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Angela Pyle
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Hanns Lochmüller
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Patrick F Chinnery
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK
| | - Rita Horvath
- From the MRC Centre for Neuromuscular Diseases and John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine (B.B., H.G., T.E., J.D., A.B., V.B., H.S., E.F., A.P., H.L., P.F.C., R.H.), and Institute of Neuroscience (R.G.W., J.M.), Newcastle University, Newcastle upon Tyne; Bristol Genetics Laboratory (T.A., M.G., N.F.), Pathology Sciences, North Bristol NHS Trust, Southmead Hospital; Medical Genetic Center (S.K.), Munich, Germany; Department of Paediatric Neurology (V.R.), Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust; Nuffield Department of Clinical Neurosciences (E.F.), University of Oxford; and Department of Clinical Neurosciences (P.F.C.), Cambridge Biomedical Campus, University of Cambridge, UK.
| |
Collapse
|
23
|
Molecular pathogenesis of peripheral neuropathies: insights from Drosophila models. Curr Opin Genet Dev 2017; 44:61-73. [PMID: 28213160 DOI: 10.1016/j.gde.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 01/18/2023]
Abstract
Peripheral neuropathies are characterized by degeneration of peripheral motor, sensory and/or autonomic axons, leading to progressive distal muscle weakness, sensory deficits and/or autonomic dysfunction. Acquired peripheral neuropathies, e.g., as a side effect of chemotherapy, are distinguished from inherited peripheral neuropathies (IPNs). Drosophila models for chemotherapy-induced peripheral neuropathy and several IPNs have provided novel insight into the molecular mechanisms underlying axonal degeneration. Forward genetic screens have predictive value for discovery of human IPN genes, and the pathogenicity of novel mutations in known IPN genes can be evaluated in Drosophila. Future screens for genes and compounds that modify Drosophila IPN phenotypes promise to make valuable contributions to unraveling the molecular pathogenesis and identification of therapeutic targets for these incurable diseases.
Collapse
|
24
|
Atkinson D, Nikodinovic Glumac J, Asselbergh B, Ermanoska B, Blocquel D, Steiner R, Estrada-Cuzcano A, Peeters K, Ooms T, De Vriendt E, Yang XL, Hornemann T, Milic Rasic V, Jordanova A. Sphingosine 1-phosphate lyase deficiency causes Charcot-Marie-Tooth neuropathy. Neurology 2017; 88:533-542. [PMID: 28077491 DOI: 10.1212/wnl.0000000000003595] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To identify the unknown genetic cause in a nuclear family with an axonal form of peripheral neuropathy and atypical disease course. METHODS Detailed neurologic, electrophysiologic, and neuropathologic examinations of the patients were performed. Whole exome sequencing of both affected individuals was done. The effect of the identified sequence variations was investigated at cDNA and protein level in patient-derived lymphoblasts. The plasma sphingoid base profile was analyzed. Functional consequences of neuron-specific downregulation of the gene were studied in Drosophila. RESULTS Both patients present an atypical form of axonal peripheral neuropathy, characterized by acute or subacute onset and episodes of recurrent mononeuropathy. We identified compound heterozygous mutations cosegregating with disease and absent in controls in the SGPL1 gene, encoding sphingosine 1-phosphate lyase (SPL). The p.Ser361* mutation triggers nonsense-mediated mRNA decay. The missense p.Ile184Thr mutation causes partial protein degradation. The plasma levels of sphingosine 1-phosphate and sphingosine/sphinganine ratio were increased in the patients. Neuron-specific downregulation of the Drosophila orthologue impaired the morphology of the neuromuscular junction and caused progressive degeneration of the chemosensory neurons innervating the wing margin bristles. CONCLUSIONS We suggest SPL deficiency as a cause of a distinct form of Charcot-Marie-Tooth disease in humans, thus extending the currently recognized clinical and genetic spectrum of inherited peripheral neuropathies. Our data emphasize the importance of sphingolipid metabolism for neuronal function.
Collapse
Affiliation(s)
- Derek Atkinson
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Jelena Nikodinovic Glumac
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Bob Asselbergh
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Biljana Ermanoska
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - David Blocquel
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Regula Steiner
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Alejandro Estrada-Cuzcano
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Kristien Peeters
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Tinne Ooms
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Els De Vriendt
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Xiang-Lei Yang
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Thorsten Hornemann
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Vedrana Milic Rasic
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland.
| | - Albena Jordanova
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|
25
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field.
Collapse
Affiliation(s)
- Jiongming Lu
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| | - Steven J Marygold
- b FlyBase; Department of Genetics; University of Cambridge ; Cambridge , UK
| | - Walid H Gharib
- c Interfaculty Bioinformatics Unit; University of Bern ; Bern , Switzerland
| | - Beat Suter
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| |
Collapse
|
26
|
Alexandrova J, Paulus C, Rudinger-Thirion J, Jossinet F, Frugier M. Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase. RNA Biol 2016; 12:1301-13. [PMID: 26327585 DOI: 10.1080/15476286.2015.1086866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The canonical activity of glycyl-tRNA synthetase (GARS) is to charge glycine onto its cognate tRNAs. However, outside translation, GARS also participates in many other functions. A single gene encodes both the cytosolic and mitochondrial forms of GARS but 2 mRNA isoforms were identified. Using immunolocalization assays, in vitro translation assays and bicistronic constructs we provide experimental evidence that one of these mRNAs tightly controls expression and localization of human GARS. An intricate regulatory domain was found in its 5'-UTR which displays a functional Internal Ribosome Entry Site and an upstream Open Reading Frame. Together, these elements hinder the synthesis of the mitochondrial GARS and target the translation of the cytosolic enzyme to ER-bound ribosomes. This finding reveals a complex picture of GARS translation and localization in mammals. In this context, we discuss how human GARS expression could influence its moonlighting activities and its involvement in diseases.
Collapse
Affiliation(s)
- Jana Alexandrova
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| | - Caroline Paulus
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| | - Joëlle Rudinger-Thirion
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| | - Fabrice Jossinet
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| | - Magali Frugier
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| |
Collapse
|
27
|
Storkebaum E. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation. Bioessays 2016; 38:818-29. [PMID: 27352040 PMCID: PMC5094542 DOI: 10.1002/bies.201600052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.
Collapse
Affiliation(s)
- Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
28
|
Niehues S, Bussmann J, Steffes G, Erdmann I, Köhrer C, Sun L, Wagner M, Schäfer K, Wang G, Koerdt SN, Stum M, Jaiswal S, RajBhandary UL, Thomas U, Aberle H, Burgess RW, Yang XL, Dieterich D, Storkebaum E. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun 2015; 6:7520. [PMID: 26138142 PMCID: PMC4506996 DOI: 10.1038/ncomms8520] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 05/16/2015] [Indexed: 01/06/2023] Open
Abstract
Dominant mutations in five tRNA synthetases cause Charcot-Marie-Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNA(Gly) aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT.
Collapse
Affiliation(s)
- Sven Niehues
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Julia Bussmann
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Georg Steffes
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Ines Erdmann
- 1] Research Group Neuralomics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany [2] Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Litao Sun
- The Scripps Research Institute, La Jolla, California 92037, USA
| | - Marina Wagner
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Kerstin Schäfer
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Guangxia Wang
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Sophia N Koerdt
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Morgane Stum
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Hermann Aberle
- Functional Cell Morphology Lab, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Xiang-Lei Yang
- The Scripps Research Institute, La Jolla, California 92037, USA
| | - Daniela Dieterich
- 1] Research Group Neuralomics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany [2] Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Erik Storkebaum
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| |
Collapse
|
29
|
Grice SJ, Sleigh JN, Motley WW, Liu JL, Burgess RW, Talbot K, Cader MZ. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet 2015; 24:4397-406. [PMID: 25972375 PMCID: PMC4492401 DOI: 10.1093/hmg/ddv176] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - William W Motley
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA and
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK,
| |
Collapse
|
30
|
Ekins S, Litterman NK, Arnold RJG, Burgess RW, Freundlich JS, Gray SJ, Higgins JJ, Langley B, Willis DE, Notterpek L, Pleasure D, Sereda MW, Moore A. A brief review of recent Charcot-Marie-Tooth research and priorities. F1000Res 2015; 4:53. [PMID: 25901280 PMCID: PMC4392824 DOI: 10.12688/f1000research.6160.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
This brief review of current research progress on Charcot-Marie-Tooth (CMT) disease is a summary of discussions initiated at the Hereditary Neuropathy Foundation (HNF) scientific advisory board meeting on November 7, 2014. It covers recent published and unpublished
in vitro and
in vivo research. We discuss recent promising preclinical work for CMT1A, the development of new biomarkers, the characterization of different animal models, and the analysis of the frequency of gene mutations in patients with CMT. We also describe how progress in related fields may benefit CMT therapeutic development, including the potential of gene therapy and stem cell research. We also discuss the potential to assess and improve the quality of life of CMT patients. This summary of CMT research identifies some of the gaps which may have an impact on upcoming clinical trials. We provide some priorities for CMT research and areas which HNF can support. The goal of this review is to inform the scientific community about ongoing research and to avoid unnecessary overlap, while also highlighting areas ripe for further investigation. The general collaborative approach we have taken may be useful for other rare neurological diseases.
Collapse
Affiliation(s)
- Sean Ekins
- Hereditary Neuropathy Foundation, New York, NY, 10016, USA ; Collaborations in Chemistry, Fuquay Varina, NC, 27526, USA ; Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | | | - Renée J G Arnold
- Arnold Consultancy & Technology LLC, New York, NY, 10023, USA ; Master of Public Health Program, Mount Sinai School of Medicine, New York, NY, 10029, USA ; Quorum Consulting, Inc, San Francisco, CA, 94104, USA
| | - Robert W Burgess
- The Jackson Laboratory in Bar Harbor, Bar Harbour, ME, 04609, USA
| | - Joel S Freundlich
- Department of Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Steven J Gray
- Gene Therapy Center and Dept. of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7352, USA
| | | | - Brett Langley
- Burke-Cornell Medical Research Institute, White Plains, NY, 10605, USA ; Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Dianna E Willis
- Burke-Cornell Medical Research Institute, White Plains, NY, 10605, USA
| | - Lucia Notterpek
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA ; Department of Neurology, University of California, Davis, School of Medicine, c/o Shriners Hospital, Sacramento, CA, 95817, USA
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute (MPI) of Experimental Medicine, Göttingen, 37075, Germany ; Department of Clinical Neurophysiology, University Medical Center (UMG), Göttingen, D-37075, Germany
| | - Allison Moore
- Hereditary Neuropathy Foundation, New York, NY, 10016, USA
| |
Collapse
|
31
|
Maio N, Rouault TA. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1493-512. [PMID: 25245479 DOI: 10.1016/j.bbamcr.2014.09.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/07/2014] [Indexed: 01/19/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i.e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein-protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA.
| |
Collapse
|