1
|
Kumagai S, Nakajima T, Muramatsu SI. Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases. Expert Opin Biol Ther 2024; 24:773-785. [PMID: 39066718 DOI: 10.1080/14712598.2024.2386339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION In gene therapy with adeno-associated virus (AAV) vectors for diseases of the central nervous system, the vectors can be administered into blood vessels, cerebrospinal fluid space, or the brain parenchyma. When gene transfer to a large area of the brain is required, the first two methods are used, but for diseases in which local gene transfer is expected to be effective, vectors are administered directly into the brain parenchyma. AREAS COVERED Strategies for intraparenchymal vector delivery in gene therapy for Parkinson's disease, aromatic l-amino acid decarboxylase (AADC) deficiency, and epilepsy are reviewed. EXPERT OPINION Stereotactic intraparenchymal injection of AAV vectors allows precise gene delivery to the target site. Although more surgically invasive than intravascular or intrathecal administration, intraparenchymal vector delivery has the advantage of a lower vector dose, and preexisting neutralizing antibodies have little effect on the transduction efficacy. This approach improves motor function in AADC deficiency and led to regulatory approval of an AAV vector for the disease in the EU. Although further validation through clinical studies is needed, direct infusion of viral vectors into the brain parenchyma is expected to be a novel treatment for Parkinson's disease and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Airavaara M, Saarma M. Viral and nonviral approaches. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:83-97. [PMID: 39341664 DOI: 10.1016/b978-0-323-90120-8.00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neurodegenerative diseases pose a substantial unmet medical need, and no disease-modifying treatments exist. Neurotrophic factors have been studied for decades as a therapy to slow down or stop the progression of these diseases. In this chapter, we focus on Parkinson disease, the second most common neurodegenerative disorder, and on studies carried out with neurotrophic factors. We explore the routes of administration, how the invasive intracranial administration is the challenge, and different ways to deliver the therapeutic proteins, for example, gene therapy and protein therapy. This therapy concept has been developed to mostly work on the restoration of the lost nigrostriatal dopaminergic neuronal connectivity in the brain. However, in recent years, the center of attention of neurotrophic factors has been on maintaining proteostasis and dissolving and preventing protein inclusions called Lewy bodies. We describe the most studied neurotrophic factor families and compare different preclinical experiments that have been carried out. We also analyze several clinical trials and describe their challenges and breakthroughs and discuss the prospects and challenges of neurotrophic support as a therapy for neurodegenerative diseases. In this chapter, we discuss why they still do and why it is essential to continue to work with this area of neurorestorative research around neurotrophic factors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Azevedo MD, Prince N, Humbert-Claude M, Mesa-Infante V, Jeanneret C, Golzne V, De Matos K, Jamot BB, Magara F, Gonzalez-Hernandez T, Tenenbaum L. Oxidative stress induced by sustained supraphysiological intrastriatal GDNF delivery is prevented by dose regulation. Mol Ther Methods Clin Dev 2023; 31:101106. [PMID: 37766790 PMCID: PMC10520444 DOI: 10.1016/j.omtm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Despite its established neuroprotective effect on dopaminergic neurons and encouraging phase I results, intraputaminal GDNF administration failed to demonstrate significant clinical benefits in Parkinson's disease patients. Different human GDNF doses were delivered in the striatum of rats with a progressive 6-hydroxydopamine lesion using a sensitive doxycycline-regulated AAV vector. GDNF treatment was applied either continuously or intermittently (2 weeks on/2 weeks off) during 17 weeks. Stable reduction of motor impairments as well as increased number of dopaminergic neurons and striatal innervation were obtained with a GDNF dose equivalent to 3- and 10-fold the rat endogenous level. In contrast, a 20-fold increased GDNF level only temporarily provided motor benefits and neurons were not spared. Strikingly, oxidized DNA in the substantia nigra increased by 50% with 20-fold, but not 3-fold GDNF treatment. In addition, only low-dose GDNF allowed to preserve dopaminergic neuron cell size. Finally, aberrant dopaminergic fiber sprouting was observed with 20-fold GDNF but not at lower doses. Intermittent 20-fold GDNF treatment allowed to avoid toxicity and spare dopaminergic neurons but did not restore their cell size. Our data suggest that maintaining GDNF concentration under a threshold generating oxidative stress is a pre-requisite to obtain significant symptomatic relief and neuroprotection.
Collapse
Affiliation(s)
- Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Naika Prince
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Marie Humbert-Claude
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Cheryl Jeanneret
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Valentine Golzne
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Kevin De Matos
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Benjamin Boury Jamot
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Fulvio Magara
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| |
Collapse
|
5
|
Chu Y, Kordower JH. Post-Mortem Studies of Neurturin Gene Therapy for Parkinson's Disease: Two Subjects with 10 Years CERE120 Delivery. Mov Disord 2023; 38:1728-1736. [PMID: 37544016 DOI: 10.1002/mds.29518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Neurturin is a member of the glial cell line-derived neurotrophic factor family of neurotrophic factors and has the potential to protectdegenerating dopaminergic neurons. OBJECTIVE Here, we performed post-mortem studies on two patients with advanced Parkinson's disease that survived 10 years following AAV-neurturin gene (Cere120) delivery to verify long-term effects of trophic factor neurturin. METHODS Cere120 was delivered to the putamen bilaterally in one case and to the putamen plus substantia nigra bilaterally in the second. Immunohistochemistry was used to examine neurturin, Rearranged during transfection(RET), phosphor-S6, and tyrosine hydroxylase expressions, inflammatory reactions, and α-synuclein accumulation. RESULTS In both patients there was persistent, albeit limited, neurturin expression in the putamen covering 1.31% to 5.92% of the putamen. Dense staining of tyrosine hydroxylase-positive fibers was observed in areas that contained detectable neurturin expression. In substantia nigra, neurturin expression was detected in 11% of remaining melanin-containing neurons in the patient with combined putamenal and nigral gene delivery, but not in the patient with putamenal gene delivery alone. Tyrosine hydroxylase positive neurons were 66% to 84% of remaining neuromelanin neurons in substantia nigra with Cere120 delivery and 23% to 24% in substantia nigra without gene delivery. More RET and phosphor-S6 positive neurons were observed in substantia nigra following nigral Cere120. Inflammatory and Lewy pathologies were similar in substantia nigra with or without Cere120 delivery. CONCLUSIONS This study provides evidence of long-term persistent transgene expression and bioactivity following gene delivery to the nigrostriatal system. Therefore, future efforts using gene therapy for neurodegenerative diseases should consider means to enhance remaining dopamine neuron function and stop pathological propagation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Tempe, Arizona, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
6
|
Sato S, Suzuki Y, Kikuchi M, Rikimaru M, Saito J, Shibata Y. Sputum Neurturin Levels in Adult Asthmatic Subjects. J Asthma Allergy 2023; 16:889-901. [PMID: 37671183 PMCID: PMC10476664 DOI: 10.2147/jaa.s421742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/12/2023] [Indexed: 09/07/2023] Open
Abstract
Background Neurturin (NRTN) is a neurotrophic factor that was originally identified in the development and maintenance of neural cells. Recent studies involving NRTN knockout mice have reported its anti-inflammatory effects in allergic airway conditions. However, the role of NRTN in human asthma has not yet been identified. Objective The purposes of the present study were to confirm the presence of NRTN in the airways and to investigate the clinical and pathogenetic roles of NRTN in asthma. Methods The NRTN levels in the induced sputum were measured by enzyme-linked immunosorbent assay (ELISA). Relationships between NRTN and clinical characteristics, asthma control status, and airway inflammation were assessed. Results Sixty-four asthmatic subjects were enrolled in the study. All asthmatic subjects had detectable sputum NRTN levels, with a mean (SD) level of 2.03 (1.29) ng/mL. The sputum NRTN levels had significant positive correlations with sputum eosinophil and exhaled nitric oxide levels and were significantly higher in the atopic subjects than in the non-atopic subjects. No significant difference in sputum NRTN levels were observed for asthma control status and asthma exacerbation. In sputum inflammatory analyses, sputum NRTN level was positively correlated with interleukin (IL)-5 and IL-13 levels, and negatively correlated with matrix metalloproteinase (MMP)-9 level. Conclusion It is plausible that sputum NRTN could serve as a new marker for Type 2 airway inflammation, implicating its role in the process of airway remodeling in asthma. Future studies should investigate the clinical relevance of sputum NRTN level in prospective analyses.
Collapse
Affiliation(s)
- Suguru Sato
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuhito Suzuki
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masami Kikuchi
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mami Rikimaru
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Junpei Saito
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
7
|
Ng J, Barral S, Waddington SN, Kurian MA. Gene Therapy for Dopamine Dyshomeostasis: From Parkinson's to Primary Neurotransmitter Diseases. Mov Disord 2023; 38:924-936. [PMID: 37147851 PMCID: PMC10946997 DOI: 10.1002/mds.29416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023] Open
Abstract
Neurological disorders encompass a broad range of neurodegenerative and neurodevelopmental diseases that are complex and almost universally without disease modifying treatments. There is, therefore, significant unmet clinical need to develop novel therapeutic strategies for these patients. Viral gene therapies are a promising approach, where gene delivery is achieved through viral vectors such as adeno-associated virus and lentivirus. The clinical efficacy of such gene therapies has already been observed in two neurological disorders of pediatric onset; for spinal muscular atrophy and aromatic L-amino acid decarboxylase (AADC) deficiency, gene therapy has significantly modified the natural history of disease in these life-limiting neurological disorders. Here, we review recent advances in gene therapy, focused on the targeted delivery of dopaminergic genes for Parkinson's disease and the primary neurotransmitter disorders, AADC deficiency and dopamine transporter deficiency syndrome (DTDS). Although recent European Medicines Agency and Medicines and Healthcare products Regulatory Agency approval of Upstaza (eladocagene exuparvovec) signifies an important landmark, numerous challenges remain. Future research will need to focus on defining the optimal therapeutic window for clinical intervention, better understanding of the duration of therapeutic efficacy, and improved brain targeting. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joanne Ng
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUnited Kingdom
- Genetic Therapy Accelerator Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS‐Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUnited Kingdom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS‐Institute of Child HealthUniversity College LondonLondonUnited Kingdom
- Department of NeurologyGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| |
Collapse
|
8
|
Nakmode DD, Day CM, Song Y, Garg S. The Management of Parkinson's Disease: An Overview of the Current Advancements in Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051503. [PMID: 37242745 DOI: 10.3390/pharmaceutics15051503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) has significantly affected a large proportion of the elderly population worldwide. According to the World Health Organization, approximately 8.5 million people worldwide are living with PD. In the United States, an estimated one million people are living with PD, with approximately 60,000 new cases diagnosed every year. Conventional therapies available for Parkinson's disease are associated with limitations such as the wearing-off effect, on-off period, episodes of motor freezing, and dyskinesia. In this review, a comprehensive overview of the latest advances in DDSs used to reduce the limitations of current therapies will be presented, and both their promising features and drawbacks will be discussed. We are also particularly interested in the technical properties, mechanism, and release patterns of incorporated drugs, as well as nanoscale delivery strategies to overcome the blood-brain barrier.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Candace M Day
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
9
|
Protective mechanisms by glial cell line-derived neurotrophic factor and cerebral dopamine neurotrophic factor against the α-synuclein accumulation in Parkinson's disease. Biochem Soc Trans 2023; 51:245-257. [PMID: 36794783 DOI: 10.1042/bst20220770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
Synucleinopathies constitute a disease family named after alpha-synuclein protein, which is a significant component of the intracellular inclusions called Lewy bodies. Accompanying the progressive neurodegeneration, Lewy bodies and neurites are the main histopathologies of synucleinopathies. The complicated role of alpha-synuclein in the disease pathology makes it an attractive therapeutic target for disease-modifying treatments. GDNF is one of the most potent neurotrophic factors for dopamine neurons, whereas CDNF is protective and neurorestorative with entirely different mechanisms of action. Both have been in the clinical trials for the most common synucleinopathy, Parkinson's disease. With the AAV-GDNF clinical trials ongoing and the CDNF trial being finalized, their effects on abnormal alpha-synuclein accumulation are of great interest. Previous animal studies with an alpha-synuclein overexpression model have shown that GDNF was ineffective against alpha-synuclein accumulation. However, a recent study with cell culture and animal models of alpha-synuclein fibril inoculation has demonstrated the opposite by revealing that the GDNF/RET signaling cascade is required for the protective effect of GDNF on alpha-synuclein aggregation. CDNF, an ER resident protein, was shown to bind alpha-synuclein directly. CDNF reduced the uptake of alpha-synuclein fibrils by the neurons and alleviated the behavioral deficits induced by fibrils injected into the mouse brain. Thus, GDNF and CDNF can modulate different symptoms and pathologies of Parkinson's disease, and perhaps, similarly for other synucleinopathies. Their unique mechanisms for preventing alpha-synuclein-related pathology should be studied more carefully to develop disease-modifying therapies.
Collapse
|
10
|
Barker RA, Björklund A. Restorative cell and gene therapies for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:211-226. [PMID: 36803812 DOI: 10.1016/b978-0-323-85555-6.00012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
One of the core pathological features of Parkinson's disease (PD) is the loss of the dopaminergic nigrostriatal pathway which lies at the heart of many of the motor features of this condition as well as some of the cognitive problems. The importance of this pathological event is evident through the clinical benefits that are seen when patients with PD are treated with dopaminergic agents, at least in early-stage disease. However, these agents create problems of their own through stimulation of more intact dopaminergic networks within the central nervous system causing major neuropsychiatric problems including dopamine dysregulation. In addition, over time the nonphysiological stimulation of striatal dopamine receptors by l-dopa containing drugs leads to the genesis of l-dopa-induced dyskinesias that can become very disabling in many cases. As such, there has been much interest in trying to better reconstitute the dopaminergic nigrostriatal pathway using either factors to regrow it, cells to replace it, or gene therapies to restore dopamine transmission in the striatum. In this chapter, we lay out the rationale, history and current status of these different therapies as well as highlighting where the field is heading and what new interventions might come to clinic in the coming years.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neuroscience, Cambridge Centre for Brain Repair, Cambridge, United Kingdom.
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Omar NA, Kumar J, Teoh SL. Neurotrophin-3 and neurotrophin-4: The unsung heroes that lies behind the meninges. Neuropeptides 2022; 92:102226. [PMID: 35030377 DOI: 10.1016/j.npep.2022.102226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
Neurotrophin is a growth factor that regulates the development and repair of the nervous system. From all factors, two pioneer groups, the nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF), have been widely explored for their role in disease pathogenesis and potential use as therapeutic agents. Nonetheless, neurotrophin-3 (NT3) and neurotrophin-4 (NT4) also have promising potential, albeit less popular than their counterparts. This review focuses on the latter two factors and their roles in the pathogenesis of brain disorders and potential therapies. An extensive literature search of NT3 and NT4 with their receptors, the TrkB and TrkC on the nervous system were extracted and analyzed. We found that NT3 and NT4 are not only involved in the pathogenesis of some neurodegenerative diseases, but also have promising therapeutic potential on injury- and vascular-related nervous system disease, neuropsychiatry, neurodegeneration and peripheral nerve diseases. In conclusion, the role of NT3 and NT4 should be further emphasized, and more studies could be explored on the potential use of these neurotrophins in the human study.
Collapse
Affiliation(s)
- Noor Azzizah Omar
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia; Department of Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Jaya Kumar
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia.
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Conway JA, Kramer ER. Is activation of GDNF/RET signaling the answer for successful treatment of Parkinson's disease? A discussion of data from the culture dish to the clinic. Neural Regen Res 2021; 17:1462-1467. [PMID: 34916419 PMCID: PMC8771118 DOI: 10.4103/1673-5374.327330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neurotrophic signaling of glial cell line-derived neurotrophic factor (GDNF) with its canonical receptor, the receptor tyrosine kinase RET, coupled together with the GDNF family receptor alpha 1 is important for dopaminergic neuron survival and physiology in cell culture experiments and animal models. This prompted the idea to try GDNF/RET signaling as a therapeutic approach to treat Parkinson's disease with the hallmark of dopaminergic cell death in the substantia nigra of the midbrain. Despite several clinical trials with GDNF in Parkinson's disease patients, which mainly focused on optimizing the GDNF delivery technique, benefits were only seen in a few patients. In general, the endpoints did not show significant improvements. This suggests that it will be helpful to learn more about the basic biology of this fascinating but complicated GDNF/RET signaling system in the dopaminergic midbrain and about recent developments in the field to facilitate its use in the clinic. Here we will refer to the latest publications and point out important open questions in the field.
Collapse
Affiliation(s)
- James A Conway
- Institute of Translational and Stratified Medicine, Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, UK
| | - Edgar R Kramer
- Institute of Translational and Stratified Medicine, Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, UK
| |
Collapse
|
13
|
Vijiaratnam N, Foltynie T. Disease modifying therapies III: Novel targets. Neuropharmacology 2021; 201:108839. [PMID: 34656651 DOI: 10.1016/j.neuropharm.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Despite significant research advances, treatment of Parkinson's disease (PD) remains confined to symptomatic therapies. Approaches aiming to halt or reverse disease progression remain an important but unmet goal. A growing understanding of disease pathogenesis and the identification of novel pathways contributing to initiation of neurodegeneration and subsequent progression has highlighted a range of potential novel targets for intervention that may influence the rate of progression of the disease process. Exploiting techniques to stratify patients according to these targets alongside using them as biomarkers to measure target engagement will likely improve patient selection and preliminary outcome measurements in clinical trials. In this review, we summarize a number of PD-related mechanisms that have recently gained interest such as neuroinflammation, lysosomal dysfunction and insulin resistance, while also exploring the potential for targeting peripheral interfaces such as the gastrointestinal tract and its ecosystem to achieve disease modification. We explore the rationale for these approaches based on preclinical studies, while also highlighting the status of relevant clinical trials as well as the promising role biomarkers may play in current and future studies.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
14
|
Thomsen G, Burghes AHM, Hsieh C, Do J, Chu BTT, Perry S, Barkho B, Kaufmann P, Sproule DM, Feltner DE, Chung WK, McGovern VL, Hevner RF, Conces M, Pierson CR, Scoto M, Muntoni F, Mendell JR, Foust KD. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat Med 2021; 27:1701-1711. [PMID: 34608334 DOI: 10.1038/s41591-021-01483-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Spinal muscular atrophy type 1 (SMA1) is a debilitating neurodegenerative disease resulting from survival motor neuron 1 gene (SMN1) deletion/mutation. Onasemnogene abeparvovec (formerly AVXS-101) is a gene therapy that restores SMN production via one-time systemic administration. The present study demonstrates widespread biodistribution of vector genomes and transgenes throughout the central nervous system (CNS) and peripheral organs, after intravenous administration of an AAV9-mediated gene therapy. Two symptomatic infants with SMA1 enrolled in phase III studies received onasemnogene abeparvovec. Both patients died of respiratory complications unrelated to onasemnogene abeparvovec. One patient had improved motor function and the other died shortly after administration before appreciable clinical benefit could be observed. In both patients, onasemnogene abeparvovec DNA and messenger RNA distribution were widespread among peripheral organs and in the CNS. The greatest concentration of vector genomes was detected in the liver, with an increase over that detected in CNS tissues of 300-1,000-fold. SMN protein, which was low in an untreated SMA1 control, was clearly detectable in motor neurons, brain, skeletal muscle and multiple peripheral organs in treated patients. These data support the fact that onasemnogene abeparvovec has effective distribution, transduction and expression throughout the CNS after intravenous administration and restores SMN expression in humans.
Collapse
Affiliation(s)
| | - Arthur H M Burghes
- Department of Neurology, The Ohio State University, Columbus, OH, USA. .,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
| | | | - Janet Do
- Novartis Gene Therapies, Bannockburn, IL, USA
| | | | | | | | | | | | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Robert F Hevner
- Department of Pathology, University of California, San Diego, CA, USA
| | - Miriam Conces
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Mariacristina Scoto
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK.,Great Ormond Street Hospital Trust, London, UK
| | - Francesco Muntoni
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK.,Great Ormond Street Hospital Trust, London, UK
| | - Jerry R Mendell
- Department of Neurology, The Ohio State University, Columbus, OH, USA.,Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
15
|
Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Bradley Elder J, Lonser RR, Bankiewicz KS. An Update on Gene Therapy Approaches for Parkinson's Disease: Restoration of Dopaminergic Function. JOURNAL OF PARKINSONS DISEASE 2021; 11:S173-S182. [PMID: 34366374 PMCID: PMC8543243 DOI: 10.3233/jpd-212724] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
At present there is a significant unmet need for clinically available treatments for Parkinson’s disease (PD) patients to stably restore balance to dopamine network function, leaving patients with inadequate management of symptoms as the disease progresses. Gene therapy is an attractive approach to impart a durable effect on neuronal function through introduction of genetic material to reestablish dopamine levels and/or functionally recover dopaminergic signaling by improving neuronal health. Ongoing clinical gene therapy trials in PD are focused on enzymatic enhancement of dopamine production and/or the restoration of the nigrostriatal pathway to improve dopaminergic network function. In this review, we discuss data from current gene therapy trials for PD and recent advances in study design and surgical approaches.
Collapse
Affiliation(s)
- Amber D Van Laar
- Asklepios BioPharmaceutical, Inc., Columbus, OH, USA.,Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Victor S Van Laar
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Waldy San Sebastian
- Asklepios BioPharmaceutical, Inc., Columbus, OH, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Aristide Merola
- Department of Neurology, College of Medicine, the Ohio State University, Columbus, OH, USA
| | - J Bradley Elder
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Russell R Lonser
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Abstract
In two recent postmortem studies, Jeffrey Kordower and colleagues report new findings that open up for an interesting discussion on the status of GDNF/NRTN signaling in patients with Parkinson's disease (PD), adding an interesting perspective on the, admittedly very limited, signs of restorative effects previously seen in GDNF/NRTN-treated patients. Their new findings show that the level of the GDNF signaling receptor Ret is overall markedly reduced relative to the non-PD controls, and most severely, up to 80%, in nigral neurons containing α-synuclein inclusions, accompanied by impaired signaling downstream of the Ret receptor. Notably, however, the vast majority of the remaining nigral neurons retained a low level of Ret expression, and hence a threshold level of signaling. Further observations made in two patients who had received AAV-NRTN gene therapy 8-10 years earlier suggest the intriguing possibility that NRTN is able to restore Ret expression and upregulate its own signaling pathway. This "wind-up" mechanism, which is likely to depend on an interaction with dopaminergic transcription factor Nurr1, has therapeutic potential and should encourage renewed efforts to turn GDNF/NRTN therapy into success, once the recurring problem of under-dosing is resolved.
Collapse
Affiliation(s)
- Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden,Correspondence to: Anders Björklund, Wallenberg Neuroscience Center, BMCA11, 22184 Lund, Sweden. Tel.: +46703146761; E-mail:
| |
Collapse
|
17
|
Miller KM, Mercado NM, Sortwell CE. Synucleinopathy-associated pathogenesis in Parkinson's disease and the potential for brain-derived neurotrophic factor. NPJ PARKINSONS DISEASE 2021; 7:35. [PMID: 33846345 PMCID: PMC8041900 DOI: 10.1038/s41531-021-00179-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The lack of disease-modifying treatments for Parkinson’s disease (PD) is in part due to an incomplete understanding of the disease’s etiology. Alpha-synuclein (α-syn) has become a point of focus in PD due to its connection to both familial and idiopathic cases—specifically its localization to Lewy bodies (LBs), a pathological hallmark of PD. Within this review, we will present a comprehensive overview of the data linking synuclein-associated Lewy pathology with intracellular dysfunction. We first present the alterations in neuronal proteins and transcriptome associated with LBs in postmortem human PD tissue. We next compare these findings to those associated with LB-like inclusions initiated by in vitro exposure to α-syn preformed fibrils (PFFs) and highlight the profound and relatively unique reduction of brain-derived neurotrophic factor (BDNF) in this model. Finally, we discuss the multitude of ways in which BDNF offers the potential to exert disease-modifying effects on the basal ganglia. What remains unknown is the potential for BDNF to mitigate inclusion-associated dysfunction within the context of synucleinopathy. Collectively, this review reiterates the merit of using the PFF model as a tool to understand the physiological changes associated with LBs, while highlighting the neuroprotective potential of harnessing endogenous BDNF.
Collapse
Affiliation(s)
- Kathryn M Miller
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Neuroscience Graduate Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Neuroscience Graduate Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA. .,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
18
|
Merola A, Kobayashi N, Romagnolo A, Wright BA, Artusi CA, Imbalzano G, Litvan I, Van Laar AD, Bankiewicz K. Gene Therapy in Movement Disorders: A Systematic Review of Ongoing and Completed Clinical Trials. Front Neurol 2021; 12:648532. [PMID: 33889127 PMCID: PMC8056023 DOI: 10.3389/fneur.2021.648532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction: We sought to provide an overview of the published and currently ongoing movement disorders clinical trials employing gene therapy, defined as a technology aiming to modulate the expression of one or more genes to achieve a therapeutic benefit. Methods: We systematically reviewed movement disorders gene therapy clinical trials from PubMed and ClinicalTrials.gov using a searching strategy that included Parkinson disease (PD), Huntington disease (HD), amino acid decarboxylase (AADC) deficiency, multiple system atrophy (MSA), progressive supranuclear palsy (PSP), dystonia, tremor, ataxia, and other movement disorders. Data extracted included study characteristics, investigational product, route of administration, safety/tolerability, motor endpoints, and secondary outcomes (i.e., neuroimaging, biomarkers). Results: We identified a total of 46 studies focusing on PD (21 published and nine ongoing), HD (2 published and 5 ongoing), AADC deficiency (4 published and 2 ongoing), MSA (2 ongoing), and PSP (1 ongoing). In PD, intraparenchymal infusion of viral vector-mediated gene therapies demonstrated to be safe and showed promising preliminary data in trials aiming at restoring the synthesis of dopamine, enhancing the production of neurotrophic factors, or modifying the functional interaction between different nodes of the basal ganglia. In HD, monthly intrathecal delivery of an antisense oligonucleotide (ASO) targeting the huntingtin protein (HTT) mRNA proved to be safe and tolerable, and demonstrated a dose-dependent reduction of the cerebrospinal fluid levels of mutated HTT, while a small phase-I study testing implantable capsules of cells engineered to synthesize ciliary neurotrophic factor failed to show consistent drug delivery. In AADC deficiency, gene replacement studies demonstrated to be relatively safe in restoring catecholamine and serotonin synthesis, with promising outcomes. Ongoing movement disorders clinical trials are focusing on a variety of gene therapy approaches including alternative viral vector serotypes, novel recombinant genes, novel delivery techniques, and ASOs for the treatment of HD, MSA, and distinct subtypes of PD (LRRK2 mutation or GBA1 mutation carriers). Conclusion: Initial phase-I and -II studies tested the safety and feasibility of gene therapy in PD, HD, and AADC deficiency. The ongoing generation of clinical trials aims to test the efficacy of these approaches and explore additional applications for gene therapy in movement disorders.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, Madden Center for Parkinson Disease and Other Movement Disorders, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Alberto Romagnolo
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Brenton A. Wright
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California, San Diego, La Jolla, CA, United States
| | - Carlo Alberto Artusi
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Gabriele Imbalzano
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California, San Diego, La Jolla, CA, United States
| | - Amber D. Van Laar
- Asklepios BioPharmaceutical Inc., Research Triangle, NC, United States
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Krystof Bankiewicz
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Monty MA, Islam MA, Nan X, Tan J, Tuhin IJ, Tang X, Miao M, Wu D, Yu L. Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy. Br J Pharmacol 2021; 178:1741-1755. [PMID: 33608889 DOI: 10.1111/bph.15414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
RNAi effectors (e.g. siRNA, shRNA and miRNA) can trigger the silencing of specific genes causing alteration of genomic functions becoming a new therapeutic area for the treatment of infectious diseases, neurodegenerative disorders and cancer. In cancer treatment, RNAi effectors showed potential immunomodulatory actions by down-regulating immuno-suppressive proteins, such as PD-1 and CTLA-4, which restrict immune cell function and present challenges in cancer immunotherapy. Therefore, compared with extracellular targeting by antibodies, RNAi-mediated cell-intrinsic disruption of inhibitory pathways in immune cells could promote an increased anti-tumour immune response. Along with non-viral vectors, DNA-based RNAi strategies might be a more promising method for immunomodulation to silence multiple inhibitory pathways in T cells than immune checkpoint blockade antibodies. Thus, in this review, we discuss diverse RNAi implementation strategies, with recent viral and non-viral mediated RNAi synergism to immunotherapy that augments the anti-tumour immunity. Finally, we provide the current progress of RNAi in clinical pipeline.
Collapse
Affiliation(s)
- Masuma Akter Monty
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Nan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingwen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Israth Jahan Tuhin
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaowen Tang
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Miao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Chu Y, Kordower JH. GDNF signaling in subjects with minimal motor deficits and Parkinson's disease. Neurobiol Dis 2021; 153:105298. [PMID: 33684514 DOI: 10.1016/j.nbd.2021.105298] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The failure of glial cell derived neurotropic factor to be efficacious in blinded clinical trials for Parkinson's disease may be due to alterations in signaling receptors and downstream signaling molecules. To test this hypothesis, brain sections were obtained from older adults with no motor deficit (n = 6), minimal motor deficits (n = 10), and clinical diagnosis of Parkinson's disease (n = 10) who underwent motor examination proximate to death. Quantitative unbiased stereology and densitometry were performed to analyze RET and phosphorylated ribosomal protein S6 expression in nigral neurons. Individuals with no motor deficit had extensive and intense RET and phosphorylated ribosomal protein S6 immunoreactive neurons in substantia nigra. The number and staining intensity of RET-immunoreactive neurons were reduced moderately in subjects with minimal motor deficits and severely reduced in Parkinson's disease relative to no motor deficit group. The number and staining intensity of phosphorylated ribosomal protein S6 was more markedly reduced in both subjects with minimal motor deficits and Parkinson's disease. Reductions in levels of RET and phosphorylated ribosomal protein S6 were recapitulated in a non-human primate genetic Parkinson's disease model based on over-expression of human mutant α-synuclein (A53T). These data indicate that for neurotrophic factors to be effective in patients with minimal motor deficits or PD, these factors would likely have to upregulate RET and phosphorylated ribosomal protein S6 immunoreactive neurons in substantia nigra .
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America.; ASU-Banner Neurodgenerative Disease Research Center, Arizona State University, Tempe, Arizona 85287, United States of America..
| |
Collapse
|
21
|
Kambey PA, Kanwore K, Ayanlaja AA, Nadeem I, Du Y, Buberwa W, Liu W, Gao D. Failure of Glial Cell-Line Derived Neurotrophic Factor (GDNF) in Clinical Trials Orchestrated By Reduced NR4A2 (NURR1) Transcription Factor in Parkinson's Disease. A Systematic Review. Front Aging Neurosci 2021; 13:645583. [PMID: 33716718 PMCID: PMC7943926 DOI: 10.3389/fnagi.2021.645583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative maladies with unforeseen complex pathologies. While this neurodegenerative disorder’s neuropathology is reasonably well known, its etiology remains a mystery, making it challenging to aim therapy. Glial cell-line derived neurotrophic factor (GDNF) remains an auspicious therapeutic molecule for treating PD. Neurotrophic factor derived from glial cell lines is effective in rodents and nonhuman primates, but clinical findings have been equivocal. Laborious exertions have been made over the past few decades to improve and assess GDNF in treating PD (clinical studies). Definitive clinical trials have, however, failed to demonstrate a survival advantage. Consequently, there seemed to be a doubt as to whether GDNF has merit in the potential treatment of PD. The purpose of this cutting edge review is to speculate as to why the clinical trials have failed to meet the primary endpoint. We introduce a hypothesis, “Failure of GDNF in clinical trials succumbed by nuclear receptor-related factor 1 (Nurr1) shortfall.” We demonstrate how Nurr1 binds to GDNF to induce dopaminergic neuron synthesis. Due to its undisputable neuro-protection aptitude, we display Nurr1 (also called Nr4a2) as a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Abiola Abdulrahman Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Iqra Nadeem
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - YinZhen Du
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | | | - WenYa Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
22
|
Jaumotte JD, Saarma M, Zigmond MJ. Protection of dopamine neurons by CDNF and neurturin variant N4 against MPP+ in dissociated cultures from rat mesencephalon. PLoS One 2021; 16:e0245663. [PMID: 33534843 PMCID: PMC7857574 DOI: 10.1371/journal.pone.0245663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/05/2021] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease is associated with the loss of dopamine (DA) neurons in ventral mesencephalon. We have previously reported that no single neurotrophic factor we tested protected DA neurons from the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP+) in dissociated cultures isolated from the P0 rat substantia nigra, but that a combination of five neurotrophic factors was protective. We now report that cerebral DA neurotrophic factor (CDNF) and a variant of neurturin (NRTN), N4, were also not protective when provided alone but were protective when added together. In cultures isolated from the substantia nigra, MPP+ (10 μM) decreased tyrosine hydroxylase-positive cells to 41.7 ± 5.4% of vehicle control. Although treatment of cultures with 100 ng/ml of either CDNF or N4 individually before and after toxin exposure did not significantly increase survival in MPP+-treated cultures, when the two trophic factors were added together at 100 ng/ml each, survival of cells was increased 28.2 ± 6.1% above the effect of MPP+ alone. In cultures isolated from the ventral tegmental area, another DA rich area, a higher dose of MPP+ (1 mM) was required to produce an EC50 in TH-positive cells but, as in the substantia nigra, only the combination of CDNF and N4 (100 ng/ml each) was successful at increasing the survival of these cells compared to MPP+ alone (by 22.5 ± 3.5%). These data support previous findings that CDNF and N4 may be of therapeutic value for treatment of PD, but suggest that they may need to be administered together.
Collapse
Affiliation(s)
- Juliann D. Jaumotte
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michael J. Zigmond
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
23
|
Richardson RM, Bankiewicz KS, Christine CW, Van Laar AD, Gross RE, Lonser R, Factor SA, Kostyk SK, Kells AP, Ravina B, Larson PS. Data-driven evolution of neurosurgical gene therapy delivery in Parkinson's disease. J Neurol Neurosurg Psychiatry 2020; 91:1210-1218. [PMID: 32732384 PMCID: PMC7569395 DOI: 10.1136/jnnp-2020-322904] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/28/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Loss of nigrostriatal dopaminergic projection neurons is a key pathology in Parkinson's disease, leading to abnormal function of basal ganglia motor circuits and the accompanying characteristic motor features. A number of intraparenchymally delivered gene therapies designed to modify underlying disease and/or improve clinical symptoms have shown promise in preclinical studies and subsequently were evaluated in clinical trials. Here we review the challenges with surgical delivery of gene therapy vectors that limited therapeutic outcomes in these trials, particularly the lack of real-time monitoring of vector administration. These challenges have recently been addressed during the evolution of novel techniques for vector delivery that include the use of intraoperative MRI. The preclinical development of these techniques are described in relation to recent clinical translation in an adeno-associated virus serotype 2-mediated human aromatic L-amino acid decarboxylase gene therapy development programme. This new paradigm allows visualisation of the accuracy and adequacy of viral vector delivery within target structures, enabling intertrial modifications in surgical approaches, cannula design, vector volumes and dosing. The rapid, data-driven evolution of these procedures is unique and has led to improved vector delivery.
Collapse
Affiliation(s)
- R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA .,Harvard Medical School, Boston, Massachusetts, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chadwick W Christine
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Amber D Van Laar
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Brain Neurotherapy Bio, Inc, Columbus, Ohio, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA.,Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Russell Lonser
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stewart A Factor
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Sandra K Kostyk
- Departments of Neuroscience and Neurology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | - Bernard Ravina
- Praxis Precision Medicines, Inc, Cambridge, Massachusetts, USA
| | - Paul S Larson
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Sidorova YA, Saarma M. Can Growth Factors Cure Parkinson's Disease? Trends Pharmacol Sci 2020; 41:909-922. [PMID: 33198924 DOI: 10.1016/j.tips.2020.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Growth factors (GFs) hold considerable promise for disease modification in neurodegenerative disorders because they can protect and restore degenerating neurons and also enhance their functional activity. However, extensive efforts applied to utilize their therapeutic potential in humans have achieved limited success so far. Multiple clinical trials with GFs were performed in Parkinson's disease (PD) patients, in whom diagnostic symptoms of the disease are caused by advanced degeneration of nigrostriatal dopamine neurons (DNs), but the results of these trials are controversial. This review discusses recent developments in the field of therapeutic use of GFs, problems and obstacles related to this use, suggests the ways to overcome these issues, and alternative approaches that can be used to utilize the potential ofGFsin PD management.
Collapse
Affiliation(s)
- Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
25
|
Paolone G. From the Gut to the Brain and Back: Therapeutic Approaches for the Treatment of Network Dysfunction in Parkinson's Disease. Front Neurol 2020; 11:557928. [PMID: 33117258 PMCID: PMC7575743 DOI: 10.3389/fneur.2020.557928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem, progressive, degenerative disorder characterized by severe, debilitating motor dysfunction, cognitive impairments, and mood disorders. Although preclinical research has traditionally focused on the motor deficits resulting from the loss of nigrostriatal dopaminergic neurons, up to two thirds of PD patients present separate and distinct behavioral changes. Loss of basal forebrain cholinergic neurons occurs as early as the loss of dopaminergic cells and contributes to the cognitive decline in PD. In addition, attentional deficits can limit posture control and movement efficacy caused by dopaminergic cell loss. Complicating the picture further is intracellular α-synuclein accumulation beginning in the enteric nervous system and diffusing to the substantia nigra through the dorsal motor neurons of the vagus nerve. It seems that α-synuclein's role is that of mediating dopamine synthesis, storage, and release, and its function has not been completely understood. Treating a complex, multistage network disorder, such as PD, likely requires a multipronged approach. Here, we describe a few approaches that could be used alone or perhaps in combination to achieve a greater mosaic of behavioral benefit. These include (1) using encapsulated, genetically modified cells as delivery vehicles for administering neuroprotective trophic factors, such as GDNF, in a direct and sustained means to the brain; (2) immunotherapeutic interventions, such as vaccination or the use of monoclonal antibodies against aggregated, pathological α-synuclein; (3) the continuous infusion of levodopa-carbidopa through an intestinal gel pad to attenuate the loss of dopaminergic function and manage the motor and non-motor complications in PD patients; and (4) specific rehabilitation treatment programs for drug-refractory motor complications.
Collapse
Affiliation(s)
- Giovanna Paolone
- Department of Diagnostic and Public Health - Section of Pharmacology, University of Verona, Verona, Italy
| |
Collapse
|
26
|
Buttery PC, Barker RA. Gene and Cell-Based Therapies for Parkinson's Disease: Where Are We? Neurotherapeutics 2020; 17:1539-1562. [PMID: 33128174 PMCID: PMC7598241 DOI: 10.1007/s13311-020-00940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that carries large health and socioeconomic burdens. Current therapies for PD are ultimately inadequate, both in terms of symptom control and in modification of disease progression. Deep brain stimulation and infusion therapies are the current mainstay for treatment of motor complications of advanced disease, but these have very significant drawbacks and offer no element of disease modification. In fact, there are currently no agents that are established to modify the course of the disease in clinical use for PD. Gene and cell therapies for PD are now being trialled in the clinic. These treatments are diverse and may have a range of niches in the management of PD. They hold great promise for improved treatment of symptoms as well as possibly slowing progression of the disease in the right patient group. Here, we review the current state of the art for these therapies and look to future strategies in this fast-moving field.
Collapse
Affiliation(s)
- Philip C Buttery
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, CB2 0XY, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, CB2 0QQ, Cambridge, UK.
| | - Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, CB2 0QQ, Cambridge, UK.
- John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, CB2 0PY, Cambridge, UK.
| |
Collapse
|
27
|
Sudhakar V, Naidoo J, Samaranch L, Bringas JR, Lonser RR, Fiandaca MS, Bankiewicz KS. Infuse-as-you-go convective delivery to enhance coverage of elongated brain targets: technical note. J Neurosurg 2020; 133:530-537. [PMID: 31299656 DOI: 10.3171/2019.4.jns19826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To develop and assess a convective delivery technique that enhances the effectiveness of drug delivery to nonspherical brain nuclei, the authors developed an occipital "infuse-as-you-go" approach to the putamen and compared it to the currently used transfrontal approach. METHODS Eleven nonhuman primates received a bilateral putamen injection of adeno-associated virus with 2 mM gadolinium-DTPA by real-time MR-guided convective perfusion via either a transfrontal (n = 5) or occipital infuse-as-you-go (n = 6) approach. RESULTS MRI provided contemporaneous assessment and monitoring of putaminal infusions for transfrontal (2 to 3 infusion deposits) and occipital infuse-as-you-go (stepwise infusions) putaminal approaches. The infuse-as-you-go technique was more efficient than the transfrontal approach (mean 35 ± 1.1 vs 88 ± 8.3 minutes [SEM; p < 0.001]). More effective perfusion of the postcommissural and total putamen was achieved with the infuse-as-you-go versus transfronatal approaches (100-µl infusion volumes; mean posterior commissural coverage 76.2% ± 5.0% vs 32.8% ± 2.9% [p < 0.001]; and mean total coverage 53.5% ± 3.0% vs 38.9% ± 2.3% [p < 0.01]). CONCLUSIONS The infuse-as-you-go approach, paralleling the longitudinal axis of the target structure, provides a more effective and efficient method for convective infusate coverage of elongated, irregularly shaped subcortical brain nuclei.
Collapse
Affiliation(s)
- Vivek Sudhakar
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Jerusha Naidoo
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Lluis Samaranch
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - John R Bringas
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Russell R Lonser
- 2Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Massimo S Fiandaca
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Krystof S Bankiewicz
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
- 2Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
28
|
Chu Y, Bartus RT, Manfredsson FP, Olanow CW, Kordower JH. Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson's disease. Brain 2020; 143:960-975. [PMID: 32203581 PMCID: PMC7089653 DOI: 10.1093/brain/awaa020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
We performed post-mortem studies on two patients with advanced Parkinson’s disease 8 and10 years following AAV2-neurturin (CERE120) gene therapy, the longest post-mortem trophic factor gene therapy cases reported to date. CERE120 was delivered to the putamen bilaterally in one case (10 years post-surgery), and to the putamen plus the substantia nigra bilaterally in the second (8 years post-surgery). In both patients there was persistent, albeit limited, neurturin expression in the putamen covering ∼3–12% of the putamen. In the putamen, dense staining of tyrosine hydroxylase-positive fibres was observed in areas that contained detectable neurturin expression. In the substantia nigra, neurturin expression was detected in 9.8–18.95% and 22.02–39% of remaining melanin-containing neurons in the patient with putamenal and combined putamenal and nigral gene delivery, respectively. Melanized neurons displayed intense tyrosine hydroxylase and RET proto-oncogene expression in nigral neurons in the patient where CERE120 was directly delivered to the nigra. There was no difference in the degree of Lewy pathology in comparison to untreated control patients with Parkinson’s disease, and α-synuclein aggregates were detected in neurons that also stained for neurturin, RET, and tyrosine hydroxylase. These changes were not associated with antiparkinsonian benefits likely due to the limited neurturin expression. This study provides the longest term evidence of persistent transgene expression following gene delivery to the CNS and the first human results when targeting both the terminal fields in the putamen as well as the originating nigral neurons.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | - Fredric P Manfredsson
- Parkinson’s Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - C Warren Olanow
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
- Clintrex Inc. Sarasota, Florida, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
- Correspondence to: Jeffrey H. Kordower, PhD Department of Neurological Sciences Rush University Medical Center 1735 West Harrison Street Chicago, Illinois 60612, USA E-mail:
| |
Collapse
|
29
|
Rosenblad C, Li Q, Pioli EY, Dovero S, Antunes AS, Agúndez L, Bardelli M, Linden RM, Henckaerts E, Björklund A, Bezard E, Björklund T. Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease. Brain 2020; 142:2402-2416. [PMID: 31243443 PMCID: PMC6658866 DOI: 10.1093/brain/awz176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner. Local gene delivery of the l-DOPA synthesizing enzymes, tyrosine hydroxylase and guanosine-tri-phosphate-cyclohydrolase-1, offers a new approach to a more refined dopaminergic therapy where l-DOPA is delivered continuously at the site where it is needed i.e. the striatum. In this study we have explored the therapeutic efficacy of adeno-associated viral vector-mediated l-DOPA delivery to the putamen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys, the standard non-human primate model of Parkinson's disease. Viral vector delivery of the two enzymes, tyrosine hydroxylase and guanosine-5'-tri-phosphate-cyclohydrolase-1, bilaterally into the dopamine-depleted putamen, induced a significant, dose-dependent improvement of motor behaviour up to a level identical to that obtained with the optimal dose of peripheral l-DOPA. Importantly, this improvement in motor function was obtained without any adverse dyskinetic effects. These results provide proof-of-principle for continuous vector-mediated l-DOPA synthesis as a novel therapeutic strategy for Parkinson's disease. The constant, local supply of l-DOPA obtained with this approach holds promise as an efficient one-time treatment that can provide long-lasting clinical improvement and at the same time prevent the appearance of motor fluctuations and dyskinetic side effects associated with standard oral dopaminergic medication.
Collapse
Affiliation(s)
- Carl Rosenblad
- Division of Neurology, Department of Clinical Sciences, Lund University, Skane University Hospital, 221 84 Lund, Sweden.,Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Qin Li
- Motac Neuroscience, Manchester, UK
| | | | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - André Slm Antunes
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Leticia Agúndez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Martino Bardelli
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - R Michael Linden
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Erwan Bezard
- Motac Neuroscience, Manchester, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Tomas Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.,Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
30
|
Morel L, Domingues O, Zimmer J, Michel T. Revisiting the Role of Neurotrophic Factors in Inflammation. Cells 2020; 9:cells9040865. [PMID: 32252363 PMCID: PMC7226825 DOI: 10.3390/cells9040865] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotrophic factors are well known for their implication in the growth and the survival of the central, sensory, enteric and parasympathetic nervous systems. Due to these properties, neurturin (NRTN) and Glial cell-derived neurotrophic factor (GDNF), which belong to the GDNF family ligands (GFLs), have been assessed in clinical trials as a treatment for neurodegenerative diseases like Parkinson’s disease. In addition, studies in favor of a functional role for GFLs outside the nervous system are accumulating. Thus, GFLs are present in several peripheral tissues, including digestive, respiratory, hematopoietic and urogenital systems, heart, blood, muscles and skin. More precisely, recent data have highlighted that different types of immune and epithelial cells (macrophages, T cells, such as, for example, mucosal-associated invariant T (MAIT) cells, innate lymphoid cells (ILC) 3, dendritic cells, mast cells, monocytes, bronchial epithelial cells, keratinocytes) have the capacity to release GFLs and express their receptors, leading to the participation in the repair of epithelial barrier damage after inflammation. Some of these mechanisms pass on to ILCs to produce cytokines (such as IL-22) that can impact gut microbiota. In addition, there are indications that NRTN could be used in the treatment of inflammatory airway diseases and it prevents the development of hyperglycemia in the diabetic rat model. On the other hand, it is suspected that the dysregulation of GFLs produces oncogenic effects. This review proposes the discussion of the biological understanding and the potential new opportunities of the GFLs, in the perspective of developing new treatments within a broad range of human diseases.
Collapse
|
31
|
Duarte Azevedo M, Sander S, Tenenbaum L. GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease. J Clin Med 2020; 9:E456. [PMID: 32046031 PMCID: PMC7073520 DOI: 10.3390/jcm9020456] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the "rearranged during transfection" (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro-striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF's pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.
Collapse
Affiliation(s)
| | | | - Liliane Tenenbaum
- Laboratory of Molecular Neurotherapies and NeuroModulation, Center for Neuroscience Research, Lausanne University Hospital, CHUV-Pavillon 3, av de Beaumont, CH-1010 Lausanne, Switzerland; (M.D.A.); (S.S.)
| |
Collapse
|
32
|
Barker RA, Björklund A, Gash DM, Whone A, Van Laar A, Kordower JH, Bankiewicz K, Kieburtz K, Saarma M, Booms S, Huttunen HJ, Kells AP, Fiandaca MS, Stoessl AJ, Eidelberg D, Federoff H, Voutilainen MH, Dexter DT, Eberling J, Brundin P, Isaacs L, Mursaleen L, Bresolin E, Carroll C, Coles A, Fiske B, Matthews H, Lungu C, Wyse RK, Stott S, Lang AE. GDNF and Parkinson's Disease: Where Next? A Summary from a Recent Workshop. JOURNAL OF PARKINSON'S DISEASE 2020; 10:875-891. [PMID: 32508331 PMCID: PMC7458523 DOI: 10.3233/jpd-202004] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.
Collapse
Affiliation(s)
- Roger A. Barker
- Cambridge Centre for Brain Repair, Department of Clinical Neuroscience and WT-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Don M. Gash
- Professor Emeritus of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Alan Whone
- Translational Health Sciences, Bristol Medical School, University of Bristol and Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | | | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Krystof Bankiewicz
- Neurological Surgery, Gilbert and Kathryn Mitchell Endowed Chair, Director, Brain Health and Performance Center, The Ohio State University, Department of Neurological Surgery, Columbus, OH, USA
| | - Karl Kieburtz
- Center for Health & Technology, and the Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Henri J. Huttunen
- Herantis Pharma Plc, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Finland
| | | | | | - A. Jon Stoessl
- Pacific Parkinson’s Research Centre & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Howard Federoff
- School of Medicine, Susan and Henry College of Health Sciences, University of California, Irvine and CEO, Aspen Neuroscience, San Diego, CA, USA
| | | | | | - Jamie Eberling
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Leah Mursaleen
- The Cure Parkinson’s Trust, London, UK
- School of Life Sciences, University of Westminster, UK and School of Pharmacy, University College London, UK
| | | | | | - Alasdair Coles
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Brian Fiske
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | | | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, Rockville, MD, USA
| | | | | | - Anthony E. Lang
- The Edmond J Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Al-Zaidy SA, Mendell JR. From Clinical Trials to Clinical Practice: Practical Considerations for Gene Replacement Therapy in SMA Type 1. Pediatr Neurol 2019; 100:3-11. [PMID: 31371124 DOI: 10.1016/j.pediatrneurol.2019.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023]
Abstract
Spinal muscular atrophy is a devastating neurodegenerative autosomal recessive disease that results from survival of motor neuron 1 (SMN1) gene mutation or deletion. Patients with spinal muscular atrophy type 1 utilizing supportive care, which focuses on symptom management, never sit unassisted, and 75% die or require permanent ventilation by age 13.6 months. Onasemnogene abeparvovec (Zolgensma, formerly AVXS-101) is a gene replacement therapy comprising an adeno-associated viral vector containing the human SMN gene under control of the chicken beta-actin promoter. This therapy addresses the genetic root cause of the disease by increasing functional SMN protein in motor neurons and preventing neuronal cell death, resulting in improved neuronal and muscular function as previously demonstrated in transgenic animal models. In an open-label, one-arm, dose-escalation phase 1 trial, systemic administration of onasemnogene abeparvovec via a one-time infusion over one hour demonstrated improved motor function and survival in all infants symptomatic for spinal muscular atrophy type 1. Of the 12 patients who received the proposed therapeutic dose, 11 achieved independent sitting, two achieved independent standing, and two are able to walk. Most of these 12 patients remained free of respiratory supportive care. The only treatment-related adverse event observed was transient asymptomatic transaminasemia that resolved with a short course of prednisolone treatment. This review discusses the biological rationale underlying gene replacement therapy for spinal muscular atrophy, describes the onasemnogene abeparvovec clinical trial experience, and provides expert recommendations as a reference for the real-world use of onasemnogene abeparvovec in clinical practice. As of May 24, 2019, the Food and Drug Administration approved onasemnogene abeparvovec, the first gene therapy approved to treat children younger than two years with spinal muscular atrophy.
Collapse
Affiliation(s)
- Samiah A Al-Zaidy
- Department of Pediatrics, Ohio State University, Columbus, Ohio; Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio
| | - Jerry R Mendell
- Department of Pediatrics, Ohio State University, Columbus, Ohio; Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio; Department of Neurology, Ohio State University, Columbus, Ohio.
| |
Collapse
|
34
|
Price RJ, Fisher DG, Suk JS, Hanes J, Ko HS, Kordower JH. Parkinson's disease gene therapy: Will focused ultrasound and nanovectors be the next frontier? Mov Disord 2019; 34:1279-1282. [PMID: 30908781 PMCID: PMC6754296 DOI: 10.1002/mds.27675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Delaney G. Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Han Seok Ko
- Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
35
|
Cunningham M, Azimi S, Zhang G. Intracerebral Delivery in Complex 3D Arrays: The Intracerebral Microinjection Instrument. World Neurosurg 2019; 127:e1172-e1175. [PMID: 31003027 DOI: 10.1016/j.wneu.2019.04.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE This video article describes and illustrates the function and application of the intracerebral microinjection instrument (IMI). This newly developed technology allows delivery of therapeutic agents within the human brain in complex 3-dimensional arrays using a single pass or minimal overlying penetrations through brain tissue. METHODS The IMI uses a delivery microcannula with a reduced diameter that minimizes local trauma and is capable of delivering precise volumes of therapeutic agents to discrete brain substructures. The IMI also permits simultaneous recording of neural activity during the delivery procedure, enabling extreme precision using electrophysiologic mapping. Surgical planning software designed specifically for the IMI enables strategic placement of multiple injections. RESULTS This technology platform is presently being used successfully to deliver therapeutic stem cells to restore function in stroke patients. CONCLUSIONS Additional applications of the IMI include delivery of viral vectors for gene therapy, infusion of neurotrophic factors, targeted delivery of chemotherapeutic agents, and delivery of antiretroviral medications.
Collapse
Affiliation(s)
- Miles Cunningham
- Laboratory for Neural Reconstruction, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA.
| | - Sina Azimi
- Laboratory for Neural Reconstruction, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - GuangZhu Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| |
Collapse
|
36
|
Raza C, Anjum R, Shakeel NUA. Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci 2019; 226:77-90. [PMID: 30980848 DOI: 10.1016/j.lfs.2019.03.057] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder. The classical motor symptoms include resting tremors, bradykinesia, rigidity and postural instability and are accompanied by the loss of dopaminergic neurons and Lewy pathology. Diminished neurotransmitter level, oxidative stress, mitochondrial dysfunction and perturbed protein homeostasis over time worsen the disease manifestations in elderly people. Current management strategies aim to provide symptomatic relief and to slow down the disease progression. However, no pharmacological breakthrough has been made to protect dopaminergic neurons and associated motor circuitry components. Deep brain stimulation, stem cells-derived dopaminergic neurons transplantation, gene editing and gene transfer remain promising approaches for the potential management of neurodegenerative disease. Toxin or genetically induced rodent models replicating Parkinson's disease pathology are of high predictive value for translational research. This review addresses the current understanding, management strategies and the Parkinson's disease models for translational research. Preclinical research may provide powerful tools to quest the potential therapeutic and neuroprotective compounds for dopaminergic neurons and hence possible cure for the Parkinson's disease.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan.
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Noor Ul Ain Shakeel
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
37
|
Grondin R, Littrell OM, Zhang Z, Ai Y, Huettl P, Pomerleau F, Quintero JE, Andersen AH, Stenslik MJ, Bradley LH, Lemmon J, O'Neill MJ, Gash DM, Gerhardt GA. GDNF revisited: A novel mammalian cell-derived variant form of GDNF increases dopamine turnover and improves brain biodistribution. Neuropharmacology 2019; 147:28-36. [DOI: 10.1016/j.neuropharm.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
|
38
|
Lasbleiz C, Mestre-Francés N, Devau G, Luquin MR, Tenenbaum L, Kremer EJ, Verdier JM. Combining Gene Transfer and Nonhuman Primates to Better Understand and Treat Parkinson's Disease. Front Mol Neurosci 2019; 12:10. [PMID: 30804750 PMCID: PMC6378268 DOI: 10.3389/fnmol.2019.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/14/2019] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive CNS disorder that is primarily associated with impaired movement. PD develops over decades and is linked to the gradual loss of dopamine delivery to the striatum, via the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). While the administration of L-dopa and deep brain stimulation are potent therapies, their costs, side effects and gradual loss of efficacy underlines the need to develop other approaches. Unfortunately, the lack of pertinent animal models that reproduce DA neuron loss and behavior deficits—in a timeline that mimics PD progression—has hindered the identification of alternative therapies. A complementary approach to transgenic animals is the use of nonhuman primates (NHPs) combined with the overexpression of disease-related genes using viral vectors. This approach may induce phenotypes that are not influenced by developmental compensation mechanisms, and that take into account the personality of animals. In this review article, we discuss the combination of gene transfer and NHPs to develop “genetic” models of PD that are suitable for testing therapeutic approaches.
Collapse
Affiliation(s)
- Christelle Lasbleiz
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Nadine Mestre-Francés
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Gina Devau
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | | | - Liliane Tenenbaum
- Laboratory of Molecular Neurotherapies and NeuroModulation, Clinical Neuroscience Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jean-Michel Verdier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| |
Collapse
|
39
|
Abstract
The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, frontotemporal lobar degeneration, and the motor neuron diseases, with AD affecting approximately 6% of people aged 65 years and older, and PD affecting approximately 1% of people aged over 60 years. Specific proteins are associated with these neurodegenerative diseases, as determined by both immunohistochemical studies on post-mortem tissue and genetic screening, where protein misfolding and aggregation are key hallmarks. Many of these proteins are shown to misfold and aggregate into soluble non-native oligomers and large insoluble protein deposits (fibrils and plaques), both of which may exert a toxic gain of function. Proteotoxicity has been examined intensively in cell culture and in in vivo models, and clinical trials of methods to attenuate proteotoxicity are relatively new. Therapies to enhance cellular protein quality control mechanisms such as upregulation of chaperones and clearance/degradation pathways, as well as immunotherapies against toxic protein conformations, are being actively pursued. In this article, we summarize the common pathophysiology of neurodegenerative disease, and review therapies in early-phase clinical trials that target the proteotoxic component of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke McAlary
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
40
|
GDNF-mediated rescue of the nigrostriatal system depends on the degree of degeneration. Gene Ther 2018; 26:57-64. [PMID: 30531868 PMCID: PMC6514883 DOI: 10.1038/s41434-018-0049-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) is a promising therapeutic molecule to treat Parkinson’s disease. Despite an excellent profile in experimental settings, clinical trials testing GDNF have failed. One of the theories to explain these negative outcomes is that the clinical trials were done in late-stage patients that have advanced nigrostriatal degeneration and may therefore not respond to a neurotrophic factor therapy. Based on this idea, we tested if the stage of nigrostriatal degeneration is important for GDNF-based therapies. Lentiviral vectors expressing regulated GDNF were delivered to the striatum of rats to allow GDNF expression to be turned on either while the nigrostriatal system was degenerating or after the nigrostriatal system had been fully lesioned by 6-OHDA. In the group of animals where GDNF expression was on during degeneration, neurons were rescued and there was a reversal of motor deficits. Turning GDNF expression on after the nigrostriatal system was lesioned did not rescue neurons or reverse motor deficits. In fact, these animals were indistinguishable from the control groups. Our results suggest that GDNF can reverse motor deficits and nigrostriatal pathology despite an ongoing nigrostriatal degeneration, if there is still a sufficient number of remaining neurons to respond to therapy.
Collapse
|
41
|
Raghunathan R, Polinski NK, Klein JA, Hogan JD, Shao C, Khatri K, Leon D, McComb ME, Manfredsson FP, Sortwell CE, Zaia J. Glycomic and Proteomic Changes in Aging Brain Nigrostriatal Pathway. Mol Cell Proteomics 2018; 17:1778-1787. [PMID: 29915149 PMCID: PMC6126385 DOI: 10.1074/mcp.ra118.000680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by the progressive loss of functional dopaminergic neurons in the nigrostriatal pathway in the brain. Although current treatments provide only symptomatic relief, gene therapy has the potential to slow or halt the degeneration of nigrostriatal dopamine neurons in PD patients. Adeno-associated viruses (AAV) are vectors of choice in gene therapy because of their well-characterized safety and efficacy profiles; however, although gene therapy has been successful in preclinical models of the disease, clinical trials in humans have failed to demonstrate efficacy. Significantly, all primary AAV receptors of the virus are glycans. We thus hypothesize that age related changes in glycan receptors of heparan sulfate (HS) proteoglycans (receptor for rAAV2), and/or N-glycans with terminal galactose (receptor for rAAV9) results in poor adeno-associated virus binding in either the striatum or substantia nigra, or both, affecting transduction and gene delivery. To test our hypothesis we analyzed the striatum and substantia nigra for changes in HS, N-glycans and proteomic signatures in young versus aged rat brain striatum and substantia nigra. We observed different brain region-specific HS disaccharide profiles in aged compared with young adult rats for brain region-specific profiles in striatum versus substantia nigra. We observed brain region- and age-specific N-glycan compositional profiles with respect to the terminal galactose units that serve as receptors for AAV9. We also observed brain region-specific changes in protein expression in the aging nigrostriatal pathway. These studies provide insight into age- and brain region-specific changes in glycan receptors and proteome that will inform design of improved viral vectors for Parkinson Disease (PD) gene therapy.
Collapse
Affiliation(s)
- Rekha Raghunathan
- From the ‡Department of Molecular and Translational Medicine, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Nicole K Polinski
- ‖Department of Translational Science and Molecular Medicine, Michigan State University
| | - Joshua A Klein
- ¶Bioinformatics Program, Boston University, Boston, Massachusetts
| | - John D Hogan
- ¶Bioinformatics Program, Boston University, Boston, Massachusetts
| | - Chun Shao
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Kshitij Khatri
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Deborah Leon
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Mark E McComb
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
| | - Fredric P Manfredsson
- ‖Department of Translational Science and Molecular Medicine, Michigan State University
| | - Caryl E Sortwell
- ‖Department of Translational Science and Molecular Medicine, Michigan State University
| | - Joseph Zaia
- From the ‡Department of Molecular and Translational Medicine, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts;
- §Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts
- ¶Bioinformatics Program, Boston University, Boston, Massachusetts
| |
Collapse
|
42
|
New approaches for brain repair—from rescue to reprogramming. Nature 2018; 557:329-334. [DOI: 10.1038/s41586-018-0087-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/15/2018] [Indexed: 01/05/2023]
|
43
|
Kordower JH, Burke RE. Disease Modification for Parkinson's Disease: Axonal Regeneration and Trophic Factors. Mov Disord 2018; 33:678-683. [PMID: 29603370 DOI: 10.1002/mds.27383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
Abstract
Disease modification and structural neuroprotection have been the holy grail for Parkinson's disease (PD) experimental therapeutics. Theoretically, there are a number of ways to implement such therapeutics, but to date all have failed. This review examines the potential of axonal regeneration and trophic factor delivery for the nigrostriatal system as 2 such approaches that historically have initiated much excitement. However, we conclude this discussion with the following question: has science passed these approaches by? © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Robert E Burke
- Department of Neurology, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
44
|
Chu Y, Buchman AS, Olanow CW, Kordower JH. Do subjects with minimal motor features have prodromal Parkinson disease? Ann Neurol 2018; 83:562-574. [PMID: 29420861 DOI: 10.1002/ana.25179] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Understanding the pathological changes underlying mild motor features of the eldery and defining a patient population with prodromal Parkinson disease (PD) are of great clinical importance. It remains unclear, however, how to accurately and specifically diagnose prodromal PD. We examined whether older adults with minimal parkinsonian motor features have nigrostriatal degeneration and α-synuclein pathology consistent with prodromal PD. METHODS Brain sections were obtained from older adults with a clinical diagnosis of PD (n = 21) and without a clinical diagnosis of PD (n = 27) who underwent motor examination proximate to death. Cases without PD were further dichotomized into no motor deficit (n = 9) or minimal motor features (n = 18) groups using a modified Unified Parkinson's Disease Rating Scale. We performed quantitative unbiased stereological analyses of dopaminergic neurons/terminals and α-synuclein accumulation in the nigrostriatal system. RESULTS In all subjects with minimal motor features, there were significant reductions in dopaminergic neurons and terminals in the substantia nigra and putamen that were intermediate between subjects with no motor deficit and PD. Phosphorylated α-synuclein inclusions were observed in the substantia nigra that were of similar density to what was seen in PD. Furthermore, there was greater Lewy neuritic pathology in the putamen relative to PD patients. Lastly, neurons with α-synuclein inclusions displayed reductions in tyrosine hydroxylase expression that were comparable in subjects with both minimal motor features and PD. INTERPRETATION Minimal motor features in older adults may represent prodromal PD and identify at-risk individuals for testing putative neuroprotective interventions that could slow or prevent PD progression. Ann Neurol 2018;83:562-574.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Aron S Buchman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL.,Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | | | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL.,Van Andel Research Institute, Grand Rapids, MI
| |
Collapse
|
45
|
Meng Y, Voisin MR, Suppiah S, Kalia SK, Kalia LV, Hamani C, Lipsman N. Is there a role for MR-guided focused ultrasound in Parkinson's disease? Mov Disord 2018; 33:575-579. [PMID: 29476631 DOI: 10.1002/mds.27308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mathew R Voisin
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Ave Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Neuromodulation Using Optogenetics and Related Technologies. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Axelsen TM, Woldbye DP. Gene Therapy for Parkinson's Disease, An Update. JOURNAL OF PARKINSON'S DISEASE 2018; 8:195-215. [PMID: 29710735 PMCID: PMC6027861 DOI: 10.3233/jpd-181331] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
The current mainstay treatment of Parkinson's disease (PD) consists of dopamine replacement therapy which, in addition to causing several side effects, does not delay disease progression. The field of gene therapy offers a potential means to improve current therapy. The present review gives an update of the present status of gene therapy for PD. Both non-disease and disease modifying transgenes have been tested for PD gene therapy in animal and human studies. Non-disease modifying treatments targeting dopamine or GABA synthesis have been successful and promising at improving PD symptomatology in randomized clinical studies, but substantial testing remains before these can be implemented in the standard clinical treatment repertoire. As for disease modifying targets that theoretically offer the possibility of slowing the progression of disease, several neurotrophic factors show encouraging results in preclinical models (e.g., neurturin, GDNF, BDNF, CDNF, VEGF-A). However, so far, clinical trials have only tested neurturin, and, unfortunately, no trial has been able to meet its primary endpoint. Future clinical trials with neurotrophic factors clearly deserve to be conducted, considering the still enticing goal of actually slowing the disease process of PD. As alternative types of gene therapy, opto- and chemogenetics might also find future use in PD treatment and novel genome-editing technology could also potentially be applied as individualized gene therapy for genetic types of PD.
Collapse
Affiliation(s)
- Tobias M. Axelsen
- Department of Neurology, Herlev University Hospital, Herlev, Denmark
| | - David P.D. Woldbye
- Department of Neuroscience, Panum Institute, Mærsk Tower, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
48
|
Piguet F, Alves S, Cartier N. Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Hum Gene Ther 2017; 28:988-1003. [DOI: 10.1089/hum.2017.160] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Françoise Piguet
- Translational Medicine and Neurogenetics Department, Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- Inserm U596, Illkirch, France; CNRS, UMR7104, Illkirch, France
- Faculte des Sciences de la Vie, Universite de Strasbourg, Strasbourg, France
| | | | - Nathalie Cartier
- INSERM/CEA UMR1169, MIRCen Fontenay aux Roses, France
- Universite Paris-Sud, Orsay, France
| |
Collapse
|
49
|
Mead BP, Kim N, Miller GW, Hodges D, Mastorakos P, Klibanov AL, Mandell JW, Hirsh J, Suk JS, Hanes J, Price RJ. Novel Focused Ultrasound Gene Therapy Approach Noninvasively Restores Dopaminergic Neuron Function in a Rat Parkinson's Disease Model. NANO LETTERS 2017; 17:3533-3542. [PMID: 28511006 PMCID: PMC5539956 DOI: 10.1021/acs.nanolett.7b00616] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Therapies capable of decelerating, or perhaps even halting, neurodegeneration in Parkinson's disease (PD) remain elusive. Clinical trials of PD gene therapy testing the delivery of neurotrophic factors, such as the glial cell-line derived neurotrophic factor (GDNF), have been largely ineffective due to poor vector distribution throughout the diseased regions in the brain. In addition, current delivery strategies involve invasive procedures that obviate the inclusion of early stage patients who are most likely to benefit from GDNF-based gene therapy. Here, we introduce a two-pronged treatment strategy, composed of MR image-guided focused ultrasound (FUS) and brain-penetrating nanoparticles (BPN), that provides widespread but targeted GDNF transgene expression in the brain following systemic administration. MR image-guided FUS allows circulating gene vectors to partition into the brain tissue by noninvasive and transient opening of the blood-brain barrier (BBB) within the areas where FUS is applied. Once beyond the BBB, BPN provide widespread and uniform GDNF expression throughout the targeted brain tissue. After only a single treatment, our strategy led to therapeutically relevant levels of GDNF protein content in the FUS-targeted regions in the striatum of the 6-OHDA-induced rat model of PD, which lasted at least up to 10 weeks. Importantly, our strategy restored both dopamine levels and dopaminergic neuron density and reversed behavioral indicators of PD-associated motor dysfunction with no evidence of local or systemic toxicity. Our combinatorial approach overcomes limitations of current delivery strategies, thereby potentially providing a novel means to treat PD.
Collapse
Affiliation(s)
- Brian P. Mead
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Namho Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - G. Wilson Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, United States
| | - David Hodges
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Panagiotis Mastorakos
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Alexander L. Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Cardiovascular Division, University of Virginia, Charlottesville, Virginia 22908, United States
| | - James W. Mandell
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
50
|
Effects of intracerebral neurotrophic factor application on motor symptoms in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2017; 38:19-25. [DOI: 10.1016/j.parkreldis.2017.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 11/18/2022]
|