1
|
Raiteri L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine-Glutamate Crosstalk. Biomedicines 2024; 12:1518. [PMID: 39062091 PMCID: PMC11275102 DOI: 10.3390/biomedicines12071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters include the modulation of release through release-regulating receptors but also through transporter-mediated mechanisms. Many transporter-mediated interactions involve the amino acid transmitters Glycine, Glutamate, and GABA. Different studies published during the last two decades investigated a number of transporter-mediated interactions in depth involving amino acid transmitters at the nerve terminal level in different CNS areas, providing details of mechanisms involved and suggesting pathophysiological significances. Here, this evidence is reviewed also considering additional recent information available in the literature, with a special (but not exclusive) focus on glycinergic neurotransmission and Glycine-Glutamate interactions. Some possible pharmacological implications, although partly speculative, are also discussed. Dysregulations in glycinergic and glutamatergic transmission are involved in relevant CNS pathologies. Pharmacological interventions on glycinergic targets (including receptors and transporters) are under study to develop novel therapies against serious CNS pathological states including pain, schizophrenia, epilepsy, and neurodegenerative diseases. Although with limitations, it is hoped to possibly contribute to a better understanding of the complex interactions between glycine-mediated neurotransmission and other major amino acid transmitters, also in view of the current interest in potential drugs acting on "glycinergic" targets.
Collapse
Affiliation(s)
- Luca Raiteri
- Pharmacology and Toxicology Section, Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
2
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
4
|
Nunez Y, Balalian A, Parks RM, He MZ, Hansen J, Raaschou-Nielsen O, Ketzel M, Khan J, Brandt J, Vermeulen R, Peters S, Weisskopf MG, Re DB, Goldsmith J, Kioumourtzoglou MA. Exploring Relevant Time Windows in the Association Between PM2.5 Exposure and Amyotrophic Lateral Sclerosis: A Case-Control Study in Denmark. Am J Epidemiol 2023; 192:1499-1508. [PMID: 37092253 PMCID: PMC10666968 DOI: 10.1093/aje/kwad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/08/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Studies suggest a link between particulate matter less than or equal to 2.5 μm in diameter (PM2.5) and amyotrophic lateral sclerosis (ALS), but to our knowledge critical exposure windows have not been examined. We performed a case-control study in the Danish population spanning the years 1989-2013. Cases were selected from the Danish National Patient Registry based on International Classification of Diseases codes. Five controls were randomly selected from the Danish Civil Registry and matched to a case on vital status, age, and sex. PM2.5 concentration at residential addresses was assigned using monthly predictions from a dispersion model. We used conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for confounding. We evaluated exposure to averaged PM2.5 concentrations 12-24 months, 2-6 years, and 2-11 years pre-ALS diagnosis; annual lagged exposures up to 11 years prediagnosis; and cumulative associations for exposure in lags 1-5 years and 1-10 years prediagnosis, allowing for varying association estimates by year. We identified 3,983 cases and 19,915 controls. Cumulative exposure to PM2.5 in the period 2-6 years prediagnosis was associated with ALS (OR = 1.06, 95% CI: 0.99, 1.13). Exposures in the second, third, and fourth years prediagnosis were individually associated with higher odds of ALS (e.g., for lag 1, OR = 1.04, 95% CI: 1.00, 1.08). Exposure to PM2.5 within 6 years before diagnosis may represent a critical exposure window for ALS.
Collapse
Affiliation(s)
- Yanelli Nunez
- Correspondence to Dr. Yanelli Nunez, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th Street, New York, NY 10032 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Torazza C, Provenzano F, Gallia E, Cerminara M, Balbi M, Bonifacino T, Tessitore S, Ravera S, Usai C, Musante I, Puliti A, Van Den Bosch L, Jafar-nejad P, Rigo F, Milanese M, Bonanno G. Genetic Downregulation of the Metabotropic Glutamate Receptor Type 5 Dampens the Reactive and Neurotoxic Phenotype of Adult ALS Astrocytes. Cells 2023; 12:1952. [PMID: 37566031 PMCID: PMC10416852 DOI: 10.3390/cells12151952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons (MNs). Astrocytes display a toxic phenotype in ALS, which results in MN damage. Glutamate (Glu)-mediated excitotoxicity and group I metabotropic glutamate receptors (mGluRs) play a pathological role in the disease progression. We previously demonstrated that in vivo genetic ablation or pharmacological modulation of mGluR5 reduced astrocyte activation and MN death, prolonged survival and ameliorated the clinical progression in the SOD1G93A mouse model of ALS. This study aimed to investigate in vitro the effects of mGluR5 downregulation on the reactive spinal cord astrocytes cultured from adult late symptomatic SOD1G93A mice. We observed that mGluR5 downregulation in SOD1G93A astrocytes diminished the cytosolic Ca2+ overload under resting conditions and after mGluR5 simulation and reduced the expression of the reactive glial markers GFAP, S100β and vimentin. In vitro exposure to an anti-mGluR5 antisense oligonucleotide or to the negative allosteric modulator CTEP also ameliorated the altered reactive astrocyte phenotype. Downregulating mGluR5 in SOD1G93A mice reduced the synthesis and release of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α and ameliorated the cellular bioenergetic profile by improving the diminished oxygen consumption and ATP synthesis and by lowering the excessive lactate dehydrogenase activity. Most relevantly, mGluR5 downregulation hampered the neurotoxicity of SOD1G93A astrocytes co-cultured with spinal cord MNs. We conclude that selective reduction in mGluR5 expression in SOD1G93A astrocytes positively modulates the astrocyte reactive phenotype and neurotoxicity towards MNs, further supporting mGluR5 as a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Elena Gallia
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tessitore
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy;
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genoa, Italy;
| | - Ilaria Musante
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA; (P.J.-n.); (F.R.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| |
Collapse
|
6
|
Balbi M, Bonanno G, Bonifacino T, Milanese M. The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5240. [PMID: 36982315 PMCID: PMC10048889 DOI: 10.3390/ijms24065240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microglia cells are the resident immune cells of the central nervous system. They act as the first-line immune guardians of nervous tissue and central drivers of neuroinflammation. Any homeostatic alteration that can compromise neuron and tissue integrity could activate microglia. Once activated, microglia exhibit highly diverse phenotypes and functions related to either beneficial or harmful consequences. Microglia activation is associated with the release of protective or deleterious cytokines, chemokines, and growth factors that can in turn determine defensive or pathological outcomes. This scenario is complicated by the pathology-related specific phenotypes that microglia can assume, thus leading to the so-called disease-associated microglia phenotypes. Microglia express several receptors that regulate the balance between pro- and anti-inflammatory features, sometimes exerting opposite actions on microglial functions according to specific conditions. In this context, group I metabotropic glutamate receptors (mGluRs) are molecular structures that may contribute to the modulation of the reactive phenotype of microglia cells, and this is worthy of exploration. Here, we summarize the role of group I mGluRs in shaping microglia cells' phenotype in specific physio-pathological conditions, including some neurodegenerative disorders. A significant section of the review is specifically focused on amyotrophic lateral sclerosis (ALS) since it represents an entirely unexplored topic of research in the field.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
7
|
Bonifacino T, Mingardi J, Facchinetti R, Sala N, Frumento G, Ndoj E, Valenza M, Paoli C, Ieraci A, Torazza C, Balbi M, Guerinoni M, Muhammad N, Russo I, Milanese M, Scuderi C, Barbon A, Steardo L, Bonanno G, Popoli M, Musazzi L. Changes at glutamate tripartite synapses in the prefrontal cortex of a new animal model of resilience/vulnerability to acute stress. Transl Psychiatry 2023; 13:62. [PMID: 36806044 PMCID: PMC9938874 DOI: 10.1038/s41398-023-02366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
Stress represents a main risk factor for psychiatric disorders. Whereas it is known that even a single trauma may induce psychiatric disorders in humans, the mechanisms of vulnerability to acute stressors have been little investigated. In this study, we generated a new animal model of resilience/vulnerability to acute footshock (FS) stress in rats and analyzed early functional, molecular, and morphological determinants of stress vulnerability at tripartite glutamate synapses in the prefrontal cortex (PFC). We found that adult male rats subjected to FS can be deemed resilient (FS-R) or vulnerable (FS-V), based on their anhedonic phenotype 24 h after stress exposure, and that these two populations are phenotypically distinguishable up to two weeks afterwards. Basal presynaptic glutamate release was increased in the PFC of FS-V rats, while depolarization-evoked glutamate release and synapsin I phosphorylation at Ser9 were increased in both FS-R and FS-V. In FS-R and FS-V rats the synaptic expression of GluN2A and apical dendritic length of prelimbic PFC layers II-III pyramidal neurons were decreased, while BDNF expression was selectively reduced in FS-V. Depolarization-evoked (carrier-mediated) glutamate release from astroglia perisynaptic processes (gliosomes) was selectively increased in the PFC of FS-V rats, while GLT1 and xCt levels were higher and GS expression reduced in purified PFC gliosomes from FS-R. Overall, we show for the first time that the application of the sucrose intake test to rats exposed to acute FS led to the generation of a novel animal model of resilience/vulnerability to acute stress, which we used to identify early determinants of maladaptive response related to behavioral vulnerability to stress.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Jessica Mingardi
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberta Facchinetti
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Nathalie Sala
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Giulia Frumento
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Elona Ndoj
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marta Valenza
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Caterina Paoli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.5602.10000 0000 9745 6549Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Ieraci
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy ,grid.449889.00000 0004 5945 6678Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Carola Torazza
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Michele Guerinoni
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Nadeem Muhammad
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Isabella Russo
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy ,Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Milanese
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Caterina Scuderi
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Alessandro Barbon
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Steardo
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Giambattista Bonanno
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
8
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
9
|
Milanese M, Bonifacino T, Torazza C, Provenzano F, Kumar M, Ravera S, Zerbo AR, Frumento G, Balbi M, Nguyen TPN, Bertola N, Ferrando S, Viale M, Profumo A, Bonanno G. Blocking glutamate mGlu 5 receptors with the negative allosteric modulator CTEP improves disease course in SOD1 G93A mouse model of amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:3747-3764. [PMID: 33931856 PMCID: PMC8457068 DOI: 10.1111/bph.15515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of amyotrophic lateral sclerosis (ALS) is not fully clarified, although excessive glutamate (Glu) transmission and the downstream cytotoxic cascades are major mechanisms for motor neuron death. Two metabotropic glutamate receptors (mGlu1 and mGlu5 ) are overexpressed in ALS and regulate cellular disease processes. Expression and function of mGlu5 receptors are altered at early symptomatic stages in the SOD1G93A mouse model of ALS and knockdown of mGlu5 receptors in SOD1G93A mice improved disease progression. EXPERIMENTAL APPROACH We treated male and female SOD1G93A mice with 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP), an orally available mGlu5 receptor negative allosteric modulator (NAM), using doses of 2 mg·kg-1 per 48 h or 4 mg·kg-1 per 24 h from Day 90, an early symptomatic disease stage. Disease progression was studied by behavioural and histological approaches. KEY RESULTS CTEP dose-dependently ameliorated clinical features in SOD1G93A mice. The lower dose increased survival and improved motor skills in female mice, with barely positive effects in male mice. Higher doses significantly ameliorated disease symptoms and survival in both males and females, females being more responsive. CTEP also reduced motor neuron death, astrocyte and microglia activation, and abnormal glutamate release in the spinal cord, with equal effects in male and female mice. No differences were also observed in CTEP access to the brain. CONCLUSION AND IMPLICATIONS Our results suggest that mGlu5 receptors are promising targets for the treatment of ALS and highlight mGlu5 receptor NAMs as effective pharmacological tools with translational potential.
Collapse
Affiliation(s)
- Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mandeep Kumar
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Arianna Roberta Zerbo
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Giulia Frumento
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - T P Nhung Nguyen
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Science, University of Genoa, Genoa, Italy
| | | | - Aldo Profumo
- IRCCS Ospedale policlinico San Martino, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,IRCCS Ospedale policlinico San Martino, Genoa, Italy
| |
Collapse
|
10
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
11
|
Burlando B, Milanese M, Giordano G, Bonifacino T, Ravera S, Blanchini F, Bonanno G. A multistationary loop model of ALS unveils critical molecular interactions involving mitochondria and glucose metabolism. PLoS One 2020; 15:e0244234. [PMID: 33332476 PMCID: PMC7746301 DOI: 10.1371/journal.pone.0244234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/05/2020] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a poor-prognosis disease with puzzling pathogenesis and inconclusive treatments. We develop a mathematical model of ALS based on a system of interactive feedback loops, focusing on the mutant SOD1G93A mouse. Misfolded mutant SOD1 aggregates in motor neuron (MN) mitochondria and triggers a first loop characterized by oxidative phosphorylation impairment, AMP kinase over-activation, 6-phosphofructo-2-kinase (PFK3) rise, glucose metabolism shift from pentose phosphate pathway (PPP) to glycolysis, cell redox unbalance, and further worsening of mitochondrial dysfunction. Oxidative stress then triggers a second loop, involving the excitotoxic glutamatergic cascade, with cytosolic Ca2+ overload, increase of PFK3 expression, and further metabolic shift from PPP to glycolysis. Finally, cytosolic Ca2+ rise is also detrimental to mitochondria and oxidative phosphorylation, thus closing a third loop. These three loops are overlapped and positive (including an even number of inhibitory steps), hence they form a candidate multistationary (bistable) system. To describe the system dynamics, we model the interactions among the functional agents with differential equations. The system turns out to admit two stable equilibria: the healthy state, with high oxidative phosphorylation and preferential PPP, and the pathological state, with AMP kinase activation, PFK3 over expression, oxidative stress, excitotoxicity and MN degeneration. We demonstrate that the loop system is monotone: all functional agents consistently act toward the healthy or pathological condition, depending on low or high mutant SOD1 input. We also highlight that molecular interactions involving PFK3 are crucial, as their deletion disrupts the system's bistability leading to a single healthy equilibrium point. Hence, our mathematical model unveils that promising ALS management strategies should be targeted to mechanisms that keep low PFK3 expression and activity within MNs.
Collapse
Affiliation(s)
- Bruno Burlando
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, Italy
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
- * E-mail:
| | | | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Franco Blanchini
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, University of Udine, Udine, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, University of Genova, Genova, Italy
- IRCCS—Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
12
|
Bonifacino T, Rebosio C, Provenzano F, Torazza C, Balbi M, Milanese M, Raiteri L, Usai C, Fedele E, Bonanno G. Enhanced Function and Overexpression of Metabotropic Glutamate Receptors 1 and 5 in the Spinal Cord of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis during Disease Progression. Int J Mol Sci 2019; 20:ijms20184552. [PMID: 31540330 PMCID: PMC6774337 DOI: 10.3390/ijms20184552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu)-mediated excitotoxicity is a major cause of amyotrophic lateral sclerosis (ALS) and our previous work highlighted that abnormal Glu release may represent a leading mechanism for excessive synaptic Glu. We demonstrated that group I metabotropic Glu receptors (mGluR1, mGluR5) produced abnormal Glu release in SOD1G93A mouse spinal cord at a late disease stage (120 days). Here, we studied this phenomenon in pre-symptomatic (30 and 60 days) and early-symptomatic (90 days) SOD1G93A mice. The mGluR1/5 agonist (S)-3,5-Dihydroxyphenylglycine (3,5-DHPG) concentration dependently stimulated the release of [3H]d-Aspartate ([3H]d-Asp), which was comparable in 30- and 60-day-old wild type mice and SOD1G93A mice. At variance, [3H]d-Asp release was significantly augmented in 90-day-old SOD1G93A mice and both mGluR1 and mGluR5 were involved. The 3,5-DHPG-induced [3H]d-Asp release was exocytotic, being of vesicular origin and mediated by intra-terminal Ca2+ release. mGluR1 and mGluR5 expression was increased in Glu spinal cord axon terminals of 90-day-old SOD1G93A mice, but not in the whole axon terminal population. Interestingly, mGluR1 and mGluR5 were significantly augmented in total spinal cord tissue already at 60 days. Thus, function and expression of group I mGluRs are enhanced in the early-symptomatic SOD1G93A mouse spinal cord, possibly participating in excessive Glu transmission and supporting their implication in ALS. Please define all abbreviations the first time they appear in the abstract, the main text, and the first figure or table caption.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Claudia Rebosio
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Luca Raiteri
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), 16149 Genova, Italy.
| | - Ernesto Fedele
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
13
|
Bonifacino T, Provenzano F, Gallia E, Ravera S, Torazza C, Bossi S, Ferrando S, Puliti A, Van Den Bosch L, Bonanno G, Milanese M. In-vivo genetic ablation of metabotropic glutamate receptor type 5 slows down disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2019; 129:79-92. [DOI: 10.1016/j.nbd.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/19/2019] [Accepted: 05/11/2019] [Indexed: 11/30/2022] Open
|
14
|
della Valle E, Marracino P, Pakhomova O, Liberti M, Apollonio F. Nanosecond pulsed electric signals can affect electrostatic environment of proteins below the threshold of conformational effects: The case study of SOD1 with a molecular simulation study. PLoS One 2019; 14:e0221685. [PMID: 31454403 PMCID: PMC6711501 DOI: 10.1371/journal.pone.0221685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Electric fields can be a powerful tool to interact with enzymes or proteins, with an intriguing perspective to allow protein manipulation. Recently, researchers have focused the interest on intracellular enzyme modifications triggered by the application of nanosecond pulsed electric fields. These findings were also supported by theoretical predictions from molecular dynamics simulations focussing on significant variations in protein secondary structures. In this work, a theoretical study utilizing molecular dynamics simulations is proposed to explore effects of electric fields of high intensity and very short nanosecond duration applied to the superoxide dismutase (Cu/Zn-SOD or SOD-1), an important enzyme involved in the cellular antioxidant defence mechanism. The effects of 100-nanosecond pulsed electric fields, with intensities ranging from 108 to 7x108 V/m, on a single SOD1 enzyme are presented. We demonstrated that the lowest intensity of 108 V/m, although not inducing structural changes, can produce electrostatic modifications on the reaction centre of the enzyme, as apparent from the dipolar response and the electric field distribution of the protein active site. Electric pulses above 5x108 V/m produced a fast transition between the folded and a partially denatured state, as inferred by the secondary structures analysis. Finally, for the highest field intensity used (7x108 V/m), a not reversible transition toward an unfolded state was observed.
Collapse
Affiliation(s)
- Elena della Valle
- BioElectronic Vision Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Olga Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Ravera S, Torazza C, Bonifacino T, Provenzano F, Rebosio C, Milanese M, Usai C, Panfoli I, Bonanno G. Altered glucose catabolism in the presynaptic and perisynaptic compartments of SOD1 G93A mouse spinal cord and motor cortex indicates that mitochondria are the site of bioenergetic imbalance in ALS. J Neurochem 2019; 151:336-350. [PMID: 31282572 DOI: 10.1111/jnc.14819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/22/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an adult-onset neurodegenerative disease that develops because of motor neuron death. Several mechanisms occur supporting neurodegeneration, including mitochondrial dysfunction. Recently, we demonstrated that the synaptosomes from the spinal cord of SOD1G93A mice, an in vitro model of presynapses, displayed impaired mitochondrial metabolism at early pre-symptomatic stages of the disease, whereas perisynaptic astrocyte particles, or gliosomes, were characterized by mild energy impairment only at symptomatic stages. This work aimed to understand whether mitochondrial impairment is a consequence of upstream metabolic damage. We analyzed the critical pathways involved in glucose catabolism at presynaptic and perisynaptic compartments. Spinal cord and motor cortex synaptosomes from SOD1G93A mice displayed high activity of hexokinase and phosphofructokinase, key glycolysis enzymes, and of citrate synthase and malate dehydrogenase, key Krebs cycle enzymes, but did not display high lactate dehydrogenase activity, the key enzyme in lactate fermentation. This enhancement was evident in the spinal cord from the early stages of the disease and in the motor cortex at only symptomatic stages. Conversely, an increase in glycolysis and lactate fermentation activity, but not Krebs cycle activity, was observed in gliosomes from the spinal cord and motor cortex of SOD1G93A mice although only at the symptomatic stages of the disease. The cited enzymatic activities were enhanced in spinal cord and motor cortex homogenates, paralleling the time-course of the effect observed in synaptosomes and gliosomes. The observed metabolic modifications might be considered an attempt to restore altered energetic balance and indicate that mitochondria represent the ultimate site of bioenergetic impairment.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Claudia Rebosio
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,IRCCS San Martino Policlinic Hospital, Genoa, Italy
| |
Collapse
|
16
|
Spiers JG, Breda C, Robinson S, Giorgini F, Steinert JR. Drosophila Nrf2/Keap1 Mediated Redox Signaling Supports Synaptic Function and Longevity and Impacts on Circadian Activity. Front Mol Neurosci 2019; 12:86. [PMID: 31040766 PMCID: PMC6476960 DOI: 10.3389/fnmol.2019.00086] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative conditions and age-related neuropathologies are associated with increased levels of reactive oxygen species (ROS). The cap "n" collar (CncC) family of transcription factors is one of the major cellular system that fights oxidative insults, becoming activated in response to oxidative stress. This transcription factor signaling is conserved from metazoans to human and has a major developmental and disease-associated relevance. An important mammalian member of the CncC family is nuclear factor erythroid 2-related factor 2 (Nrf2) which has been studied in numerous cellular systems and represents an important target for drug discovery in different diseases. CncC is negatively regulated by Kelch-like ECH associated protein 1 (Keap1) and this interaction provides the basis for a homeostatic control of cellular antioxidant defense. We have utilized the Drosophila model system to investigate the roles of CncC signaling on longevity, neuronal function and circadian rhythm. Furthermore, we assessed the effects of CncC function on larvae and adult flies following exposure to stress. Our data reveal that constitutive overexpression of CncC modifies synaptic mechanisms that positively impact on neuronal function, and suppression of CncC inhibitor, Keap1, shows beneficial phenotypes on synaptic function and longevity. Moreover, supplementation of antioxidants mimics the effects of augmenting CncC signaling. Under stress conditions, lack of CncC signaling worsens survival rates and neuronal function whilst silencing Keap1 protects against stress-induced neuronal decline. Interestingly, overexpression and RNAi-mediated downregulation of CncC have differential effects on sleep patterns possibly via interactions with redox-sensitive circadian cycles. Thus, our data illustrate the important regulatory potential of CncC signaling in neuronal function and synaptic release affecting multiple aspects within the nervous system.
Collapse
Affiliation(s)
- Jereme G Spiers
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Carlo Breda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sue Robinson
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Joern R Steinert
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
17
|
Tornese P, Sala N, Bonini D, Bonifacino T, La Via L, Milanese M, Treccani G, Seguini M, Ieraci A, Mingardi J, Nyengaard JR, Calza S, Bonanno G, Wegener G, Barbon A, Popoli M, Musazzi L. Chronic mild stress induces anhedonic behavior and changes in glutamate release, BDNF trafficking and dendrite morphology only in stress vulnerable rats. The rapid restorative action of ketamine. Neurobiol Stress 2019; 10:100160. [PMID: 31193464 PMCID: PMC6535630 DOI: 10.1016/j.ynstr.2019.100160] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Depression is a debilitating mental disease, characterized by persistent low mood and anhedonia. Stress represents a major environmental risk factor for depression; the complex interaction of stress with genetic factors results in different individual vulnerability or resilience to the disorder. Dysfunctions of the glutamate system have a primary role in depression. Clinical neuroimaging studies have consistently reported alterations in volume and connectivity of cortico-limbic areas, where glutamate neurons and synapses predominate. This is confirmed by preclinical studies in rodents, showing that repeated stress induces morphological and functional maladaptive changes in the same brain regions altered in humans. Confirming the key role of glutamatergic transmission in depression, compelling evidence has shown that the non-competitive NMDA receptor antagonist, ketamine, induces, at sub-anesthetic dose, rapid and sustained antidepressant response in both humans and rodents. We show here that the Chronic Mild Stress model of depression induces, only in stress-vulnerable rats, depressed-like anhedonic behavior, together with impairment of glutamate/GABA presynaptic release, BDNF mRNA trafficking in dendrites and dendritic morphology in hippocampus. Moreover, we show that a single administration of ketamine restores, in 24 h, normal behavior and most of the cellular/molecular maladaptive changes in vulnerable rats. Interestingly, ketamine treatment did not restore BDNF mRNA levels reduced by chronic stress but rescued dendritic trafficking of BDNF mRNA. The present results are consistent with a mechanism of ketamine involving rapid restoration of synaptic homeostasis, through re-equilibration of glutamate/GABA release and dendritic BDNF for synaptic translation and reversal of synaptic and circuitry impairment. Chronic mild stress (CMS) induces anhedonic behavior and maladaptive changes in the hippocampus (HPC) of vulnerable rats. CMS reduces basal and evoked release of glutamate in the HPC of vulnerable rats. SCMS reduces evoked release of GABA in the HPC of vulnerable rats. CMS reduces expression of BDNF mRNA and trafficking along dendrites in the HPC of vulnerable rats. CMS reduces length of apical dendrites in CA3 pyramidal neurons of vulnerable rats. Ketamine injection (10 mg/kg) restores in 24h anhedonic behavior and most maladaptive changes, except BDNF expression. The present results suggest that the antidepressant mechanism of ketamine involves restoration of synaptic homeostasis.
Collapse
Affiliation(s)
- Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Nathalie Sala
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Daniela Bonini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, 16148, Genova, Italy
| | - Luca La Via
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, 16148, Genova, Italy
| | - Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240, Risskov, Denmark
| | - Mara Seguini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Jessica Mingardi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Jens R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus, Denmark
| | - Stefano Calza
- Unit of Biostatistics and Biomathematics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, 16148, Genova, Italy
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240, Risskov, Denmark.,Pharmaceutical Research Centre of Excellence, School of Pharmacy, North-West University, 2520, Potchefstroom, South Africa
| | - Alessandro Barbon
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
18
|
Cao J, She L, Song Y. The glutamate biosynthetic pathway in brain: a novel mechanism of moderate UV-induced neurobehavioral changes. Acta Biochim Biophys Sin (Shanghai) 2019; 51:227-228. [PMID: 30590380 DOI: 10.1093/abbs/gmy166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jianping Cao
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Lan She
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yanghui Song
- Hengyang Country People’s Hospital, Hengyang, China
| |
Collapse
|
19
|
MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Sci Rep 2018; 8:10105. [PMID: 29973608 PMCID: PMC6031650 DOI: 10.1038/s41598-018-28366-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder that is characterized by a progressive degeneration of motor neurons (MNs). The pathomechanism underlying the disease is largely unknown, even though increasing evidence suggests that RNA metabolism, including microRNAs (miRNAs) may play an important role. In this study, human ALS induced pluripotent stem cells were differentiated into MN progenitors and their miRNA expression profiles were compared to those of healthy control cells. We identified 15 downregulated miRNAs in patients’ cells. Gene ontology and molecular pathway enrichment analysis indicated that the predicted target genes of the differentially expressed miRNAs were involved in neurodegeneration-related pathways. Among the 15 examined miRNAs, miR-34a and miR504 appeared particularly relevant due to their involvement in the p53 pathway, synaptic vesicle regulation and general involvement in neurodegenerative diseases. Taken together our results demonstrate that the neurodegenerative phenotype in ALS can be associated with a dysregulation of miRNAs involved in the control of disease-relevant genetic pathways, suggesting that targeting entire gene networks can be a potential strategy to treat complex diseases such as ALS.
Collapse
|
20
|
Ravera S, Bonifacino T, Bartolucci M, Milanese M, Gallia E, Provenzano F, Cortese K, Panfoli I, Bonanno G. Characterization of the Mitochondrial Aerobic Metabolism in the Pre- and Perisynaptic Districts of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2018; 55:9220-9233. [PMID: 29656361 DOI: 10.1007/s12035-018-1059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized by muscle wasting, weakness, and spasticity due to a progressive degeneration of cortical, brainstem, and spinal motor neurons. The etiopathological causes are still largely obscure, although astrocytes definitely play a role in neuronal damage. Several mechanisms have been proposed to concur to neurodegeneration in ALS, including mitochondrial dysfunction. We have previously shown profound modifications of glutamate release and presynaptic plasticity in the spinal cord of the SOD1G93A mouse model of ALS. In this work, we characterized, for the first time, the aerobic metabolism in two specific compartments actively involved in neurotransmission (i.e. the presynaptic district, using purified synaptosomes, and the perisynaptic astrocyte processes, using purified gliosomes) in SOD1G93A mice at different stages of the disease. ATP/AMP ratio was lower in synaptosomes isolated from the spinal cord, but not from other brain areas, of SOD1G93A vs. control mice. The energy impairment was linked to altered oxidative phosphorylation (OxPhos) and increment of lipid peroxidation. These metabolic dysfunctions were present during disease progression, starting at the very pre-symptomatic stages, and did not depend on a different number of mitochondria or a different expression of OxPhos proteins. Conversely, gliosomes showed a reduction of the ATP/AMP ratio only at the late stages of the disease and an increment of oxidative stress also in the absence of a significant decrement in OxPhos activity. Data suggest that the presynaptic neuronal moiety plays a pivotal role for synaptic energy metabolism dysfunctions in ALS. Changes in the perisynaptic compartment seem subordinated to neuronal damage.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Martina Bartolucci
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, 16132, Genoa, Italy
| | - Elena Gallia
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy. .,Center of Excellence for Biomedical Research, University of Genoa, 16132, Genoa, Italy.
| |
Collapse
|
21
|
Du Y, Wen Y, Guo X, Hao J, Wang W, He A, Fan Q, Li P, Liu L, Liang X, Zhang F. A Genome-wide Expression Association Analysis Identifies Genes and Pathways Associated with Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2018; 38:635-639. [PMID: 28639078 DOI: 10.1007/s10571-017-0512-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/17/2017] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with strong genetic components. To identity novel risk variants for ALS, utilizing the latest genome-wide association studies (GWAS) and eQTL study data, we conducted a genome-wide expression association analysis by summary data-based Mendelian randomization (SMR) method. Summary data were derived from a large-scale GWAS of ALS, involving 12577 cases and 23475 controls. The eQTL annotation dataset included 923,021 cis-eQTL for 14,329 genes and 4732 trans-eQTL for 2612 genes. Genome-wide single gene expression association analysis was conducted by SMR software. To identify ALS-associated biological pathways, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). SMR single gene analysis identified one significant and four suggestive genes associated with ALS, including C9ORF72 (P value = 7.08 × 10-6), NT5C3L (P value = 1.33 × 10-5), GGNBP2 (P value = 1.81 × 10-5), ZNHIT3(P value = 2.94 × 10-5), and KIAA1600(P value = 9.97 × 10-5). GSEA identified 7 significant biological pathways, such as PEROXISOME (empirical P value = 0.006), GLYCOLYSIS_GLUCONEOGENESIS (empirical P value = 0.043), and ARACHIDONIC_ACID_ METABOLISM (empirical P value = 0.040). Our study provides novel clues for the genetic mechanism studies of ALS.
Collapse
Affiliation(s)
- Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Jingcan Hao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Wenyu Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Awen He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Qianrui Fan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
22
|
Lazo-Gomez R, Tapia R. Quercetin prevents spinal motor neuron degeneration induced by chronic excitotoxic stimulus by a sirtuin 1-dependent mechanism. Transl Neurodegener 2017; 6:31. [PMID: 29201361 PMCID: PMC5697078 DOI: 10.1186/s40035-017-0102-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Background Excitotoxicity is a mechanism of foremost importance in the selective motor neuron degeneration characteristic of motor neuron disorders. Effective therapeutic strategies are an unmet need for these disorders. Polyphenols, such as quercetin and resveratrol, are plant-derived compounds that activate sirtuins (SIRTs) and have shown promising results in some models of neuronal death, although their effects have been scarcely tested in models of motor neuron degeneration. Methods In this work we investigated the effects of quercetin and resveratrol in an in vivo model of excitotoxic motor neuron death induced by the chronic infusion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) into the rat spinal cord tissue. Quercetin and resveratrol were co-infused with AMPA and motor behavior and muscle strength were assessed daily for up to ten days. Then, animals were fixed and lumbar spinal cord tissue was analyzed by histological and immunocytological procedures. Results We found that the chronic infusion of AMPA [1 mM] caused a progressive motor neuron degeneration, accompanied by astrogliosis and microgliosis, and motor deficits and paralysis of the rear limbs. Quercetin infusion ameliorated AMPA-induced paralysis, rescued motor neurons, and prevented both astrogliosis and microgliosis, and these protective effects were prevented by EX527, a very selective SIRT1 inhibitor. In contrast, neither resveratrol nor EX527 alone improved motor behavior deficits or reduced motor neuron degeneration, albeit both reduced gliosis. Conclusions These results suggest that quercetin exerts its beneficial effects through a SIRT1-mediated mechanism, and thus SIRT1 plays an important role in excitotoxic neurodegeneration and therefore its pharmacological modulation might provide opportunities for therapy in motor neuron disorders. Electronic supplementary material The online version of this article (10.1186/s40035-017-0102-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Lazo-Gomez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| |
Collapse
|
23
|
Bonifacino T, Cattaneo L, Gallia E, Puliti A, Melone M, Provenzano F, Bossi S, Musante I, Usai C, Conti F, Bonanno G, Milanese M. In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuropharmacology 2017. [PMID: 28645622 DOI: 10.1016/j.neuropharm.2017.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder due to loss of upper and lower motor neurons (MNs). The mechanisms of neuronal death are largely unknown, thus prejudicing the successful pharmacological treatment. One major cause for MN degeneration in ALS is represented by glutamate(Glu)-mediated excitotoxicity. We have previously reported that activation of Group I metabotropic Glu receptors (mGluR1 and mGluR5) at glutamatergic spinal cord nerve terminals produces abnormal Glu release in the widely studied SOD1G93A mouse model of ALS. We also demonstrated that halving mGluR1 expression in the SOD1G93A mouse had a positive impact on survival, disease onset, disease progression, and on a number of cellular and biochemical readouts of ALS. We generated here SOD1G93A mice with reduced expression of mGluR5 (SOD1G93AGrm5-/+) by crossing the SOD1G93A mutant mouse with the mGluR5 heterozigous Grm5-/+ mouse. SOD1G93AGrm5-/+ mice showed prolonged survival probability and delayed pathology onset. These effects were associated to enhanced number of preserved MNs, decreased astrocyte and microglia activation, reduced cytosolic free Ca2+ concentration, and regularization of abnormal Glu release in the spinal cord of SOD1G93AGrm5-/+ mice. Unexpectedly, only male SOD1G93AGrm5-/+ mice showed improved motor skills during disease progression vs. SOD1G93A mice, while SOD1G93AGrm5-/+ females did not. These results demonstrate that a lower constitutive level of mGluR5 has a significant positive impact in mice with ALS and support the idea that blocking Group I mGluRs may represent a potentially effective pharmacological approach to the disease.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy
| | - Luca Cattaneo
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy
| | - Elena Gallia
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy
| | - Aldamaria Puliti
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, Via G. Gaslini, 5 - 16147, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 9 - 16132, Genoa, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Via Tronto 10/a - 60126, Torrette di Ancona, Ancona, Italy; Centre for Neurobiology of Aging, INRCA IRCCS, Via S.Margherita, 5 - 60124, Ancona, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy
| | - Simone Bossi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, L.go P. Daneo, 3 - 16132, Genoa, Italy
| | - Ilaria Musante
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, L.go P. Daneo, 3 - 16132, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via Darini, 6 - Torre di Francia, 16149, Genoa, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Via Tronto 10/a - 60126, Torrette di Ancona, Ancona, Italy; Centre for Neurobiology of Aging, INRCA IRCCS, Via S.Margherita, 5 - 60124, Ancona, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 9 - 16132, Genoa, Italy.
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 9 - 16132, Genoa, Italy
| |
Collapse
|
24
|
EAAT2 and the Molecular Signature of Amyotrophic Lateral Sclerosis. ADVANCES IN NEUROBIOLOGY 2017; 16:117-136. [PMID: 28828608 DOI: 10.1007/978-3-319-55769-4_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapid and fatal neurodegenerative disease, primarily affecting upper and lower motor neurons. It is an extremely heterogeneous disease in both cause and symptom development, and its mechanisms of pathogenesis remain largely unknown. Excitotoxicity, a process caused by excessive glutamate signaling, is believed to play a substantial role, however. Excessive glutamate release, changes in postsynaptic glutamate receptors, and reduction of functional astrocytic glutamate transporters contribute to excitotoxicity in ALS. Here, we explore the roles of each, with a particular emphasis on glutamate transporters and attempts to increase them as therapy for ALS. Screening strategies have been employed to find compounds that increase the functional excitatory amino acid transporter EAAT2 (GLT1), which is responsible for the vast majority of glutamate clearance. One such compound, ceftriaxone, was recently tested in clinical trials but unfortunately did not modify disease course, though its effect on EAAT2 expression in patients was not measured.
Collapse
|