1
|
McKean DM, Zhang Q, Narayan P, Morton SU, Strohmenger V, Tang VT, McAllister S, Sharma A, Quiat D, Reichart D, DeLaughter DM, Wakimoto H, Gorham JM, Brown K, McDonough B, Willcox JA, Jang MY, DePalma SR, Ward T, Kim R, Cleveland JD, Seidman J, Seidman CE. Increased endothelial sclerostin caused by elevated DSCAM mediates multiple trisomy 21 phenotypes. J Clin Invest 2024; 134:e167811. [PMID: 38828726 PMCID: PMC11142749 DOI: 10.1172/jci167811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2024] [Indexed: 06/05/2024] Open
Abstract
Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.
Collapse
Affiliation(s)
- David M. McKean
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Priyanka Narayan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Sarah U. Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Viktoria Strohmenger
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Walter Brendle Centre of Experimental Medicine, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vi T. Tang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie McAllister
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ananya Sharma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Quiat
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kemar Brown
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara McDonough
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon A. Willcox
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Min Young Jang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, USA
| | - Tarsha Ward
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Richard Kim
- Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - John D. Cleveland
- Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J.G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hergenreder T, Yang T, Ye B. The role of Down syndrome cell adhesion molecule in Down syndrome. MEDICAL REVIEW (2021) 2024; 4:31-41. [PMID: 38515781 PMCID: PMC10954295 DOI: 10.1515/mr-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Down syndrome (DS) is caused by the presence of an extra copy of the entire or a portion of human chromosome 21 (HSA21). This genomic alteration leads to elevated expression of numerous HSA21 genes, resulting in a variety of health issues in individuals with DS. Among the genes located in the DS "critical region" of HSA21, Down syndrome cell adhesion molecule (DSCAM) plays an important role in neuronal development. There is a growing body of evidence underscoring DSCAM's involvement in various DS-related disorders. This review aims to provide a concise overview of the established functions of DSCAM, with a particular focus on its implications in DS. We delve into the roles that DSCAM plays in DS-associated diseases. In the concluding section of this review, we explore prospective avenues for future research to further unravel DSCAM's role in DS and opportunities for therapeutic treatments.
Collapse
Affiliation(s)
- Ty Hergenreder
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Ustaoglu P, McQuarrie DWJ, Rochet A, Dix TC, Haussmann IU, Arnold R, Devaud JM, Soller M. Memory consolidation in honey bees is enhanced by down-regulation of Down syndrome cell adhesion molecule and changes its alternative splicing. Front Mol Neurosci 2024; 16:1322808. [PMID: 38264345 PMCID: PMC10803435 DOI: 10.3389/fnmol.2023.1322808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Down syndrome cell adhesion molecule (Dscam) gene encodes a cell adhesion molecule required for neuronal wiring. A remarkable feature of arthropod Dscam is massive alternative splicing generating thousands of different isoforms from three variable clusters of alternative exons. Dscam expression and diversity arising from alternative splicing have been studied during development, but whether they exert functions in adult brains has not been determined. Here, using honey bees, we find that Dscam expression is critically linked to memory retention as reducing expression by RNAi enhances memory after reward learning in adult worker honey bees. Moreover, alternative splicing of Dscam is altered in all three variable clusters after learning. Since identical Dscam isoforms engage in homophilic interactions, these results suggest a mechanism to alter inclusion of variable exons during memory consolidation to modify neuronal connections for memory retention.
Collapse
Affiliation(s)
- Pinar Ustaoglu
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - David W. J. McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - Anthony Rochet
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse University, Toulouse, France
| | - Thomas C. Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - Irmgard U. Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Roland Arnold
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
- College of Medical and Dental Sciences, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse University, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Zhang S, Yang X, Dong H, Xu B, Wu L, Zhang J, Li G, Guo P, Li L, Fu Y, Du Y, Zhu Y, Shi J, Shi F, Huang J, He H, Jin Y. Cis mutagenesis in vivo reveals extensive noncanonical functions of Dscam1 isoforms in neuronal wiring. PNAS NEXUS 2023; 2:pgad135. [PMID: 37152679 PMCID: PMC10156172 DOI: 10.1093/pnasnexus/pgad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) encodes tens of thousands of cell recognition molecules via alternative splicing, which are required for neural function. A canonical self-avoidance model seems to provide a central mechanistic basis for Dscam1 functions in neuronal wiring. Here, we reveal extensive noncanonical functions of Dscam1 isoforms in neuronal wiring. We generated a series of allelic cis mutations in Dscam1, encoding a normal number of isoforms, but with an altered isoform composition. Despite normal dendritic self-avoidance and self-/nonself-discrimination in dendritic arborization (da) neurons, which is consistent with the canonical self-avoidance model, these mutants exhibited strikingly distinct spectra of phenotypic defects in the three types of neurons: up to ∼60% defects in mushroom bodies, a significant increase in branching and growth in da neurons, and mild axonal branching defects in mechanosensory neurons. Remarkably, the altered isoform composition resulted in increased dendrite growth yet inhibited axon growth. Moreover, reducing Dscam1 dosage exacerbated axonal defects in mushroom bodies and mechanosensory neurons but reverted dendritic branching and growth defects in da neurons. This splicing-tuned regulation strategy suggests that axon and dendrite growth in diverse neurons cell-autonomously require Dscam1 isoform composition. These findings provide important insights into the functions of Dscam1 isoforms in neuronal wiring.
Collapse
Affiliation(s)
| | | | - Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Lili Wu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Guo Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Pengjuan Guo
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Yiwen Du
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou ZJ310058, People’s Republic of China
| | - Haihuai He
- To whom correspondence should be addressed: (H.H.); (Y.J.)
| | - Yongfeng Jin
- To whom correspondence should be addressed: (H.H.); (Y.J.)
| |
Collapse
|
5
|
Liu H, Caballero-Florán RN, Hergenreder T, Yang T, Hull JM, Pan G, Li R, Veling MW, Isom LL, Kwan KY, Huang ZJ, Fuerst PG, Jenkins PM, Ye B. DSCAM gene triplication causes excessive GABAergic synapses in the neocortex in Down syndrome mouse models. PLoS Biol 2023; 21:e3002078. [PMID: 37079499 PMCID: PMC10118173 DOI: 10.1371/journal.pbio.3002078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
Down syndrome (DS) is caused by the trisomy of human chromosome 21 (HSA21). A major challenge in DS research is to identify the HSA21 genes that cause specific symptoms. Down syndrome cell adhesion molecule (DSCAM) is encoded by a HSA21 gene. Previous studies have shown that the protein level of the Drosophila homolog of DSCAM determines the size of presynaptic terminals. However, whether the triplication of DSCAM contributes to presynaptic development in DS remains unknown. Here, we show that DSCAM levels regulate GABAergic synapses formed on neocortical pyramidal neurons (PyNs). In the Ts65Dn mouse model for DS, where DSCAM is overexpressed due to DSCAM triplication, GABAergic innervation of PyNs by basket and chandelier interneurons is increased. Genetic normalization of DSCAM expression rescues the excessive GABAergic innervations and the increased inhibition of PyNs. Conversely, loss of DSCAM impairs GABAergic synapse development and function. These findings demonstrate excessive GABAergic innervation and synaptic transmission in the neocortex of DS mouse models and identify DSCAM overexpression as the cause. They also implicate dysregulated DSCAM levels as a potential pathogenic driver in related neurological disorders.
Collapse
Affiliation(s)
- Hao Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - René N. Caballero-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ty Hergenreder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tao Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jacob M. Hull
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Geng Pan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ruonan Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Macy W. Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kenneth Y. Kwan
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Z. Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, United States of America
| | - Peter G. Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States of America
| | - Paul M. Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Hernández K, Godoy L, Newquist G, Kellermeyer R, Alavi M, Mathew D, Kidd T. Dscam1 overexpression impairs the function of the gut nervous system in Drosophila. Dev Dyn 2023; 252:156-171. [PMID: 36454543 PMCID: PMC9812936 DOI: 10.1002/dvdy.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Down syndrome (DS) patients have a 100-fold increase in the risk of Hirschsprung syndrome of the colon and rectum (HSCR), a lack of enteric neurons in the colon. The leading DS candidate gene is trisomy of the Down syndrome cell adhesion molecule (DSCAM). RESULTS We find that Dscam1 protein is expressed in the Drosophila enteric/stomatogastric nervous system (SNS). Axonal Dscam1 phenotypes can be rescued equally by diverse isoforms. Overexpression of Dscam1 resulted in frontal and hindgut nerve overgrowth. Expression of dominant negative Dscam1-ΔC led to a truncated frontal nerve and increased branching of the hindgut nerve. Larval locomotion is influenced by feeding state, and we found that the average speed of larvae with Dscam1 SNS expression was reduced, whereas overexpression of Dscam1-ΔC significantly increased the speed. Dscam1 overexpression reduced the efficiency of food clearance from the larval gut. CONCLUSION Our work demonstrates that overexpression of Dscam1 can perturb gut function in a model system.
Collapse
Affiliation(s)
| | - Luis Godoy
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | | | | | - Maryam Alavi
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Dennis Mathew
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Thomas Kidd
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
7
|
Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021; 22:ijms22168511. [PMID: 34445216 PMCID: PMC8395195 DOI: 10.3390/ijms22168511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
Locomotion results in an alternance of flexor and extensor muscles between left and right limbs generated by motoneurons that are controlled by the spinal interneuronal circuit. This spinal locomotor circuit is modulated by sensory afferents, which relay proprioceptive and cutaneous inputs that inform the spatial position of limbs in space and potential contacts with our environment respectively, but also by supraspinal descending commands of the brain that allow us to navigate in complex environments, avoid obstacles, chase prey, or flee predators. Although signaling pathways are important in the establishment and maintenance of motor circuits, the role of DSCAM, a cell adherence molecule associated with Down syndrome, has only recently been investigated in the context of motor control and locomotion in the rodent. DSCAM is known to be involved in lamination and delamination, synaptic targeting, axonal guidance, dendritic and cell tiling, axonal fasciculation and branching, programmed cell death, and synaptogenesis, all of which can impact the establishment of motor circuits during development, but also their maintenance through adulthood. We discuss herein how DSCAM is important for proper motor coordination, especially for breathing and locomotion.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Louise Thiry
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Olivier D. Laflamme
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
8
|
Dysfunction of NMDA receptors in neuronal models of an autism spectrum disorder patient with a DSCAM mutation and in Dscam-knockout mice. Mol Psychiatry 2021; 26:7538-7549. [PMID: 34253863 PMCID: PMC8873012 DOI: 10.1038/s41380-021-01216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Heterogeneity in the etiopathology of autism spectrum disorders (ASD) limits the development of generic remedies, requires individualistic and patient-specific research. Recent progress in human-induced pluripotent stem cell (iPSC) technology provides a novel platform for modeling ASDs for studying complex neuronal phenotypes. In this study, we generated telencephalic induced neuronal (iN) cells from iPSCs derived from an ASD patient with a heterozygous point mutation in the DSCAM gene. The mRNA of DSCAM and the density of DSCAM in dendrites were significantly decreased in ASD compared to control iN cells. RNA sequencing analysis revealed that several synaptic function-related genes including NMDA receptor subunits were downregulated in ASD iN cells. Moreover, NMDA receptor (R)-mediated currents were significantly reduced in ASD compared to control iN cells. Normal NMDA-R-mediated current levels were rescued by expressing wild-type DSCAM in ASD iN cells, and reduced currents were observed by truncated DSCAM expression in control iN cells. shRNA-mediated DSCAM knockdown in control iN cells resulted in the downregulation of an NMDA-R subunit, which was rescued by the overexpression of shRNA-resistant DSCAM. Furthermore, DSCAM was co-localized with NMDA-R components in the dendritic spines of iN cells whereas their co-localizations were significantly reduced in ASD iN cells. Levels of phospho-ERK1/2 were significantly lower in ASD iN cells, suggesting a potential mechanism. A neural stem cell-specific Dscam heterozygous knockout mouse model, showing deficits in social interaction and social memory with reduced NMDA-R currents. These data suggest that DSCAM mutation causes pathological symptoms of ASD by dysregulating NMDA-R function.
Collapse
|
9
|
Sachse SM, Lievens S, Ribeiro LF, Dascenco D, Masschaele D, Horré K, Misbaer A, Vanderroost N, De Smet AS, Salta E, Erfurth ML, Kise Y, Nebel S, Van Delm W, Plaisance S, Tavernier J, De Strooper B, De Wit J, Schmucker D. Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO J 2019; 38:embj.201899669. [PMID: 30745319 DOI: 10.15252/embj.201899669] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.
Collapse
Affiliation(s)
- Sonja M Sachse
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sam Lievens
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Luís F Ribeiro
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Delphine Masschaele
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien Horré
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anke Misbaer
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nele Vanderroost
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne Sophie De Smet
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evgenia Salta
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Yoshiaki Kise
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Siegfried Nebel
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | | - Jan Tavernier
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Dementia Research Institute, University College London, London, UK
| | - Joris De Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dietmar Schmucker
- VIB Center for Brain & Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Neuronal overexpression of Alzheimer's disease and Down's syndrome associated DYRK1A/minibrain gene alters motor decline, neurodegeneration and synaptic plasticity in Drosophila. Neurobiol Dis 2019; 125:107-114. [PMID: 30703437 PMCID: PMC6419573 DOI: 10.1016/j.nbd.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is characterised by abnormal cognitive and motor development, and later in life by progressive Alzheimer's disease (AD)-like dementia, neuropathology, declining motor function and shorter life expectancy. It is caused by trisomy of chromosome 21 (Hsa21), but how individual Hsa21 genes contribute to various aspects of the disorder is incompletely understood. Previous work has demonstrated a role for triplication of the Hsa21 gene DYRK1A in cognitive and motor deficits, as well as in altered neurogenesis and neurofibrillary degeneration in the DS brain, but its contribution to other DS phenotypes is unclear. Here we demonstrate that overexpression of minibrain (mnb), the Drosophila ortholog of DYRK1A, in the Drosophila nervous system accelerated age-dependent decline in motor performance and shortened lifespan. Overexpression of mnb in the eye was neurotoxic and overexpression in ellipsoid body neurons in the brain caused age-dependent neurodegeneration. At the larval neuromuscular junction, an established model for mammalian central glutamatergic synapses, neuronal mnb overexpression enhanced spontaneous vesicular transmitter release. It also slowed recovery from short-term depression of evoked transmitter release induced by high-frequency nerve stimulation and increased the number of boutons in one of the two glutamatergic motor neurons innervating the muscle. These results provide further insight into the roles of DYRK1A triplication in abnormal aging and synaptic dysfunction in DS. Overexpression of minibrain (DYRK1A) causes Down's relevant phenotypes including: Age-dependent degeneration of brain neurons Accelerated age-dependent decline in motor performance and shorted lifespan Modified presynaptic structure and enhanced spontaneous transmitter release Slowed recovery from short-term depression of synaptic transmission
Collapse
|