1
|
Cattaneo C, Pagonabarraga J. Sex Differences in Parkinson's Disease: A Narrative Review. Neurol Ther 2025; 14:57-70. [PMID: 39630386 PMCID: PMC11762054 DOI: 10.1007/s40120-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 01/27/2025] Open
Abstract
Sex differences in epidemiology, clinical features, and therapeutical responses are emerging in several movement disorders, even though they are still not widely recognized. Parkinson's disease (PD) is not an exception: men and women suffering from PD have different levels of disability. Research has been performed using multiple databases and scientific journals; this review summarizes the available evidence on sex differences in PD regarding epidemiology, risk factors, genetics, clinical phenotype, social impact, and therapeutic management. The role of hormones in determining such differences is also briefly discussed. The results confirm the existence of differences between men and women in PD; women have a higher risk of developing disabling motor complications and non-motor fluctuations compared to men, while men have a higher risk of developing cognitive impairment, postural instability, and gait disorders. Improving our knowledge in these differences may result in the implementation of strategies for disease-tailored treatment and management.
Collapse
|
2
|
Bovenzi R, Conti M, Simonetta C, Bissacco J, Mascioli D, Michienzi V, Pieri M, Cerroni R, Liguori C, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Contribution of testosterone and estradiol in sexual dimorphism of early-onset Parkinson's disease. J Neural Transm (Vienna) 2025; 132:61-66. [PMID: 39052119 PMCID: PMC11735587 DOI: 10.1007/s00702-024-02811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Early-onset Parkinson's disease (EOPD) occurs during the fertile life, when circulating neuroactive sex hormones might enhance the sexual dimorphism of the disease. Here, we aimed to examine how sex hormones can contribute to sex differences in EOPD patients. A cohort of 34 EOPD patients, 20 males and 14 females, underwent comprehensive clinical evaluation of motor and non-motor disturbances. Blood levels of estradiol, total testosterone, follicle-stimulating hormone, and luteinizing hormone were measured in all patients and correlated to clinical features. We found that female patients exhibited greater non-motor symptoms and a relatively higher rate of dystonia than males. In females, lower estradiol levels accounted for higher MDS-UPDRS-II and III scores and more frequent motor complications, while lower testosterone levels were associated with a major occurrence of dystonia. In male patients, no significant correlations emerged. In conclusion, this study highlighted the relevance of sex hormone levels in the sexual dimorphism and unique phenotype of EOPD.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Matteo Conti
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Clara Simonetta
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Jacopo Bissacco
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Davide Mascioli
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Vito Michienzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Rocco Cerroni
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Mariangela Pierantozzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Alessandro Stefani
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy.
| |
Collapse
|
3
|
Gervas-Arruga J, Barba-Romero MÁ, Fernández-Martín JJ, Gómez-Cerezo JF, Segú-Vergés C, Ronzoni G, Cebolla JJ. In Silico Modeling of Fabry Disease Pathophysiology for the Identification of Early Cellular Damage Biomarker Candidates. Int J Mol Sci 2024; 25:10329. [PMID: 39408658 PMCID: PMC11477023 DOI: 10.3390/ijms251910329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal disease whose ultimate consequences are the accumulation of sphingolipids and subsequent inflammatory events, mainly at the endothelial level. The outcomes include different nervous system manifestations as well as multiple organ damage. Despite the availability of known biomarkers, early detection of FD remains a medical need. This study aimed to develop an in silico model based on machine learning to identify candidate vascular and nervous system proteins for early FD damage detection at the cellular level. A combined systems biology and machine learning approach was carried out considering molecular characteristics of FD to create a computational model of vascular and nervous system disease. A data science strategy was applied to identify risk classifiers by using 10 K-fold cross-validation. Further biological and clinical criteria were used to prioritize the most promising candidates, resulting in the identification of 36 biomarker candidates with classifier abilities, which are easily measurable in body fluids. Among them, we propose four candidates, CAMK2A, ILK, LMNA, and KHSRP, which have high classification capabilities according to our models (cross-validated accuracy ≥ 90%) and are related to the vascular and nervous systems. These biomarkers show promise as high-risk cellular and tissue damage indicators that are potentially applicable in clinical settings, although in vivo validation is still needed.
Collapse
Affiliation(s)
| | - Miguel Ángel Barba-Romero
- Department of Internal Medicine, Albacete University Hospital, 02006 Albacete, Spain;
- Albacete Medical School, Castilla-La Mancha University, 02006 Albacete, Spain
| | | | - Jorge Francisco Gómez-Cerezo
- Department of Internal Medicine, Infanta Sofía University Hospital, 28702 Madrid, Spain;
- Faculty of Medicine, European University of Madrid, 28670 Madrid, Spain
| | | | | | | |
Collapse
|
4
|
Dai L, Liu M, Ke W, Chen L, Fang X, Zhang Z. Lysosomal dysfunction in α-synuclein pathology: molecular mechanisms and therapeutic strategies. Cell Mol Life Sci 2024; 81:382. [PMID: 39223418 PMCID: PMC11368888 DOI: 10.1007/s00018-024-05419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In orchestrating cell signaling, facilitating plasma membrane repair, supervising protein secretion, managing waste elimination, and regulating energy consumption, lysosomes are indispensable guardians that play a crucial role in preserving intracellular homeostasis. Neurons are terminally differentiated post-mitotic cells. Neuronal function and waste elimination depend on normal lysosomal function. Converging data suggest that lysosomal dysfunction is a critical event in the etiology of Parkinson's disease (PD). Mutations in Glucosylceramidase Beta 1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) confer an increased risk for the development of parkinsonism. Furthermore, lysosomal dysfunction has been observed in the affected neurons of sporadic PD (sPD) patients. Given that lysosomal hydrolases actively contribute to the breakdown of impaired organelles and misfolded proteins, any compromise in lysosomal integrity could incite abnormal accumulation of proteins, including α-synuclein, the major component of Lewy bodies in PD. Clinical observations have shown that lysosomal protein levels in cerebrospinal fluid may serve as potential biomarkers for PD diagnosis and as signs of lysosomal dysfunction. In this review, we summarize the current evidence regarding lysosomal dysfunction in PD and discuss the intimate relationship between lysosomal dysfunction and pathological α-synuclein. In addition, we discuss therapeutic strategies that target lysosomes to treat PD.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Miao Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
5
|
Zedde M, Romani I, Scaravilli A, Cocozza S, Trojano L, Ragno M, Rifino N, Bersano A, Gerevini S, Pantoni L, Valzania F, Pascarella R. Expanding the Neurological Phenotype of Anderson-Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism. Cells 2024; 13:1131. [PMID: 38994983 PMCID: PMC11240674 DOI: 10.3390/cells13131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Anderson-Fabry disease (AFD) is a genetic sphingolipidosis involving virtually the entire body. Among its manifestation, the involvement of the central and peripheral nervous system is frequent. In recent decades, it has become evident that, besides cerebrovascular damage, a pure neuronal phenotype of AFD exists in the central nervous system, which is supported by clinical, pathological, and neuroimaging data. This neurodegenerative phenotype is often clinically characterized by an extrapyramidal component similar to the one seen in prodromal Parkinson's disease (PD). We analyzed the biological, clinical pathological, and neuroimaging data supporting this phenotype recently proposed in the literature. Moreover, we compared the neurodegenerative PD phenotype of AFD with a classical monogenic vascular disease responsible for vascular parkinsonism and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). A substantial difference in the clinical and neuroimaging features of neurodegenerative and vascular parkinsonism phenotypes emerged, with AFD being potentially responsible for both forms of the extrapyramidal involvement, and CADASIL mainly associated with the vascular subtype. The available studies share some limitations regarding both patients' information and neurological and genetic investigations. Further studies are needed to clarify the potential association between AFD and extrapyramidal manifestations.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Ilaria Romani
- Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, 50139 Firenze, Italy;
| | - Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80133 Napoli, Italy; (A.S.); (S.C.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80133 Napoli, Italy; (A.S.); (S.C.)
| | - Luigi Trojano
- Dipartimento di Psicologia, Università della Campania ‘Luigi Vanvitelli’, viale Ellittico 31, 81100 Caserta, Italy;
| | - Michele Ragno
- Centro Medico Salute 23, Via O. Licini 5, 63066 Grottammare (AP), Italy;
| | - Nicola Rifino
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; (N.R.); (A.B.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; (N.R.); (A.B.)
| | - Simonetta Gerevini
- Head Diagnostic Dept and Neuroradiology Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Leonardo Pantoni
- Neuroscience Research Center, Department of Biomedical and Clinical Science, University of Milan, 20122 Milano, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
6
|
Somerville EN, Krohn L, Senkevich K, Yu E, Ahmad J, Asayesh F, Ruskey JA, Speigelman D, Fahn S, Waters C, Sardi SP, Alcalay RN, Gan-Or Z. Genome-wide association study of glucocerebrosidase activity modifiers. RESEARCH SQUARE 2024:rs.3.rs-4425669. [PMID: 38883744 PMCID: PMC11177962 DOI: 10.21203/rs.3.rs-4425669/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
One of the most common genetic risk factors for Parkinson's disease (PD) are variants in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GCase deficiency has been associated with an increased PD risk, but not all individuals with low GCase activity are carriers of GBA1 mutations, suggesting other factors may be acting as modifiers. We aimed to discover common variants associated with GCase activity, as well as replicate previously reported associations, by performing a genome-wide association study using two independent cohorts: a Columbia University cohort consisting of 697 PD cases and 347 controls and the Parkinson's Progression Markers Initiative (PPMI) cohort consisting of 357 PD cases and 163 controls. As expected, GBA1 variants have the strongest association with decreased activity, led by p.N370S (beta = -4.36, se = 0.32, p = 5.05e-43). We also identify a novel association in the GAA locus (encoding for acid alpha-glucosidase, beta = -0.96, se = 0.17, p = 5.23e-09) that may be the result of an interaction between GCase and acid alpha-glucosidase based on various interaction analyses. Lastly, we show that several PD-risk loci are potentially associated with GCase activity. Further research will be needed to replicate and validate our findings and to uncover the functional connection between acid alpha-glucosidase and GCase.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Lynne Krohn
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | | | - Eric Yu
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Jamil Ahmad
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Farnaz Asayesh
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Jennifer A Ruskey
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Dan Speigelman
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| |
Collapse
|
7
|
Usenko T, Bezrukova A, Basharova K, Baydakova G, Shagimardanova E, Blatt N, Rizvanov A, Limankin O, Novitskiy M, Shnayder N, Izyumchenko A, Nikolaev M, Zabotina A, Lavrinova A, Kulabukhova D, Nasyrova R, Palchikova E, Zalutskaya N, Miliukhina I, Barbitoff Y, Glotov O, Glotov A, Taraskina A, Neznanov N, Zakharova E, Pchelina S. Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia. Metabolites 2023; 14:30. [PMID: 38248833 PMCID: PMC10819534 DOI: 10.3390/metabo14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Recent data described that patients with lysosomal storage disorders (LSDs) may have clinical schizophrenia (SCZ) features. Disruption of lipid metabolism in SCZ pathogenesis was found. Clinical features of schizophrenia (SCZ) have been demonstrated in patients with several lysosomal storage disorders (LSDs). Taking into account the critical role of lysosomal function for neuronal cells' lysosomal dysfunction could be proposed in SCZ pathogenesis. The current study analyzed lysosomal enzyme activities and the alpha-synuclein level in the blood of patients with late-onset SCZ. In total, 52 SCZ patients with late-onset SCZ, 180 sporadic Parkinson's disease (sPD) patients, and 176 controls were recruited. The enzymatic activity of enzymes associated with mucopolysaccharidosis (alpha-L-Iduronidase (IDUA)), glycogenosis (acid alpha-glucosidase (GAA)) and sphingolipidosis (galactosylceramidase (GALC), glucocerebrosidase (GCase), alpha-galactosidase (GLA), acid sphingomyelinase (ASMase)) and concentration of lysosphingolipids (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), and lysosphingomyelin (LysoSM)) were measured using LC-MS/MS. The alpha-synuclein level was estimated in magnetically separated CD45+ blood cells using the enzyme-linked immunosorbent assay (ELISA). Additionally, NGS analysis of 11 LSDs genes was conducted in 21 early-onset SCZ patients and 23 controls using the gene panel PGRNseq-NDD. Decreased ASMase, increased GLA activities, and increased HexSpn, LysoGb3, and LysoSM concentrations along with an accumulation of the alpha-synuclein level were observed in late-onset SCZ patients in comparison to the controls (p < 0.05). Four rare deleterious variants among LSDs genes causing mucopolysaccharidosis type I (IDUA (rs532731688, rs74385837) and type III (HGSNAT (rs766835582)) and sphingolipidosis (metachromatic leukodystrophy (ARSA (rs201251634)) were identified in five patients from the group of early-onset SCZ patients but not in the controls. Our findings supported the role of sphingolipid metabolism in SCZ pathogenesis. Aberrant enzyme activities and compounds of sphingolipids associated with ceramide metabolism may lead to accumulation of alpha-synuclein and may be critical in SCZ pathogenesis.
Collapse
Affiliation(s)
- Tatiana Usenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anastasia Bezrukova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Galina Baydakova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Research Center for Medical Genetics, 115478 Moscow, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Oleg Limankin
- Psychiatric Hospital No. 1 Named after P. P. Kashchenko, 195009 Saint Petersburg, Russia;
- North-Western Medical University Named after P. I.I. Mechnikov of the Ministry of Health of the Russian Federation, 191015 Saint Petersburg, Russia
| | - Maxim Novitskiy
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Natalia Shnayder
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Artem Izyumchenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Mikhail Nikolaev
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Zabotina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Lavrinova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Darya Kulabukhova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Regina Nasyrova
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Ekaterina Palchikova
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Natalia Zalutskaya
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Irina Miliukhina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Institute of the Human Brain of RAS, 197022 Saint Petersburg, Russia
| | - Yury Barbitoff
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Bioinformatics Institute, 197342 Saint Petersburg, Russia
| | - Oleg Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Pediatric Research and Clinical Center of Infectious Diseases, 197022 Saint Petersburg, Russia
| | - Andrey Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- School of Medicine, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Taraskina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Nikolai Neznanov
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | | | - Sofya Pchelina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| |
Collapse
|
8
|
Usenko TS, Senkevich KA, Basharova KS, Bezrukova AI, Baydakova GV, Tyurin AA, Beletskaya MV, Kulabukhova DG, Grunina MN, Emelyanov AK, Miliukhina IV, Timofeeva AA, Zakharova EY, Pchelina SN. LRRK2 exonic variants are associated with lysosomal hydrolase activities and lysosphingolipid alterations in Parkinson's disease. Gene 2023; 882:147639. [PMID: 37473971 DOI: 10.1016/j.gene.2023.147639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Last data demonstrated that exonic variants of LRRK2 (p.G2019S, p.M1646T) may affect the catalytic activity of lysosomal enzyme glucocerebrosidase (GCase) probably through the phosphorylation of Rab10 protein. We aimed to evaluate an association of LRRK2 exonic variants previously associated with alteration of phosphorylation levels for Rab10Thr73 with PD risk in Russian population and analyze an impact of p.G2019S mutation and selected LRRK2 variants on lysosomal hydrolase activities. LRRK2 variants were determined by full sequencing of LRRK2 in 508 PD patients and 470 controls from Russian population. Activity of lysosomal enzymes (glucocerebrosidase (GCase), alpha-galactosidase A (GLA), acid sphingomyelinase (ASMase) and concentrations of their corresponded substrates (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), lysosphingomyelin (LysoSM), respectively) were estimated in 211 PD patients and 179 controls by liquid chromatography with tandem mass spectrometry (LC-MS-MS) in dry blood spots. p.M1646T and p.N2081D were associated with PD (OR = 2.33, CI 95%: 1.1215 to 4.8253, p = 0.023; OR = 1.89, 95%CI: 1.0727 to 3.3313, p = 0.028, respectively) in Russian population. An increased LysoGb3 concentration was found in p.G2019S and p.N2081D LRRK2 carriers among PD patients compared to both PD patients and controls (p.G2019S: p = 0.00086, p = 0.0004, respectively; p.N2081D: p = 0.012, p = 0.0076, respectively). A decreased ASMase activity in p.G2019S LRRK2 carriers among PD patients (p = 0.014) was demonstrated as well. Our study supported possible involvement of LRRK2 dysfunction in an alteration of sphingolipid metabolism in PD.
Collapse
Affiliation(s)
- T S Usenko
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia.
| | - K A Senkevich
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - K S Basharova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - A I Bezrukova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - G V Baydakova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Research Center for Medical Genetics, Moscow, Russia
| | - A A Tyurin
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - M V Beletskaya
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - D G Kulabukhova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - M N Grunina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - I V Miliukhina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia; Institute of the Human Brain of RAS, Saint-Petersburg, Russia
| | - A A Timofeeva
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - E Y Zakharova
- Research Center for Medical Genetics, Moscow, Russia
| | - S N Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| |
Collapse
|
9
|
Senkevich K, Beletskaia M, Dworkind A, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Nagornov I, Tyurin A, Miliukhina I, Timofeeva A, Emelyanov A, Trempe JF, Zakharova E, Alcalay RN, Pchelina S, Gan-Or Z. Association of Rare Variants in ARSA with Parkinson's Disease. Mov Disord 2023; 38:1806-1812. [PMID: 37381728 PMCID: PMC10615669 DOI: 10.1002/mds.29521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA remains unclear. OBJECTIVES To study rare ARSA variants in PD. METHODS To study rare ARSA variants (minor allele frequency < 0.01) in PD, we performed burden analyses in six independent cohorts with 5801 PD patients and 20,475 controls, followed by a meta-analysis. RESULTS We found evidence for associations between functional ARSA variants and PD in four cohorts (P ≤ 0.05 in each) and in the meta-analysis (P = 0.042). We also found an association between loss-of-function variants and PD in the United Kingdom Biobank cohort (P = 0.005) and in the meta-analysis (P = 0.049). These results should be interpreted with caution as no association survived multiple comparisons correction. Additionally, we describe two families with potential co-segregation of ARSA p.E382K and PD. CONCLUSIONS Rare functional and loss-of-function ARSA variants may be associated with PD. Further replications in large case-control/familial cohorts are required. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Mariia Beletskaia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, T2N 4N1 Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilya Nagornov
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexandr Tyurin
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montreal H3A 1A3, Canada
| | | | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center; Tel Aviv, Israel
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
10
|
Amirian R, Badrbani MA, Derakhshankhah H, Izadi Z, Shahbazi MA. Targeted protein degradation for the treatment of Parkinson's disease: Advances and future perspective. Biomed Pharmacother 2023; 166:115408. [PMID: 37651798 DOI: 10.1016/j.biopha.2023.115408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
Parkinson's disease (PD) is a progressive disorder that belongs to a class of neurodegenerative disorders (NDs) called Synucleinopathies. It has characterized by the misfolding and aggregation of a-synuclein. Our understanding of PD continues to evolve, and so does our approach to treatment. including therapies aimed at delaying pathology, quitting neuronal loss, and shortening the course of the disease by selectively targeting essential proteins suspected to play a role in PD pathogenesis. One emerging approach that is generating significant interest is Targeted Protein Degradation (TPD). TPD is an innovative method that allows us to specifically break down certain proteins using specially designed molecules or peptides, like PROteolysis-TArgeting-Chimera (PROTACs). This approach holds great promise, particularly in the context of NDs. In this review, we will briefly explain PD and its pathogenesis, followed by discussing protein degradation systems and TPD strategy in PD by reviewing synthesized small molecules and peptides. Finally, future perspectives and challenges in the field are discussed.
Collapse
Affiliation(s)
- Roshanak Amirian
- Student research committee, School of pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azadi Badrbani
- Student research committee, School of pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
11
|
Mizutani Y, Nawashiro K, Ohdake R, Tatebe H, Shima S, Ueda A, Yoshimoto J, Ito M, Tokuda T, Mutoh T, Watanabe H. Enzymatic properties and clinical associations of serum alpha-galactosidase A in Parkinson's disease. Ann Clin Transl Neurol 2023; 10:1662-1672. [PMID: 37496179 PMCID: PMC10502655 DOI: 10.1002/acn3.51856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE Recent studies have revealed an association between Parkinson's disease (PD) and Fabry disease, a lysosomal storage disorder; however, the underlying mechanisms remain to be elucidated. This study aimed to investigate the enzymatic properties of serum alpha-galactosidase A (GLA) and compared them with the clinical parameters of PD. METHODS The study participants consisted of 66 sporadic PD patients and 52 controls. We measured serum GLA activity and calculated the apparent Michaelis constant (Km ) and maximal velocity (Vmax ) by Lineweaver-Burk plot analysis. Serum GLA protein concentration was measured by enzyme-linked immunosorbent assay. We examined the potential correlations between serum GLA activity and GLA protein concentration and clinical features and the plasma neurofilament light chain (NfL) level. RESULTS Compared to controls, PD patients showed significantly lower serum GLA activity (P < 0.0001) and apparent Vmax (P = 0.0131), but no change in the apparent Km value. Serum GLA protein concentration was lower in the PD group (P = 0.0168) and was positively associated with GLA activity. Serum GLA activity and GLA protein concentration in the PD group showed a negative correlation with age. Additionally, serum GLA activity was negatively correlated with the motor severity score and the level of plasma NfL, and was positively correlated with the score of frontal assessment battery. INTERPRETATION This study highlights that the lower serum GLA activity in PD is the result of a quantitative decrement of GLA protein in the serum and that it may serve as a biomarker of disease severity.
Collapse
Affiliation(s)
- Yasuaki Mizutani
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | | | - Reiko Ohdake
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Harutsugu Tatebe
- Department of Functional Brain ImagingInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Sayuri Shima
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Akihiro Ueda
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Junichiro Yoshimoto
- Department of Biomedical Data ScienceFujita Health University School of MedicineToyoakeAichiJapan
| | - Mizuki Ito
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Takahiko Tokuda
- Department of Functional Brain ImagingInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Tatsuro Mutoh
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
- Fujita Health University Central Japan International Airport ClinicTokonameAichiJapan
| | - Hirohisa Watanabe
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
12
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
14
|
Perillo S, Palmieri GR, Del Moral MO, De Michele G, Giglio A, Cuomo N, Pane C, Bauer P, De Michele G, De Rosa A. Screening for Fabry disease in a series of Parkinson's disease patients and literature review. Neurol Sci 2023; 44:1235-1241. [PMID: 36547780 DOI: 10.1007/s10072-022-06554-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND So far, mutations in genes encoding lysosomal enzymes have been associated with Parkinson's disease (PD). Fabry disease (FD) is an X-linked lysosomal storage disease caused by alpha-galactosidase A (α-GAL) deficiency, leading to deposition of globotriaosylceramide in the nervous system and other organs. We aimed to screen for FD a case series of PD patients from Southern Italy and to review the literature. METHODS One hundred and forty-four consecutive unrelated PD subjects were enrolled. The α-GAL activity was measured in all men and, in case of pathological values, subsequent determination of globotriaosylsphingosine (lyso-Gb3) and GLA gene sequencing were also performed. All the women underwent GLA gene sequencing. RESULTS α-GAL levels resulted low in fifteen men, whereas lyso-Gb3 testing showed values within the reference range in all of them. GLA gene variants were not detected in any tested subjects. One pathological study, six case series, and five case reports are currently reported in literature. CONCLUSIONS The few studies reviewed are heterogeneous, and the results are controversial. An unknown significance variant in GLA gene was detected in PD patients in one large study, whereas decreased α-GAL activity was observed in PD subjects in two other researches, but without confirmation by lyso-Gb3 assessment or genetic analysis. Vascular parkinsonism was associated to FD in five case reports. We found no association between PD and FD in our population. However, it is not possible to draw definitive conclusions due to limited sample size. Furthermore, controls would have been missing in case of a positive finding.
Collapse
Affiliation(s)
- Sandra Perillo
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Gianluigi Rosario Palmieri
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | | | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Augusta Giglio
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Nunzia Cuomo
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | | | - Giuseppe De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
15
|
Senkevich K, Beletskaia M, Dworkind A, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Nagornov I, Tyurin A, Miliukhina I, Timofeeva A, Emelyanov A, Zakharova E, Alcalay RN, Pchelina S, Gan-Or Z. Association of rare variants in ARSA with Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286773. [PMID: 36993451 PMCID: PMC10055435 DOI: 10.1101/2023.03.08.23286773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Background Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA , which encodes for the enzyme arylsulfatase A, remains controversial. Objectives To evaluate the association between rare ARSA variants and PD. Methods To study possible association of rare variants (minor allele frequency<0.01) in ARSA with PD, we performed burden analyses in six independent cohorts with a total of 5,801 PD patients and 20,475 controls, using optimized sequence Kernel association test (SKAT-O), followed by a meta-analysis. Results We found evidence for an association between functional ARSA variants and PD in four independent cohorts (P≤0.05 in each) and in the meta-analysis (P=0.042). We also found an association between loss-of-function variants and PD in the UKBB cohort (P=0.005) and in the meta-analysis (P=0.049). However, despite replicating in four independent cohorts, these results should be interpreted with caution as no association survived correction for multiple comparisons. Additionally, we describe two families with potential co-segregation of the ARSA variant p.E384K and PD. Conclusions Rare functional and loss-of-function ARSA variants may be associated with PD. Further replication in large case-control cohorts and in familial studies is required to confirm these associations.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Mariia Beletskaia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, T2N 4N1 Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Guide-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilya Nagornov
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexandr Tyurin
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center; Tel Aviv, Israel
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
16
|
Fabry Disease and Central Nervous System Involvement: From Big to Small, from Brain to Synapse. Int J Mol Sci 2023; 24:ijms24065246. [PMID: 36982318 PMCID: PMC10049671 DOI: 10.3390/ijms24065246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder (LSD) secondary to mutations in the GLA gene that causes dysfunctional activity of lysosomal hydrolase α-galactosidase A and results in the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). The endothelial accumulation of these substrates results in injury to multiple organs, mainly the kidney, heart, brain and peripheral nervous system. The literature on FD and central nervous system involvement is scarce when focusing on alterations beyond cerebrovascular disease and is nearly absent in regard to synaptic dysfunction. In spite of that, reports have provided evidence for the CNS’ clinical implications in FD, including Parkinson’s disease, neuropsychiatric disorders and executive dysfunction. We aim to review these topics based on the current available scientific literature.
Collapse
|
17
|
Yekedüz MK, Yilmaz R, Kayis G, Doğulu N, Öncül Ü, Abali T, Temizyurek AD, Çelik G, Çöklü H, Gemci E, Yalcin A, Ceylaner S, Akbostancı MC, Eminoğlu FT. Genetic variants of GBA and GLA in a Turkish cohort of Parkinson's disease: A preliminary report. Parkinsonism Relat Disord 2023; 110:105390. [PMID: 37027993 DOI: 10.1016/j.parkreldis.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
|
18
|
Grigor’eva EV, Kopytova AE, Yarkova ES, Pavlova SV, Sorogina DA, Malakhova AA, Malankhanova TB, Baydakova GV, Zakharova EY, Medvedev SP, Pchelina SN, Zakian SM. Biochemical Characteristics of iPSC-Derived Dopaminergic Neurons from N370S GBA Variant Carriers with and without Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054437. [PMID: 36901867 PMCID: PMC10002967 DOI: 10.3390/ijms24054437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
GBA variants increase the risk of Parkinson's disease (PD) by 10 times. The GBA gene encodes the lysosomal enzyme glucocerebrosidase (GCase). The p.N370S substitution causes a violation of the enzyme conformation, which affects its stability in the cell. We studied the biochemical characteristics of dopaminergic (DA) neurons generated from induced pluripotent stem cells (iPSCs) from a PD patient with the GBA p.N370S mutation (GBA-PD), an asymptomatic GBA p.N370S carrier (GBA-carrier), and two healthy donors (control). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), we measured the activity of six lysosomal enzymes (GCase, galactocerebrosidase (GALC), alpha-glucosidase (GAA), alpha-galactosidase (GLA), sphingomyelinase (ASM), and alpha-iduronidase (IDUA)) in iPSC-derived DA neurons from the GBA-PD and GBA-carrier. DA neurons from the GBA mutation carrier demonstrated decreased GCase activity compared to the control. The decrease was not associated with any changes in GBA expression levels in DA neurons. GCase activity was more markedly decreased in the DA neurons of GBA-PD patient compared to the GBA-carrier. The amount of GCase protein was decreased only in GBA-PD neurons. Additionally, alterations in the activity of the other lysosomal enzymes (GLA and IDUA) were found in GBA-PD neurons compared to GBA-carrier and control neurons. Further study of the molecular differences between the GBA-PD and the GBA-carrier is essential to investigate whether genetic factors or external conditions are the causes of the penetrance of the p.N370S GBA variant.
Collapse
Affiliation(s)
- Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alena E. Kopytova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Scientific and Research Centre, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Elena S. Yarkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sophia V. Pavlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Diana A. Sorogina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Tuyana B. Malankhanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sofia N. Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Scientific and Research Centre, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence:
| |
Collapse
|
19
|
Mamais A, Wallings R, Rocha EM. Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:33-51. [PMID: 36803821 DOI: 10.1016/b978-0-323-85555-6.00009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Rebecca Wallings
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
20
|
Zedde M, Pascarella R, Cavallieri F, Pezzella FR, Grisanti S, Di Fonzo A, Valzania F. Anderson-Fabry Disease: A New Piece of the Lysosomal Puzzle in Parkinson Disease? Biomedicines 2022; 10:biomedicines10123132. [PMID: 36551888 PMCID: PMC9776280 DOI: 10.3390/biomedicines10123132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Anderson-Fabry disease (AFD) is an inherited lysosomal storage disorder characterized by a composite and multisystemic clinical phenotype and frequent involvement of the central nervous system (CNS). Research in this area has largely focused on the cerebrovascular manifestations of the disease, and very little has been described about further neurological manifestations, which are known in other lysosomal diseases, such as Gaucher disease. In particular, a clinical and neuroimaging phenotype suggesting neurodegeneration as a putative mechanism has never been fully described for AFD, but the increased survival of affected patients with early diagnosis and the possibility of treatment have given rise to some isolated reports in the literature on the association of AFD with a clinical phenotype of Parkinson disease (PD). The data are currently scarce, but it is possible to hypothesize the molecular mechanisms of cell damage that support this association; this topic is worthy of further study in particular in relation to the therapeutic possibilities, which have significantly modified the natural history of the disease but which are not specifically dedicated to the CNS. In this review, the molecular mechanisms underlying this association will be proposed, and the available data with implications for future research and treatment will be rewritten.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: or
| | - Rosario Pascarella
- Neuroradiology Unit, Radiology Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesca Romana Pezzella
- Neurology Unit, Stroke Unit, Dipartimento di Neuroscienze, AO San Camillo Forlanini, 00152 Rome, Italy
| | - Sara Grisanti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
21
|
Lansbury P. The Sphingolipids Clearly Play a Role in Parkinson's Disease, but Nature Has Made it Complicated. Mov Disord 2022; 37:1985-1989. [PMID: 36087026 DOI: 10.1002/mds.29204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peter Lansbury
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Esfandiary A, Finkelstein DI, Voelcker NH, Rudd D. Clinical Sphingolipids Pathway in Parkinson’s Disease: From GCase to Integrated-Biomarker Discovery. Cells 2022; 11:cells11081353. [PMID: 35456032 PMCID: PMC9028315 DOI: 10.3390/cells11081353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Alterations in the sphingolipid metabolism of Parkinson’s Disease (PD) could be a potential diagnostic feature. Only around 10–15% of PD cases can be diagnosed through genetic alterations, while the remaining population, idiopathic PD (iPD), manifest without validated and specific biomarkers either before or after motor symptoms appear. Therefore, clinical diagnosis is reliant on the skills of the clinician, which can lead to misdiagnosis. IPD cases present with a spectrum of non-specific symptoms (e.g., constipation and loss of the sense of smell) that can occur up to 20 years before motor function loss (prodromal stage) and formal clinical diagnosis. Prodromal alterations in metabolites and proteins from the pathways underlying these symptoms could act as biomarkers if they could be differentiated from the broad values seen in a healthy age-matched control population. Additionally, these shifts in metabolites could be integrated with other emerging biomarkers/diagnostic tests to give a PD-specific signature. Here we provide an up-to-date review of the diagnostic value of the alterations in sphingolipids pathway in PD by focusing on the changes in definitive PD (postmortem confirmed brain data) and their representation in “probable PD” cerebrospinal fluid (CSF) and blood. We conclude that the trend of holistic changes in the sphingolipid pathway in the PD brain seems partly consistent in CSF and blood, and could be one of the most promising pathways in differentiating PD cases from healthy controls, with the potential to improve early-stage iPD diagnosis and distinguish iPD from other Parkinsonism when combined with other pathological markers.
Collapse
Affiliation(s)
- Ali Esfandiary
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| | | | - Nicolas Hans Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3168, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-3-9903-9581
| |
Collapse
|
23
|
Genetics of cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:195-226. [PMID: 35248195 DOI: 10.1016/bs.pbr.2022.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Presentation and progression of cognitive symptoms in Parkinson's disease are highly variable. PD is a genetically complex disorder with multiple genetic risk factors and understanding the role that genes play in cognitive outcomes is important for patient counseling and treatment. Currently, there are seven well-described genes that increase the risk for PD, with variable levels of penetrance: SNCA, LRRK2, VPS35, PRKN, PINK1, DJ1 and GBA. In addition, large, genome-wide association studies have identified multiple loci in our DNA which increase PD risk. In this chapter, we summarize what is currently known about each of the seven strongly-associated PD genes and select PD risk variants, including PITX3, TMEM106B, SNCA Rep1, APOɛ4, COMT and MAPT H1/H1, along with their respective relationships to cognition.
Collapse
|
24
|
Lackova A, Beetz C, Oppermann S, Bauer P, Pavelekova P, Lorincova T, Ostrozovicova M, Kulcsarova K, Cobejova J, Cobej M, Levicka P, Liesenerova S, Sendekova D, Sukovska V, Gdovinova Z, Han V, Rizig M, Houlden H, Skorvanek M. Prevalence of Fabry Disease among Patients with Parkinson's Disease. PARKINSON'S DISEASE 2022; 2022:1014950. [PMID: 35111290 PMCID: PMC8803460 DOI: 10.1155/2022/1014950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND An increased prevalence of Parkinson's disease (PD) disease has been previously reported in subjects with Fabry disease (FD) carrying alpha-galactosidase (GLA) mutations and their first-line relatives. Moreover, decreased alpha-galactosidase A (AGLA) enzymatic activity has been reported among cases with PD compared to controls. OBJECTIVE The aim of our study was to determine the prevalence of FD among patients with PD. METHODS We recruited 236 consecutive patients with PD from February 2018 to December 2020. Clinical and sociodemographic data, including the MDS-UPDRS-III scores and HY stage (the Hoehn and Yahr scale), were collected, and in-depth phenotyping was performed in subjects with identified GLA variants. A multistep approach, including standard determination of AGLA activity and LysoGb3 in males, and next-generation based GLA sequencing in all females and males with abnormal AGLA levels was performed in a routine diagnostic setting. RESULTS The mean age of our patients was 68.9 ± 8.9 years, 130 were men (55.1%), and the mean disease duration was 7.77 ± 5.35 years. Among 130 men, AGLA levels were low in 20 patients (15%), and subsequent Lyso-Gb3 testing showed values within the reference range for all tested subjects. In 126 subsequently genetically tested patients, four heterozygous p.(Asp313Tyr) GLA variants (3.2%, MAF 0.016) were identified; all were females. None of the 4 GLA variant carriers identified had any clinical manifestation suggestive of FD. CONCLUSIONS The results of this study suggest a possible relationship between FD and PD in a small proportion of cases. Nevertheless, the GLA variant found in our cohort is classified as a variant of unknown significance. Therefore, its pathogenic causative role in the context of PD needs further elucidation, and these findings should be interpreted with caution.
Collapse
Affiliation(s)
- Alexandra Lackova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | | | | | | | - Petra Pavelekova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Tatiana Lorincova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Miriam Ostrozovicova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Kristina Kulcsarova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Jana Cobejova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Martin Cobej
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Petra Levicka
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Simona Liesenerova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Daniela Sendekova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Viktoria Sukovska
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Zuzana Gdovinova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Vladimir Han
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Mie Rizig
- University College London, Institute of Neurology, Department of Neuromuscular Disorders, Queen Square, WC1N 3BG London, UK
| | - Henry Houlden
- University College London, Institute of Neurology, Department of Neuromuscular Disorders, Queen Square, WC1N 3BG London, UK
| | - Matej Skorvanek
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| |
Collapse
|
25
|
Usenko TS, Senkevich KA, Bezrukova AI, Baydakova GV, Basharova KS, Zhuravlev AS, Gracheva EV, Kudrevatykh AV, Miliukhina IV, Krasakov IV, Khublarova LA, Fursova IV, Zakharov DV, Timofeeva AA, Irishina YA, Palchikova EI, Zalutskaya NM, Emelyanov AK, Zakharova EY, Pchelina SN. Impaired Sphingolipid Hydrolase Activities in Dementia with Lewy Bodies and Multiple System Atrophy. Mol Neurobiol 2022; 59:2277-2287. [PMID: 35066761 DOI: 10.1007/s12035-021-02688-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
The synucleinopathies are a group of neurodegenerative diseases characterized by the oligomerization of alpha-synuclein protein in neurons or glial cells. Recent studies provide data that ceramide metabolism impairment may play a role in the pathogenesis of synucleinopathies due to its influence on alpha-synuclein accumulation. The aim of the current study was to assess changes in activities of enzymes involved in ceramide metabolism in patients with different synucleinopathies (Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA)). The study enrolled 163 PD, 44 DLB, and 30 MSA patients as well as 159 controls. Glucocerebrosidase, alpha-galactosidase, acid sphingomyelinase enzyme activities, and concentrations of the corresponding substrates (hexosylsphingosine, globotriaosylsphingosine, lysosphingomyelin) were measured by liquid chromatography tandem-mass spectrometry in blood. Expression levels of GBA, GLA, and SMPD1 genes encoding glucoceresobridase, alpha-galactosidase, and acid sphingomyelinase enzymes, correspondently, were analyzed by real-time PCR with TaqMan assay in CD45 + blood cells. Increased hexosylsphingosine concentration was observed in DLB and MSA patients in comparison to PD and controls (p < 0.001) and it was associated with earlier age at onset (AAO) of DLB (p = 0.0008). SMPD1 expression was decreased in MSA compared to controls (p = 0.015). Acid sphingomyelinase activity was decreased in DLB, MSA patients compared to PD patients (p < 0.0001, p < 0.0001, respectively), and in MSA compared to controls (p < 0.0001). Lower acid sphingomyelinase activity was associated with earlier AAO of PD (p = 0.012). Our data support the role of lysosomal dysfunction in the pathogenesis of synucleinopathies, namely, the pronounced alterations of lysosomal activities involved in ceramide metabolism in patients with MSA and DLB.
Collapse
Affiliation(s)
- T S Usenko
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia. .,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.
| | - K A Senkevich
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - A I Bezrukova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - G V Baydakova
- Research Center for Medical Genetics, Moskvorechie str. 1, Moscow, 115478, Russia
| | - K S Basharova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - A S Zhuravlev
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - E V Gracheva
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - A V Kudrevatykh
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - I V Miliukhina
- Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.,Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - I V Krasakov
- The Nikiforov Russian Center of Emergency and Radiation Medicine, Optikov str. 54, 197082, St. Petersburg, Russia
| | - L A Khublarova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - I V Fursova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - D V Zakharov
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - A A Timofeeva
- Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - Y A Irishina
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - E I Palchikova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - N M Zalutskaya
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - E Y Zakharova
- Research Center for Medical Genetics, Moskvorechie str. 1, Moscow, 115478, Russia
| | - S N Pchelina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.,Institute of Experimental Medicine, 12, Acad. Pavlov Str, 197376, Saint-Petersburg, Russia
| |
Collapse
|
26
|
Al-Azzawi ZAM, Arfaie S, Gan-Or Z. GBA1 and The Immune System: A Potential Role in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2022; 12:S53-S64. [PMID: 36057834 PMCID: PMC9535551 DOI: 10.3233/jpd-223423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is clear that the immune system and inflammation have a role in Parkinson's disease (PD), including sporadic PD and some genetic forms such as LRRK2-associated PD. One of the most important genes associated with PD is GBA1, as variants in this gene are found in 5-20% of PD patients in different populations worldwide. Biallelic variants in GBA1 may cause Gaucher disease, a lysosomal storage disorder with involvement of the immune system, and other lines of evidence link GBA1 to the immune system and inflammation. In this review, we discuss these different pieces of evidence and whether the interplay between GBA1 and the immune system may have a role in PD.
Collapse
Affiliation(s)
- Zaid A M Al-Azzawi
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Saman Arfaie
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- The Neuro - Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Padilla-Godínez FJ, Ramos-Acevedo R, Martínez-Becerril HA, Bernal-Conde LD, Garrido-Figueroa JF, Hiriart M, Hernández-López A, Argüero-Sánchez R, Callea F, Guerra-Crespo M. Protein Misfolding and Aggregation: The Relatedness between Parkinson's Disease and Hepatic Endoplasmic Reticulum Storage Disorders. Int J Mol Sci 2021; 22:ijms222212467. [PMID: 34830348 PMCID: PMC8619695 DOI: 10.3390/ijms222212467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of cellular homeostasis can lead to misfolding of proteins thus acquiring conformations prone to polymerization into pathological aggregates. This process is associated with several disorders, including neurodegenerative diseases, such as Parkinson’s disease (PD), and endoplasmic reticulum storage disorders (ERSDs), like alpha-1-antitrypsin deficiency (AATD) and hereditary hypofibrinogenemia with hepatic storage (HHHS). Given the shared pathophysiological mechanisms involved in such conditions, it is necessary to deepen our understanding of the basic principles of misfolding and aggregation akin to these diseases which, although heterogeneous in symptomatology, present similarities that could lead to potential mutual treatments. Here, we review: (i) the pathological bases leading to misfolding and aggregation of proteins involved in PD, AATD, and HHHS: alpha-synuclein, alpha-1-antitrypsin, and fibrinogen, respectively, (ii) the evidence linking each protein aggregation to the stress mechanisms occurring in the endoplasmic reticulum (ER) of each pathology, (iii) a comparison of the mechanisms related to dysfunction of proteostasis and regulation of homeostasis between the diseases (such as the unfolded protein response and/or autophagy), (iv) and clinical perspectives regarding possible common treatments focused on improving the defensive responses to protein aggregation for diseases as different as PD, and ERSDs.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rodrigo Ramos-Acevedo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Hilda Angélica Martínez-Becerril
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Luis D. Bernal-Conde
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Jerónimo F. Garrido-Figueroa
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Marcia Hiriart
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
| | - Adriana Hernández-López
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rubén Argüero-Sánchez
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Francesco Callea
- Department of Histopathology, Bugando Medical Centre, Catholic University of Healthy and Allied Sciences, Mwanza 1464, Tanzania;
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
- Correspondence:
| |
Collapse
|
28
|
Glycosphingolipid metabolism and its role in ageing and Parkinson's disease. Glycoconj J 2021; 39:39-53. [PMID: 34757540 PMCID: PMC8979855 DOI: 10.1007/s10719-021-10023-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.
Collapse
|
29
|
Omer N, Giladi N, Gurevich T, Bar-Shira A, Gana-Weisz M, Glinka T, Goldstein O, Kestenbaum M, Cedarbaum JM, Mabrouk OS, Fraser KB, Shirvan JC, Orr-Urtreger A, Mirelman A, Thaler A. Glucocerebrosidase Activity is not Associated with Parkinson's Disease Risk or Severity. Mov Disord 2021; 37:190-195. [PMID: 34550621 PMCID: PMC9292990 DOI: 10.1002/mds.28792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
Background Mutations in the GBA gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are risk factors for Parkinson's disease (PD). Objective To explore the association between GCase activity, PD phenotype, and probability for prodromal PD among carriers of mutations in the GBA and LRRK2 genes. Methods Participants were genotyped for the G2019S‐LRRK2 and nine GBA mutations common in Ashkenazi Jews. Performance‐based measures enabling the calculation of the Movement Disorder Society (MDS) prodromal probability score were collected. Results One hundred and seventy PD patients (102 GBA‐PD, 38 LRRK2‐PD, and 30 idiopathic PD) and 221 non‐manifesting carriers (NMC) (129 GBA‐NMC, 45 LRRK2‐NMC, 15 GBA‐LRRK2‐NMC, and 32 healthy controls) participated in this study. GCase activity was lower among GBA‐PD (3.15 ± 0.85 μmol/L/h), GBA‐NMC (3.23 ± 0.91 μmol/L/h), and GBA‐LRRK2‐NMC (3.20 ± 0.93 μmol/L/h) compared to the other groups of participants, with no correlation to clinical phenotype. Conclusions Low GCase activity does not explain the clinical phenotype or risk for prodromal PD in this cohort. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Bar-Shira
- Genetic Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Mali Gana-Weisz
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Tal Glinka
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Orly Goldstein
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Meir Kestenbaum
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Neurology Department, Meir Medical Center, Kfar-Saba, Israel
| | - Jesse M Cedarbaum
- Biogen Inc., Cambridge, Massachusetts, USA.,Coeruleus Clinical Sciences LLC, Woodbridge, Connecticut, USA
| | | | | | | | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
30
|
Avisar H, Guardia-Laguarta C, Area-Gomez E, Surface M, Chan AK, Alcalay RN, Lerner B. Lipidomics Prediction of Parkinson's Disease Severity: A Machine-Learning Analysis. JOURNAL OF PARKINSONS DISEASE 2021; 11:1141-1155. [PMID: 33814463 DOI: 10.3233/jpd-202476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The role of the lipidome as a biomarker for Parkinson's disease (PD) is a relatively new field that currently only focuses on PD diagnosis. OBJECTIVE To identify a relevant lipidome signature for PD severity markers. METHODS Disease severity of 149 PD patients was assessed by the Unified Parkinson's Disease Rating Scale (UPDRS) and the Montreal Cognitive Assessment (MoCA). The lipid composition of whole blood samples was analyzed, consisting of 517 lipid species from 37 classes; these included all major classes of glycerophospholipids, sphingolipids, glycerolipids, and sterols. To handle the high number of lipids, the selection of lipid species and classes was consolidated via analysis of interrelations between lipidomics and disease severity prediction using the random forest machine-learning algorithm aided by conventional statistical methods. RESULTS Specific lipid classes dihydrosphingomyelin (dhSM), plasmalogen phosphatidylethanolamine (PEp), glucosylceramide (GlcCer), dihydro globotriaosylceramide (dhGB3), and to a lesser degree dihydro GM3 ganglioside (dhGM3), as well as species dhSM(20:0), PEp(38:6), PEp(42:7), GlcCer(16:0), GlcCer(24:1), dhGM3(22:0), dhGM3(16:0), and dhGB3(16:0) contribute to PD severity prediction of UPDRS III score. These, together with age, age at onset, and disease duration, also contribute to prediction of UPDRS total score. We demonstrate that certain lipid classes and species interrelate differently with the degree of severity of motor symptoms between men and women, and that predicting intermediate disease stages is more accurate than predicting less or more severe stages. CONCLUSION Using machine-learning algorithms and methodologies, we identified lipid signatures that enable prediction of motor severity in PD. Future studies should focus on identifying the biological mechanisms linking GlcCer, dhGB3, dhSM, and PEp with PD severity.
Collapse
Affiliation(s)
- Hila Avisar
- Department of Industrial Engineering & Management, Ben-Gurion University of the Negev, Israel
| | | | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew Surface
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda K Chan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Boaz Lerner
- Department of Industrial Engineering & Management, Ben-Gurion University of the Negev, Israel
| |
Collapse
|
31
|
Di Lazzaro G, Magrinelli F, Estevez-Fraga C, Valente EM, Pisani A, Bhatia KP. X-Linked Parkinsonism: Phenotypic and Genetic Heterogeneity. Mov Disord 2021; 36:1511-1525. [PMID: 33960519 DOI: 10.1002/mds.28565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
X-linked parkinsonism encompasses rare heterogeneous disorders mainly inherited as a recessive trait, therefore being more prevalent in males. Recent developments have revealed a complex underlying panorama, including a spectrum of disorders in which parkinsonism is variably associated with additional neurological and non-neurological signs. In particular, a childhood-onset encephalopathy with epilepsy and/or cognitive disability is the most common feature. Their genetic basis is also heterogeneous, with many causative genes and different mutation types ranging from "classical" coding variants to intronic repeat expansions. In this review, we provide an updated overview of the phenotypic and genetic spectrum of the most relevant X-linked parkinsonian syndromes, namely X-linked dystonia-parkinsonism (XDP, Lubag disease), fragile X-associated tremor/ataxia syndrome (FXTAS), beta-propeller protein-associated neurodegeneration (BPAN, NBIA/PARK-WDR45), Fabry disease, Waisman syndrome, methyl CpG-binding protein 2 (MeCP2) spectrum disorder, phosphoglycerate kinase-1 deficiency syndrome (PGK1) and X-linked parkinsonism and spasticity (XPDS). All clinical and radiological features reported in the literature have been reviewed. Epilepsy occasionally represents the symptom of onset, predating parkinsonism even by a few years; action tremor is another common feature along with akinetic-rigid parkinsonism. A focus on the genetic background and its pathophysiological implications is provided. The pathogenesis of these disorders ranges from well-defined metabolic alterations (PGK1) to non-specific lysosomal dysfunctions (XPDS) and vesicular trafficking alterations (Waisman syndrome). However, in other cases it still remains poorly defined. Recognition of the phenotypic and genetic heterogeneity of X-linked parkinsonism has important implications for diagnosis, management, and genetic counseling. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Di Lazzaro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Enza M Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Antonio Pisani
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
32
|
Paim-Marques L, Cavalcante AV, Verçosa I, Carneiro P, Souto-Maior M, Marques E, Appenzeller S. Frequency of Fabry disease in a juvenile idiopathic arthritis cohort. Pediatr Rheumatol Online J 2021; 19:91. [PMID: 34118938 PMCID: PMC8199813 DOI: 10.1186/s12969-021-00563-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Fabry disease (FD) is a rare, X-linked, multisystemic lysosomal storage disorder (LSD) that results from a deficiency in the hydrolase alpha-galactosidase A (⍺-GalA). During childhood, classic FD symptomatology is rare. The majority of children may show non-specific symptoms, including in the musculoskeletal system. The prevalence of FD among juvenile idiopathic arthritis (JIA) patients is unknown. OBJECTIVE This study aimed to identify the frequency of FD in a JIA cohort, characterizing early clinical symptoms, enzyme titers, and GLA genotyping. METHODS Children with JIA followed in a tertiary Children Hospital cohort were selected. Clinical, laboratory and familiar information were recorded. Molecular genetic testing to detect GLA gene mutations was performed in girls and enzymatic analysis in boys. RESULTS In 89 patients (56.2% female, age at disease onset: 8.93 ± 4.35 years), one male (1.12%) patient presented pathogenic mutation in GLA gene, c.1244 T > C p.L415P, one female patient had a variant of uncertain significance c.38C > T (p.Ala13Val). Three additional (3.4%) patients had the enzymatic activity of alpha-galactosidase slightly decreased. We observed the presence of intronic variants in 44.44% of patients in our cohort: c.1000-22C > T; c.370-81_-77del; c.640-16A > G; c.10C > T; c.548-125C > G and c.-12G > A. These variants and their combination were associated with clinical symptoms in our cohort. CONCLUSIONS The incidence of FD in our cohort was 1.12%. Intronic variants were associated with symptoms previously described in the literature. Screening for FD in JIA may be a reasonable strategy for those with an atypical pattern of pain.
Collapse
Affiliation(s)
- Luciana Paim-Marques
- grid.411087.b0000 0001 0723 2494Medical Physiopathology Program, School of Medical Science, University of Campinas, São Paulo Campinas, Brazil ,Pediatric Rheumatology Unit, Albert Sabin Children’s Hospital, Fortaleza, Ceará Brazil ,grid.15276.370000 0004 1936 8091Division of Immunology & Rheumatology, Department of Pediatrics, University of Florida, Gainesville, FL USA
| | | | - Islane Verçosa
- Ophthalmology Department, CAVIVER Institute, Fortaleza, Ceará Brasil ,Ophthalmology Unit, General Hospital of Fortaleza, Fortaleza, Ceará Brasil
| | - Paula Carneiro
- Ophthalmology Department, CAVIVER Institute, Fortaleza, Ceará Brasil
| | - Marcia Souto-Maior
- grid.412275.70000 0004 4687 5259College of Medicine, University of Fortaleza (UNIFOR), Fortaleza, Ceará Brazil
| | - Erlane Marques
- Genetics Division, Albert Sabin Children’s Hospital, Fortaleza, Ceará Brazil ,grid.510399.70000 0000 9839 2890Pediatrics Department, Unichristus University, Fortaleza, Ceará Brazil
| | - Simone Appenzeller
- Rheumatology Unit, School of Medical Sciences and University of Campinas (UNICAMP), Campinas, São Paulo, Brazil. .,Autoimmune Laboratory- School of Medical Science, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
33
|
Vieira SRL, Morris HR. Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Front Neurol 2021; 12:679927. [PMID: 34149605 PMCID: PMC8211888 DOI: 10.3389/fneur.2021.679927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Genetics has driven significant discoveries in the field of neurodegenerative diseases (NDDs). An emerging theme in neurodegeneration warrants an urgent and comprehensive update: that carrier status of early-onset autosomal recessive (AR) disease, typically considered benign, is associated with an increased risk of a spectrum of late-onset NDDs. Glucosylceramidase beta (GBA1) gene mutations, responsible for the AR lysosomal storage disorder Gaucher disease, are a prominent example of this principle, having been identified as an important genetic risk factor for Parkinson disease. Genetic analyses have revealed further examples, notably GRN, TREM2, EIF2AK3, and several other LSD and mitochondria function genes. In this Review, we discuss the evidence supporting the strikingly distinct allele-dependent clinical phenotypes observed in carriers of such gene mutations and its impact on the wider field of neurodegeneration.
Collapse
Affiliation(s)
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
34
|
Gago MF, Azevedo O, Guimarães A, Teresa Vide A, Lamas NJ, Oliveira TG, Gaspar P, Bicho E, Miltenberger-Miltenyi G, Ferreira J, Sousa N. Parkinson's Disease and Fabry Disease: Clinical, Biochemical and Neuroimaging Analysis of Three Pedigrees. JOURNAL OF PARKINSONS DISEASE 2021; 10:141-152. [PMID: 31594250 PMCID: PMC7029331 DOI: 10.3233/jpd-191704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Sporadic Parkinson’s disease (PD) patients have lower α-galactosidase A (α-GAL A) enzymatic activity and Fabry disease (FD) patients potentially carry an increased risk of PD. Objective: Determination of PD prevalence in FD and clinical, biochemical and vascular neuroimaging description of FD pedigrees with concomitant PD. Methods: Clinical screening for PD in 229 FD patients belonging to 31 families, harbouring GLA gene mutation p.F113L, and subsequent pedigree analysis. Gender-stratified comparison of FD+/PD+ patients with their family members with FD but without PD (FD+/PD–) regarding Mainz scores, plasma & leukocytes α-GAL A enzymatic activity, urinary Gb3 and plasma Lyso-Gb3, vascular brain neuroimaging. Results: Prevalence of PD in FD was 1.3% (3/229) (3% in patients aged ≥50 years). Three FD patients, one female (73 years old) (P1) and two males (60 and 65 years old) (P2 and P3), three different pedigrees, presented akinetic-rigid PD, with weak response to levodopa (16% – 36%), and dopaminergic deficiency on 18F-DOPA PET. No pathogenic mutations were found in a PD gene panel. FD+/PD+ patients had worse clinical severity of FD (above upper 75% IQR in Mainz scores), and cortico-subcortical white matter/small vessel lesions. P3 patient was under enzyme therapy, started 1 year before PD diagnosis. P2-P3 patients had higher leucocyte α-GAL A activity (2,2-3 vs.1,0 (median)(nmol/h/mg)). Conclusion: We have shown a high prevalence of PD in a late-onset phenotype of FD, presenting high cerebrovascular burden and weak response to levodopa. Further studies will untangle how much of this PD phenotype is due to Gb3 deposition versus cerebrovascular lesions in the nigro-striatal network.
Collapse
Affiliation(s)
- Miguel Fernandes Gago
- Neurology Department, Reference Center on Lysosomal Storage Disorders, Hospital da Senhora da Oliveira, EPE, Guimarães, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.,European Reference Network for Hereditary Metabolic Disorders (MetabERN)
| | - Olga Azevedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Cardiology Department, Reference Center on Lysosomal Storage Disorders, Hospital da Senhora da Oliveira, EPE, Guimarães, Portugal.,European Reference Network for Hereditary Metabolic Disorders (MetabERN)
| | - Andreia Guimarães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Teresa Vide
- Neuroradiology Department, Reference Center on Lysosomal Storage Disorders, Hospital da Senhora da Oliveira, EPE, Guimarães, Portugal.,European Reference Network for Hereditary Metabolic Disorders (MetabERN)
| | - Nuno J Lamas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Anatomic Pathology Service, Pathology Department, Hospital and University Center of Porto, Porto, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paulo Gaspar
- Newborn Screening, Metabolism and Genetic Unit, Genetics Department, National Institute for Health Doutor Ricardo Jorge (INSA)
| | - Estela Bicho
- Centro Algoritmi, Campus Azurem, University of Minho, Guimarães, Braga, Portugal
| | - Gabriel Miltenberger-Miltenyi
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Genetics Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal.,European Reference Network for Hereditary Metabolic Disorders (MetabERN)
| | - Joaquim Ferreira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, Lisbon, Portugal; CNS - Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
35
|
Russo C, Pontillo G, Saccà F, Riccio E, Cocozza S, Pane C, Tedeschi E, Pisani A, Pappatà S. Nonvascular Parkinsonism in Fabry Disease: Results From Magnetic Resonance and Dopamine Transporter Imaging. J Neuropathol Exp Neurol 2021; 80:476-479. [PMID: 33837397 DOI: 10.1093/jnen/nlab030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Camilla Russo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Eleonora Riccio
- Department of Public Health, Nephrology Unit, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Antonio Pisani
- Department of Public Health, Nephrology Unit, University of Naples "Federico II", Naples, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| |
Collapse
|
36
|
Belarbi K, Cuvelier E, Bonte MA, Desplanque M, Gressier B, Devos D, Chartier-Harlin MC. Glycosphingolipids and neuroinflammation in Parkinson's disease. Mol Neurodegener 2020; 15:59. [PMID: 33069254 PMCID: PMC7568394 DOI: 10.1186/s13024-020-00408-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons of the nigrostriatal pathway and the formation of neuronal inclusions known as Lewy bodies. Chronic neuroinflammation, another hallmark of the disease, is thought to play an important role in the neurodegenerative process. Glycosphingolipids are a well-defined subclass of lipids that regulate crucial aspects of the brain function and recently emerged as potent regulators of the inflammatory process. Deregulation in glycosphingolipid metabolism has been reported in Parkinson's disease. However, the interrelationship between glycosphingolipids and neuroinflammation in Parkinson's disease is not well known. This review provides a thorough overview of the links between glycosphingolipid metabolism and immune-mediated mechanisms involved in neuroinflammation in Parkinson's disease. After a brief presentation of the metabolism and function of glycosphingolipids in the brain, it summarizes the evidences supporting that glycosphingolipids (i.e. glucosylceramides or specific gangliosides) are deregulated in Parkinson's disease. Then, the implications of these deregulations for neuroinflammation, based on data from human inherited lysosomal glycosphingolipid storage disorders and gene-engineered animal studies are outlined. Finally, the key molecular mechanisms by which glycosphingolipids could control neuroinflammation in Parkinson's disease are highlighted. These include inflammasome activation and secretion of pro-inflammatory cytokines, altered calcium homeostasis, changes in the blood-brain barrier permeability, recruitment of peripheral immune cells or production of autoantibodies.
Collapse
Affiliation(s)
- Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Elodie Cuvelier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Marie-Amandine Bonte
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
| | - Mazarine Desplanque
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France
| | | |
Collapse
|
37
|
Ouled Amar Bencheikh B, Senkevich K, Rudakou U, Yu E, Mufti K, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Espay AJ, Dupré N, Greenbaum L, Hassin-Baer S, Rouleau GA, Alcalay RN, Fon EA, Gan-Or Z. Variants in the Niemann-Pick type C gene NPC1 are not associated with Parkinson's disease. Neurobiol Aging 2020; 93:143.e1-143.e4. [PMID: 32371106 PMCID: PMC7302975 DOI: 10.1016/j.neurobiolaging.2020.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/27/2022]
Abstract
Biallelic variants in NPC1, a gene coding for a lysosomal transmembrane protein involved in cholesterol trafficking, may cause Niemann-Pick disease type C (NPC). A few cases of NPC1 variant carriers with Parkinson's disease (PD) have been reported. In addition, pathologic studies have demonstrated phosphorylated alpha-synuclein and Lewy pathology in brains of NPC patients. Therefore, we aimed to examine whether NPC1 genetic variants may be associated with PD. Full sequencing of NPC1 was performed in 2657 PD patients and 3647 controls from 3 cohorts, using targeted sequencing with molecular inversion probes. A total of 9 common variants and 126 rare variants were identified across the 3 cohorts. To examine their association with PD, regression models adjusted for age, sex, and origin were performed for common variants, and optimal sequence Kernel association test (SKAT-O) was performed for rare variants. After correction for multiple comparisons, common and rare NPC1 variants were not associated with PD. Our results do not support a link between heterozygous variants in NPC1 and PD.
Collapse
Affiliation(s)
- Bouchra Ouled Amar Bencheikh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Centre de Recherche, Centre Hospitalier de l'Universite de Montreal, Montreal, Quebec, Canada
| | - Konstantin Senkevich
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Uladzislau Rudakou
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Kheireddin Mufti
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Yves Dauvilliers
- Department of Neurology, National Reference Center for Narcolepsy, Sleep Unit, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
38
|
La Cognata V, Guarnaccia M, Polizzi A, Ruggieri M, Cavallaro S. Highlights on Genomics Applications for Lysosomal Storage Diseases. Cells 2020; 9:E1902. [PMID: 32824006 PMCID: PMC7465195 DOI: 10.3390/cells9081902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem genetic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the lysosome. Although the cellular pathogenesis of LSDs is complex and still not fully understood, the approval of disease-specific therapies and the rapid emergence of novel diagnostic methods led to the implementation of extensive national newborn screening (NBS) programs in several countries. In the near future, this will help the development of standardized workflows aimed to more timely diagnose these conditions. Hereby, we report an overview of LSD diagnostic process and treatment strategies, provide an update on the worldwide NBS programs, and discuss the opportunities and challenges arising from genomics applications in screening, diagnosis, and research.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Via Casa Nutrizione, 39, 95124 Catania, Italy;
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, AOU “Policlinico”, PO “G. Rodolico”, Via S. Sofia, 78, 95123 Catania, Italy;
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| |
Collapse
|
39
|
Blumenreich S, Barav OB, Jenkins BJ, Futerman AH. Lysosomal Storage Disorders Shed Light on Lysosomal Dysfunction in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21144966. [PMID: 32674335 PMCID: PMC7404170 DOI: 10.3390/ijms21144966] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
The lysosome is a central player in the cell, acting as a clearing house for macromolecular degradation, but also plays a critical role in a variety of additional metabolic and regulatory processes. The lysosome has recently attracted the attention of neurobiologists and neurologists since a number of neurological diseases involve a lysosomal component. Among these is Parkinson’s disease (PD). While heterozygous and homozygous mutations in GBA1 are the highest genetic risk factor for PD, studies performed over the past decade have suggested that lysosomal loss of function is likely involved in PD pathology, since a significant percent of PD patients have a mutation in one or more genes that cause a lysosomal storage disease (LSD). Although the mechanistic connection between the lysosome and PD remains somewhat enigmatic, significant evidence is accumulating that lysosomal dysfunction plays a central role in PD pathophysiology. Thus, lysosomal dysfunction, resulting from mutations in lysosomal genes, may enhance the accumulation of α-synuclein in the brain, which may result in the earlier development of PD.
Collapse
Affiliation(s)
- Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
| | - Or B. Barav
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
| | - Bethan J. Jenkins
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
- Department of Neurobiology, Max Planck Institute of Neurobiology, 82152 Planegg, Germany
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
- Correspondence: ; Tel.: +972-8-9342704; Fax: +972-8-9344112
| |
Collapse
|
40
|
Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? JOURNAL OF PARKINSONS DISEASE 2020; 9:501-515. [PMID: 31282427 PMCID: PMC6700650 DOI: 10.3233/jpd-191683] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence points to biological sex as an important factor in the development and phenotypical expression of Parkinson’s disease (PD). Risk of developing PD is twice as high in men than women, but women have a higher mortality rate and faster progression of the disease. Moreover, motor and nonmotor symptoms, response to treatments and disease risk factors differ between women and men. Altogether, sex-related differences in PD support the idea that disease development might involve distinct pathogenic mechanisms (or the same mechanism but in a different way) in male and female patients. This review summarizes the most recent knowledge concerning differences between women and men in PD clinical features, risk factors, response to treatments and mechanisms underlying the disease pathophysiology. Unraveling how the pathology differently affect the two sexes might allow the development of tailored interventions and the design of innovative programs that meet the distinct needs of men and women, improving patient care.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Liudmila Mus
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
41
|
Smolders S, Van Broeckhoven C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathol Commun 2020; 8:63. [PMID: 32375870 PMCID: PMC7201634 DOI: 10.1186/s40478-020-00935-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways, α-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations, associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover, accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist, including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further strengthening their synergistic connection.Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between these PD associated pathways.
Collapse
Affiliation(s)
- Stefanie Smolders
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
42
|
Autophagy lysosomal pathway dysfunction in Parkinson's disease; evidence from human genetics. Parkinsonism Relat Disord 2020; 73:60-71. [DOI: 10.1016/j.parkreldis.2019.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
|
43
|
Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson's Disease. J Clin Med 2020; 9:jcm9020594. [PMID: 32098196 PMCID: PMC7073989 DOI: 10.3390/jcm9020594] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease.
Collapse
|
44
|
Johnson PH, Weinreb NJ, Cloyd JC, Tuite PJ, Kartha RV. GBA1 mutations: Prospects for exosomal biomarkers in α-synuclein pathologies. Mol Genet Metab 2020; 129:35-46. [PMID: 31761523 PMCID: PMC7002237 DOI: 10.1016/j.ymgme.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/03/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022]
Abstract
The discovery that patients with Gaucher Disease (GD), a rare lysosomal storage disorder, were developing symptoms similar to Parkinson's disease (PD) led to investigation of the relationship between the two seemingly unrelated pathologies. GD, an autosomal recessive disorder, is the result of a biallelic mutation in the gene GBA1, which encodes for the enzyme glucocerebrosidase (GCase). Since the observation of its relation to PD, GBA1 mutations have become recognized as the most common genetic risk factor for development of synucleinopathies such as PD and dementia with Lewy bodies. Although the exact mechanism by which GBA1 mutations promote PD is unknown, current understanding suggests that impaired GCase inhibits lysosomal activity and decreases the overall ability of the cell to degrade proteins, specifically the neuronal protein α-synuclein. Decreased elimination of α-synuclein can lead to its abnormal accumulation and aggregation, an important component of PD development. Further understanding of how decreased GCase activity increases risk for α-synuclein pathology can assist with the development of clinical biomarkers for early detection of synucleinopathies, as well as promote novel treatments tailored for people with a GBA1 mutation. Historically, α-synuclein has not been a reliable biomarker for PD. However, recent research on α-synuclein content within exosomes, which are small vesicles released by cells that carry specific cellular cargo, has yielded encouraging results. Moreover, decreased GCase activity has been shown to influence exosomal contents. Exosomes have emerged as a promising new avenue for the identification of novel biomarkers and therapeutic targets aimed at improving neuronal GCase function and limiting the development of synucleinopathies.
Collapse
Affiliation(s)
- Parker H Johnson
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Neal J Weinreb
- Department of Human Genetics and Medicine (Hematology), Leonard Miller School of Medicine of University of Miami, Miami, FL, United States of America
| | - James C Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Paul J Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
45
|
Bellomo G, Paciotti S, Gatticchi L, Parnetti L. The Vicious Cycle Between
α
‐Synuclein Aggregation and Autophagic‐Lysosomal Dysfunction. Mov Disord 2019; 35:34-44. [DOI: 10.1002/mds.27895] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/31/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Giovanni Bellomo
- Magnetic Resonance Center (CERM) University of Florence Sesto Fiorentino (FI) Italy
| | - Silvia Paciotti
- Laboratory of Clinical Neurochemistry, Section of Neurology University of Perugia Perugia (PG) Italy
- Department of Experimental Medicine University of Perugia Perugia (PG) Italy
| | - Leonardo Gatticchi
- Department of Experimental Medicine University of Perugia Perugia (PG) Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Section of Neurology University of Perugia Perugia (PG) Italy
| |
Collapse
|
46
|
Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, Platt FM. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. Mol Neurodegener 2019; 14:40. [PMID: 31703585 PMCID: PMC6842240 DOI: 10.1186/s13024-019-0339-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Haploinsufficiency in the Gaucher disease GBA gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD). Recently, more than fifty other lysosomal storage disorder gene variants have been identified in PD, implicating lysosomal dysfunction more broadly as a key risk factor for PD. Despite the evidence of multiple lysosomal genetic risks, it remains unclear how sphingolipid hydrolase activities, other than GBA, are altered with ageing or in PD. Moreover, it is not fully known if levels of glycosphingolipid substrates for these enzymes change in vulnerable brain regions of PD. Finally, little is known about the levels of complex gangliosides in substantia nigra which may play a significant role in ageing and PD. Methods To study sphingolipid hydrolase activities and glycosphingolipid expression in ageing and in PD, two independent cohorts of human substantia nigra tissues were obtained. Fluorescent 4-methylumbelliferone assays were used to determine multiple enzyme activities. The lysosomal GBA and non-lysosomal GBA2 activities were distinguished using the inhibitor NB-DGJ. Sensitive and quantitative normal-phase HPLC was performed to study glycosphingolipid levels. In addition, glycosphingolipid levels in cerebrospinal fluid and serum were analysed as possible biomarkers for PD. Results The present study demonstrates, in two independent cohorts of human post-mortem substantia nigra, that sporadic PD is associated with deficiencies in multiple lysosomal hydrolases (e.g. α-galactosidase and β-hexosaminidase), in addition to reduced GBA and GBA2 activities and concomitant glycosphingolipid substrate accumulation. Furthermore, the data show significant reductions in levels of complex gangliosides (e.g. GM1a) in substantia nigra, CSF and serum in ageing, PD, and REM sleep behaviour disorder, which is a strong predictor of PD. Conclusions These findings conclusively demonstrate reductions in GBA activity in the parkinsonian midbrain, and for the first time, reductions in the activity of several other sphingolipid hydrolases. Furthermore, significant reductions were seen in complex gangliosides in PD and ageing. The diminished activities of these lysosomal hydrolases, the glycosphingolipid substrate accumulation, and the reduced levels of complex gangliosides are likely major contributors to the primary development of the pathology seen in PD and related disorders with age.
Collapse
Affiliation(s)
- Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Elizabeth B Moloney
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA
| | - Aarnoud C van der Spoel
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
47
|
Autophagic- and Lysosomal-Related Biomarkers for Parkinson's Disease: Lights and Shadows. Cells 2019; 8:cells8111317. [PMID: 31731485 PMCID: PMC6912814 DOI: 10.3390/cells8111317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, for which no disease-modifying treatments exist. This lack of effective treatments is related to the advanced stage of neurodegeneration existing at the time of diagnosis. Thus, the identification of early stage biomarkers is crucial. Biomarker discovery is often guided by the underlying molecular mechanisms leading to the pathology. One of the central pathways deregulated during PD, supported both by genetic and functional studies, is the autophagy-lysosomal pathway. Hence, this review presents different studies on the expression and activity of autophagic and lysosomal proteins, and their functional consequences, performed in peripheral human biospecimens. Although most biomarkers are inconsistent between studies, some of them, namely HSC70 levels in sporadic PD patients, and cathepsin D levels and glucocerebrosidase activity in PD patients carrying GBA mutations, seem to be consistent. Hence, evidence exists that the impairment of the autophagy-lysosomal pathway underlying PD pathophysiology can be detected in peripheral biosamples and further tested as potential biomarkers. However, longitudinal, stratified, and standardized analyses are needed to confirm their clinical validity and utility.
Collapse
|
48
|
Rocha EM, De Miranda BR, Castro S, Drolet R, Hatcher NG, Yao L, Smith SM, Keeney MT, Di Maio R, Kofler J, Hastings TG, Greenamyre JT. LRRK2 inhibition prevents endolysosomal deficits seen in human Parkinson's disease. Neurobiol Dis 2019; 134:104626. [PMID: 31618685 PMCID: PMC7345850 DOI: 10.1016/j.nbd.2019.104626] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
LRRK2 has been implicated in endolysosomal function and likely plays a central role in idiopathic Parkinson’s disease (iPD). In iPD, dopaminergic neurons within the substantia nigra are characterized by increased LRRK2 kinase activity, endolysosomal deficits, and accumulation of autophagic vesicles with incompletely degraded substrates, including α-synuclein. Although LRRK2 has been implicated in endolysosomal and autophagic function, it remains unclear whether inhibition of LRRK2 kinase activity can prevent endolysosomal deficits or reduce dopaminergic neurodegeneration. In this study, we characterized the endolysosomal and autophagic defects in surviving dopaminergic neurons of iPD patient brain tissue. We next showed that these defects could be reproduced reliably in vivo using the rotenone model of iPD. Results suggested that there was impaired endosomal maturation, resulting in lysosomal dysfunction and deficits in protein degradation. A highly selective, brain-penetrant LRRK2 kinase inhibitor not only improved apparent endosomal maturation and lysosomal function, but also prevented rotenone-induced neurodegeneration in vivo. The fact that a LRRK2 kinase inhibitor was capable of preventing the neuropathological and endolysosomal abnormalities observed in human iPD suggests that LRRK2 inhibitors may have broad therapeutic utility in iPD, not only in those who carry a LRRK2 mutation.
Collapse
Affiliation(s)
- Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sandra Castro
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert Drolet
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., West Point, PA, United States of America
| | - Nathan G Hatcher
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., West Point, PA, United States of America
| | - Lihang Yao
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., West Point, PA, United States of America
| | - Sean M Smith
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., West Point, PA, United States of America
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
49
|
Shah H, Liong C, Levy OA, Waters C, Fahn S, Marder K, Kang UJ, Wolf P, Oliva P, Zhang K, Alcalay RN, Gutierrez J. Association of Low Lysosomal Enzymes Activity With Brain Arterial Dilatation. Stroke 2019; 49:1977-1980. [PMID: 29986930 DOI: 10.1161/strokeaha.118.021964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Absent or diminished α-galactosidase A (GLA) and acid α-glucosidase (GAA) enzyme activity are core features of Fabry and Pompe disease, respectively. Patients with Fabry or Pompe disease may have dilated intracranial arteries but whether lower GLA or GAA enzyme activity relates to brain arterial dilatation in other populations is unknown. Methods- Participants included Parkinson disease patients and nonblood-related controls, whose GLA and GAA enzymatic activities were measured in dried blood spots. Independent readers measured the axial arterial diameter of the ascending portion of the cavernous internal carotid arteries and the most proximal segment of the basilar artery in T2 black voids. Linear regression models were built to investigate the relationship between brain arterial diameters and lysosomal enzymatic activities. Results- The cohort included 107 participants (mean age, 66.5±10.3; 67% men). In an adjusted linear regression model, lower GLA activity was associated with larger brain arterial diameters (B=0.50±0.23, P=0.03). The strength of association was the greatest for the basilar artery diameter (B=0.80±0.33, P=0.02). Similarly, lower GAA activity was associated with an increased basilar arterial diameter (B=0.73±0.35, P=0.04). Conclusions- Lower GLA and GAA enzymatic activities were associated with larger brain arterial diameters, particularly the basilar artery diameter. Lower lysosomal enzymatic function in patients without Fabry or Pompe disease may play a role in brain arterial dilatation.
Collapse
Affiliation(s)
- Harsh Shah
- From the College of Medicine, University of Florida, Gainesville (H.S.)
| | - Christopher Liong
- Department of Neurology, Columbia University Medical Center, New York, NY (C.L., O.A.L., C.W., S.F., K.M., U.J.K., R.N.A., J.G.)
| | - Oren A Levy
- Department of Neurology, Columbia University Medical Center, New York, NY (C.L., O.A.L., C.W., S.F., K.M., U.J.K., R.N.A., J.G.)
| | - Cheryl Waters
- Department of Neurology, Columbia University Medical Center, New York, NY (C.L., O.A.L., C.W., S.F., K.M., U.J.K., R.N.A., J.G.)
| | - Stanley Fahn
- Department of Neurology, Columbia University Medical Center, New York, NY (C.L., O.A.L., C.W., S.F., K.M., U.J.K., R.N.A., J.G.)
| | - Karen Marder
- Department of Neurology, Columbia University Medical Center, New York, NY (C.L., O.A.L., C.W., S.F., K.M., U.J.K., R.N.A., J.G.)
| | - Un J Kang
- Department of Neurology, Columbia University Medical Center, New York, NY (C.L., O.A.L., C.W., S.F., K.M., U.J.K., R.N.A., J.G.)
| | - Pavlina Wolf
- Global Translational Science, Sanofi, Framingham, MA (P.W., P.O., K.Z.)
| | - Petra Oliva
- Global Translational Science, Sanofi, Framingham, MA (P.W., P.O., K.Z.)
| | - Kate Zhang
- Global Translational Science, Sanofi, Framingham, MA (P.W., P.O., K.Z.)
| | - Roy N Alcalay
- Department of Neurology, Columbia University Medical Center, New York, NY (C.L., O.A.L., C.W., S.F., K.M., U.J.K., R.N.A., J.G.)
| | - Jose Gutierrez
- Department of Neurology, Columbia University Medical Center, New York, NY (C.L., O.A.L., C.W., S.F., K.M., U.J.K., R.N.A., J.G.)
| |
Collapse
|
50
|
The Link between Gaucher Disease and Parkinson's Disease Sheds Light on Old and Novel Disorders of Sphingolipid Metabolism. Int J Mol Sci 2019; 20:ijms20133304. [PMID: 31284408 PMCID: PMC6651136 DOI: 10.3390/ijms20133304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipid metabolism starts with the biosynthesis of ceramide, a bioactive lipid and the backbone for the biosynthesis of complex sphingolipids such as sphingomyelin and glycosphingolipids. These are degraded back to ceramide and then to sphingosine, which enters the ceramide–sphingosine-1-phosphate signaling pathway or is further degraded. Several enzymes with multiple catalytic properties and subcellular localizations are thus involved in such metabolism. Hereditary defects of lysosomal hydrolases have been known for several years to be the cause of lysosomal storage diseases such as gangliosidoses, Gaucher disease, Niemann–Pick disease, Krabbe disease, Fabry disease, and Farber disease. More recently, many other inborn errors of sphingolipid metabolism have been recognized, involving enzymes responsible for the biosynthesis of ceramide, sphingomyelin, and glycosphingolipids. Concurrently, epidemiologic and biochemical evidence has established a link between Gaucher disease and Parkinson’s disease, showing that glucocerebrosidase variants predispose individuals to α-synuclein accumulation and neurodegeneration even in the heterozygous status. This appears to be due not only to lysosomal overload of non-degraded glucosylceramide, but to the derangement of vesicle traffic and autophagy, including mitochondrial autophagy, triggered by both sphingolipid intermediates and misfolded proteins. In this review, old and novel disorders of sphingolipid metabolism, in particular those of ganglioside biosynthesis, are evaluated in light of recent investigations of the link between Gaucher disease and Parkinson’s disease, with the aim of better understanding their pathogenic mechanisms and addressing new potential therapeutic strategies.
Collapse
|