1
|
Duy PQ, Mehta NH, Kahle KT. Biomechanical instability of the brain-CSF interface in hydrocephalus. Brain 2024; 147:3274-3285. [PMID: 38798141 PMCID: PMC11449143 DOI: 10.1093/brain/awae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Hydrocephalus, characterized by progressive expansion of the CSF-filled ventricles (ventriculomegaly), is the most common reason for brain surgery. 'Communicating' (i.e. non-obstructive) hydrocephalus is classically attributed to a primary derangement in CSF homeostasis, such as choroid plexus-dependent CSF hypersecretion, impaired cilia-mediated CSF flow currents, or decreased CSF reabsorption via the arachnoid granulations or other pathways. Emerging data suggest that abnormal biomechanical properties of the brain parenchyma are an under-appreciated driver of ventriculomegaly in multiple forms of communicating hydrocephalus across the lifespan. We discuss recent evidence from human and animal studies that suggests impaired neurodevelopment in congenital hydrocephalus, neurodegeneration in elderly normal pressure hydrocephalus and, in all age groups, inflammation-related neural injury in post-infectious and post-haemorrhagic hydrocephalus, can result in loss of stiffness and viscoelasticity of the brain parenchyma. Abnormal brain biomechanics create barrier alterations at the brain-CSF interface that pathologically facilitates secondary enlargement of the ventricles, even at normal or low intracranial pressures. This 'brain-centric' paradigm has implications for the diagnosis, treatment and study of hydrocephalus from womb to tomb.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neel H Mehta
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Developmental Brain and CSF Disorders Program, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Quirk K, Boster KAS, Tithof J, Kelley DH. A brain-wide solute transport model of the glymphatic system. J R Soc Interface 2024; 21:20240369. [PMID: 39439312 PMCID: PMC11496954 DOI: 10.1098/rsif.2024.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Brain waste is largely cleared via diffusion and advection in cerebrospinal fluid (CSF). CSF flows through a pathway referred to as the glymphatic system, which is also being targeted for delivering drugs to the brain. Despite the importance of solute transport, no brain-wide models for predicting clearance and delivery through perivascular pathways and adjacent parenchyma existed. We devised such a model by upgrading an existing model of CSF flow in the mouse brain to additionally solve advection-diffusion equations, thereby estimating solute transport. We simulated steady-state transport of 3 kDa dextran injected proximal to the perivascular space (PVS) of the middle cerebral artery, mimicking in vivo experiments. We performed a sensitivity analysis of 11 biological properties of PVSs and brain parenchyma by repeatedly simulating solute transport with varying parameter values. Parameter combinations that led to a large total pressure gradient, poor CSF perfusion or a steep solute gradient were deemed unrealistic. Solute concentrations in parenchyma were most sensitive to changes in pial PVS size, as this parameter linearly affects volume flow rates. We also found that realistic transport requires both highly permeable penetrating PVSs and high-resistance parenchyma. This study highlights the potential of brain-wide models to provide insights into solute transport processes.
Collapse
Affiliation(s)
- Keelin Quirk
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
3
|
Leskinen S, Singha S, Mehta NH, Quelle M, Shah HA, D'Amico RS. Applications of Functional Magnetic Resonance Imaging to the Study of Functional Connectivity and Activation in Neurological Disease: A Scoping Review of the Literature. World Neurosurg 2024; 189:185-192. [PMID: 38843969 DOI: 10.1016/j.wneu.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) has transformed our understanding of brain's functional architecture, providing critical insights into neurological diseases. This scoping review synthesizes the current landscape of fMRI applications across various neurological domains, elucidating the evolving role of both task-based and resting-state fMRI in different settings. METHODS We conducted a comprehensive scoping review following the Preferred Reporting Items for Systematic Review and Meta-Analyses Extension for Scoping Reviews guidelines. Extensive searches in Medline/PubMed, Embase, and Web of Science were performed, focusing on studies published between 2003 and 2023 that utilized fMRI to explore functional connectivity and regional activation in adult patients with neurological conditions. Studies were selected based on predefined inclusion and exclusion criteria, with data extracted. RESULTS We identified 211 studies, covering a broad spectrum of neurological disorders including mental health, movement disorders, epilepsy, neurodegeneration, traumatic brain injury, cerebrovascular accidents, vascular abnormalities, neurorehabilitation, neuro-critical care, and brain tumors. The majority of studies utilized resting-state fMRI, underscoring its prominence in identifying disease-specific connectivity patterns. Results highlight the potential of fMRI to reveal the underlying pathophysiological mechanisms of various neurological conditions, facilitate diagnostic processes, and potentially guide therapeutic interventions. CONCLUSIONS fMRI serves as a powerful tool for elucidating complex neural dynamics and pathologies associated with neurological diseases. Despite the breadth of applications, further research is required to standardize fMRI protocols, improve interpretative methodologies, and enhance the translation of imaging findings to clinical practice. Advances in fMRI technology and analytics hold promise for improving the precision of neurological assessments and interventions.
Collapse
Affiliation(s)
- Sandra Leskinen
- State University of New York Downstate Medical Center, New York, USA
| | - Souvik Singha
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA.
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | - Harshal A Shah
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| |
Collapse
|
4
|
Vikner T, Johnson KM, Cadman RV, Betthauser TJ, Wilson RE, Chin N, Eisenmenger LB, Johnson SC, Rivera-Rivera LA. CSF dynamics throughout the ventricular system using 4D flow MRI: associations to arterial pulsatility, ventricular volumes, and age. Fluids Barriers CNS 2024; 21:68. [PMID: 39215377 PMCID: PMC11363656 DOI: 10.1186/s12987-024-00570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) dynamics are increasingly studied in aging and neurological disorders. Models of CSF-mediated waste clearance suggest that altered CSF dynamics could play a role in the accumulation of toxic waste in the CNS, with implications for Alzheimer's disease and other proteinopathies. Therefore, approaches that enable quantitative and volumetric assessment of CSF flow velocities could be of value. In this study we demonstrate the feasibility of 4D flow MRI for simultaneous assessment of CSF dynamics throughout the ventricular system, and evaluate associations to arterial pulsatility, ventricular volumes, and age. METHODS In a cognitively unimpaired cohort (N = 43; age 41-83 years), cardiac-resolved 4D flow MRI CSF velocities were obtained in the lateral ventricles (LV), foramens of Monro, third and fourth ventricles (V3 and V4), the cerebral aqueduct (CA) and the spinal canal (SC), using a velocity encoding (venc) of 5 cm/s. Cerebral blood flow pulsatility was also assessed with 4D flow (venc = 80 cm/s), and CSF volumes were obtained from T1- and T2-weighted MRI. Multiple linear regression was used to assess effects of age, ventricular volumes, and arterial pulsatility on CSF velocities. RESULTS Cardiac-driven CSF dynamics were observed in all CSF spaces, with region-averaged velocity range and root-mean-square (RMS) velocity encompassing from very low in the LVs (RMS 0.25 ± 0.08; range 0.85 ± 0.28 mm/s) to relatively high in the CA (RMS 6.29 ± 2.87; range 18.6 ± 15.2 mm/s). In the regression models, CSF velocity was significantly related to age in 5/6 regions, to CSF space volume in 2/3 regions, and to arterial pulsatility in 3/6 regions. Group-averaged waveforms indicated distinct CSF flow propagation delays throughout CSF spaces, particularly between the SC and LVs. CONCLUSIONS Our findings show that 4D flow MRI enables assessment of CSF dynamics throughout the ventricular system, and captures independent effects of age, CSF space morphology, and arterial pulsatility on CSF motion.
Collapse
Affiliation(s)
- Tomas Vikner
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Diagnostics and Intervention, Umeå University, Umeå, S-90187, Sweden
| | - Kevin M Johnson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Robert V Cadman
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Rachael E Wilson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Nathaniel Chin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Laura B Eisenmenger
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Leonardo A Rivera-Rivera
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
| |
Collapse
|
5
|
Rivera-Rivera LA, Vikner T, Eisenmenger L, Johnson SC, Johnson KM. Four-dimensional flow MRI for quantitative assessment of cerebrospinal fluid dynamics: Status and opportunities. NMR IN BIOMEDICINE 2024; 37:e5082. [PMID: 38124351 PMCID: PMC11162953 DOI: 10.1002/nbm.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Neurological disorders can manifest with altered neurofluid dynamics in different compartments of the central nervous system. These include alterations in cerebral blood flow, cerebrospinal fluid (CSF) flow, and tissue biomechanics. Noninvasive quantitative assessment of neurofluid flow and tissue motion is feasible with phase contrast magnetic resonance imaging (PC MRI). While two-dimensional (2D) PC MRI is routinely utilized in research and clinical settings to assess flow dynamics through a single imaging slice, comprehensive neurofluid dynamic assessment can be limited or impractical. Recently, four-dimensional (4D) flow MRI (or time-resolved three-dimensional PC with three-directional velocity encoding) has emerged as a powerful extension of 2D PC, allowing for large volumetric coverage of fluid velocities at high spatiotemporal resolution within clinically reasonable scan times. Yet, most 4D flow studies have focused on blood flow imaging. Characterizing CSF flow dynamics with 4D flow (i.e., 4D CSF flow) is of high interest to understand normal brain and spine physiology, but also to study neurological disorders such as dysfunctional brain metabolite waste clearance, where CSF dynamics appear to play an important role. However, 4D CSF flow imaging is challenged by the long T1 time of CSF and slower velocities compared with blood flow, which can result in longer scan times from low flip angles and extended motion-sensitive gradients, hindering clinical adoption. In this work, we review the state of 4D CSF flow MRI including challenges, novel solutions from current research and ongoing needs, examples of clinical and research applications, and discuss an outlook on the future of 4D CSF flow.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tomas Vikner
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiation Sciences, Radiation Physics and Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
6
|
Mehta NH, Wang X, Keil SA, Xi K, Zhou L, Lee K, Tan W, Spector E, Goldan A, Kelly J, Karakatsanis NA, Mozley PD, Nehmeh S, Chazen JL, Morin S, Babich J, Ivanidze J, Pahlajani S, Tanzi EB, Saint-Louis L, Butler T, Chen K, Rusinek H, Carare RO, Li Y, Chiang GC, de Leon MJ. [1- 11C]-Butanol Positron Emission Tomography reveals an impaired brain to nasal turbinates pathway in aging amyloid positive subjects. Fluids Barriers CNS 2024; 21:30. [PMID: 38566110 PMCID: PMC10985958 DOI: 10.1186/s12987-024-00530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Reduced clearance of cerebrospinal fluid (CSF) has been suggested as a pathological feature of Alzheimer's disease (AD). With extensive documentation in non-human mammals and contradictory human neuroimaging data it remains unknown whether the nasal mucosa is a CSF drainage site in humans. Here, we used dynamic PET with [1-11C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid. METHODS 24 cognitively normal subjects (≥ 65 years) were dynamically PET imaged for 60 min. using [1-11C]-Butanol. Imaging with either [11C]-PiB or [18F]-FBB identified 8 amyloid PET positive (Aβ+) and 16 Aβ- subjects. MRI-determined regions of interest (ROI) included: the carotid artery, the lateral orbitofrontal (LOF) brain, the cribriform plate, and an All-turbinate region comprised of the superior, middle, and inferior turbinates. The bilateral temporalis muscle and jugular veins served as control regions. Regional time-activity were used to model tracer influx, egress, and AUC. RESULTS LOF and All-turbinate 60 min AUC were positively associated, thus suggesting a connection between the brain and the nose. Further, the Aβ+ subgroup demonstrated impaired tracer kinetics, marked by reduced tracer influx and slower egress. CONCLUSION The data show that tracer kinetics for brain and nasal turbinates are related to each other and both reflect the amyloid status of the brain. As such, these data add to evidence that the nasal pathway is a potential CSF drainage site in humans. These data warrant further investigation of brain and nasal contributions to protein clearance in neurodegenerative disease.
Collapse
Affiliation(s)
- Neel H Mehta
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Harvard Medical School, Boston, MA, USA
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Samantha A Keil
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Kevin Lee
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Weill Cornell Medicine, School of Medicine New York, New York, NY, USA
| | - Wanbin Tan
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Edward Spector
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Amirhossein Goldan
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - James Kelly
- Department of Radiology, Molecule Imaging Innovations Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - P David Mozley
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Radiopharm Theranostics, New York, NY, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - J Levi Chazen
- Department of Radiology, Hospital for Special Surgery, New York, NY, USA
| | - Simon Morin
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Jana Ivanidze
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Silky Pahlajani
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Emily B Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | | | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Kewei Chen
- College of Health Solutions, Arizona State University, Downtown Phoenix Campus, Arizona, USA
| | - Henry Rusinek
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA.
| |
Collapse
|
7
|
Faizan M, Sachan N, Verma O, Sarkar A, Rawat N, Pratap Singh M. Cerebrospinal fluid protein biomarkers in Parkinson's disease. Clin Chim Acta 2024; 556:117848. [PMID: 38417781 DOI: 10.1016/j.cca.2024.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Proteomic profiling is an effective way to identify biomarkers for Parkinson's disease (PD). Cerebrospinal fluid (CSF) has direct connectivity with the brain and could be a source of finding biomarkers and their clinical implications. Comparative proteomic profiling has shown that a group of differentially displayed proteins exist. The studies performed using conventional and classical tools also supported the occurrence of these proteins. Many studies have highlighted the potential of CSF proteomic profiling for biomarker identification and their clinical applications. Some of these proteins are useful for disease diagnosis and prediction. Proteomic profiling of CSF also has immense potential to distinguish PD from similar neurodegenerative disorders. A few protein biomarkers help in fundamental knowledge generation and clinical interpretation. However, the specific biomarker of PD is not yet known. The use of proteomic approaches in clinical settings is also rare. A large-scale, multi-centric, multi-population and multi-continental study using multiple proteomic tools is warranted. Such a study can provide valuable, comprehensive and reliable information for a better understanding of PD and the development of specific biomarkers. The current article sheds light on the role of CSF proteomic profiling in identifying biomarkers of PD and their clinical implications. The article also explains the achievements, obstacles and hopes for future directions of this approach.
Collapse
Affiliation(s)
- Mohd Faizan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Nidhi Sachan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Oyashvi Verma
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Alika Sarkar
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Neeraj Rawat
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Capacity Building and Knowledge Services, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
8
|
Voss HU, Razlighi QR. Pulsatility analysis of the circle of Willis. AGING BRAIN 2024; 5:100111. [PMID: 38495808 PMCID: PMC10940807 DOI: 10.1016/j.nbas.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose To evaluate the phenomenological significance of cerebral blood pulsatility imaging in aging research. Methods N = 38 subjects from 20 to 72 years of age (24 females) were imaged with ultrafast MRI with a sampling rate of 100 ms and simultaneous acquisition of pulse oximetry data. Of these, 28 subjects had acceptable MRI and pulse data, with 16 subjects between 20 and 28 years of age, and 12 subjects between 61 and 72 years of age. Pulse amplitude in the circle of Willis was assessed with the recently developed method of analytic phase projection to extract blood volume waveforms. Results Arteries in the circle of Willis showed pulsatility in the MRI for both the young and old age groups. Pulse amplitude in the circle of Willis significantly increased with age (p = 0.01) but was independent of gender, heart rate, and head motion during MRI. Discussion and conclusion Increased pulse wave amplitude in the circle of Willis in the elderly suggests a phenomenological significance of cerebral blood pulsatility imaging in aging research. The physiologic origin of increased pulse amplitude (increased pulse pressure vs. change in arterial morphology vs. re-shaping of pulse waveforms caused by the heart, and possible interaction with cerebrospinal fluid pulsatility) requires further investigation.
Collapse
Affiliation(s)
- Henning U. Voss
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Cornell MRI Facility, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Qolamreza R. Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Greenberg ABW, Mekbib KY, Mehta NH, Kiziltug E, Duy PQ, Smith HR, Junkkari A, Leinonen V, Hyman BT, Chan D, Curry Jr WT, Arnold SE, Barker II FG, Frosch MP, Kahle KT. Utility of cortical tissue analysis in normal pressure hydrocephalus. Cereb Cortex 2024; 34:bhae001. [PMID: 38275188 PMCID: PMC10839843 DOI: 10.1093/cercor/bhae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Clinical improvement following neurosurgical cerebrospinal fluid shunting for presumed idiopathic normal pressure hydrocephalus is variable. Idiopathic normal pressure hydrocephalus patients may have undetected Alzheimer's disease-related cortical pathology that confounds diagnosis and clinical outcomes. In this study, we sought to determine the utility of cortical tissue immuno-analysis in predicting shunting outcomes in idiopathic normal pressure hydrocephalus patients. We performed a pooled analysis using a systematic review as well as analysis of a new, original patient cohort. Of the 2707 screened studies, 3 studies with a total of 229 idiopathic normal pressure hydrocephalus patients were selected for inclusion in this meta-analysis alongside our original cohort. Pooled statistics of shunting outcomes for the 229 idiopathic normal pressure hydrocephalus patients and our new cohort of 36 idiopathic normal pressure hydrocephalus patients revealed that patients with Aβ + pathology were significantly more likely to exhibit shunt nonresponsiveness than patients with negative pathology. Idiopathic normal pressure hydrocephalus patients with Alzheimer's disease -related cortical pathology may be at a higher risk of treatment facing unfavorable outcomes following cerebrospinal fluid shunting. Thus, cortical tissue analysis from living patients may be a useful diagnostic and prognostic adjunct for patients with presumed idiopathic normal pressure hydrocephalus and potentially other neurodegenerative conditions affecting the cerebral cortex.
Collapse
Affiliation(s)
- Ana B W Greenberg
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, United States
| | - Kedous Y Mekbib
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, United States
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, United States
| | - Hannah R Smith
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Antti Junkkari
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio 70211, Finland
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Diane Chan
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - William T Curry Jr
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Frederick G Barker II
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Matthew P Frosch
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
10
|
Duy PQ, Mehta NH, Kahle KT. The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology. Cereb Cortex 2024; 34:bhad432. [PMID: 37991277 PMCID: PMC10793578 DOI: 10.1093/cercor/bhad432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
11
|
Xiang J, Hua Y, Xi G, Keep RF. Mechanisms of cerebrospinal fluid and brain interstitial fluid production. Neurobiol Dis 2023; 183:106159. [PMID: 37209923 PMCID: PMC11071066 DOI: 10.1016/j.nbd.2023.106159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Fluid homeostasis is fundamental for brain function with cerebral edema and hydrocephalus both being major neurological conditions. Fluid movement from blood into brain is one crucial element in cerebral fluid homeostasis. Traditionally it has been thought to occur primarily at the choroid plexus (CP) as cerebrospinal fluid (CSF) secretion due to polarized distribution of ion transporters at the CP epithelium. However, there are currently controversies as to the importance of the CP in fluid secretion, just how fluid transport occurs at that epithelium versus other sites, as well as the direction of fluid flow in the cerebral ventricles. The purpose of this review is to evaluate evidence on the movement of fluid from blood to CSF at the CP and the cerebral vasculature and how this differs from other tissues, e.g., how ion transport at the blood-brain barrier as well as the CP may drive fluid flow. It also addresses recent promising data on two potential targets for modulating CP fluid secretion, the Na+/K+/Cl- cotransporter, NKCC1, and the non-selective cation channel, transient receptor potential vanilloid 4 (TRPV4). Finally, it raises the issue that fluid secretion from blood is not constant, changing with disease and during the day. The apparent importance of NKCC1 phosphorylation and TRPV4 activity at the CP in determining fluid movement suggests that such secretion may also vary over short time frames. Such dynamic changes in CP (and potentially blood-brain barrier) function may contribute to some of the controversies over its role in brain fluid secretion.
Collapse
Affiliation(s)
- Jianming Xiang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Nordvig AS, Rajan M, Lau JD, Kingery JR, Mahmud M, Chiang GC, De Leon MJ, Goyal P. Brain fog in long COVID limits function and health status, independently of hospital severity and preexisting conditions. Front Neurol 2023; 14:1150096. [PMID: 37251229 PMCID: PMC10213727 DOI: 10.3389/fneur.2023.1150096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Importance The U.S. government has named post-acute sequelae of COVID-19 (longCOVID) as influential on disability rates. We previously showed that COVID-19 carries a medical/functional burden at 1 year, and that age and other risk factors of severe COVID-19 were not associated with increased longCOVID risk. Long-term longCOVID brain fog (BF) prevalence, risk factors and associated medical/functional factors are poorly understood, especially after mild SARS-CoV-2 infection. Methods A retrospective observational cohort study was conducted at an urban tertiary-care hospital. Of 1,032 acute COVID-19 survivors from March 3-May 15, 2020, 633 were called, 530 responded (59.2 ± 16.3 years, 44.5% female, 51.5% non-White) about BF prevalence, other longCOVID, post-acute ED/hospital utilization, perceived health/social network, effort tolerance, disability. Results At approximately 1-year, 31.9% (n = 169) experienced BF. Acute COVID-19 severity, age, and premorbid cardiopulmonary comorbidities did not differ between those with/without BF at 1 year. Patients with respiratory longCOVID had 54% higher risk of BF than those without respiratory longCOVID. BF associated with sleep disturbance (63% with BF vs.29% without BF, p < 0.0001), shortness of breath (46% vs.18%, p < 0.0001), weakness (49% vs.22%, p < 0.0001), dysosmia/dysgeusia (12% vs.5%, p < 0.004), activity limitations (p < 0.001), disability/leave (11% vs.3%, p < 0.0001), worsened perceived health since acute COVID-19 (66% vs.30%, p < 0.001) and social isolation (40% vs.29%, p < 0.02), despite no differences in premorbid comorbidities and age. Conclusions and relevance A year after COVID-19 infection, BF persists in a third of patients. COVID-19 severity is not a predictive risk factor. BF associates with other longCOVID and independently associates with persistent debility.
Collapse
Affiliation(s)
- Anna S. Nordvig
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Mangala Rajan
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jennifer D. Lau
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Justin R. Kingery
- Division of General Internal Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Meem Mahmud
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Gloria C. Chiang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Mony J. De Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Parag Goyal
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
13
|
Keep RF, Jones HC, Hamilton MG, Drewes LR. A year in review: brain barriers and brain fluids research in 2022. Fluids Barriers CNS 2023; 20:30. [PMID: 37085841 PMCID: PMC10120509 DOI: 10.1186/s12987-023-00429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Mark G Hamilton
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
14
|
Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N. Contributions of blood-brain barrier imaging to neurovascular unit pathophysiology of Alzheimer's disease and related dementias. Front Aging Neurosci 2023; 15:1111448. [PMID: 36861122 PMCID: PMC9969807 DOI: 10.3389/fnagi.2023.1111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The blood-brain barrier (BBB) plays important roles in the maintenance of brain homeostasis. Its main role includes three kinds of functions: (1) to protect the central nervous system from blood-borne toxins and pathogens; (2) to regulate the exchange of substances between the brain parenchyma and capillaries; and (3) to clear metabolic waste and other neurotoxic compounds from the central nervous system into meningeal lymphatics and systemic circulation. Physiologically, the BBB belongs to the glymphatic system and the intramural periarterial drainage pathway, both of which are involved in clearing interstitial solutes such as β-amyloid proteins. Thus, the BBB is believed to contribute to preventing the onset and progression for Alzheimer's disease. Measurements of BBB function are essential toward a better understanding of Alzheimer's pathophysiology to establish novel imaging biomarkers and open new avenues of interventions for Alzheimer's disease and related dementias. The visualization techniques for capillary, cerebrospinal, and interstitial fluid dynamics around the neurovascular unit in living human brains have been enthusiastically developed. The purpose of this review is to summarize recent BBB imaging developments using advanced magnetic resonance imaging technologies in relation to Alzheimer's disease and related dementias. First, we give an overview of the relationship between Alzheimer's pathophysiology and BBB dysfunction. Second, we provide a brief description about the principles of non-contrast agent-based and contrast agent-based BBB imaging methodologies. Third, we summarize previous studies that have reported the findings of each BBB imaging method in individuals with the Alzheimer's disease continuum. Fourth, we introduce a wide range of Alzheimer's pathophysiology in relation to BBB imaging technologies to advance our understanding of the fluid dynamics around the BBB in both clinical and preclinical settings. Finally, we discuss the challenges of BBB imaging techniques and suggest future directions toward clinically useful imaging biomarkers for Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Yuto Uchida
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Yuto Uchida, ; Noriyuki Matsukawa,
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Ōbu, Aichi, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Yuto Uchida, ; Noriyuki Matsukawa,
| |
Collapse
|
15
|
Bah TM, Siler DA, Ibrahim AH, Cetas JS, Alkayed NJ. Fluid dynamics in aging-related dementias. Neurobiol Dis 2023; 177:105986. [PMID: 36603747 DOI: 10.1016/j.nbd.2022.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
Recent human and animal model experimental studies revealed novel pathways for fluid movement, immune cell trafficking and metabolic waste clearance in CNS. These studies raise the intriguing possibility that the newly discovered pathways, including the glymphatic system, lymphatic meningeal vessels and skull-brain communication channels, are impaired in aging and neurovascular and neurodegenerative diseases associated with dementia, including Alzheimer's disease (AD) and AD-related dementia. We provide an overview of the glymphatic and dural meningeal lymphatic systems, review current methods and approaches used to study glymphatic flow in humans and animals, and discuss current evidence and controversies related to its role in CNS flow homeostasis under physiological and pathophysiological conditions. Non-invasive imaging approaches are needed to fully understand the mechanisms and pathways driving fluid movement in CNS and their roles across lifespan including healthy aging and aging-related dementia.
Collapse
Affiliation(s)
- Thierno M Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Dominic A Siler
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Aseel H Ibrahim
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Justin S Cetas
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
16
|
Tierradentro-Garcia LO, Onyango L, Dennis R, Freeman CW, Haddad S, Kozak B, Hwang M. Evaluation of the Cerebrospinal Fluid Flow Dynamics with Microvascular Imaging Ultrasound in Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:245. [PMID: 36832374 PMCID: PMC9955478 DOI: 10.3390/children10020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE Microvascular imaging ultrasound (MVI) can detect slow blood flow in small-caliber cerebral vessels. This technology may help assess flow in other intracranial structures, such as the ventricular system. In this study, we describe the use of MVI for characterizing intraventricular cerebrospinal fluid (CSF) flow dynamics in infants. MATERIALS AND METHODS We included infants with brain ultrasound that had MVI B-Flow cine clips in the sagittal plane. Two blinded reviewers examined the images, dictated a diagnostic impression, and identified the third ventricle, cerebral aqueduct, fourth ventricle, and CSF flow direction. A third reviewer evaluated the discrepancies. We evaluated the association of visualization of CSF flow as detectable with MVI, with the diagnostic impressions. We also assessed the inter-rater reliability (IRR) for detecting CSF flow. RESULTS We evaluated 101 infants, mean age 40 ± 53 days. Based on brain MVI B-Flow, a total of 49 patients had normal brain US scans, 40 had hydrocephalus, 26 had intraventricular hemorrhage (IVH), and 14 had hydrocephalus+IVH. Using spatially moving MVI signal in the third ventricle, cerebral aqueduct, and fourth ventricle as the criteria for CSF flow, CSF flow was identified in 10.9% (n = 11), 15.8% (n = 16), and 16.8% (n = 17) of cases, respectively. Flow direction was detected in 19.8% (n = 20) of cases; 70% (n = 14) was caudocranial, 15% (n = 3) was craniocaudal, and 15% (n = 3) bidirectional, with IRR = 0.662, p < 0.001. Visualization of CSF flow was significantly associated with the presence of IVH alone (OR 9.7 [3.3-29.0], p < 0.001) and IVH+hydrocephalus (OR 12.4 [3.5-440], p < 0.001), but not with hydrocephalus alone (p = 0.116). CONCLUSION This study demonstrates that MVI can detect CSF flow dynamics in infants with a history of post-hemorrhagic hydrocephalus with a high IRR.
Collapse
Affiliation(s)
| | - Levy Onyango
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca Dennis
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Colbey W. Freeman
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophie Haddad
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brandi Kozak
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Bai S, Ma Y, Obata K, Sugioka K. Ultraminiaturized Microfluidic Electrochemical Surface‐Enhanced Raman Scattering Chip for Analysis of Neurotransmitters Fabricated by Ship‐in‐a‐Bottle Integration. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Shi Bai
- Advanced Laser Processing Research Team RIKEN Center for Advanced Photonics 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- School of Material Science and Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Ying Ma
- Academy of Artificial Intelligence Beijing Institute of Petrochemical Technology No.19 North Qingyuan Road, Daxing District Beijing 102617 China
| | - Kotaro Obata
- Advanced Laser Processing Research Team RIKEN Center for Advanced Photonics 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Koji Sugioka
- Advanced Laser Processing Research Team RIKEN Center for Advanced Photonics 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
18
|
Shirolapov IV, Zakharov AV, Smirnova DA, Lyamin AV, Gayduk AY. [The significance of the glymphatic pathway in the relationship between the sleep-wake cycle and neurodegenerative diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:31-36. [PMID: 37796065 DOI: 10.17116/jnevro202312309131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Selective and progressive death of neurons is a characteristic feature of the process of neurodegeneration and leads to corresponding neuronal dysfunctions. Neurodegenerative diseases represent a heterogeneous group of clinically distinct disorders with similar molecular mechanisms of pathogenesis. They are based on the processes of abnormal aggregation of proteins, the formation of fibrillary insoluble structures and their deposition in the form of histopathological inclusions in the tissues of the nervous system. Disturbance of homeostatic functions that regulate neuronal ion and energy metabolism, biosynthesis and degradation of proteins and nucleotides, chronic hypoxia and the penetration of toxic and inflammatory substances into the brain from the bloodstream not only cause metabolic changes associated with age and disorders in the sleep-wake cycle, but also contribute to the development of neurodegenerative diseases. In animal studies, clearance pathways have been identified in which solutes and specific tracers are excreted perivascular into the meningeal lymphatics. The glymphatic pathway promotes the removal of metabolites, including Aβ amyloid and tau protein, from the parenchymal extracellular space of the brain. The glymphatic system is discussed to be more efficient during natural sleep, and fluid dynamics through this pathway exhibit daily fluctuations and are under circadian control. This review systematizes the key aspects and the data of recent research on the role of the glymphatic pathway and astroglial AQP-4 as its main determinant in maintaining homeostatic fluid circulation in the brain in normal and pathological conditions, in particular in relation to the regulatory role of the sleep-wake cycle and in development of neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - A V Lyamin
- Samara State Medical University, Samara, Russia
| | - A Ya Gayduk
- Samara State Medical University, Samara, Russia
| |
Collapse
|
19
|
Shirolapov IV, Zakharov AV, Smirnova DA, Lyamin AV, Gayduk AJ. [The significance of glymphatic pathway in the relationship between the sleep-wake cycle and neurodegenerative diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:42-47. [PMID: 37966438 DOI: 10.17116/jnevro202312310142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Selective and progressive death of neurons is a characteristic feature of the process of neurodegeneration and leads to corresponding neuronal dysfunctions. Neurodegenerative diseases represent a heterogeneous group of clinically distinct disorders with similar molecular mechanisms of pathogenesis. They are based on the processes of abnormal aggregation of proteins, the formation of fibrillary insoluble structures and their deposition in the form of histopathological inclusions in the tissues of the nervous system. Disturbance of homeostatic functions that regulate neuronal ion and energy metabolism, biosynthesis and degradation of proteins and nucleotides, chronic hypoxia and the penetration of toxic and inflammatory substances into the brain from the bloodstream not only cause metabolic changes associated with age and disorders in the sleep-wake cycle, but also contribute to the development of neurodegenerative diseases. In animal studies, clearance pathways have been identified in which solutes and specific tracers are excreted perivascular into the meningeal lymphatics. The glymphatic pathway promotes the removal of metabolites, including Aβ amyloid and tau protein, from the parenchymal extracellular space of the brain. The glymphatic system is discussed to be more efficient during natural sleep, and fluid dynamics through this pathway exhibit daily fluctuations and are under circadian control. This review systematizes the key aspects and scientific data of recent studies on the role of the glymphatic pathway and astroglial AQP-4 as its main determinant in maintaining homeostatic fluid circulation in the brain in normal and pathological conditions, in particular in relation to the regulatory role of the sleep-wake cycle and in development of neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - A V Lyamin
- Samara State Medical University, Samara, Russia
| | - A J Gayduk
- Samara State Medical University, Samara, Russia
| |
Collapse
|