1
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Yin P, Su Z, Shu X, Dong Z, Tian Y. Role of TREM2 in immune and neurological diseases: Structure, function, and implications. Int Immunopharmacol 2024; 143:113286. [PMID: 39378652 DOI: 10.1016/j.intimp.2024.113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a transmembrane receptor initially linked to neurodegenerative diseases, has recently emerged as a key player in conditions such as obesity and cancer. This review explores the structure, function, and mechanisms of TREM2 across these diverse pathological contexts, with a particular focus on its critical roles in immune regulation and neuroprotection. TREM2 primarily modulates cellular activity by binding extracellular ligands, thereby activating downstream signaling pathways and exerting immunomodulatory effects. Additionally, the therapeutic potential of targeting TREM2 is discussed, emphasizing its promise as a future treatment strategy for various diseases.
Collapse
Affiliation(s)
- Peng Yin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaozheng Shu
- BioRegen Biomedical (Changzhou, Jiangsu) Co., Ltd, Changzhou, Jiangsu 213125, China
| | - Zhifeng Dong
- Department of Cardiovascular Medicine, Yancheng Third People's Hospital, 224000, China.
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Zhou Y, Wang H, Zhu X, Zhao Q, Deng G, Li Y, Chen Q. Improving anti-oxidant stress treatment of subarachnoid hemorrhage through self-assembled nanoparticles of oleanolic acid. Drug Deliv 2024; 31:2388735. [PMID: 39169653 PMCID: PMC11342817 DOI: 10.1080/10717544.2024.2388735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular disease, with early brain injury (EBI) being the main cause of high mortality and severe neurological dysfunction. Oxidative stress plays a crucial role in the pathogenesis of EBI. In this study, we synthesized antioxidant stress nanoparticles based on self-assembled oleanolic acid (OA) using the solvent volatilization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques were employed to analyze and understand the self-assembly mechanism of oleic acid nanoparticles (OA NPs). The TUNEL assay, Nissl staining, and brain water content measurements were conducted to investigate the impact of OA NPs on cortical neuronal injury. Additionally, Western blot analysis was performed to investigate the antioxidant stress mechanism of OA NPs. The result showed that OA NPs exhibited a spherical structure with an average diameter of 168 nm. The application of OA NPs in SAH has been found to contribute to the reduction of keap1 protein levels and an increase in the nuclear level of Nrf2. As a result, the transcription of antioxidant stress proteins, including HO1 and NQO1, is triggered. The activation of the antioxidant stress pathway by OA NPs ultimately leads to a decrease in neuron damage and an improvement in neurological dysfunction. In conclusion, we successfully designed and synthesized OA NPs that can efficiently target the site of SAH. These nanoparticles have demonstrated their potential as antioxidants for the treatment of SAH, offering significant clinical applications.
Collapse
Affiliation(s)
- Youdong Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, China
| | - Hengyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
4
|
Sun Y, Sun W, Liu J, Zhang B, Zheng L, Zou W. The dual role of microglia in intracerebral hemorrhage. Behav Brain Res 2024; 473:115198. [PMID: 39128628 DOI: 10.1016/j.bbr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors. This article summarizes the function of microglia and its dual regulatory mechanism in intracerebral hemorrhage. In the future, drugs, acupuncture and other clinical treatments can be used to intervene in the activation state of microglia, so as to reduce the harm of microglia.
Collapse
Affiliation(s)
- Yue Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Wentao Sun
- Faculty of Chinese Medicine Sciense Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Baiwen Zhang
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
5
|
Ma Y, Wang J, Tang C, Li W, Lv X, Zhu S. Serum IRAK3 may serve as a prognostic biomarker in acute supratentorial intracerebral hemorrhage: findings from a prospective observational cohort study. Front Neurol 2024; 15:1436997. [PMID: 39346771 PMCID: PMC11427260 DOI: 10.3389/fneur.2024.1436997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Background Interleukin-1 receptor-associated kinase 3 (IRAK3) modulates neuroinflammation. This study aimed to determine the prognostic role of serum IRAK3 in acute intracerebral hemorrhage (ICH). Methods In this prospective observational cohort study, 152 patients with supratentorial ICH, along with 63 healthy controls, were recruited. Serum IRAK3 levels were measured at the time of enrollment for controls, at admission for all patients, and on poststroke days 1, 3, 5, 7, 10, and 15 in a subset of 63 patients. Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS) and hematoma volume. Poststroke 6-month modified Rankin Scale (mRS) scores were registered, with scores of 3-6 representing a poor prognosis. Multivariate models were established to investigate severity correlation and prognosis association. Results Serum IRAK3 levels were significantly elevated at the admission of patients, peaked at day 1, plateaued at day 3, gradually declined until day 15, and were substantially higher over the first 15 days poststroke than in controls. Admission serum IRAK3 levels were independently associated with NIHSS scores, hematoma volume, and 6-month mRS scores in a multivariate linear regression model. They were linearly correlated with the risk of poor prognosis in a restricted cubic spline analysis and were independently predictive of poor prognosis in a binary logistic regression model. Additionally, they demonstrated strong prognostic ability in the receiver operating characteristic curve analysis. Using subgroup analysis, no interactions were found between admission serum IRAK3 levels and some routine variables, such as age, gender, hypertension, and diabetes mellitus. Moreover, the model combining admission serum IRAK3, NIHSS scores, and hematoma volume demonstrated stability and clinical value in calibration and decision curve analyses. Conclusion A significant increase in serum IRAK3 levels during the early phase after ICH, strongly correlated with disease severity, is independently associated with a poor 6-month prognosis, establishing serum IRAK3 as a valuable prognostic biomarker for ICH.
Collapse
Affiliation(s)
- Yijun Ma
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Tang
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Lv
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Suijun Zhu
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Gao G, Sun X, Xu J, Yu J, Wang Y. miR-19-3p/GRSF1/COX1 axis attenuates early brain injury via maintaining mitochondrial function after subarachnoid haemorrhage. Stroke Vasc Neurol 2024:svn-2024-003099. [PMID: 39266212 DOI: 10.1136/svn-2024-003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein, which is eventually localised to mitochondria and promotes the translation of cytochrome C oxidase 1 (COX1) mRNA. However, the role of the miR-19-3p/GRSF1/COX1 axis has not been investigated in an experimental subarachnoid haemorrhage (SAH) model. Thus, we investigated the role of the miR-19-3p/GRSF1/COX1 axis in a SAH-induced early brain injury (EBI) course. METHODS Primary neurons were treated with oxyhaemoglobin (OxyHb) to simulate in vitro SAH. The rat SAH model was established by injecting autologous arterial blood into the optic chiasma cisterna. The GRSF1 level was downregulated or upregulated by treating the rats and neurons with lentivirus-GRSF1 shRNA (Lenti-GRSF1 shRNA) or lentivirus-GRSF1 (Lenti-GRSF1). RESULTS The miR-19-3p level was upregulated and the protein levels of GRSF1 and COX1 were both downregulated in SAH brain tissue. GRSF1 silence decreased and GRSF1 overexpression increased the protein levels of GRSF1 and COX1 in primary neurons and brain tissue, respectively. Lenti-GRSF1 shRNA aggravated, but Lenti-GRSF1 alleviated, the indicators of neuronal injury and neurological impairment in both in vitro and in vivo SAH conditions. In addition, miR-19-3p mimic reduced the protein levels of GRSF1 and COX1 in cultured neurons while miR-19-3p inhibitor increased them. More importantly, Lenti-GRSF1 significantly relieved mitochondrial damage of neurons exposed to OxyHb or induced by SAH and was beneficial to maintaining mitochondrial integrity. Lenti-GRSF1 shRNA treatment, conversely, aggravated mitochondrial damage in neurons. CONCLUSION The miR-19-3p/GRSF1/COX1 axis may serve as an underlying target for inhibiting SAH-induced EBI by maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoyu Sun
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiajia Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Tang S, Xing W, Yan J, Wang L, Li Z, Wang Y, Gu N, Sun X. TREM2 alleviates long-term cognitive dysfunction after subarachnoid hemorrhage in mice by attenuating hippocampal neuroinflammation via PI3K/Akt signaling pathway. Brain Res 2024; 1846:149235. [PMID: 39270995 DOI: 10.1016/j.brainres.2024.149235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Subarachnoid hemorrhage (SAH) often leads to long-term cognitive deficits in patients, particularly due to injury to brain regions such as the hippocampus. This study aims to investigate the role of the triggering receptor expressed on myeloid cells 2 (TREM2) in mitigating hippocampal injury and associated cognitive impairments following SAH. To explore the protective effects of TREM2, we utilized the TREM2 agonist COG1410 to upregulate TREM2 expression and employed TREM2 knockout (KO) mice to verify the necessity of TREM2 for this protective role. The study further examined the involvement of the PI3K/Akt signaling pathway in TREM2-mediated neuroprotection. Our findings indicate that the upregulation of TREM2 significantly alleviated long-term cognitive deficits and promoted the recovery of hippocampal neural activity post-SAH. The neuroprotective effects were linked to reduced microglial activation and decreased secretion of inflammatory factors within the hippocampus. In contrast, TREM2 KO mice did not exhibit these protective effects. Furthermore, inhibition of the PI3K/Akt pathway also diminished these protective effects of TREM2 upregulation and worsened cognitive outcomes. In conclusion, TREM2 upregulation mitigates long-term cognitive dysfunction following SAH by attenuating hippocampal neuroinflammation via the PI3K/Akt signaling pathway. These findings suggest that TREM2 could be a potential therapeutic target for improving cognitive outcomes after SAH.
Collapse
Affiliation(s)
- Shuang Tang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Cerebrovascular Disease Center, Suining Central Hospital, Suining, Chongqing, China
| | - Wenli Xing
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Cerebrovascular Disease Center, Suining Central Hospital, Suining, Chongqing, China
| | - Jin Yan
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Wang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurosurgery, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Yingwen Wang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nina Gu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Huston CA, Milan M, Vance ML, Bickel MA, Miller LR, Negri S, Hibbs C, Vaden H, Hayes L, Csiszar A, Ungvari Z, Yabluchanskiy A, Tarantini S, Conley SM. The effects of time restricted feeding on age-related changes in the mouse retina. Exp Gerontol 2024; 194:112510. [PMID: 38964431 PMCID: PMC11425985 DOI: 10.1016/j.exger.2024.112510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Dietary modifications such as caloric restriction (CR) and intermittent fasting (IF) have gained popularity due to their proven health benefits in aged populations. In time restricted feeding (TRF), a form of intermittent fasting, the amount of time for food intake is regulated without restricting the caloric intake. TRF is beneficial for the central nervous system to support brain health in the context of aging. Therefore, we here ask whether TRF also exerts beneficial effects in the aged retina. We compared aged mice (24 months) on a TRF paradigm (access to food for six hours per day) for either 6 or 12 months against young control mice (8 months) and aged control mice on an ad libitum diet. We examined changes in the retina at the functional (electroretinography), structural (histology and fluorescein angiograms) and molecular (gene expression) level. TRF treatment showed amelioration of age-related reductions in both scotopic and photopic b-wave amplitudes suggesting benefits for retinal interneuron signaling. TRF did not affect age-related signs of retinal inflammation or microglial activation at either the molecular or histological level. Our data indicate that TRF helps preserve some aspects of retinal function that are decreased with aging, adding to our understanding of the health benefits that altered feeding patterns may confer.
Collapse
Affiliation(s)
- Cade A Huston
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madison Milan
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michaela L Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marisa A Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lauren R Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Clara Hibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lindsay Hayes
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Wang H, Ma J, Li X, Peng Y, Wang M. FDA compound library screening Baicalin upregulates TREM2 for the treatment of cerebral ischemia-reperfusion injury. Eur J Pharmacol 2024; 969:176427. [PMID: 38428662 DOI: 10.1016/j.ejphar.2024.176427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jialiang Ma
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanhui Peng
- Department of Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
10
|
Wu Y, Xu Y, Sun J, Dai K, Wang Z, Zhang J. Inhibiting RIPK1-driven neuroinflammation and neuronal apoptosis mitigates brain injury following experimental subarachnoid hemorrhage. Exp Neurol 2024; 374:114705. [PMID: 38290652 DOI: 10.1016/j.expneurol.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
RIPK1, a receptor-interacting serine/threonine protein kinase, plays a crucial role in maintaining cellular and tissue homeostasis by integrating inflammatory responses and cell death signaling pathways including apoptosis and necroptosis, which have been implicated in diverse physiological and pathological processes. Suppression of RIPK1 activation is a promising strategy for restraining the pathological progression of many human diseases. Neuroinflammation and neuronal apoptosis are two pivotal factors in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH). In this study, we established in vivo and in vitro models of SAH to investigate the activation of RIPK1 kinase in both microglia and neurons. We observed the correlation between RIPK1 kinase activity and microglia-mediated inflammation as well as neuronal apoptosis. We then investigated whether inhibition of RIPK1 could alleviate neuroinflammation and neuronal apoptosis following SAH, thereby reducing brain edema and ameliorating neurobehavioral deficits. Additionally, the underlying mechanisms were also explored. Our research findings revealed the activation of RIPK1 kinase in both microglia and neurons following SAH, as marked by the phosphorylation of RIPK1 at serine 166. The upregulation of p-RIPK1(S166) resulted in a significant augmentation of inflammatory cytokines and chemokines, including TNF-α, IL-6, IL-1α, CCL2, and CCL5, as well as neuronal apoptosis. The activation of RIPK1 in microglia and neurons following SAH could be effectively suppressed by administration of Nec-1 s, a specific inhibitor of RIPK1. Consequently, inhibition of RIPK1 resulted in a downregulation of inflammatory cytokines and chemokines and attenuation of neuronal apoptosis after SAH in vitro. Furthermore, the administration of Nec-1 s effectively mitigated neuroinflammation, neuronal apoptosis, brain edema, and neurobehavioral deficits in mice following SAH. Our findings suggest that inhibiting RIPK1 kinase represents a promising therapeutic strategy for mitigating brain injury after SAH by attenuating RIPK1-driven neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingshan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Dai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Peng Y, Yang G, Wang S, Lin W, Zhu L, Dong W, Shen B, Nie Q, Hong S, Li L. Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Exacerbates Methamphetamine-Induced Activation of Microglia and Neuroinflammation. Int J Toxicol 2024; 43:165-176. [PMID: 38006258 DOI: 10.1177/10915818231216397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant and one of the most widely abused drugs worldwide. The continuous use of METH eventually leads to neurotoxicity and drug addiction. Studies have shown that neurotoxicity is strongly associated with METH-induced neuroinflammation, and microglia are the key drivers of neuroinflammation. Triggering receptor expressed on myeloid cells 2 (TREM2) is reported to play a key role in activation of microglia and neuroinflammation. Yet, the molecular mechanisms by which METH causes neuroinflammation and neurotoxicity remain elusive. In the current study, we investigated the role of TREM2 in neuroinflammation induced by METH in BV2 cells and the wild-type (WT) C57BL/6J mice, CX3CR1GFP/+ transgenic mice, and TREM2 knockout (KO) mice. Postmortem samples from the frontal cortex of humans with a history of METH use were also analyzed to determine the levels of TREM2, TLR4, IBA1, and IL-1β. The expression levels of TREM2, TLR4, IBA1, IL-1β, iNOS, and Arg-1 were then assessed in the BV2 cells and frontal cortex of mice and human METH users. Results revealed that the expression levels of TREM2, TLR4, IBA1, and IL-1β were significantly elevated in METH-using individuals and BV2 cells. Microglia were clearly activated in the frontal cortex of WT C57BL/6 mice and CX3CR1GFP/+ transgenic mice, and the protein levels of IBA1, TREM2, TLR4, and IL-1β were elevated in the METH-induced mouse models. Moreover, TREM2-KO mice showed further increased microglial activation, neuroinflammation, and excitotoxicity induced by METH. Thus, these findings suggest that TREM2 may be a target for regulating METH-induced neuroinflammation.
Collapse
Affiliation(s)
- Yanxia Peng
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Shangwen Wang
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Wanrong Lin
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihua Zhu
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenjuan Dong
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Baoyu Shen
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Qianyun Nie
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Shijun Hong
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Lihua Li
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Jiang Z, Yang H, Ni W, Gao X, Pei X, Jiang H, Su J, Weng R, Fei Y, Gao Y, Gu Y. Attenuation of neuronal ferroptosis in intracerebral hemorrhage by inhibiting HDAC1/2: Microglial heterogenization via the Nrf2/HO1 pathway. CNS Neurosci Ther 2024; 30:e14646. [PMID: 38523117 PMCID: PMC10961428 DOI: 10.1111/cns.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/26/2024] Open
Abstract
AIM The class I histone deacetylases (HDACs) implicate in microglial heterogenization and neuroinflammation following Intracerebral hemorrhage (ICH). Ferroptosis has also been reported in the ICH model. However, the relationship between HDAC1/2's role in microglial heterogenization and neuronal ferroptosis remains unclear. METHODS In both in vivo and in vitro models of ICH, we used Romidepsin (FK228), a selective HDAC1/2 inhibitor, to investigate its effects on microglial heterogenization and neuronal ferroptosis. In the in vitro ICH model using Hemin, a transwell system was utilized to examine how microglia-driven inflammation and ICH-triggered neuronal ferroptosis interact. Immunostaining, Western blotting and RT-qPCR were used to evaluate the microglial heterogenization and neuronal ferroptosis. Microglial heterogenization, neuronal ferroptosis, and neurological dysfunctions were assessed in vivo ICH mice model performed by autologous blood injection. RESULTS HDAC1/2 inhibition altered microglial heterogenization after ICH, as showing the reducing neuroinflammation and shifting microglia towards an anti-inflammatory phenotype by immunostaining and qPCR results. HDAC1/2 inhibition reduced ferroptosis, characterized by high ROS and low GPx4 expression in HT22 cells, and reduced iron and lipid deposition post-ICH in vivo. Additionally, the Nrf2/HO1 signaling pathway, especially acetyl-Nrf2, activated in the in vivo ICH model due to HDAC1/2 inhibition, plays a role in regulating microglial heterogenization. Furthermore, HDAC1/2 inhibition improved sensorimotor and histological outcomes post-ICH, offering a potential mechanism against ICH. CONCLUSION Inhibition of HDAC1/2 reduces neuro-ferroptosis by modifying the heterogeneity of microglia via the Nrf2/HO1 pathway, with a particular focus on acetyl-Nrf2. Additionally, this inhibition aids in the faster removal of hematomas and lessens prolonged neurological impairments, indicating novel approach for treating ICH.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Heng Yang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Wei Ni
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xinjie Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xu Pei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hanqiang Jiang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Jiabin Su
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ruiyuan Weng
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuchao Fei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuxiang Gu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Peng Z, Li XJ, Zhou Y, Zhang JT, Zhu Q, Sun JQ, Hang CH, Li W, Zhang QR, Zhuang Z. Hydrogen exerts neuroprotective effects after subarachnoid hemorrhage by attenuating neuronal ferroptosis and inhibiting neuroinflammation. Free Radic Biol Med 2024; 215:79-93. [PMID: 38447853 DOI: 10.1016/j.freeradbiomed.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Spontaneous subarachnoid hemorrhage (SAH), the third most common stroke subtype, is associated with high mortality and disability rates. Therefore, finding effective therapies to improve neurological function after SAH is critical. The objective of this study was to investigate the potential neuroprotective effects of hydrogen in the context of SAH, specifically, by examining its role in attenuating neuronal ferroptosis and inhibiting neuroinflammation, which are exacerbated by excess iron ions after SAH. METHODS Mice were exposed to chambers containing 3% hydrogen, and cells were cultured in incubators containing 60% hydrogen. Neurological function in mice was assessed using behavioral scores. Protein changes were detected using western blotting. Inflammatory factors were detected using enzyme linked immunosorbent assay. Probes, electron microscopy, and related kits were employed to detect oxidative stress and ferroptosis. RESULTS Hydrogen improved the motor function, sensory function, and cognitive ability of mice after SAH. Additionally, hydrogen facilitated Nuclear factor erythroid 2 -related factor 2 activation, upregulated Glutathione peroxidase 4, and inhibited Toll-like receptor 4, resulting in downregulation of inflammatory responses, attenuation of oxidative stress after SAH, and inhibition of neuronal ferroptosis. CONCLUSION Hydrogen exerts neuroprotective effects by inhibiting neuronal ferroptosis and attenuating neuroinflammation after SAH.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Jia-Qing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| | - Qing-Rong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Kong Y, Wang D, Jin X, Liu Y, Xu H. Unveiling the significance of TREM1/2 in hemorrhagic stroke: structure, function, and therapeutic implications. Front Neurol 2024; 15:1334786. [PMID: 38385036 PMCID: PMC10879330 DOI: 10.3389/fneur.2024.1334786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Stroke has long been a major threat to human health worldwide. Hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, exhibits a high incidence rate and a high mortality and disability rate, imposing a substantial burden on both public health and the economy and society. In recent years, the triggering receptor expressed on myeloid cells (TREM) family has garnered extensive attention in various pathological conditions, including hemorrhagic stroke. This review comprehensively summarizes the structure and function of TREM1/2, as well as their roles and potential mechanisms in hemorrhagic stroke, with the aim of providing guidance for the development of targeted therapeutic strategies in the future.
Collapse
Affiliation(s)
- Yancheng Kong
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Di Wang
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Xu Jin
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Yi Liu
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Hui Xu
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| |
Collapse
|
15
|
Yang K, Yang L, Chen X, Li J, Zheng B, Hu J, Wang H, Yu Q, Song G. Importance of serum IRAK3 as a biochemical marker in relation to severity and neurological outcome of human severe traumatic brain injury: A prospective longitudinal cohort study. Clin Chim Acta 2024; 553:117754. [PMID: 38169195 DOI: 10.1016/j.cca.2023.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Interleukin-1 receptor-associated kinase 3 (IRAK3) may modulate inflammation in brain immunity. We determined the prognostic role of serum IRAK3 in severe traumatic brain injury (sTBI). METHODS In this prospective longitudinal cohort study, serum IRAK3 concentrations of 131 sTBI patients and 131 controls were quantified. Extended Glasgow outcome scale (GOSE) scores of 1-4 at 180 days after trauma signified a poor prognosis. Univariate and multivariate analyses were sequentially adopted to appraise severity correlations and prognosis associations. RESULTS There were significantly higher serum IRAK3 concentrations in patients than in controls. Serum IRAK3 concentrations of patients were independently correlated with Glasgow coma scale (GCS) scores, Rotterdam computed tomography (CT) scores and posttraumatic180-day GOSE scores. Also, IRAK3 concentrations were independently associated with 180-day poor prognosis, but not with death. Prognosis prediction model, in which GCS scores, Rotterdam scores and serum IRAK3 concentrations were merged, was portrayed using the nomogram. The model was rather stable, clinically usable and efficiently discriminative of poor prognosis under calibration curve, decision curve and receiver operating characteristic curve. CONCLUSIONS A substantial enhancement of serum IRAK3 concentrations after head trauma is independently related to severity and neurological outcome, substantializing serum IRAK3 as a promising prognostic biomarker of sTBI.
Collapse
Affiliation(s)
- Kai Yang
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China.
| | - Lijun Yang
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Xiaoyan Chen
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Jian Li
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Bokun Zheng
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Juheng Hu
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Hailong Wang
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Quanwang Yu
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Guangtai Song
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| |
Collapse
|
16
|
Zhang X, Chen X, Zhang L, Sun Y, Liang Y, Li H, Zhang Y. Role of trigger receptor 2 expressed on myeloid cells in neuroinflammation-neglected multidimensional regulation of microglia. Neurochem Int 2023; 171:105639. [PMID: 37926352 DOI: 10.1016/j.neuint.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Neuroinflammation is an inflammatory cascade involved in various neurological disorders, including Alzheimer's disease, multiple sclerosis, and other relevant diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane immune receptor that is primarily expressed by microglia in the central nervous system (CNS). While TREM2 is initially believed to be an anti-inflammatory factor in the CNS, increasing evidence suggests that TREM2 plays a more complex role in balancing neuroinflammation. However, the exact mechanism remains unclear. Notably, TREM2 directly regulates microglia inflammation through various signaling pathways. Additionally, studies have suggested that TREM2 mediates microglial phagocytosis, autophagy, metabolism, and microglia phenotypes, which may be involved in the modulation of neuroinflammation. In this review, we aim to discuss the critical role of TREM2 in several microglia functions and the underlying molecular mechanism the modulatory which further mediate neuroinflammation, and elaborate. Finally, we discuss the potential of TREM2 as a therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Cardiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Cao C, Lu T, Cheng Q, Cui G, Wang Z, Li X, Li H, Gao H, Shen H, Sun Q. Restoring System xc- activity by xCT overexpression inhibited neuronal ferroptosis and improved neurological deficits after experimental subarachnoid hemorrhage. Brain Res 2023; 1820:148556. [PMID: 37648093 DOI: 10.1016/j.brainres.2023.148556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Ferroptosis is an important therapeutic target to alleviate early brain injury (EBI) after subarachnoid hemorrhage (SAH), yet the mechanism of neuronal ferroptosis after SAH remains unclear. System xc- dysfunction is one of the key pathways to induce ferroptosis. System xc- activity is mainly regulated by the expression of xCT. This study was designed to investigate the effect of xCT expression and System xc- activity on ferroptosis and EBI in an experimental SAH model both in vitro and in vivo. METHODS SAH was induced in adult male Sprague-Dawley rats by injecting autologous blood into the prechiasmatic cistern. Primary neurons treated with oxyhemoglobin (10 µM) were used to mimic SAH in vitro. Plasmid transfection was used to induce xCT overexpression. Western blotting, immunofluorescence staining, measurement of cystine uptake, enzyme-linked immunosorbent assay, transmission electron microscopy, Nissl staining, and a series of neurobehavioral tests were conducted to explore the role of xCT and System xc- activity in ferroptosis and EBI after SAH. RESULTS We found that System xc- dysfunction induced ferroptosis and exacerbated EBI after SAH in rats. xCT deficiency after SAH resulted in System xc- dysfunction, weakened neuronal antioxidant capacity and activated neuronal ferroptosis. xCT overexpression improved neuronal antioxidant capacity and inhibited neuronal ferroptosis by restoring System xc- activity. Rats with xCT overexpression after SAH presented with attenuated brain edema and inflammation, increased neuronal survival, and ameliorated neurological deficits. CONCLUSIONS Our study revealed that restoring System xc- activity by xCT overexpression inhibited neuronal ferroptosis and EBI and improved neurological deficits after SAH.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Intensive Care Unit, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China; Department of Brain Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China.
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Qian Cheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Heng Gao
- Department of Brain Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
18
|
Yang M, Wang Y, Wang S, Guo Y, Gu T, Shi L, Zhang J, Tuo X, Liu X, Zhang M, Deng J, Fang Z, Lu Z. Electroacupuncture pretreatment induces ischemic tolerance by neuronal TREM2-mediated enhancement of autophagic flux. Brain Res Bull 2023; 193:27-36. [PMID: 36470555 DOI: 10.1016/j.brainresbull.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
The mechanism of electroacupuncture (EA) pretreatment-induced neuroprotection remains unclear. In this study, we found that neuronal Triggering receptor expressed on myeloid cells 2 (TREM2) expression was increased and peaked at 48 h and 72 h after ischemia/reperfusion. After specific knockdown of TREM2 in excitatory neurons, neurological function was damaged, and the infarct volume was enlarged. Furthermore, the expression of LC3II/LC3I and Beclin1 was decreased, while the expression of p62 was increased. EA pretreatment enhanced TREM2, LC3II/LC3I and Beclin1 expression while reducing p62 in the ischemic penumbra area. The EA-induced neuroprotective effects and improvements in autophagic flux were abolished by specific knockdown of TREM2 in excitatory neurons. Taken together, our findings provide novel mechanistic insight into EA-induced ischemic tolerance and suggest a promising therapeutic strategy of targeting neuronal TREM2 to treat brain ischemia.
Collapse
Affiliation(s)
- Manping Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yunying Wang
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Ting Gu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Liwen Shi
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Junbao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoshuang Tuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoyu Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Minjuan Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhihong Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
19
|
Yan J, Zhang Y, Wang L, Li Z, Tang S, Wang Y, Gu N, Sun X, Li L. TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. J Neuroinflammation 2022; 19:289. [PMID: 36463233 PMCID: PMC9719652 DOI: 10.1186/s12974-022-02651-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1β, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.
Collapse
Affiliation(s)
- Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China.
| | - Lin Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China.
- Department of Neuro-oncology, Chongqing University Cancer Hospital, Chongqing, China.
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
20
|
Zhang C, Kan X, Zhang B, Ni H, Shao J. The role of triggering receptor expressed on myeloid cells-1 (TREM-1) in central nervous system diseases. Mol Brain 2022; 15:84. [PMID: 36273145 PMCID: PMC9588203 DOI: 10.1186/s13041-022-00969-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 12/29/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily and is mainly expressed on the surface of myeloid cells such as monocytes, macrophages, and neutrophils. It plays an important role in the triggering and amplification of inflammatory responses, and it is involved in the development of various infectious and non-infectious diseases, autoimmune diseases, and cancers. In recent years, TREM-1 has also been found to participate in the pathological processes of several central nervous system (CNS) diseases. Targeting TREM-1 may be a promising strategy for treating these diseases. This paper aims to characterize TREM-1 in terms of its structure, signaling pathway, expression, regulation, ligands and pathophysiological role in CNS diseases.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Xugang Kan
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Baole Zhang
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Haibo Ni
- Department of Neurosurgery, The First People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Jianfeng Shao
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| |
Collapse
|