1
|
Botti A, Musmeci E, Matturro B, Vanzetto G, Bosticco C, Negroni A, Rossetti S, Fava F, Biagi E, Zanaroli G. Chemical-physical parameters and microbial community changes induced by electrodes polarization inhibit PCB dechlorination in a marine sediment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133878. [PMID: 38447365 DOI: 10.1016/j.jhazmat.2024.133878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Microbial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.025 mA·cm-2-0.05 mA·cm-2), using graphite rod as cathode and iron plate as sacrificial anode. A single circuit and a novel two antiparallel circuits configuration (2AP) were investigated. Single circuit polarization impacted the sediment pH and redox potential (ORP) proportionally to the intensity of the electrical input and inhibited PCB reductive dechlorination. The effects on the sediment's pH and ORP, along with the inhibition of PCB reductive dechlorination, were mitigated in the 2AP system. Electrodes polarization stimulated sulfate-reduction and promoted the enrichment of bacterial clades potentially involved in sulfate-reduction as well as in sulfur oxidation. This suggested the electrons provided were consumed by competitors of organohalide respiring bacteria and specifically sequestered by sulfur cycling, which may represent the main factor limiting the applicability of METs for stimulating PCB reductive dechlorination in marine sediments.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giampietro Vanzetto
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Caterina Bosticco
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
2
|
Tedesco P, Balzano S, Coppola D, Esposito FP, de Pascale D, Denaro R. Bioremediation for the recovery of oil polluted marine environment, opportunities and challenges approaching the Blue Growth. MARINE POLLUTION BULLETIN 2024; 200:116157. [PMID: 38364643 DOI: 10.1016/j.marpolbul.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.
Collapse
Affiliation(s)
- Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Sergio Balzano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; Institute of Biochemistry and Cellular Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Renata Denaro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti Rome, Italy.
| |
Collapse
|
3
|
Zhuo M, Chen Z, Liu X, Wei W, Shen Y, Ni BJ. A broad horizon for sustainable catalytic oxidation of microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122835. [PMID: 37931676 DOI: 10.1016/j.envpol.2023.122835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Microplastics (MPs) have attracted tremendous attention due to their widespread appearance in the environment and biota, and their adverse effects on organisms. Since plastics are substantially produced to meet human needs, primary and secondary MPs are extensively trapped in wastewater treatment plants, freshwater, drinking water, ocean, air, and soil. The serious MPs pollution calls for efficient treatment strategies Herein, we discuss three catalytic processes (photocatalysis, electrocatalysis, and biocatalysis) for the sustainable management of MPs, and the relevant catalytic mechanisms are clarified. For photocatalysis, three categories (organic, inorganic, hybrid) of photocatalysts are listed, with degradation efficiency of 23%-100%. Next, relative impact factors on photocatalysis, such as characteristics of MPs and photocatalysts, are discussed. Then, some promising electrocatalysts for the degradation/conversion of (micro)plastics and standard electrolyzer designs are briefly introduced. This electrocatalytic method has achieved over 77% of Faradaic efficiency. Next, potential organisms with abundant biocatalysts for degrading different types of MPs are reviewed. Advances in three bioremediation techniques including biositimulation, bioaugmentation, and biosurfactant are outlined. Lastly, perspectives are put forward to promote scientific development in solving environmental issues on MPs pollution in broad fields. This paper provides insights into the development of next-generation techniques for MPs pollution management in a sustainable manner.
Collapse
Affiliation(s)
- Maoshui Zhuo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Yansong Shen
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Botti A, Musmeci E, Negroni A, Capuozzo R, Fava F, Biagi E, Zanaroli G. Site-specific response of sediment microbial community to supplementation of polyhydroxyalkanoates as biostimulants for PCB reductive dechlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165485. [PMID: 37442469 DOI: 10.1016/j.scitotenv.2023.165485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The use of biodegradable plastics is constantly raising, increasing the likeliness for these polymers to end up in the environment. Environmental applications foreseeing the intentional release of biodegradable plastics have been also recently proposed, e.g., for polyhydroxyalkanoates (PHAs) acting as slow hydrogen releasing compounds to stimulate microbial reductive dehalogenation processes. However, the effects of their release into the environment on the ecosystems still need to be thoroughly explored. In this work, the use of PHAs to enhance the microbial reductive dechlorination of polychlorobiphenyls (PCBs) and their impact on the metabolic and compositional features of the resident microbial community have been investigated in laboratory microcosms of a polluted marine sediment from Mar Piccolo (Taranto, Italy), and compared with recent findings on a different contaminated marine sediment from Pialassa della Baiona (Ravenna, Italy). A decreased biostimulation efficiency of PHAs on PCBs reductive dechlorination was observed in the sediment from Mar Piccolo, with respect to the sediment from Pialassa della Baiona, suggesting that the sediments' physical-chemical characteristics and/or the biodiversity and composition of its microbial community might play a key role in determining the outcome of this biostimulation strategy. Regardless of the sediment origin, PHAs were found to have a specific and pervasive effect on the sediment microbial community, reducing its biodiversity, defining a newly arranged microbial core of primary degraders and consequently affecting, in a site-specific way, the abundance of subdominant bacteria, possibly cross-feeders. Such potential to dramatically change the structure of autochthonous microbial communities should be carefully considered, since it might have secondary effects, e.g., on the natural biogeochemical cycles.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Rosaria Capuozzo
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
5
|
Thanigaivel S, Vickram S, Dey N, Jeyanthi P, Subbaiya R, Kim W, Govarthanan M, Karmegam N. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. CHEMOSPHERE 2023; 313:137475. [PMID: 36528154 DOI: 10.1016/j.chemosphere.2022.137475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic toxins are discharged into the environment and distributed through a variety of environmental matrices. Trace contaminant detection and analysis has advanced dramatically in recent decades, necessitating further specialized technique development. These pollutants can be mobile and persistent in small amounts in the environment, and ecological receptors will interact with it. Despite the fact that few researches have been undertaken on invertebrate exposure, accumulation, and biological implications, it is apparent that a wide range of pollutants can accumulate in the tissues of aquatic insects, earthworms, amphipod crustaceans, and mollusks. Due to long-term stability during long-distance transit, a number of chemical and microbiological agents that were not previously deemed pollutants have been found in various environmental compartments. The uptake of such pollutants by the aquatic organism is done through the process of bioaccumulation when dangerous compounds accumulate in living beings while biomagnification is the process of a pollutant becoming more hazardous as it moves up the trophic chain. Organic and metal pollution harms animals of every species studied so far, from bacteria to phyla in between. The environmental protection agency says these poisons harm humans as well as a variety of aquatic organisms when the water quality is sacrificed in typical wastewater treatment systems. Contrary to popular belief, treated effluents discharged into aquatic bodies contain considerable levels of Anthropogenic contaminants. This evolution necessitates a more robust and recent advancement in the field of remediation and their techniques to completely discharge the various organic and inorganic contaminants.
Collapse
Affiliation(s)
- Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 062, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
6
|
Auta HS, Abioye OP, Aransiola SA, Bala JD, Chukwuemeka VI, Hassan A, Aziz A, Fauziah SH. Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114273. [PMID: 34902688 DOI: 10.1016/j.jenvman.2021.114273] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In-situ bioremediation of mangrove soil contaminated with polyethylene terephthalate (PET) and polystyrene (PS) microplastics was investigated using indigenous microbial consortium with adequate capacity to degrade the plastics. Eight (8) bacteria were isolated from plastic/microplastic-inundated mangrove soil and screened for the ability to degrade PET and PS microplastics. Optical density at 600 nm and colony forming unit counts were measured to evaluate the growth response of the microbes in the presence of PS and PET microplastics at different times of exposure. Structural and surface changes that occurred post biodegradation on the microplastics were determined through EDS and SEM analysis. The obtained results demonstrated the elongation and disappearance of peaks, suggesting that the microbial consortium could modify both types of microplastics. The overall results of the microplastic degradation showed varied degrees of weight loss after 90 experimental days, with the treated plot recorded 18% weight loss. The augmented soil was increased in the concentrations of Si S, and Fe and decreased in the concentrations of C, O, Na, Mg, Al, Cl, and K after bioremediation.
Collapse
Affiliation(s)
- H S Auta
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Department of Microbiology, Federal University of Technology, Minna, Nigeria
| | - O P Abioye
- Department of Microbiology, Federal University of Technology, Minna, Nigeria
| | - S A Aransiola
- Bioresources Development Centre, National Biotechnology Development Agency, Ogbomoso, Nigeria.
| | - J D Bala
- Department of Microbiology, Federal University of Technology, Minna, Nigeria
| | - V I Chukwuemeka
- Department of Animal Biology, Federal University of Technology, Minna, Nigeria
| | - A Hassan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Department of Biological Sciences, Federal University, Kashere, Gombe, Nigeria
| | - A Aziz
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water & Marine Sciences, Uthal, Balochistan, Pakistan
| | - S H Fauziah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Miri S, Saini R, Davoodi SM, Pulicharla R, Brar SK, Magdouli S. Biodegradation of microplastics: Better late than never. CHEMOSPHERE 2022; 286:131670. [PMID: 34351281 DOI: 10.1016/j.chemosphere.2021.131670] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plastics use is growing due to its applications in the economy, human health and aesthetics. The major plastic particles in the form of microplastics (MPs) released into the environment are made up of polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), and polyethylene terephthalate (PET). Tremendous usage and continuous accumulation of MPs in the environment pose a global threat to ecosystems and human health. The current knowledge of biotechnological, aerobic and aerobic biodegradation approaches emphasizes the microbial culture's potential towards MPs removal. This review selectively provides recent biotechnological advances such as biostimulation, bioaugmentation and enzymatic biodegradation that can be applied for MPs removal by biodegradation and bioaccumulation. This review summarizes the knowledge and the research exploration on the biodegradation of synthetic organic MPs with different biodegradability. However, further research is still needed to understand the underlying mechanism of MPs biodegradation in soil and water systems, leading to the development of an effective method for MPs removal.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada.
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
8
|
Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. SUSTAINABILITY 2021. [DOI: 10.3390/su13179963] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plastic pollution is ubiquitous in terrestrial and aquatic ecosystems. Plastic waste exposed to the environment creates problems and is of significant concern for all life forms. Plastic production and accumulation in the natural environment are occurring at an unprecedented rate due to indiscriminate use, inadequate recycling, and deposits in landfills. In 2019, the global production of plastic was at 370 million tons, with only 9% of it being recycled, 12% being incinerated, and the remaining left in the environment or landfills. The leakage of plastic wastes into terrestrial and aquatic ecosystems is occurring at an unprecedented rate. The management of plastic waste is a challenging problem for researchers, policymakers, citizens, and other stakeholders. Therefore, here, we summarize the current understanding and concerns of plastics pollution (microplastics or nanoplastics) on natural ecosystems. The overall goal of this review is to provide background assessment on the adverse effects of plastic pollution on natural ecosystems; interlink the management of plastic pollution with sustainable development goals; address the policy initiatives under transdisciplinary approaches through life cycle assessment, circular economy, and sustainability; identify the knowledge gaps; and provide current policy recommendations. Plastic waste management through community involvement and socio-economic inputs in different countries are presented and discussed. Plastic ban policies and public awareness are likely the major mitigation interventions. The need for life cycle assessment and circularity to assess the potential environmental impacts and resources used throughout a plastic product’s life span is emphasized. Innovations are needed to reduce, reuse, recycle, and recover plastics and find eco-friendly replacements for plastics. Empowering and educating communities and citizens to act collectively to minimize plastic pollution and use alternative options for plastics must be promoted and enforced. Plastic pollution is a global concern that must be addressed collectively with the utmost priority.
Collapse
|
9
|
Bioconversion of low-cost brewery waste to biosurfactant: An improvement of surfactin production by culture medium optimization. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Assessment of the tolerance to Fe, Cu and Zn of a sulfidogenic sludge generated from hydrothermal vents sediments as a basis for its application on metals precipitation. Mol Biol Rep 2020; 47:6165-6177. [PMID: 32749633 DOI: 10.1007/s11033-020-05690-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
A paramour factor limiting metal-microorganism interaction is the metal ion concentration, and the metal precipitation efficiency driven by microorganisms is sensitive to metal ion concentration. The aim of the work was to determine the tolerance of the sulfidogenic sludge generated from hydrothermal vent sediments at microcosms level to different concentrations of Fe, Cu and Zn and the effect on the microbial community. In this study the chemical oxygen demand (COD) removal, sulfate-reducing activity (SRA) determination, inhibition effect through the determination of IC50, and the characterization of the bacterial community´s diversity were conducted. The IC50 on SRA was 34 and 81 mg/L for Zn and Cu, respectively. The highest sulfide concentration (H2S mg/L) and % of sulfate reduction obtained were: 511.30 ± 0.75 and 35.34 ± 0.51 for 50 mg/L of Fe, 482.48 ± 6.40 and 33.35 ± 0.44 for 10 mg/L of Cu, 442.26 ± 17.1 and 30.57 ± 1.18 for 10 mg/L of Zn, respectively. The COD removal rates were of 71.81 ± 7.6, 53.92 ± 1.07 and 57.68 ± 10.2 mg COD/ L d for Fe (50 mg/L), Cu (40 mg/L) and Zn (20 mg/L), respectively. Proteobacteria, Firmicutes, Chloroflexi and Actinobacteria were common phyla to four microcosms (stabilized sulfidogenic and added with Fe, Cu or Zn). The dsrA genes of Desulfotomaculum acetoxidans, Desulfotomaculum gibsoniae and Desulfovibrio desulfuricans were expressed in the microcosms supporting the SRA results. The consortia could be explored for ex-situ bioremediation purposes in the presence of the metals tested in this work.
Collapse
|
11
|
Degradation Mechanism of 2,4-Dichlorophenol by Fungi Isolated from Marine Invertebrates. Int J Mol Sci 2020; 21:ijms21093317. [PMID: 32392868 PMCID: PMC7247547 DOI: 10.3390/ijms21093317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
2,4-Dichlorophenol (2,4-DCP) is a ubiquitous environmental pollutant categorized as a priority pollutant by the United States (US) Environmental Protection Agency, posing adverse health effects on humans and wildlife. Bioremediation is proposed as an eco-friendly, cost-effective alternative to traditional physicochemical remediation techniques. In the present study, fungal strains were isolated from marine invertebrates and tested for their ability to biotransform 2,4-DCP at a concentration of 1 mM. The most competent strains were studied further for the expression of catechol dioxygenase activities and the produced metabolites. One strain, identified as Tritirachium sp., expressed high levels of extracellular catechol 1,2-dioxygenase activity. The same strain also produced a dechlorinated cleavage product of the starting compound, indicating the assimilation of the xenobiotic by the fungus. This work also enriches the knowledge about the mechanisms employed by marine-derived fungi in order to defend themselves against chlorinated xenobiotics.
Collapse
|
12
|
Gutierrez T, Morris G, Ellis D, Mulloy B, Aitken MD. Production and characterisation of a marine Halomonas surface-active exopolymer. Appl Microbiol Biotechnol 2019; 104:1063-1076. [PMID: 31813048 PMCID: PMC6962145 DOI: 10.1007/s00253-019-10270-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
During screening for novel emulsifiers and surfactants, a marine gammaproteobacterium, Halomonas sp. MCTG39a, was isolated and selected for its production of an extracellular emulsifying agent, P39a. This polymer was produced by the new isolate during growth in a modified Zobell’s 2216 medium amended with 1% glucose, and was extractable by cold ethanol precipitation. Chemical, chromatographic and nuclear magnetic resonance spectroscopic analysis confirmed P39a to be a high-molecular-weight (~ 261,000 g/mol) glycoprotein composed of carbohydrate (17.2%) and protein (36.4%). The polymer exhibited high emulsifying activities against a range of oil substrates that included straight-chain aliphatics, mono- and alkyl- aromatics and cycloparaffins. In general, higher emulsification values were measured under low (0.1 M PBS) compared to high (synthetic seawater) ionic strength conditions, indicating that low ionic strength is more favourable for emulsification by the P39a polymer. However, as observed with other bacterial emulsifying agents, the polymer emulsified some aromatic hydrocarbon species, as well as refined and crude oils, more effectively under high ionic strength conditions, which we posit could be due to steric adsorption to these substrates as may be conferred by the protein fraction of the polymer. Furthermore, the polymer effected a positive influence on the degradation of phenanthrene by other marine bacteria, such as the specialist PAH-degrader Polycyclovorans algicola. Collectively, based on the ability of this Halomonas high-molecular-weight glycoprotein to emulsify a range of pure hydrocarbon species, as well as refined and crude oils, it shows promise for the bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK. .,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,, University of North Carolina, Chapel Hill, NC, USA.
| | - Gordon Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Dave Ellis
- Institute of Chemical Sciences (ICS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Barbara Mulloy
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Assessment of heavy metal toxicity using a luminescent bacterial test based on Photobacterium sp. strain MIE. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00809-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Santana-Santos MA, Ordaz A, Jan-Roblero J, Bastida González F, Zárate Segura PB, Guerrero-Barajas C. Tolerance of a sulfidogenic sludge to trichloroethylene at microcosms level as a basis for a long-term operation of reactors designed for its biodegradation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:461-471. [PMID: 30676262 DOI: 10.1080/10934529.2019.1567157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Trichloroethylene (TCE) is known as a toxic organic compound found as a pollutant in water streams around the world. The ultimate goal of the present work was to determine the TCE concentration that would be feasible to biodegrade on a long-term basis by a sulfidogenic sludge while maintaining sulfate reducing activity (SRA). Microcosms were prepared with sulfidogenic sludge obtained from a stabilized sulfidogenic UASB and amended with different TCE concentrations (100-300 µM) and two different proportions of volatile fatty acids (VFA) acetate, propionate and butyrate at COD of 2.5:1:1 and 1:1:1, respectively to evaluate the tolerance of the sludge. The overall results suggested that the continuous exposure of the microorganisms to TCE leads to inhibition of SRA; nonetheless, the SRA can be recovered after adequate supplementation of carbon sources and sulfate. The most suitable TCE concentration to operate on a long-term basis while preserving SRA was 26-35 mg L-1 (200-260 µM). A low level of expression of the mRNA of the sulfite reductase subunit alpha (dsrA) gene was obtained in the presence of the TCE and its intermediate products. This gene was associated to SRB belonging to the genera Desulfovibrio, Desulfosalsimonas, Desulfotomaculum, Desulfococcus, Desulfatiglans and Desulfomonas.
Collapse
Affiliation(s)
- Mario Alberto Santana-Santos
- a Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos , Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional , Mexico City 07340 , Mexico
| | - Alberto Ordaz
- b Escuela de Ingeniería y Ciencias , Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Estado de México, Carretera Lago de Guadalupe Km 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza , Estado de México , Mexico
| | - Janet Jan-Roblero
- c Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás , Mexico City , Mexico
| | - Fernando Bastida González
- d Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México. Paseo Tollocan s/n, Col. La Moderna de la Cruz , Estado de México , Toluca , Mexico
| | - Paola B Zárate Segura
- e Laboratorio de Medicina Traslacional , Escuela Superior de Medicina. Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas , Mexico City , Mexico
| | - Claudia Guerrero-Barajas
- a Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos , Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional , Mexico City 07340 , Mexico
| |
Collapse
|
15
|
Tripathi L, Irorere VU, Marchant R, Banat IM. Marine derived biosurfactants: a vast potential future resource. Biotechnol Lett 2018; 40:1441-1457. [PMID: 30145666 PMCID: PMC6223728 DOI: 10.1007/s10529-018-2602-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023]
Abstract
Surfactants and emulsifiers are surface-active compounds (SACs) which play an important role in various industrial processes and products due to their interfacial properties. Many of the chemical surfactants in use today are produced from non-renewable petrochemical feedstocks, while biosurfactants (BS) produced by microorganisms from renewable feedstocks are considered viable alternatives to petroleum based surfactants, due to their biodegradability and eco-friendly nature. However, some well-characterised BS producers are pathogenic and therefore, not appropriate for scaled-up production. Marine-derived BS have been found to be produced by non-pathogenic organisms making them attractive possibilities for exploitation in commercial products. Additionally, BS produced from marine bacteria may show excellent activity at extreme conditions (temperature, pH and salinity). Despite being non-pathogenic, marine-derived BS have not been exploited commercially due to their low yields, insufficient structural elucidation and uncharacterised genes. Therefore, optimization of BS production conditions in marine bacteria, characterization of the compounds produced as well as the genes involved in the biosynthesis are necessary to improve cost-efficiency and realise the industrial demands of SACs.
Collapse
Affiliation(s)
- Lakshmi Tripathi
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Victor U Irorere
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Roger Marchant
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
16
|
Eguiraun H, Casquero O, Sørensen AJ, Martinez I. Reducing the Number of Individuals to Monitor Shoaling Fish Systems - Application of the Shannon Entropy to Construct a Biological Warning System Model. Front Physiol 2018; 9:493. [PMID: 29867544 PMCID: PMC5952214 DOI: 10.3389/fphys.2018.00493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022] Open
Abstract
The present study aims at identifying the lowest number of fish (European seabass) that could be used for monitoring and/or experimental purposes in small-scale fish facilities by quantifying the effect that the number of individuals has on the Shannon entropy (SE) of the trajectory followed by the shoal’s centroid. Two different experiments were performed: (i) one starting with 50 fish and decreasing to 25, 13, and 1 fish, and (ii) a second experiment starting with one fish, adding one new fish per day during 5 days, ending up with five fish in the tank. The fish were recorded for 1h daily, during which time a stochastic event (a hit in the tank) was introduced. The SE values were calculated from the images corresponding to three arbitrary basal (shoaling) periods of 3.5 min prior to the event, and to the 3.5 min period immediately after the event (schooling response). Taking both experiments together, the coefficient of variation (CV) of the SE among measurements was largest for one fish systems (CV 37.12 and 17.94% for the daily average basal and response SE, respectively) and decreased concomitantly with the number of fish (CV 8.6–10% for the basal SE of 2 to 5 fish systems and 5.86, 2.69, and 2.31% for the basal SE of 13, 25, and 50 fish, respectively). The SE of the systems kept a power relationship with the number of fish (basal: R2= 0.93 and response: R2= 0.92). Thus, 5–13 individuals should be the lowest number for a compromise between acceptable variability (<10%) in the data and reduction in the number of fish. We believe this to be the first scientific work made to estimate the minimum number of individuals to be used in subsequent experimental (including behavioral) studies using shoaling fish species that reaches a compromise between the reduction in number demanded by animal welfare guidelines and a low variability in the fish system’s response.
Collapse
Affiliation(s)
- Harkaitz Eguiraun
- Department of Graphic Design & Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country UPV/EHU, Bilbao, Spain.,Research Centre for Experimental Marine Biology and Biotechnology - Plentziako Itsas Estazioa, University of the Basque Country UPV/EHU, Plentzia, Spain
| | - Oskar Casquero
- Department of Systems Engineering and Automatic Control, Faculty of Engineering in Bilbao, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Asgeir J Sørensen
- Centre for Autonomous Marine Operations and Systems, Department of Marine Technology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Iciar Martinez
- Research Centre for Experimental Marine Biology and Biotechnology - Plentziako Itsas Estazioa, University of the Basque Country UPV/EHU, Plentzia, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Tromsø, Norway
| |
Collapse
|
17
|
Ogunola OS, Onada OA, Falaye AE. Mitigation measures to avert the impacts of plastics and microplastics in the marine environment (a review). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9293-9310. [PMID: 29470754 DOI: 10.1007/s11356-018-1499-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 02/06/2018] [Indexed: 05/12/2023]
Abstract
The increasing demand for and reliance on plastics as an everyday item, and rapid rise in their production and subsequent indiscriminate disposal, rise in human population and industrial growth, have made the material an important environmental concern and focus of interest of many research. Historically, plastic production has increased tremendously to over 250 million tonnes by 2009 with an annual increased rate of 9%. In 2015, the global consumption of plastic materials was reported to be > 300 million tonnes and is expected to surge exponentially. Because plastic polymers are ubiquitous, highly resistant to degradation, the influx of these persistent, complex materials is a risk to human and environmental health. Because microplastics are principally generated from the weathering or breakdown of larger plastics (macroplastics), it is noteworthy and expedient to discuss in detail, expatiate, and tackle this main source. Macro- and microplastic pollution has been reported on a global scale from the poles to the equator. The major problem of concern is that they strangulate and are ingested by a number of aquatic biota especially the filter feeders, such as molluscs, mussels, oysters, from where it enters the food chain and consequently could lead to physical and toxicological effects on aquatic organisms and human being as final consumers. To this end, in order to minimise the negative impacts posed by plastic pollution (macro- and microplastics), a plethora of strategies have been developed at various levels to reduce and manage the plastic wastes. The objective of this paper is to review some published literature on management measures of plastic wastes to curb occurrence and incidents of large- and microplastics pollution in the marine environments.
Collapse
Affiliation(s)
- Oluniyi Solomon Ogunola
- MSc International Studies in Aquatic Tropical Ecology, University of Bremen, Bremen, Germany.
| | | | | |
Collapse
|
18
|
García-Depraect O, Guerrero-Barajas C, Jan-Roblero J, Ordaz A. Characterization of a Marine Microbial Community Used for Enhanced Sulfate Reduction and Copper Precipitation in a Two-Step Process. Appl Biochem Biotechnol 2016; 182:452-467. [DOI: 10.1007/s12010-016-2337-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
|
19
|
Sevilla E, Yuste L, Rojo F. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes. Microb Biotechnol 2015; 8:693-706. [PMID: 25874658 PMCID: PMC4476824 DOI: 10.1111/1751-7915.12286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/14/2015] [Indexed: 11/29/2022] Open
Abstract
Whole-cell biosensors offer potentially useful, cost-effective systems for the in-situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole-cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25-fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3–4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, Madrid, 28049, Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, Madrid, 28049, Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|