1
|
Arai T, Aikawa S, Sudesh K, Arai W, Mohammad Rawi NF, Leh CPP, Mohamad Kassim MH, Tay GS, Kosugi A. Efficient production of polyhydroxybutyrate using lignocellulosic biomass derived from oil palm trunks by the inhibitor-tolerant strain Burkholderia ambifaria E5-3. World J Microbiol Biotechnol 2024; 40:242. [PMID: 38869634 DOI: 10.1007/s11274-024-04041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.
Collapse
Affiliation(s)
- Takamitsu Arai
- Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
| | - Shimpei Aikawa
- Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Wichittra Arai
- Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
- The National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8560, Japan
| | | | - Cheu Peng Peng Leh
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | | | - Guan Seng Tay
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Akihiko Kosugi
- Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| |
Collapse
|
2
|
Blunt W, Blanchard C, Doyle C, Vasquez V, Ye M, Adewale P, Liu Y, Morley K, Monteil-Rivera F. The potential of Burkholderia thailandensis E264 for co-valorization of C 5 and C 6 sugars into multiple value-added bio-products. BIORESOURCE TECHNOLOGY 2023; 387:129595. [PMID: 37541546 DOI: 10.1016/j.biortech.2023.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Despite known metabolic versatility of Burkholderia spp., sugar metabolism and end-product synthesis patterns in Burkholderia thailandensis have been poorly characterized. This work has demonstrated that B. thailandensis is capable of simultaneously uptaking glucose and xylose and accumulating up to 64% of its dry mass as poly(3-hydroxyalkanoate) (PHA) biopolymers, resulting in a PHA titer of up to 3.8 g L-1 in shake flasks. Rhamnolipids - mainly (68-75%) in the form of Rha-Rha-C14-C14 - were produced concomitantly with a titer typically in the range of 0.2-0.4 g L-1. Gluconic and xylonic acids were also detected in titers of up to 5.3 g L-1, and while gluconic acid appeared to be back consumed, xylonic acid formed as a major end product. This first example of co-production of three products from mixed sugars using B. thailandensis paves the way for improving biorefinery economics.
Collapse
Affiliation(s)
- Warren Blunt
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Catherine Blanchard
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Christopher Doyle
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Peter Adewale
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada.
| |
Collapse
|
3
|
Psaki O, Athanasoulia IGI, Giannoulis A, Briassoulis D, Koutinas A, Ladakis D. Fermentation development using fruit waste derived mixed sugars for poly(3-hydroxybutyrate) production and property evaluation. BIORESOURCE TECHNOLOGY 2023; 382:129077. [PMID: 37088428 DOI: 10.1016/j.biortech.2023.129077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Free sugars from fruit wastes were evaluated for the production of poly(3-hydroxybutyrate) (PHB) in Paraburkholderia sacchari fed-batch bioreactor fermentations. Different initial sugar concentration, carbon to inorganic phosphorus (C/IP) ratio, IP addition during feeding and volumetric oxygen transfer coefficient (kLa) were evaluated to promote PHB production. The highest intracellular PHB accumulation (66.6%), PHB concentration (108.3 g/L), productivity (3.28 g/L/h) and yield (0.33 g/g) were achieved at 40 g/L initial sugars, C/IP 26.5, 202.6 h-1kLa value and 20% IP supplementation in the feeding solution. The effect of different cell's harvesting time on PHB properties showed no influence in weight average molecular weight and thermal properties. The harvest time influenced the tensile strength that was reduced from 28.7 MPa at 22 h to 13.3 MPa at 36 h. The elongation at break and Young's modulus were in the range 3.6-14.8% and 830-2000 MPa, respectively.
Collapse
Affiliation(s)
- Olga Psaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Ioanna-Georgia I Athanasoulia
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Anastasios Giannoulis
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Demetres Briassoulis
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
4
|
Jin T, Xing X, Xie Y, Sun Y, Bian S, Liu L, Chen G, Wang X, Yu X, Su Y. Evaluation of Preparation and Detoxification of Hemicellulose Hydrolysate for Improved Xylitol Production from Quinoa Straw. Int J Mol Sci 2022; 24:516. [PMID: 36613957 PMCID: PMC9820623 DOI: 10.3390/ijms24010516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Quinoa straw is rich in hemicellulose, and it could be hydrolyzed into xylose. It is a promising energy resource alternative that acts as a potential low-cost material for producing xylitol. In this study, quinoa straw was used as a substrate subjected to the hydrolysis of dilute sulfuric acid solution. Based on the production of xylose and inhibitors during hydrolysis, the optimal conditions for the hydrolysis of hemicellulose in quinoa straw were determined. Detoxification was performed via activated carbon adsorption. The optimal detoxification conditions were determined on the basis of major inhibitor concentrations in the hydrolysate. When the addition of activated carbon was 3% at 30 °C for 40 min, the removal of formic acid, acetic acid, furfural, and 5-HMF could reach 66.52%, 64.54%, 88.31%, and 89.44%, respectively. In addition to activated carbon adsorption, vacuum evaporation was further conducted to perform two-step detoxification. Subsequently, the detoxified hydrolysate was used for xylitol fermentation. The yield of xylitol reached 0.50 g/g after 96 h of fermentation by Candida tropicalis (CICC 1779). It is 1.2-fold higher than that obtained through the sole vacuum evaporation method. This study validated the feasibility of xylitol production from quinoa straw via a biorefinery process.
Collapse
Affiliation(s)
- Tingwei Jin
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiwen Xing
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yubing Xie
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yan Sun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Sijia Bian
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Liying Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xinzhe Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoxiao Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Biological production of xylitol by using nonconventional microbial strains. World J Microbiol Biotechnol 2022; 38:249. [DOI: 10.1007/s11274-022-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
6
|
Oliveira-Filho ER, de Macedo MA, Lemos ACC, Adams F, Merkel OM, Taciro MK, Gomez JGC, Silva LF. Engineering Burkholderia sacchari to enhance poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] production from xylose and hexanoate. Int J Biol Macromol 2022; 213:902-914. [PMID: 35690163 DOI: 10.1016/j.ijbiomac.2022.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 12/26/2022]
Abstract
Burkholderia sacchari LFM101 LMG19450T is a Brazilian bacterium isolated from sugarcane crops soil and a promising biotechnological platform for bioprocesses. It is an efficient producer of poly(3-hydroxybutyrate) from carbohydrates including xylose. In the present work, the expression of B. sacchari xylose consumption genes (xylA, xylB and tktA) was combined with the expression of Aeromonas sp. phaC (PHA synthase), aiming to increase both the growth rates in xylose and the 3-hydroxyhexanoate (3HHx) molar fractions in the produced PHA. Genes were cloned into pBBR1MCS-2 vectors and then expressed in the B. sacchari PHA- mutant LFM344. Maximum specific growth rates on xylose and PHA accumulation capacity of all recombinants were evaluated. In bioreactor experiments, up to 55.5 % CDW was accumulated as copolymer, hexanoate conversion to 3HHx raised from 2 % to 54 % of the maximum theoretical value, compared to wild type. 3HHx mol% ranged from 8 to 35, and molecular weights were between 111 and 220 kg/mol. Thermal analysis measurement showed a decrease in Tg and Tm values with higher 3HHx fraction, indicating improved thermomechanical characteristics. Recombinants construction and bioreactor strategies allowed the production of P(3HB-co-3HHx) with controlled monomeric composition from xylose and hexanoate, allowing its application in diverse fields, including the medical area.
Collapse
Affiliation(s)
- Edmar R Oliveira-Filho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Matheus A de Macedo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline C C Lemos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Friederike Adams
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Marilda K Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Gregório C Gomez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiziana F Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Trichez D, Carneiro CVGC, Braga M, Almeida JRM. Recent progress in the microbial production of xylonic acid. World J Microbiol Biotechnol 2022; 38:127. [PMID: 35668329 DOI: 10.1007/s11274-022-03313-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 01/03/2023]
Abstract
Interest in the production of renewable chemicals from biomass has increased in the past years. Among these chemicals, carboxylic acids represent a significant part of the most desirable bio-based products. Xylonic acid is a five-carbon sugar-acid obtained from xylose oxidation that can be used in several industrial applications, including food, pharmaceutical, and construction industries. So far, the production of xylonic acid has not yet been available at an industrial scale; however, several microbial bio-based production processes are under development. This review summarizes the recent advances in pathway characterization, genetic engineering, and fermentative strategies to improve xylonic acid production by microorganisms from xylose or lignocellulosic hydrolysates. In addition, the strengths of the available microbial strains and processes and the major requirements for achieving biotechnological production of xylonic acid at a commercial scale are discussed. Efficient native and engineered microbial strains have been reported. Xylonic acid titers as high as 586 and 171 g L-1 were obtained from bacterial and yeast strains, respectively, in a laboratory medium. Furthermore, relevant academic and industrial players associated with xylonic acid production will be presented.
Collapse
Affiliation(s)
- Débora Trichez
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil
| | - Clara Vida G C Carneiro
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil.,Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Melissa Braga
- Innovation and Business Office, EMBRAPA Agroenergia, Brasília, Brazil
| | - João Ricardo M Almeida
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil. .,Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil.
| |
Collapse
|
8
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
9
|
Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125472. [PMID: 34320752 DOI: 10.1016/j.biortech.2021.125472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This is the first review presenting and discussing Burkholderia sacchari as a bacterial chassis. B. sacchari is a distinguished polyhydroxyalkanoates producer strain, with low biological risk, reaching high biopolymer yields from sucrose (0.29 g/g), and xylose (0.38 g/g). It has great potential for integration into a biorefinery using residues from biomass, achieving 146 g/L cell dry weight containing 72% polyhydroxyalkanoates. Xylitol (about 70 g/L) and xylonic acid [about 390 g/L, productivity 7.7 g/(L.h)] are produced by the wild-type B. sacchari. Recombinants were constructed to allow the production and monomer composition control of diverse tailor-made polyhydroxyalkanoates, and some applications have been tested. 3-hydroxyvalerate and 3-hydroxyhexanoate yields from substrate reached 80% and 50%, respectively. The genome-scale reconstruction of its metabolic network, associated with the improvement of tools for genetic modification, and metabolic fluxes understanding by future research, will consolidate its potential as a bioproduction chassis.
Collapse
Affiliation(s)
| | | | - Marilda Keico Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
10
|
Yadav B, Talan A, Tyagi RD, Drogui P. Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. BIORESOURCE TECHNOLOGY 2021; 337:125419. [PMID: 34147774 DOI: 10.1016/j.biortech.2021.125419] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
The concern over the damaging effects of petrochemical plastics has inspired innumerable researchers to synthesize green plastics. Polyhydroxyalkanoates (PHAs) are promising candidates as they are biodegradable and possess characteristics similar to conventional plastics. However, their large-scale production and market application still have a long way to go due to the high production cost associated. Approaches like using industrial wastes as substrates and developing green strategies for PHA extraction during downstream processing have been investigated to make the process more economical. Recently, PHA production cost was minimized by concomitant synthesis of other valuable bioproducts with PHA. Investigating these co-products and recovering them can also make the process circular bioeconomic. Therefore, the paper attempts to review the recent strategies for the simultaneous synthesis of value-added bioproducts with PHA together with the challenges and opportunities for their large-scale production and applications.
Collapse
Affiliation(s)
- Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Anita Talan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- School of Technology, Huzhou University, China; BOSK-Bioproducts, 100-399 rue Jacquard, Québec QC G1N 4J6, Canada.
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
11
|
Malán AK, Tuleski T, Catalán AI, de Souza EM, Batista S. Herbaspirillum seropedicae expresses non-phosphorylative pathways for D-xylose catabolism. Appl Microbiol Biotechnol 2021; 105:7339-7352. [PMID: 34499201 DOI: 10.1007/s00253-021-11507-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Herbaspirillum seropedicae is a β-proteobacterium that establishes as an endophyte in various plants. These bacteria can consume diverse carbon sources, including hexoses and pentoses like D-xylose. D-xylose catabolic pathways have been described in some microorganisms, but databases of genes involved in these routes are limited. This is of special interest in biotechnology, considering that D-xylose is the second most abundant sugar in nature and some microorganisms, including H. seropedicae, are able to accumulate poly-3-hydroxybutyrate when consuming this pentose as a carbon source. In this work, we present a study of D-xylose catabolic pathways in H. seropedicae strain Z69 using RNA-seq analysis and subsequent analysis of phenotypes determined in targeted mutants in corresponding identified genes. G5B88_22805 gene, designated xylB, encodes a NAD+-dependent D-xylose dehydrogenase. Mutant Z69∆xylB was still able to grow on D-xylose, although at a reduced rate. This appears to be due to the expression of an L-arabinose dehydrogenase, encoded by the araB gene (G5B88_05250), that can use D-xylose as a substrate. According to our results, H. seropedicae Z69 uses non-phosphorylative pathways to catabolize D-xylose. The lower portion of metabolism involves co-expression of two routes: the Weimberg pathway that produces α-ketoglutarate and a novel pathway recently described that synthesizes pyruvate and glycolate. This novel pathway appears to contribute to D-xylose metabolism, since a mutant in the last step, Z69∆mhpD, was able to grow on this pentose only after an extended lag phase (40-50 h). KEY POINTS: • xylB gene (G5B88_22805) encodes a NAD+-dependent D-xylose dehydrogenase. • araB gene (G5B88_05250) encodes a L-arabinose dehydrogenase able to recognize D-xylose. • A novel route involving mhpD gene is preferred for D-xylose catabolism.
Collapse
Affiliation(s)
- Ana Karen Malán
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Thalita Tuleski
- Department of Biochemistry and Molecular Biology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Ana Inés Catalán
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Silvia Batista
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
12
|
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products.
Collapse
|
13
|
Han J, Hua X, Zhou X, Xu B, Wang H, Huang G, Xu Y. A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2021; 333:125157. [PMID: 33878501 DOI: 10.1016/j.biortech.2021.125157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Xylonic acid (XA), as a bio-based platform chemical, is of considerable interest for xylose bioconversion. The whole-cell catalysis of Gluconobacter oxydans presents a promising application potential, while the hard works of cell culture still severely hinder XA business from the crude toxics-containing lignocellulosic hydrolysate. Hence, the bacterial cells should be recycled to reduce commercial production cost. The implementation of diatomite detoxification not only absorbs most of the degraded inhibitors in hydrolysate, but also confines the sugar contents loss with 10% and allows the bacterial cells to maintain 90% bioconversion performance during cell-recycling operation. Additionally, a scale-up of XA bioproduction was achieved in a sealed oxygen supply fermenter. Finally, 210 g XA was produced from 1000 g corncob originated hydrolysate within 24 h of whole-cell catalysis. Diatomite treatment provides an efficient and cost-practical approach for the commercial bioproduction of biochemicals like XA from lignocellulosic biomass.
Collapse
Affiliation(s)
- Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Bin Xu
- ECO Zhuoxin Energy-saving Technology (Shanghai) Company Limited, Shanghai 200000, People's Republic of China
| | - Huan Wang
- ECO Zhuoxin Energy-saving Technology (Shanghai) Company Limited, Shanghai 200000, People's Republic of China
| | - Guohong Huang
- Nanjing Hydraulic Research Institute, Materials & Structural Engineering Department, Nanjing 210029, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
14
|
Understanding D-xylonic acid accumulation: a cornerstone for better metabolic engineering approaches. Appl Microbiol Biotechnol 2021; 105:5309-5324. [PMID: 34215905 DOI: 10.1007/s00253-021-11410-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023]
Abstract
The xylose oxidative pathway (XOP) has been engineered in microorganisms for the production of a wide range of industrially relevant compounds. However, the performance of metabolically engineered XOP-utilizing microorganisms is typically hindered by D-xylonic acid accumulation. It acidifies the media and perturbs cell growth due to toxicity, thus curtailing enzymatic activity and target product formation. Fortunately, from the growing portfolio of genetic tools, several strategies that can be adapted for the generation of efficient microbial cell factories have been implemented to address D-xylonic acid accumulation. This review centers its discussion on the causes of D-xylonic acid accumulation and how to address it through different engineering and synthetic biology techniques with emphasis given on bacterial strains. In the first part of this review, the ability of certain microorganisms to produce and tolerate D-xylonic acid is also tackled as an important aspect in developing efficient microbial cell factories. Overall, this review could shed some insights and clarity to those working on XOP in bacteria and its engineering for the development of industrially applicable product-specialist strains. KEY POINTS: D-Xylonic acid accumulation is attributed to the overexpression of xylose dehydrogenase concomitant with basal or inefficient expression of enzymes involved in D-xylonic acid assimilation. Redox imbalance and insufficient cofactors contribute to D-xylonic acid accumulation. Overcoming D-xylonic acid accumulation can increase product formation among engineered strains. Engineering strategies involving enzyme engineering, evolutionary engineering, coutilization of different sugar substrates, and synergy of different pathways could potentially address D-xylonic acid accumulation.
Collapse
|
15
|
|
16
|
Izaguirre JK, Barañano L, Castañón S, Santos JAL, Cesário MT, da Fonseca MMR, Alkorta I, Garbisu C. Economic and environmental assessment of bacterial poly(3-hydroxybutyrate) production from the organic fraction of municipal solid waste. BIORESOUR BIOPROCESS 2021; 8:39. [PMID: 38650259 PMCID: PMC10992733 DOI: 10.1186/s40643-021-00392-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
The management of municipal solid waste is a major logistic and environmental problem worldwide. Nonetheless, the organic fraction of municipal solid waste (OFMSW) is a valuable source of nutrients which can be used for a variety of purposes, according to the Circular Economy paradigm. Among the possible applications, the bioproduction of a biodegradable polyester, poly(3-hydroxybutyrate) [P(3HB)], using OFMSW as carbon platform is a promising strategy. Here, an economic and environmental assessment of bacterial P(3HB) production from OFMSW is presented based on previously published results. The SuperPro Designer® software was used to simulate P(3HB) production under our experimental parameters. Two scenarios were proposed depending on the fermentation medium: (1) enzymatic hydrolysate of OFMSW supplemented with glucose and plum waste juice; and (2) basal medium supplemented with glucose and plum waste juice. According to our results, both scenarios are not economically feasible under our experimental parameters. In Scenario 1, the low fermentation yield, the cost of the enzymes, the labour cost and the energy consumption are the factors that most contribute to that result. In Scenario 2, the cost of the extraction solvent and the low fermentation yield are the most limiting factors. The possibility of using process waste as raw material for the generation of other products must be investigated to enhance economic feasibility. From an environmental viewpoint, the photochemical oxidation potential (derived from the use of anisole as extraction solvent) and the generation of acid rain and global warming effect (caused by the burning of fuels for power generation) are the most relevant impacts associated to P(3HB) production under our experimental parameters.
Collapse
Affiliation(s)
- Jon Kepa Izaguirre
- NEIKER-Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Leire Barañano
- NEIKER-Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Sonia Castañón
- NEIKER-Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - José A L Santos
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Teresa Cesário
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Manuela R da Fonseca
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Carlos Garbisu
- NEIKER-Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain.
| |
Collapse
|
17
|
Kouřilová X, Schwarzerová J, Pernicová I, Sedlář K, Mrázová K, Krzyžánek V, Nebesářová J, Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms 2021; 9:909. [PMID: 33923216 PMCID: PMC8146576 DOI: 10.3390/microorganisms9050909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.
Collapse
Affiliation(s)
- Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Jana Schwarzerová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Iva Pernicová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Jana Nebesářová
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| |
Collapse
|
18
|
Kourilova X, Novackova I, Koller M, Obruca S. Evaluation of mesophilic Burkholderia sacchari, thermophilic Schlegelella thermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates. BIORESOURCE TECHNOLOGY 2021; 325:124704. [PMID: 33493750 DOI: 10.1016/j.biortech.2021.124704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, the mesophilic bacterium Burkholderia sacchari, the halophilic bacterium Halomonas halophila, and the thermophilic bacterium Schlegelella thermodepolymerans were evaluated with regards to their suitability for polyhydroxyalkanoates (PHA) production from model media mimicking lignocellulose hydrolysates. B. sacchari was capable of utilizing all the tested "model hydrolysates", yielding comparable PHA titers and turning out as very robust against lignocellulose-derived microbial inhibitors. On the contrary, H. halophila reached substantially higher PHA titers on hexoses-rich media, while S. thermodepolymerans preferred media rich in pentoses. Both extremophiles were more sensitive to microbial inhibitors than B. sacchari. Nevertheless, considering substantially higher PHA productivity of both extremophiles even in the presence of microbial inhibitors and also other positive factors associated with utilization of extremophiles, such as the reduced risk of microbial contamination, both H. halophila and S. thermodepolymerans are auspicious candidates for sustainable PHA production from abundantly available, inexpensive lignocelluloses.
Collapse
Affiliation(s)
- Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
19
|
Izaguirre JK, da Fonseca MMR, Castañón S, Villarán MC, Cesário MT. Giving credit to residual bioresources: From municipal solid waste hydrolysate and waste plum juice to poly (3-hydroxybutyrate). WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:534-540. [PMID: 32980732 DOI: 10.1016/j.wasman.2020.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste (MSW) is massively generated all over the world. Its organic fraction (OFMSW), which represents a high percentage of MSW, mainly contains biodegradable materials, namely food waste, paper and garden waste. The social cost of OFMSW treatment and/or disposal is a serious and widespread problem, particularly in highly populated areas. Thus, effective and innovative solutions, which include the upgrading of OFMSW, are being currently sought. In fact, the OFMSW abundance, availability and average composition suggest its considerable potential within the circular economy desideratum, paving the way to valorisation approaches. In this context, an OFMSW sugar-rich hydrolysate and its validation as a substrate for the production of the polyester poly(3-hydroxybutyrate) (P(3HB)), to date the only bioplastic easily biodegradable in marine environment, were successfully obtained in a previous study. Based on those results, this work addresses the upscaling of the fermentative production, in fed-batch mode, of P(3HB) by Burkholderia sacchari. The OFMSW hydrolysate was used as cultivation medium due to its balanced nutrient composition, while a plum waste juice, also rich in sugars, was applied as feed to the bioreactor. By implementing this strategy, a maximum P(3HB) production of 30 g·L-1 with an accumulation of 43% g (P(3HB))/g cell dry weight (CDW) after 51 h, was achieved. The use of the hydrolysate as initial medium resulted in higher CDW (71 g·L-1) than that of the simulated hydrolysate (62 g·L-1 in average), probably because the OFMSW hydrolysate favours biomass growth in detriment of P(3HB) production.
Collapse
Affiliation(s)
- Jon Kepa Izaguirre
- Basque Institute for Agricultural Research and Development, NEIKER, 01080 Arkaute, Spain; iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - M Manuela R da Fonseca
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sonia Castañón
- Basque Institute for Agricultural Research and Development, NEIKER, 01080 Arkaute, Spain
| | - M Carmen Villarán
- TECNALIA, Technological Park of Alava, Leonardo Da Vinci 11, 01510 Miñano, Alava, Spain
| | - M Teresa Cesário
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
20
|
Kourilova X, Pernicova I, Sedlar K, Musilova J, Sedlacek P, Kalina M, Koller M, Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. BIORESOURCE TECHNOLOGY 2020; 315:123885. [PMID: 32721829 DOI: 10.1016/j.biortech.2020.123885] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to investigate the thermophilic bacterium Schelegelella thermodepolymerans DSM 15344 in terms of its polyhydroxyalkanoates (PHA) biosynthesis capacity. The bacterium is capable of converting various sugars into PHA with the optimal growth temperature of 55 °C; therefore, the process of PHA biosynthesis could be robust against contamination. Surprisingly, the highest yield was gained on xylose. Results suggested that S. thermodepolymerans possess unique xylose metabolism since xylose is utilized preferentially with the highest consumption rate as compared to other sugars. In the genome of S. thermodepolymerans DSM 15344, a unique putative xyl operon consisting of genes responsible for xylose utilization and also for its transport was identified, which is a unique feature among PHA producers. The bacterium is capable of biosynthesis of copolymers containing 3-hydroxybutyrate and also 3-hydroxyvalerate subunits. Hence, S.thermodepolymerans seems to be promising candidate for PHA production from xylose rich substrates.
Collapse
Affiliation(s)
- Xenie Kourilova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno, Czech Republic
| | - Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno, Czech Republic
| | - Petr Sedlacek
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
21
|
Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose. Bioprocess Biosyst Eng 2020; 44:185-193. [PMID: 32895870 DOI: 10.1007/s00449-020-02434-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic that is comparable with many petroleum-based plastics in terms of mechanical properties and is highly biocompatible. Lignocellulosic biomass conversion into PHB can increase profit and add sustainability. Glucose, xylose and arabinose are the main monomer sugars derived from upstream lignocellulosic biomass processing. The sugar mixture ratios may vary greatly depending on the pretreatment and enzymatic hydrolysis conditions. Paraburkholderia sacchari DSM 17165 is a bacterium strain that can convert all three sugars into PHB. In this study, fed-batch mode was applied to produce PHB on three sugar mixtures (glucose:xylose:arabinose = 4:2:1, 2:2:1, 1:2:1). The highest PHB concentration produced was 67 g/L for 4:2:1 mixture at 41 h corresponding to an accumulation of 77% of cell dry weight as PHB. Corresponding sugar conversion efficiency and productivity were 0.33 g PHB/g sugar consumed and 1.6 g/L/h, respectively. The results provide references for process control to maximize PHB production from real sugar streams derived from corn fibre.
Collapse
|
22
|
Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int J Biol Macromol 2020; 156:691-703. [PMID: 32315680 DOI: 10.1016/j.ijbiomac.2020.04.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 11/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) have been actively studied in academia and industry for their properties comparable to petroleum-derived plastics and high biocompatibility. However, the major limitation for commercialization is their high cost. Feedstock costs, especially carbon costs, account for the majority of the final cost. Finding cheap feedstocks for PHA production and associated process development are critical for a cost-effective PHA production. In this study, waste materials from different sources, particularly lignocellulosic biomass, were proposed as suitable feedstocks for PHA production. Strains involved in the conversion of these feedstocks into PHA were reviewed. Newly isolated strains were emphasized. Related process development, including the factors that affect PHA production, fermentation modes and downstream processing, was elaborated upon.
Collapse
|
23
|
Yañez L, Conejeros R, Vergara-Fernández A, Scott F. Beyond Intracellular Accumulation of Polyhydroxyalkanoates: Chiral Hydroxyalkanoic Acids and Polymer Secretion. Front Bioeng Biotechnol 2020; 8:248. [PMID: 32318553 PMCID: PMC7147478 DOI: 10.3389/fbioe.2020.00248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are ubiquitous prokaryotic storage compounds of carbon and energy, acting as sinks for reducing power during periods of surplus of carbon source relative to other nutrients. With close to 150 different hydroxyalkanoate monomers identified, the structure and properties of these polyesters can be adjusted to serve applications ranging from food packaging to biomedical uses. Despite its versatility and the intensive research in the area over the last three decades, the market share of PHAs is still low. While considerable rich literature has accumulated concerning biochemical, physiological, and genetic aspects of PHAs intracellular accumulation, the costs of substrates and processing costs, including the extraction of the polymer accumulated in intracellular granules, still hampers a more widespread use of this family of polymers. This review presents a comprehensive survey and critical analysis of the process engineering and metabolic engineering strategies reported in literature aimed at the production of chiral (R)-hydroxycarboxylic acids (RHAs), either from the accumulated polymer or by bypassing the accumulation of PHAs using metabolically engineered bacteria, and the strategies developed to recover the accumulated polymer without using conventional downstream separations processes. Each of these topics, that have received less attention compared to PHAs accumulation, could potentially improve the economy of PHAs production and use. (R)-hydroxycarboxylic acids can be used as chiral precursors, thanks to its easily modifiable functional groups, and can be either produced de-novo or be obtained from recycled PHA products. On the other hand, efficient mechanisms of PHAs release from bacterial cells, including controlled cell lysis and PHA excretion, could reduce downstream costs and simplify the polymer recovery process.
Collapse
Affiliation(s)
- Luz Yañez
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alberto Vergara-Fernández
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Felipe Scott
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
24
|
Visible/near infrared spectroscopy and machine learning for predicting polyhydroxybutyrate production cultured on alkaline pretreated liquor from corn stover. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Oliveira-Filho ER, Silva JGP, de Macedo MA, Taciro MK, Gomez JGC, Silva LF. Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by Burkholderia sacchari LMG 19450 From Xylose as the Sole Carbon Source. Front Bioeng Biotechnol 2020; 7:416. [PMID: 31970153 PMCID: PMC6960187 DOI: 10.3389/fbioe.2019.00416] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
Burkholderia sacchari LMG19450, a non-model organism and a promising microbial platform, was studied to determine nutrient limitation impact on poly(3-hydroxybutyrate) [P(3HB)] production and bacterial growth from xylose, a major hemicellulosic residue. Nitrogen and phosphorus limitations have been studied in a number of cases to enhance PHA accumulation, but not combining xylose and B. sacchari. Within this strategy, it was sought to understand how to control PHA production and even modulate monomer composition. Nitrogen-limited and phosphorus-limited fed-batch experiments in bioreactors were performed to evaluate each one's influence on cell growth and poly(3-hydroxybutyrate) production. The mineral medium composition was defined based on yields calculated from typical results so that nitrogen was available during phosphorus limitation and residual phosphorus was available when limiting nitrogen. Sets of experiments were performed so as to promote cell growth in the first stage (supplied with initial xylose 15 g/L), followed by an accumulation phase, where N or P was the limiting nutrient when xylose was fed in pulses to avoid concentrations lower than 5 g/L. N-limited fed-batch specific cell growth (around 0.19 1/h) and substrate consumption (around 0.24 1/h) rates were higher when compared to phosphorus-limited ones. Xylose to PHA yield was similar in both conditions [0.37 gP(3HB)/gxyl]. We also described pst gene cluster in B. sacchari, responsible for high-affinity phosphate uptake. Obtained phosphorus to biomass yields might evidence polyphosphate accumulation. Results were compared with studies with B. sacchari and other PHA-producing microorganisms. Since it is the first report of the mentioned kinetic parameters for LMG 19450 growing on xylose solely, our results open exciting perspectives to develop an efficient bioprocess strategy with increased P(3HB) production from xylose or xylose-rich substrates.
Collapse
Affiliation(s)
- Edmar R Oliveira-Filho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson G P Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus Arjona de Macedo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilda K Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Gregório C Gomez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiziana F Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Li M, Wilkins M. Flow cytometry for quantitation of polyhydroxybutyrate production by Cupriavidus necator using alkaline pretreated liquor from corn stover. BIORESOURCE TECHNOLOGY 2020; 295:122254. [PMID: 31629285 DOI: 10.1016/j.biortech.2019.122254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Alkaline pretreated liquor (APL) from lignocellulosic feedstock pretreatment is a lignin-rich stream. Polyhydroxybutyrate (PHB), a biodegradable polymer, has been previously synthesized from APL. It is of interest to monitor PHB production and cell number from APL rapidly for process control. However, APL has insoluble substances and is dark, which makes quantitation of cells by visible light absorbance difficult. A sample preparation method was developed using Nile Red staining and flow cytometry to quantify bacterial cells and PHB concentration. A linear model with good fitness (R2 = 0.9939) was constructed to predict PHB concentration (0.2-2.1 g/L) based on fluorescence intensity acquired from a flow cytometer. A linear model (R2 = 0.8614) to predict cell number based on fluorescence intensity was also established. The good correlation between PHB concentration and fluorescence intensity indicates the potential of applying flow cytometry for quantitation of PHB from APL and other media that is dark and/or contains insoluble particles.
Collapse
Affiliation(s)
- Mengxing Li
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Statistics, The University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
27
|
Li M, Eskridge K, Liu E, Wilkins M. Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett-Burman and central composite designs. BIORESOURCE TECHNOLOGY 2019; 281:99-106. [PMID: 30807996 DOI: 10.1016/j.biortech.2019.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
In this study, Plackett-Burman and central composite designs were applied to improve polyhydroxybutyrate (PHB) production from alkaline pretreatment liquor (APL) by Cupriavidus necator DSM 545 using a supplement system consisting of oxidative enzymes (laccase, aryl alcohol oxidase (AAO)), mediators (ABTS, HOBT), DMSO, silica nanoparticle Aerosol R816 and surfactant Tween 80. First, screening experiments under Plackett-Burman design showed R816, ABTS and Tween 80 could significantly enhance PHB production. Additional experiments showed that HOBT and DMSO could be removed, and laccase and AAO were needed to remain in the system. Second, a central composite design was applied to obtain the optimum supplemental levels of R816, ABTS and Tween 80. Under optimum conditions, theoretical maximum PHB production (1.9 g/L) was close to experimental PHB production (2.1 g/L). With the supplement system, a 10-fold increase was achieved compared to PHB production (0.2 g/L) without any supplements.
Collapse
Affiliation(s)
- Mengxing Li
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln 68583, USA; Department of Statistics, The University of Nebraska-Lincoln, Lincoln 68583, USA
| | - Kent Eskridge
- Department of Statistics, The University of Nebraska-Lincoln, Lincoln 68583, USA
| | - Enshi Liu
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln 68583, USA.
| |
Collapse
|
28
|
Li M, Eskridge KM, Wilkins MR. Optimization of polyhydroxybutyrate production by experimental design of combined ternary mixture (glucose, xylose and arabinose) and process variables (sugar concentration, molar C:N ratio). Bioprocess Biosyst Eng 2019; 42:1495-1506. [DOI: 10.1007/s00449-019-02146-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
|
29
|
Sustainable PHA production in integrated lignocellulose biorefineries. N Biotechnol 2019; 49:161-168. [DOI: 10.1016/j.nbt.2018.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/05/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022]
|
30
|
Kumar V, Binod P, Sindhu R, Gnansounou E, Ahluwalia V. Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. BIORESOURCE TECHNOLOGY 2018; 269:443-451. [PMID: 30217725 DOI: 10.1016/j.biortech.2018.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 05/12/2023]
Abstract
Most of the crop plants contain about 30% of hemicelluloses comprising D-xylose and D-arabinose. One of the major limitation for the use of pentose sugars is that high purity grade D-xylose and D-arabinose are yet to be produced as commodity chemicals. Research and developmental activities are going on in this direction for their use as platform intermediates through economically viable strategies. During chemical pretreatment of biomass, the pentose sugars were generated in the liquid stream along with other compounds. This contains glucose, proteins, phenolic compounds, minerals and acids other than pentose sugars. Arabinose is present in small amounts, which can be used for the economic production of value added compound, xylitol. The present review discusses the recent trends and developments as well as challenges and opportunities in the utilization of pentose sugars generated from lignocellulosic biomass for the production of value added compounds.
Collapse
Affiliation(s)
- Vinod Kumar
- Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160071, Punjab, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vivek Ahluwalia
- Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160071, Punjab, India.
| |
Collapse
|
31
|
Kumar P, Kim BS. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. BIORESOURCE TECHNOLOGY 2018; 269:544-556. [PMID: 30201320 DOI: 10.1016/j.biortech.2018.08.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are the only polyesters that are completely synthesized biologically and possess features equivalent to petroleum-based plastics besides being biodegradable. PHA based materials may certainly prove helpful in addressing the concerns caused due to the indiscriminate use of synthetic plastics. However, the cost of producing these polymers on a large scale is still uneconomical. Various approaches have been developed to tackle this issue through usage of agro-industrial wastes, co-production of high market value products, polymer extraction using green solvents, etc. The advent of recombineering and CRISPR technologies has broadened the scope of constructing a microbe capable of synthesizing multiple products with economic feasibility. Quite a few high-market value chemicals are possible to synthesize along with the favorable accumulation of PHA. The present article attempts to review all PHA polymer co-production processes with other chemicals reported till date and discusses the opportunities for their large-scale operation in future.
Collapse
Affiliation(s)
- Prasun Kumar
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
32
|
Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari. Microb Cell Fact 2018; 17:74. [PMID: 29764418 PMCID: PMC5952831 DOI: 10.1186/s12934-018-0924-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/05/2018] [Indexed: 12/22/2022] Open
Abstract
Background Despite its ability to grow and produce high-value molecules using renewable carbon sources, two main factors must be improved to use Burkholderia sacchari as a chassis for bioproduction at an industrial scale: first, the lack of molecular tools to engineer this organism and second, the inherently slow growth rate and poly-3-hydroxybutyrate [P(3HB)] production using xylose. In this work, we have addressed both factors. Results First, we adapted a set of BglBrick plasmids and showed tunable expression in B. sacchari. Finally, we assessed growth rate and P(3HB) production through overexpression of xylose transporters, catabolic or regulatory genes. Overexpression of xylR significantly improved growth rate (55.5% improvement), polymer yield (77.27% improvement), and resulted in 71% of cell dry weight as P(3HB). Conclusions These values are unprecedented for P(3HB) accumulation using xylose as a sole carbon source and highlight the importance of precise expression control for improving utilization of hemicellulosic sugars in B. sacchari.![]()
Collapse
|
33
|
xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari. ACTA ACUST UNITED AC 2018; 45:165-173. [DOI: 10.1007/s10295-018-2007-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
Abstract
Despite the versatility and many advantages of polyhydroxyalkanoates as petroleum-based plastic substitutes, their higher production cost compared to petroleum-based polymers has historically limited their large-scale production. One appealing approach to reducing production costs is to employ less expensive, renewable feedstocks. Xylose, for example is an abundant and inexpensive carbon source derived from hemicellulosic residues abundant in agro-industrial waste (sugarcane bagasse hemicellulosic hydrolysates). In this work, the production of poly-3-hydroxybutyrate P(3HB) from xylose was studied to develop technologies for conversion of agro-industrial waste into high-value chemicals and biopolymers. Specifically, this work elucidates the organization of the xylose assimilation operon of Burkholderia sacchari, a non-model bacterium with high capacity for P(3HB) accumulation. Overexpression of endogenous xylose isomerase and xylulokinase genes was successfully assessed, improving both specific growth rate and P(3HB) production. Compared to control strain (harboring pBBR1MCS-2), xylose utilization in the engineered strain was substantially improved with 25% increase in specific growth rate, 34% increase in P(3HB) production, and the highest P(3HB) yield from xylose reported to date for B. sacchari (Y P3HB/Xil = 0.35 g/g). This study highlights that xylA and xylB overexpression is an effective strategy to improve xylose utilization and P(3HB) production in B. sacchari.
Collapse
|
34
|
Dietrich K, Dumont MJ, Schwinghamer T, Orsat V, Del Rio LF. Model Study To Assess Softwood Hemicellulose Hydrolysates as the Carbon Source for PHB Production in Paraburkholderia sacchari IPT 101. Biomacromolecules 2017; 19:188-200. [DOI: 10.1021/acs.biomac.7b01446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karolin Dietrich
- Bioresource
Engineering Department, McGill University, 21111 Lakeshore Road, Ste-Anne de Bellevue, Quebec Canada, H9X 3 V9
| | - Marie-Josée Dumont
- Bioresource
Engineering Department, McGill University, 21111 Lakeshore Road, Ste-Anne de Bellevue, Quebec Canada, H9X 3 V9
| | - Timothy Schwinghamer
- Department
of Plant Science, McGill University, 21111 Lakeshore Rd., Ste-Anne de Bellevue, Quebec Canada, H9X 3 V9
| | - Valérie Orsat
- Bioresource
Engineering Department, McGill University, 21111 Lakeshore Road, Ste-Anne de Bellevue, Quebec Canada, H9X 3 V9
| | - Luis F. Del Rio
- FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Quebec Canada H9R 3J9
| |
Collapse
|
35
|
Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering (Basel) 2017; 4:bioengineering4020036. [PMID: 28952515 PMCID: PMC5590455 DOI: 10.3390/bioengineering4020036] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022] Open
Abstract
Based on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain’s wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive biosynthesis of PHA copolyesters consisting of 3-hydroxybuytrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Controlled bioreactor cultivations were carried out using saccharose from the Brazilian sugarcane industry as the main carbon source, with and without co-feeding with the 4HB-related precursor γ-butyrolactone (GBL). Without GBL co-feeding, the homopolyester PHB was produced at a volumetric productivity of 1.29 g/(L·h), a mass fraction of 0.52 g PHB per g biomass, and a final PHB concentration of 36.5 g/L; the maximum specific growth rate µmax amounted to 0.15 1/h. Adding GBL, we obtained 3HB and 4HB monomers in the polyester at a volumetric productivity of 1.87 g/(L·h), a mass fraction of 0.72 g PHA per g biomass, a final PHA concentration of 53.7 g/L, and a µmax of 0.18 1/h. Thermoanalysis revealed improved material properties of the second polyester in terms of reduced melting temperature Tm (161 °C vs. 178 °C) and decreased degree of crystallinity Xc (24% vs. 71%), indicating its enhanced suitability for polymer processing.
Collapse
|