1
|
Pavy CL, Shaw JC, Palliser HK, Moloney RA, Hirst JJ. Neurosteroid replacement therapy using tiagabine and zuranolone restores cerebellar neurodevelopment and reduces hyperactive behaviour following preterm birth. J Dev Orig Health Dis 2025; 16:e2. [PMID: 39773606 DOI: 10.1017/s2040174424000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults. Guinea pig dams received c-section surgery preterm (gestational age (GA) 64) or at term (GA70) with preterm pups administered tiagabine (2.5 mg/kg/day), zuranolone (1 mg/kg/day) or vehicle (15% β-cyclodextrin) until term equivalent age (GA70). Behavioural testing was performed at corrected postnatal day 8 (PND8) and PND41 with tissue collection occurring at PND42. Neurodevelopmental markers (MBP, OLIG2 and NeuN) were assessed within the cerebellum by immunohistochemistry, whilst GABAergic and glutamatergic pathway expression was quantified using high throughput RT-PCR. Zuranolone and, to a lesser extent, tiagabine were able to protect against hyperactive behaviour at PND8 in males, whilst in females, a less marked hyperactive phenotype was present with neither treatment impacting behaviour further. Both treatments improved MBP staining, whilst tiagabine was found to restore oligodendrocyte maturation in females only. GABAergic and glutamatergic pathway expression was found to be restored by both treatments in females. Overall, this study demonstrates the neuroprotective attributes of neurosteroid replacement therapy using tiagabine and zuranolone, thereby demonstrating their potential to mitigate long-term neurodevelopmental impairments. Furthermore, the sexually dimorphic effects observed suggest future investigations may show increased benefit by using sex-specific treatment regimes.
Collapse
Affiliation(s)
- Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
2
|
Bower AE, Chung JW, Burciu RG. Assessing age-related changes in brain activity during isometric upper and lower limb force control tasks. Brain Struct Funct 2024; 230:6. [PMID: 39688714 DOI: 10.1007/s00429-024-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Despite the widespread use of older adults (OA) as controls in movement disorder studies, the specific effects of aging on the neural control of upper and lower limb movements remain unclear. While functional MRI paradigms focusing on hand movements are widely used to investigate age-related brain changes, research on lower limb movements is limited due to technical challenges in an MRI environment. This study addressed this gap by examining both upper and lower limb movements in healthy young adults (YA) vs. OA. Sixteen YA and 20 OA, matched for sex, dominant side, and cognitive status, performed pinch grip and ankle dorsiflexion tasks, each requiring 15% of their maximum voluntary contraction. While both groups achieved the target force and exhibited similar force variability and accuracy, OA displayed distinct differences in force control dynamics, with a slower rate of force increase in the hand task and a greater rate of force decrease in the foot task. Imaging results revealed that OA exhibited more widespread activation, extending beyond brain regions typically involved in movement execution. In the hand task, OA showed increased activity in premotor and visuo-motor integration regions, as well as in the cerebellar hemispheres. During the foot task, OA engaged the cerebellar hemispheres more than YA. Collectively, results suggest that OA may recruit additional brain regions to manage motor tasks, possibly to achieve similar performance. Future longitudinal studies that track changes over time could help clarify if declines in motor performance lead to corresponding changes in brain activation.
Collapse
Affiliation(s)
- Abigail E Bower
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Jae Woo Chung
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Roxana G Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Restivo DA, Quartarone A, Bruschetta A, Alito A, Milardi D, Marchese-Ragona R, Iezzi E, Peter S, Centonze D, Stampanoni Bassi M. Dysphagia in multiple sclerosis: pathophysiology, assessment, and management-an overview. Front Neurol 2024; 15:1514644. [PMID: 39734636 PMCID: PMC11681428 DOI: 10.3389/fneur.2024.1514644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Dysphagia is a frequent and life-threatening complication of multiple sclerosis (MS). Swallowing disturbances may be present at all stages of MS, although their prevalence increases with age, with disease duration, and in progressive phenotypes. The pathophysiology of dysphagia in MS is likely due to a combination of factors, including the involvement of corticobulbar tracts, the cerebellum, and the brainstem. Accurate diagnosis and early management of swallowing disorders improve quality of life and may delay complications or invasive therapeutic interventions. Here we provide an overview of the pathophysiology, the assessment, and the management of MS dysphagia, also examining the possible role of novel therapeutic strategies. Although studies using imaging and neurophysiological techniques have contributed to better characterize swallowing alterations in MS, the treatment of dysphagia is still challenging. Rehabilitation represents the main therapeutic approach for swallowing disorders. Recently, some innovative neurophysiological approaches, such as pharyngeal electrical stimulation (PES), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS), have been proposed as a supplement to swallowing therapy in different neurological conditions. However, only few studies have explored the role of neuromodulation for MS dysphagia.
Collapse
Affiliation(s)
- Domenico A. Restivo
- Department of Clinical and Experimental Medicine, Physical Medicine and Rehabilitation Unit, University of Messina, Messina, Italy
| | | | | | - Angelo Alito
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | | | - Ennio Iezzi
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Sheila Peter
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
4
|
Sato Y, Hasui N, Mizuta N, Ohnishi S, Okada Y, Nakatani T, Taguchi J, Morioka S. Effects of Anodal tDCS Applied Over the Cerebellum Combined with Physical Therapy on Center of Gravity Sway in a Patient with Cerebellar Ataxia: A Single-Case Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2638-2645. [PMID: 39052146 DOI: 10.1007/s12311-024-01719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Damage to the cerebellum results in dysfunctional standing postural control. Patients with cerebellar ataxia have a larger sway in the center of gravity (COG) while standing. Transcranial direct current stimulation (tDCS) has been applied in the rehabilitation of patients with central nervous system disorders; however, its effect on COG sway in patients with cerebellar ataxia remains unknown. We aimed to confirm the effects of anodal cerebellar tDCS (ctDCS) combined with physical therapy on COG sway in a patient with cerebellar ataxia using a retrospective ABA single-case study design. This study involved a patient with left cerebellar hemorrhage. Walking and postural balance rehabilitation were conducted in phase A. Anodal ctDCS was combined with the walking and postural balance rehabilitation in phase B. We measured COG sway in the open- and closed-eyes standing conditions daily throughout all the phases. In the open-eyes standing condition, there was no significant change in COG sway in phase B. Conversely, in the closed-eyes standing condition, the circumferential area, total sway path length, and anteroposterior sway path length decreased in phase B. No change was observed in the mediolateral sway path length. The combination of anodal ctDCS and physical therapy may decrease COG sway in patients with cerebellar ataxia in the closed-eyes standing condition, and its effect may be greater in the anteroposterior direction.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan.
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, 22-2 Tsurunoso, Takarazuka-shi, Hyogo, 665-0833, Japan.
| | - Naruhito Hasui
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, 22-2 Tsurunoso, Takarazuka-shi, Hyogo, 665-0833, Japan
| | - Naomichi Mizuta
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa-shi, Aichi, 475-0012, Japan
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Sora Ohnishi
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, 22-2 Tsurunoso, Takarazuka-shi, Hyogo, 665-0833, Japan
| | - Yohei Okada
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Tomoki Nakatani
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, 22-2 Tsurunoso, Takarazuka-shi, Hyogo, 665-0833, Japan
| | - Junji Taguchi
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, 22-2 Tsurunoso, Takarazuka-shi, Hyogo, 665-0833, Japan
| | - Shu Morioka
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
| |
Collapse
|
5
|
Pavy CL, Shaw JC, Dyson RM, Palliser HK, Moloney RA, Sixtus RP, Berry MJ, Hirst JJ. Ganaxolone Therapy After Preterm Birth Restores Cerebellar Oligodendrocyte Maturation and Myelination in Guinea Pigs. Dev Psychobiol 2024; 66:e22554. [PMID: 39378309 DOI: 10.1002/dev.22554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
The postnatal environment is challenging for the preterm neonate with exposure to hypoxic and excitotoxic events, amplified by premature loss of placentally derived neurosteroids. Between preterm birth and term equivalent age (TEA), cerebellar development continues despite these challenges. We hypothesize that neurosteroid replacement therapy during this time will support optimal cerebellar development. Guinea pig sows delivered at term (∼69 days gestation) or were induced to deliver preterm (∼62 days), with preterm pups receiving ganaxolone or vehicle until TEA. Postnatal assessments comprised salivary cortisol (corrected postnatal age [CPA] 0, 7, 38), behavioral analysis (CPA7, 38), and tissue collection (CPA0 and CPA40). Neurodevelopmental markers (MBP, Olig2, and NeuN) were assessed in the cerebellum by immunohistochemistry, whereas RT-PCR was utilized to investigate key inhibitory/excitatory pathways and oligodendrocyte lineage markers. Following preterm birth, there was evidence of a hyperactive phenotype, increased salivary cortisol concentrations, and impaired myelination and oligodendrocyte maturation at the protein level. mRNA expressions of key inhibitory/excitatory pathways and myelin stability were also altered following preterm birth. Importantly, we showed that neurosteroid replacement therapy returns cerebellar development and behavior toward a term-like phenotype. Therefore, ganaxolone may reduce the vulnerability of the cerebellum to postnatal challenges arising from preterm birth.
Collapse
Affiliation(s)
- Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Ryan P Sixtus
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
6
|
Mundorf A, Merklein SA, Rice LC, Desmond JE, Peterburs J. Early Adversity Affects Cerebellar Structure and Function-A Systematic Review of Human and Animal Studies. Dev Psychobiol 2024; 66:e22556. [PMID: 39378310 DOI: 10.1002/dev.22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Recent research has highlighted cerebellar involvement in cognition and several psychiatric conditions such as mood and anxiety disorders and schizophrenia. Attention-deficit/hyperactivity disorder and autism spectrum disorder have been linked to reduced cerebellar volume as well. Cerebellar alterations are frequently present after early adversity in humans and animals, but a systematic integration of results is lacking. To this end, a systematic literature search was conducted in PubMed, Web of Science, and EBSCO databases using the keywords "early adversity OR early life stress" AND "cerebellum OR cerebellar." A total of 45 publications met the inclusion criteria: 25 studies investigated human subjects and 20 reported results from animal models. Findings in healthy subjects show bilateral volume reduction and decreased functional connectivity within the cerebellum and between the cerebellum and frontal regions after adversity throughout life, especially when adversity was assessed with the Childhood Trauma Questionnaire. In clinical populations, adults demonstrate increased cerebellar volume and functional connectivity after adversity, whereas pediatric patients show reduced cerebellar volume. Animal findings reveal cerebellar alterations without necessarily co-occurring pathological behavior, highlighting alterations in stress hormone receptor levels, cell density, and neuroinflammation markers. Cerebellar alterations after early adversity are robust findings across human and animal studies and occur independent of clinical symptoms.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sarah A Merklein
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Laura C Rice
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Song H, Zhu S, Pan Z, Yu X, Xiong B, Dai X. Neural functions vary by return-to-sport status in participants with anterior cruciate ligament reconstruction: a retrospective cohort study using sub-bands of resting-state functional magnetic resonance. Front Hum Neurosci 2024; 18:1457823. [PMID: 39555494 PMCID: PMC11564169 DOI: 10.3389/fnhum.2024.1457823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Objective This study aimed to characterize the differences in neural function among patients with different functional abilities 2 years after anterior cruciate ligament reconstruction (ACLR). Design Resting-state functional magnetic resonance imaging was performed to obtain blood-oxygen-level-dependent values for ACLR returned to sports coper participants (CP), non-coper participants (NP), and healthy controls (HC). The amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) calculated changes in the standard frequency band (SFB) (0.01-0.08 Hz), Slow4 (0.027-0.073 Hz), and Slow5 (0.01-0.027 Hz). Clinical correlations were investigated. Results The right cerebellum_8 and bilateral putamen in SFB, while the right cerebellum_crus2 and left putamen in Slow5 were higher in CP than in NP. The ALLF values of the bilateral putamen in Slow4 were increased, while the right parietal lobule in Slow4 and left upper temporal pole in Slow5 were lower in CP than in HC. The ReHo values in the CP group in the right cerebellum_crus2 was higher than that in the NP group in Slow5 (voxel p < 0.05, cluster p < 0.05, Gaussian Random Field theory correction). Y-balance test was correlated with cerebellum ALFF values; Tegner was moderately correlated with putamen ALFF values (p < 0.05). Knee Injury and Osteoarthritis Outcome Score-sports, International Knee Documentation Committee Subjective Knee Evaluation Form and Tegner scores were correlated with the ReHo values of right cerebellum_crus2 (p < 0.05). Conclusion Subcortical function transfer was performed in patients with ACLR who returned to sports postoperatively: the function of the somatosensory brain area decreased, while that of the subcortical cerebellum and basal ganglia and cerebellum ReHo increased in CP, which was correlated with clinical function. ALFF and ReHo are consistent to some extent, and sub-band studies can reveal information on different brain functions compared to the classical band.
Collapse
Affiliation(s)
- Hongyun Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Rehabilitation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sunan Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Zongyou Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - XiaoJing Yu
- Department of Rehabilitation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Xiong
- Department of Rehabilitation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Zainaee S, Archer B, Scherer R, Bingman V, Ghasemi M. Revealing Goal-Directed Neural Control of the Pharyngeal Phase of Swallowing. Dysphagia 2024:10.1007/s00455-024-10758-3. [PMID: 39387924 DOI: 10.1007/s00455-024-10758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Swallowing is considered a three-phase mechanism involving the oral, pharyngeal, and esophageal phases. The pharyngeal phase relies on highly coordinated movements in the pharynx and larynx to move food through the aerodigestive crossing. While the brainstem has been identified as the primary control center for the pharyngeal phase of swallowing, existing evidence suggests that the higher brain regions can contribute to controlling the pharyngeal phase of swallowing to match the motor response to the current context and task at hand. This suggests that the pharyngeal phase of swallowing cannot be exclusively reflexive or voluntary but can be regulated by the two neural controlling systems, goal-directed and non-goal-directed. This capability allows the pharyngeal phase of swallowing to adjust appropriately based on cognitive input, learned knowledge, and predictions. This paper reviews existing evidence and accordingly develops a novel perspective to explain these capabilities of the pharyngeal phase of swallowing. This paper aims (1) to integrate and comprehend the neurophysiological mechanisms involved in the pharyngeal phase of swallowing, (2) to explore the reflexive (non-goal-directed) and voluntary (goal-directed) neural systems of controlling the pharyngeal phase of swallowing, (3) to provide a clinical translation regarding the pathologies of these two systems, and (4) to highlight the existing gaps in this area that require attention in future research. This paper, in particular, aims to explore the complex neurophysiology of the pharyngeal phase of swallowing, as its breakdown can lead to serious consequences such as aspiration pneumonia or death.
Collapse
Affiliation(s)
- Shahryar Zainaee
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA.
| | - Brent Archer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Ronald Scherer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Verner Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Mehran Ghasemi
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
9
|
Sato Y, Terasawa Y, Okada Y, Hasui N, Mizuta N, Ohnishi S, Fujita D, Morioka S. Effects of cerebellar transcranial direct current stimulation on the excitability of spinal motor neurons and vestibulospinal tract in healthy individuals. Exp Brain Res 2024; 242:2381-2390. [PMID: 39133291 DOI: 10.1007/s00221-024-06894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
Cerebellar transcranial direct current stimulation (ctDCS) modulates cerebellar cortical excitability in a polarity-dependent manner and affects inhibitory pathways from the cerebellum. The cerebellum modulates spinal reflex excitability via the vestibulospinal tract and other pathways projecting to the spinal motor neurons; however, the effects of ctDCS on the excitability of spinal motor neurons and vestibulospinal tract remain unclear. The experiment involved 13 healthy individuals. ctDCS (sham-ctDCS, anodal-ctDCS, and cathodal-ctDCS) was applied to the cerebellar vermis at 2 mA with an interval of at least 3 days between each condition. We measured the maximal M-wave (Mmax) and maximal H-reflex (Hmax) in the right soleus muscle to assess the excitability of spinal motor neurons. We applied galvanic vestibular stimulation (GVS) for 200 ms at 100 ms before tibial nerve stimulation to measure Hmax conditioned by GVS (GVS-Hmax) and calculated the change rate of Hmax by GVS as the excitability of vestibulospinal tract. We measured the Mmax, Hmax, and GVS-Hmax before, during, and after ctDCS in the sitting posture. No main effects of tDCS condition, main effects of time, or interaction effects were observed in Hmax/Mmax or the change rate of Hmax by GVS. It has been suggested that ctDCS does not affect the excitability of spinal motor neurons and vestibulospinal tract, as measured by neurophysiological methods, such as the H-reflex, in healthy individuals in a sitting posture. Effect of ctDCS on other descending pathways to spinal motor neurons, the neurological mechanism of tDCS and the cerebellar activity during the experiment may have contributed to these results. Therefore, we need to investigate the involvement of the cerebellum in Hmax/Mmax and the change rate of Hmax by GVS under different neuromodulation techniques and postural conditions.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan.
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, 22-2 Tsurunoso, Takarazuka-shi, Hyogo, 665-0833, Japan.
| | - Yuta Terasawa
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Yohei Okada
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Naruhito Hasui
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, 22-2 Tsurunoso, Takarazuka-shi, Hyogo, 665-0833, Japan
| | - Naomichi Mizuta
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa-shi, Aichi, 475-0012, Japan
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Sora Ohnishi
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, 22-2 Tsurunoso, Takarazuka-shi, Hyogo, 665-0833, Japan
| | - Daiki Fujita
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Shu Morioka
- Department of Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan
| |
Collapse
|
10
|
Gaughan C, Nasa A, Roman E, Cullinane D, Kelly L, Riaz S, Brady C, Browne C, Sooknarine V, Mosley O, Almulla A, Alsehli A, Kelliher A, Murphy C, O'Hanlon E, Cannon M, Roddy DW. A Pilot Study of Adolescents with Psychotic Experiences: Potential Cerebellar Circuitry Disruption Early Along the Psychosis Spectrum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1772-1782. [PMID: 37351730 PMCID: PMC11489369 DOI: 10.1007/s12311-023-01579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
A berrant connectivity in the cerebellum has been found in psychotic conditions such as schizophrenia corresponding with cognitive and motor deficits found in these conditions. Diffusion differences in the superior cerebellar peduncles, the white matter connecting the cerebellar circuitry to the rest of the brain, have also been found in schizophrenia and high-risk states. However, white matter diffusivity in the peduncles in individuals with sub-threshold psychotic experiences (PEs) but not reaching the threshold for a definitive diagnosis remains unstudied. This study investigates the cerebellar peduncles in adolescents with PEs but no formal psychiatric diagnosis.Sixteen adolescents with PEs and 17 age-matched controls recruited from schools underwent High-Angular-Resolution-Diffusion neuroimaging. Following constrained spherical deconvolution whole-brain tractography, the superior, inferior and middle peduncles were isolated and virtually dissected out using ExploreDTI. Differences for macroscopic and microscopic tract metrics were calculated using one-way between-group analyses of covariance controlling for age, sex and estimated Total Intracranial Volume (eTIV). Multiple comparisons were corrected using Bonferroni correction.A decrease in fractional anisotropy was identified in the right (p = 0.045) and left (p = 0.058) superior cerebellar peduncle; however, this did not survive strict Bonferroni multiple comparison correction. There were no differences in volumes or other diffusion metrics in either the middle or inferior peduncles.Our trend level changes in the superior cerebellar peduncle in a non-clinical sample exhibiting psychotic experiences complement similar but more profound changes previously found in ultra-high-risk individuals and those with psychotic disorders. This suggests that superior cerebellar peduncle circuitry perturbations may occur early along in the psychosis spectrum.
Collapse
Affiliation(s)
- Caoimhe Gaughan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Anurag Nasa
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Elena Roman
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Dearbhla Cullinane
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Linda Kelly
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Sahar Riaz
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Conan Brady
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Ciaran Browne
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Vitallia Sooknarine
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Olivia Mosley
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Ahmad Almulla
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Assael Alsehli
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Allison Kelliher
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Cian Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Darren William Roddy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
11
|
Micovic K, Canuel A, Remtulla A, Chuyen A, Byrsan M, McGarry DJ, Olson MF. Mical1 deletion in tyrosinase expressing cells affects mouse running gaits. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70004. [PMID: 39344934 PMCID: PMC11440367 DOI: 10.1111/gbb.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Neuronal development is a highly regulated process that is dependent on the correct coordination of cellular responses to extracellular cues. In response to semaphorin axon guidance proteins, the MICAL1 protein is stimulated to produce reactive oxygen species that oxidize actin on specific methionine residues, leading to filamentous actin depolymerization and consequent changes in neuronal growth cone dynamics. Crossing genetically modified mice homozygous for floxed Mical1 (Mical1fl/fl) alleles with transgenic mice expressing Cre recombinase under the control of a tyrosinase gene enhancer/promoter (Tyr::Cre) enabled conditional Mical1 deletion. Immunohistochemical analysis showed Mical1 expression in the cerebellum, which plays a prominent role in the coordination of motor movements, with reduced Mical1 expression in Mical1fl/fl mice co-expressing Tyr::Cre. Analysis of the gaits of mice running on a treadmill showed that both male and female Mical1fl/fl, Tyr::Cre mutant mice had significant alterations to their striding patterns relative to wild-type mice, although the specific aspects of their altered gaits differed between the sexes. Additional motor tests that involved movement on a rotating rod, descending a vertical pole, or crossing a balance beam did not show significant differences between the genotypes, suggesting that the effect of the Mical1fl/fl, Tyr::Cre genetic modifications was only manifested during specific highly coordinated movements that contribute to running. These findings indicate that there is a behavioral consequence in Mical1fl/fl, Tyr::Cre mutant mice that affects motor control as manifested by alterations in their gait.
Collapse
Affiliation(s)
- Katarina Micovic
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| | - Alicia Canuel
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Aasiya Remtulla
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Alexandre Chuyen
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| | - Margarita Byrsan
- Biomedical Engineering ProgramToronto Metropolitan UniversityTorontoOntarioCanada
| | - David J. McGarry
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| | - Michael F. Olson
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
- Biomedical Engineering ProgramToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
12
|
Liesmäki O, Kungshamn J, Likitalo O, Ellis EG, Bellmunt-Gil A, Aaltonen J, Steinweg I, Myller EM, Roine S, Friedrich MU, Ylikotila P, Joutsa J. Localization and Network Connectivity of Lesions Causing Limb Ataxia in Patients With Stroke. Neurology 2024; 103:e209803. [PMID: 39208366 DOI: 10.1212/wnl.0000000000209803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Ataxia is primarily considered to originate from the cerebellum. However, it can manifest without obvious cerebellar damage, such as in anterior circulation stroke, leaving the mechanisms of ataxia unclear. The aim of this study was to investigate whether stroke lesions causing limb ataxia localize to a common brain network. METHODS In this prospective cohort study, adult patients with new-onset stroke with visible lesions on CT or MRI from Turku University Hospital, Finland, were clinically examined (1) after their stroke while still admitted to the hospital (baseline) and (2) 4 months later (follow-up) to assess limb ataxia. Lesion locations and their functional connectivity, computed using openly available data from 1,000 healthy volunteers from the Brain Genome Superstruct Project, were compared voxel-by-voxel across the whole brain between patients with and without ataxia, using voxel-based lesion-symptom mapping and lesion network mapping. The findings were confirmed in an independent stroke patient cohort with identical clinical assessments. RESULTS One hundred ninety-seven patients (mean age 67.2 years, 39%female) were included in this study. At baseline, 35 patients (68.3 years, 34%female) had and 162 (67.0 years, 40%female) did not have new-onset acute limb ataxia. At follow-up, additional 4 patients had developed late-onset limb ataxia, totalling to 39 patients (68.6 years, 36%female) with limb ataxia at any point. One hundred eighteen patients (66.2 years, 40%female) did not have ataxia at any point (n = 40 with missing follow-up data). Lesions in 54% of the patients with acute limb ataxia were located outside the cerebellum and cerebellar peduncles, and we did not find an association between specific lesion locations and ataxia. Lesions causing acute limb ataxia, however, were connected to a common network centered on the intermediate zone cerebellum and cerebellar peduncles (lesion connectivity in patients with vs without acute limb ataxia, pFWE < 0.05). The results were similar when comparing patients with and without ataxia at any point, and when excluding lesions in the cerebellum and cerebellar peduncles (pFWE < 0.05). The findings were confirmed in the independent stroke dataset (n = 96), demonstrating an OR of 2.27 (95% CI 1.32-3.91) for limb ataxia per standard deviation increase in limb ataxia network damage score. DISCUSSION Lesions causing limb ataxia occur in heterogeneous locations but localize to a common brain network.
Collapse
Affiliation(s)
- Oliver Liesmäki
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Jaakko Kungshamn
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Olli Likitalo
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Elizabeth G Ellis
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Albert Bellmunt-Gil
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Juho Aaltonen
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Ida Steinweg
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Elina M Myller
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Susanna Roine
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Maximilian U Friedrich
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Pauli Ylikotila
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| | - Juho Joutsa
- From the Turku Brain and Mind Center (O. Liesmäki, J.K., O. Likitalo, E.G.E., A.B.-G., J.A., I.S., E.M.M., P.Y., J.J.), Clinical Neurosciences, University of Turku; Neurocenter (O. Liesmäki, J.K., O. Likitalo, J.A., E.M.M., S.R., P.Y., J.J.), Turku University Hospital, Finland; Center for Brain Circuit Therapeutics (M.U.F.), Brigham & Women's Hospital, Boston, MA; and Department of Neurology (M.U.F.), University Hospital Wuerzburg, Germany
| |
Collapse
|
13
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
14
|
Ozgen MN, Sahin NE, Ertan N, Sahin B. Investigation of total cerebellar and flocculonodular lobe volume in Parkinson's disease and healthy individuals: a brain segmentation study. Neurol Sci 2024; 45:4291-4298. [PMID: 38622454 PMCID: PMC11306710 DOI: 10.1007/s10072-024-07509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder with an unexplored link to the cerebellum. In the pathophysiology of balance disorders in PD, the role of the flocculonodular lobe (FL) is linked to the impairment of the dopaminergic system. Dopamine deficiency can also lead to changes in cerebellum functions, disrupting balance control. This study compares cerebellar and FL volumes between healthy controls (HC) and PD patients, analyzing their correlation with clinical outcomes. METHODS We used magnetic resonance images of 23 PD patients (14 male, 9 female) and 24 HC (9 male, 15 female). Intracranial (ICV), total cerebellar, FL, and cerebellar gray matter volumes were measured using VolBrain. Clinical outcomes in PD patients were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS-III) to evaluate motor function, with scores correlated to volumetric data. RESULTS The cerebellar and gray matter volumes in HC were 115.53 ± 10.44 cm3 and 84.83 ± 7.76 cm3, respectively, compared to 126.83 ± 13.47 cm3 and 92.37 ± 9.45 cm3 in PD patients, indicating significantly larger volumes in PD patients (p < 0.05). The flocculonodular lobe gray matter volume was 1.14 ± 0.19 cm3 in PD patients and 1.02 ± 0.13 cm3 in HC, but there was a significant increase in gray matter volume in PD patients between the groups (p < 0.05). In PD patients, significant negative correlations were observed between FL volume and the UPDRS-III scores (r = - 0.467, p = 0.033) and between UPDRS-III scores and both total (r = - 0.453, p = 0.039) and normalized (r = - 0.468, p = 0.032) gray matter volumes of the FL. CONCLUSION Although total gray matter volumes were larger in PD patients, the volumes of FL did not differ between groups. In Parkinson's disease, increased cerebellar volume may regulate fine motor movements rather than balance.
Collapse
Affiliation(s)
- Merve Nur Ozgen
- Department of Anatomy, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Necati Emre Sahin
- Department of Anatomy, Faculty of Medicine, Karabük University, Karabük, Türkiye
| | - Nurcan Ertan
- Radiology Clinic, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Bunyamin Sahin
- Department of Anatomy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye.
| |
Collapse
|
15
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
16
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
17
|
Huang L, Wang Y, Sun J, Zhu L, Liu J, Wu Y, Shan C, Yan J, Wan P. Incidence and Risk Factors for Dysphagia Following Cerebellar Stroke: a Retrospective Cohort Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1293-1303. [PMID: 37204664 PMCID: PMC11269328 DOI: 10.1007/s12311-023-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
The cerebellum is known to play a supportive role in swallowing-related functions; however, wide discrepancies about the incidence rate of swallowing disorders following cerebellar strokes exist within the literature. This study aimed to investigate the incidence rate of dysphagia and the factors which may affect the presence of dysphagia and clinical recovery in individuals diagnosed with cerebellar stroke. A retrospective chart audit of 1651 post-stroke patients (1049 males and 602 females) admitted with a cerebellar stroke to a comprehensive tertiary hospital in China was conducted. Data on demographics, medical, along with swallowing function assessment were collected. Differences between dysphagic and non-dysphagic groups were evaluated using t-tests and Pearson's chi-square test. Univariate logistic regression analysis was performed to establish factors associated with the presence of dysphagia. A total of 11.45% of participants were identified with dysphagia during inpatient admission. Individuals with mixed types of stroke, multiple lesions in the cerebellum, and ages older than 85 years old were more likely to develop dysphagia. Moreover, the prognosis of dysphagia following a cerebellar stroke was associated with lesions in different parts of the cerebellum. The cumulative recovery rates from the best to worse were the right hemisphere group, the cerebellum vermis or peduncle group, and both the hemisphere group and the left hemisphere group, respectively.
Collapse
Affiliation(s)
- Li Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Yunlu Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Jikang Sun
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Lequn Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Jimin Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yuwei Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Chunlei Shan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Juntao Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Ping Wan
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
18
|
Aşır F, Erdemci F, Çankırı Z, Korak T, Başaran SÖ, Kaplan Ö, Yükselmiş Ö, Dönmezdil N, Ayaz H, Kaplan Ş, Tunik S. Zonisamide Ameliorated the Apoptosis and Inflammation in Cerebellar Tissue of Induced Alcohol Addiction Animal Model. Life (Basel) 2024; 14:795. [PMID: 39063550 PMCID: PMC11278003 DOI: 10.3390/life14070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of zonisamide treatment on cerebellar tissues in an experimental alcohol addiction (AA) model and its potential mechanisms of action, particularly regarding apoptotic protease activating factor-1 (APAF-1) and tumor necrosis factor-alpha (TNF-α) expression. Thirty rats were divided into three groups: sham, ethanol (EtOH), and EtOH + zonisamide. AA was induced by administering 6 cc of EtOH orally every 8 h for 4 days. Zonisamide (100 mg/kg) was given to rats once daily before EtOH administration. Motor defects were evaluated using an open field maze. Serum TNF-α levels were measured from blood samples. Cerebellar sections were processed for histological examination and immunostained for APAF-1 and TNF-α. Protein interaction networks were constructed using Cytoscape, and functional annotations were performed with ShinyGO (version 0.80) software. The traveled area in the EtOH group was significantly reduced compared to the sham group (p = 0.0005). Rats in the EtOH + zonisamide group covered a larger area, with zonisamide treatment significantly improving locomotor ability compared to the EtOH group (p = 0.0463). Serum TNF-α levels were significantly elevated in the EtOH group compared to the sham group (p < 0.0001) and were significantly decreased in the EtOH + zonisamide group compared to the EtOH group (p = 0.0309). Regular cerebellar histological layers were observed in the sham group, while EtOH induction caused loss of cerebellar tissue integrity, neuronal degeneration, vascular dilatation and congestion, reduced myelin density, and neuropils in the EtOH group. Zonisamide treatment improved these pathologies, enhancing myelination and neuropil formation. Negative APAF-1 and TNF-α expressions were observed across cerebellar layers in the sham group. Due to EtOH toxicity, APAF-1 and TNF-α expression were upregulated in the EtOH group compared to the sham group (p < 0.001 for both). Zonisamide treatment downregulated these protein expressions in the EtOH + zonisamide group compared to the EtOH group (p < 0.001 and p = 0.0087, respectively). APAF-1 was primarily associated with AA through antifolate resistance, endopeptidases, and the interleukin-1 pathway, while TNF-α was predominantly enriched in infections and choline-binding, indicating zonisamide's impact on immune and inflammatory pathways. In conclusion, zonisamide treatment significantly mitigated ethanol-induced cerebellar damage and inflammation in an AA model. Zonisamide improved locomotor function and reduced serum TNF-α levels, as well as APAF-1 and TNF-α expression in cerebellar tissues. These findings suggest that zonisamide exerts its protective effects by modulating immune and inflammatory pathways, thereby preserving cerebellar integrity and function.
Collapse
Affiliation(s)
- Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Fikri Erdemci
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Zuhal Çankırı
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Tuğcan Korak
- Department of Medical Biology, Medical Faculty, Kocaeli University, 41001 Kocaeli, Turkey
| | - Süreyya Özdemir Başaran
- Department of Andrology, Gazi Yasargil Education and Research Hospital, Health Sciences University, 21090 Diyarbakir, Turkey
| | - Özge Kaplan
- Department of Andrology, Gazi Yasargil Education and Research Hospital, Health Sciences University, 21090 Diyarbakir, Turkey
| | - Özkan Yükselmiş
- Division of Physical Medicine and Rehabilitation, Diyarbakır Dağ Kapı State Hospital, 21100 Diyarbakır, Turkey
| | - Nilüfer Dönmezdil
- Department of Audiology, Faculty of Health Sciences, Mardin Artuklu University, 47200 Mardin, Turkey
| | - Hayat Ayaz
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Şehmus Kaplan
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Selçuk Tunik
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| |
Collapse
|
19
|
Liu Q, Liu Y, Zhang Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024; 12:1348. [PMID: 38927555 PMCID: PMC11201496 DOI: 10.3390/biomedicines12061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The cerebellum is emerging as a promising target for noninvasive brain stimulation (NIBS). A systematic review was conducted to evaluate the effects of cerebellar NIBS on both motor and other symptoms in stroke rehabilitation, its impact on functional ability, and potential side effects (PROSPERO number: CRD42022365697). A systematic electronic database search was performed by using PubMed Central (PMC), EMBASE, and Web of Science, with a cutoff date of November 2023. Data extracted included study details, NIBS methodology, outcome measures, and results. The risk of bias in eligible studies was also assessed. Twenty-two clinical studies involving 1016 participants were finally included, with a focus on outcomes related to post-stroke motor recovery (gait and balance, muscle spasticity, and upper limb dexterity) and other functions (dysphagia and aphasia). Positive effects were observed, especially on motor functions like gait and balance. Some efficiency was also observed in dysphagia rehabilitation. However, findings on language recovery were preliminary and inconsistent. A slight improvement in functional ability was noted, with no serious adverse effects reported. Further studies are needed to explore the effects of cerebellar NIBS on post-stroke non-motor deficits and to understand how cerebellar engagement can facilitate more precise treatment strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
20
|
Li K, Fu C, Xie Z, Zhang J, Zhang C, Li R, Gao C, Wang J, Xue C, Zhang Y, Deng W. The impact of physical therapy on dysphagia in neurological diseases: a review. Front Hum Neurosci 2024; 18:1404398. [PMID: 38903410 PMCID: PMC11187312 DOI: 10.3389/fnhum.2024.1404398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
A neurogenic dysphagia is dysphagia caused by problems with the central and peripheral nervous systems, is particularly prevalent in conditions such as Parkinson's disease and stroke. It significantly impacts the quality of life for affected individuals and causes additional burdens, such as malnutrition, aspiration pneumonia, asphyxia, or even death from choking due to improper eating. Physical therapy offers a non-invasive treatment with high efficacy and low cost. Evidence supporting the use of physical therapy in dysphagia treatment is increasing, including techniques such as neuromuscular electrical stimulation, sensory stimulation, transcranial direct current stimulation, and repetitive transcranial magnetic stimulation. While initial studies have shown promising results, the effectiveness of specific treatment regimens still requires further validation. At present, there is a lack of scientific evidence to guide patient selection, develop appropriate treatment regimens, and accurately evaluate treatment outcomes. Therefore, the primary objectives of this review are to review the results of existing research, summarize the application of physical therapy in dysphagia management, we also discussed the mechanisms and treatments of physical therapy for neurogenic dysphagia.
Collapse
Affiliation(s)
- Kun Li
- Shandong Daizhuang Hospital, Jining, China
| | - Cuiyuan Fu
- Shandong Daizhuang Hospital, Jining, China
| | - Zhen Xie
- Shandong Daizhuang Hospital, Jining, China
| | - Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | | | - Rui Li
- Shandong Daizhuang Hospital, Jining, China
| | | | | | - Chuang Xue
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Wei Deng
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Flores-Prieto B, Caycho-Salazar F, Manzo J, Hernández-Aguilar ME, Coria-Avila AG, Herrera-Covarrubias D, Rojas-Dúran F, Aranda-Abreu GE, Pérez-Estudillo CA, Toledo-Cárdenas MR. Effect of Enriched Environment on Cerebellum and Social Behavior of Valproic Zebrafish. NEUROSCI 2024; 5:128-140. [PMID: 39483495 PMCID: PMC11477906 DOI: 10.3390/neurosci5020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 11/03/2024] Open
Abstract
The etiology of autism spectrum disorder (ASD) has been linked to both genetic and epigenetic factors. Among the epigenetic factors, exposure to valproic acid (VPA), an antiepileptic and mood-modulating drug, has been shown to induce characteristic traits of ASD when exposed to during embryogenesis. Conversely, in animal models, enriched environment (EE) has demonstrated positive behavioral and neural effects, suggesting its potential as a complementary treatment to pharmacological approaches in central nervous system disorders. In this study, we utilized zebrafish to model ASD characteristics induced by VPA and hypothesized that sensory stimulation through EE could ameliorate the behavioral and neuroanatomical features associated with ASD. To test this hypothesis, we assessed social behavior, cerebellar volume, and Purkinje cell populations via histology and immunohistochemistry after exposing the fish to EE. The results revealed that zebrafish exposed to VPA exhibited social deficits, reduced cerebellar cortex volume, and a decrease in c-Fos-positive cells in the Purkinje layer. In contrast, VPA-exposed fish treated with EE showed increased socialization, augmented cerebellar cortex volume, and an elevation in c-Fos-positive Purkinje cells. These findings suggest that alterations induced by VPA may be ameliorated through EE treatment, highlighting the potential therapeutic impact of sensory stimulation in conditions related to ASD.
Collapse
Affiliation(s)
| | - Flower Caycho-Salazar
- Doctorate in Brain Research, Universidad Veracruzana, Veracruz 91190, Mexico; (B.F.-P.)
| | - Jorge Manzo
- Institute of Brain Research, Universidad Veracruzana, Veracruz 91190, Mexico
| | | | | | | | - Fausto Rojas-Dúran
- Institute of Brain Research, Universidad Veracruzana, Veracruz 91190, Mexico
| | | | | | | |
Collapse
|
22
|
Liu Y, Yin S, Yang X, Luo S, Zhu F, Zeng Z, Hu Q, Xu L, Yu Q. Effects of Cerebellar Repetitive Transcranial Magnetic Stimulation in the Treatment of Post-Stroke Dysphagia: A Meta-Analysis and Systematic Review of Randomized Controlled Trials. Eur Neurol 2024; 87:67-78. [PMID: 38432194 DOI: 10.1159/000538130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION This study aimed to comprehensively evaluate the therapeutic efficacy of cerebellar repetitive transcranial magnetic stimulation (rTMS) in the rehabilitation of post-stroke dysphagia (PSD). METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched PubMed, Cochrane Library, Embase, and Web of Science to identify relevant randomized controlled trials (RCTs) investigating the application of cerebellar rTMS in the treatment of PSD. Inclusion and exclusion criteria were rigorously applied during the screening process, and pertinent characteristics of the included RCTs were meticulously extracted. The I2 statistic was employed to assess heterogeneity, and meta-analysis was conducted using Stata 17 software. The Cochrane Risk of Bias 2 tool and PEDro scale were utilized to evaluate bias risk and literature quality. RESULTS Our analysis encompassed a total of 5 RCTs involving 673 patients with dysphagia who met the inclusion criteria. The findings indicated a significant positive impact of cerebellar rTMS when combined with traditional swallowing exercises on PSD, demonstrating superior efficacy compared to conventional swallowing exercises in isolation. Furthermore, the study revealed no statistically significant differences based on stimulation site (unilateral vs. bilateral cerebellum), stimulation mode (rTMS vs. intermittent theta-burst stimulation), and stimulation frequency (5 Hz vs. 10 Hz). CONCLUSION The amalgamation of cerebellar rTMS with conventional swallowing exercises demonstrates notable efficacy, surpassing the outcomes achievable with traditional exercises alone. The sustained effectiveness observed underscores the potential of cerebellar rTMS as an innovative avenue in the field of neurorehabilitation for PSD. This study contributes valuable insights into the prospect of utilizing cerebellar rTMS as an adjunctive therapeutic strategy in the management of PSD, emphasizing its relevance for further exploration and clinical application.
Collapse
Affiliation(s)
- Ying Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shao Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinwei Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengya Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijian Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Hu
- Department of Hematology, Meishan People's Hospital, Meishan, China
| | - Li Xu
- Department of Rehabilitation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Yu
- Department of Rehabilitation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Qiu Z, Zhong X, Yang Q, Shi X, He L, Zhou H, Xu X. Altered spontaneous brain activity in lumbar disc herniation patients: insights from an ALE meta-analysis of neuroimaging data. Front Neurosci 2024; 18:1349512. [PMID: 38379762 PMCID: PMC10876805 DOI: 10.3389/fnins.2024.1349512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Objective To explore the characteristics of spontaneous brain activity changes in patients with lumbar disc herniation (LDH), and help reconcile the contradictory findings in the literature and enhance the understanding of LDH-related pain. Materials and methods PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), SinoMed, and Wanfang databases were searched for literature that studies the changes of brain basal activity in patients with LDH using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation/fraction amplitude of low-frequency fluctuation (ALFF/fALFF) analysis methods. Activation likelihood estimation (ALE) was used to perform a meta-analysis of the brain regions with spontaneous brain activity changes in LDH patients compared with healthy controls (HCs). Results A total of 11 studies were included, including 7ALFF, 2fALFF, and 2ReHo studies, with a total of 269 LDH patients and 277 HCs. Combined with the data from the ALFF/fALFF and ReHo studies, the meta-analysis results showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right middle frontal gyrus (MFG), left anterior cingulate cortex (ACC) and the right anterior lobe of the cerebellum, while they had decreased spontaneous brain activity in the left superior frontal gyrus (SFG). Meta-analysis using ALFF/fALFF data alone showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right MFG and left ACC, but no decrease in spontaneous brain activity was found. Conclusion In this paper, through the ALE Meta-analysis method, based on the data of reported rs-fMRI whole brain studies, we found that LDH patients had spontaneous brain activity changes in the right middle frontal gyrus, left anterior cingulate gyrus, right anterior cerebellar lobe and left superior frontal gyrus. However, it is still difficult to assess whether these results are specific and unique to patients with LDH. Further neuroimaging studies are needed to compare the effects of LDH and other chronic pain diseases on the spontaneous brain activity of patients. Furthermore, the lateralization results presented in our study also require further LDH-related pain side-specific grouping study to clarify this causation. Systematic review registration PROSPERO, identifier CRD42022375513.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
24
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Chen Z, Liu Y, Lin C, Liu D, Xiao L, Liu H, Wei X, Rong L. Altered parietal operculum cortex 2 functional connectivity in benign paroxysmal positional vertigo patients with residual dizziness: A resting-state fMRI study. CNS Neurosci Ther 2024; 30:e14570. [PMID: 38421104 PMCID: PMC10850607 DOI: 10.1111/cns.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS To investigate changes in functional connectivity (FC) focusing on parietal operculum cortex 2 (OP2) in benign paroxysmal positional vertigo (BPPV) patients with residual dizziness (RD) after successful canalith repositioning procedure (CRP). METHODS High-resolution three-dimensional T1 and resting-state functional magnetic resonance imaging (fMRI) were performed on 55 healthy controls (HCs), 55 BPPV patients with RD, and 55 patients without RD after successful CRP. Seed-based (bilateral OP2) FC was calculated to investigate the changes in FC among the three groups. Additionally, we further explored the associations between abnormal FC and clinical symptoms. RESULTS One-way analysis of covariance showed significant FC differences among the three groups. Post-hoc analysis showed that patients with RD exhibited decreased FC between left OP2 and regions of left angular gyrus (AG), thalamus, precuneus, middle frontal gyrus (MFG), and right cerebellum posterior lobe (CPL) in comparison with HCs. In addition, compared with patients without RD, patients with RD showed decreased FC between left OP2 and regions of left MFG, AG, middle temporal gyrus, and right CPL. Moreover, in patients with RD, the FC between left thalamus and OP2 was negatively correlated with duration of RD, and the FC between left AG and OP2 was negatively correlated with duration of BPPV. CONCLUSION BPPV patients with RD showed reduced FC between brain regions involved in vestibular processing and spatial cognition; These results suggested that BPPV patients with RD might have diminished central processing of vestibular information and impaired spatial cognition.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of NeurologySecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yueji Liu
- Department of NeurologySecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Cunxin Lin
- Department of NeurologySecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Dan Liu
- Department of NeurologySecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Lijie Xiao
- Department of NeurologySecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Haiyan Liu
- Department of NeurologySecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Xiu‐e Wei
- Department of NeurologySecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Liangqun Rong
- Department of NeurologySecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
26
|
Dekeyzer S, Vanden Bossche S, De Cocker L. Anything but Little: a Pictorial Review on Anatomy and Pathology of the Cerebellum. Clin Neuroradiol 2023; 33:907-929. [PMID: 37410171 DOI: 10.1007/s00062-023-01326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Despite its small size the cerebellum is an anatomically complex and functionally important part of the brain. Traditionally the cerebellum is viewed as a motor control structure entirely devoted to motor control and learning, but recent functional magnetic resonance imaging (fMRI) studies demonstrated significant involvement of the cerebellum in higher order cognitive functions. The anatomical complexity of the cerebellum is reflected by the several nomenclature systems that exist for the description of cerebellar anatomy. The cerebellum can be affected by a variety of pathological processes, including congenital, infectious and inflammatory, neoplastic, vascular, degenerative and toxic metabolic diseases. The purpose of this pictorial review is to (1) provide a general overview of cerebellar anatomy and function, (2) demonstrate normal cerebellar anatomy on imaging studies, and (3) illustrate both common as well as rare pathological conditions affecting the cerebellum.
Collapse
Affiliation(s)
- Sven Dekeyzer
- Department of Radiology and Medical Imaging, Ghent University Hospital (UZG), Corneel Heymanslaan 10, 9000, Gent, Belgium.
- Department of Radiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium.
| | - Stephanie Vanden Bossche
- Department of Radiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Department of Radiology, AZ Sint Jan Bruges, Ruddershove 10, 8000, Bruges, Belgium
| | - Laurens De Cocker
- Department of Radiology, AZ Maria Middelares Gent, Buitenring-Sint-Denijs 30, 9000, Gent, Belgium
| |
Collapse
|
27
|
Hajipour M, Sobhani-Rad D, Zainaee S, Farzadfar MT, Khaniki SH. Dysphagia following cerebellar stroke: analyzing the contribution of the cerebellum to swallowing function. Front Neurol 2023; 14:1276243. [PMID: 38033782 PMCID: PMC10687548 DOI: 10.3389/fneur.2023.1276243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Swallowing is essential for human health, and the cerebellum is crucial for motor movement regulation. Cerebellar strokes may cause dysphagia, but their exact effects remain unexplored in swallowing function. Therefore, the aim of this study was to analyze the precise clinical characteristics of the oral and pharyngeal phases of swallowing after cerebellar stroke and to critically discuss the cerebellum's contribution to swallowing. The study involved 34 participants with cerebellar strokes, gathered through convenience sampling. Neurologists diagnosed isolated strokes, and a speech and language pathologist examined swallowing ability using the Mann Assessment of Swallowing Ability. The study found that 52.9% of people experienced dysphagia after a cerebellar stroke. Dysphagia was significantly associated with a higher risk of aspiration. Age was also significantly correlated with dysphagia. No significant correlation was found between swallowing ability and sex. In conclusion, this study suggests isolated cerebellar stroke can adversely affect the motor and non-motor aspects of swallowing and cause severe dysphagia and aspiration risk. Thus, early diagnosis and timely management of dysphagia following a cerebellar stroke can help prevent serious consequences.
Collapse
Affiliation(s)
- Masoume Hajipour
- Department of Speech Therapy, School of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Sobhani-Rad
- Department of Speech Therapy, School of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahryar Zainaee
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, United States
| | | | - Saeedeh Hajebi Khaniki
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Pimentel JM, Moioli RC, De Araujo MFP, Vargas PA. An Integrated Neurorobotics Model of the Cerebellar-Basal Ganglia Circuitry. Int J Neural Syst 2023; 33:2350059. [PMID: 37791495 DOI: 10.1142/s0129065723500594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This work presents a neurorobotics model of the brain that integrates the cerebellum and the basal ganglia regions to coordinate movements in a humanoid robot. This cerebellar-basal ganglia circuitry is well known for its relevance to the motor control used by most mammals. Other computational models have been designed for similar applications in the robotics field. However, most of them completely ignore the interplay between neurons from the basal ganglia and cerebellum. Recently, neuroscientists indicated that neurons from both regions communicate not only at the level of the cerebral cortex but also at the subcortical level. In this work, we built an integrated neurorobotics model to assess the capacity of the network to predict and adjust the motion of the hands of a robot in real time. Our model was capable of performing different movements in a humanoid robot by respecting the sensorimotor loop of the robot and the biophysical features of the neuronal circuitry. The experiments were executed in simulation and the real world. We believe that our proposed neurorobotics model can be an important tool for new studies on the brain and a reference toward new robot motor controllers.
Collapse
Affiliation(s)
- Jhielson M Pimentel
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Renan C Moioli
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Patricia A Vargas
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
29
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
30
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
31
|
Al Samman MMF, Ibrahimy A, Nwotchouang BST, Oshinski JN, Barrow DL, Allen PA, Amini R, Bhadelia RA, Loth F. The Relationship Between Imbalance Symptom and Cardiac Pulsation Induced Mechanical Strain in the Brainstem and Cerebellum for Chiari Malformation Type I. J Biomech Eng 2023; 145:081005. [PMID: 37295931 PMCID: PMC10782862 DOI: 10.1115/1.4062723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Chiari malformation Type I (CMI) is known to have an altered biomechanical environment for the brainstem and cerebellum; however, it is unclear whether these altered biomechanics play a role in the development of CMI symptoms. We hypothesized that CMI subjects have a higher cardiac-induced strain in specific neurological tracts pertaining to balance, and postural control. We measured displacement over the cardiac cycle using displacement encoding with stimulated echoes magnetic resonance imaging in the cerebellum, brainstem, and spinal cord in 37 CMI subjects and 25 controls. Based on these measurements, we computed strain, translation, and rotation in tracts related to balance. The global strain on all tracts was small (<1%) for CMI subject and controls. Strain was found to be nearly doubled in three tracts for CMI subjects compared to controls (p < 0.03). The maximum translation and rotation were ∼150 μm and ∼1 deg, respectively and 1.5-2 times greater in CMI compared to controls in four tracts (p < 0.005). There was no significant difference between strain, translation, and rotation on the analyzed tracts in CMI subjects with imbalance compared to those without imbalance. A moderate correlation was found between cerebellar tonsillar position and strain on three tracts. The lack of statistically significant difference between strain in CMI subjects with and without imbalance could imply that the magnitude of the observed cardiac-induced strain was too small to cause substantial damage to the tissue (<1%). Activities such as coughing, or Valsalva may produce a greater strain.
Collapse
Affiliation(s)
| | - Alaaddin Ibrahimy
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06520
| | | | - John N. Oshinski
- Departments of Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322
| | - Daniel L. Barrow
- Department of Neurosurgery, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322
| | - Philip A. Allen
- Department of Psychology, The University of Akron, 302 E Buchtel Ave, Akron, OH 44325
| | - Rouzbeh Amini
- Departments of Mechanical and Industrial Engineering, and Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 508, Boston, MA 02120
| | - Rafeeque A. Bhadelia
- Department of Radiology, Beth Israel Deaconess Medical Center & Harvard University School of Medicine, 330 Brookline Ave, Boston, MA 02215
| | - Francis Loth
- Departments of Mechanical and Industrial Engineering, and Bioengineering, Northeastern University, 360 Huntington Ave, SN 257, Boston, MA 02115
| |
Collapse
|
32
|
Eskew WH, Cardona JJ, Chaiyamoon A, Carrera A, Reina F, Doğruel Y, Güngör A, Iwanaga J, Dumont AS, Tubbs RS. The Venous Circle of Trolard: An Anatomical Study with Application to Approaches to the Basal Brain. World Neurosurg 2023; 175:e238-e242. [PMID: 36940805 DOI: 10.1016/j.wneu.2023.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND The arterial circle of Willis is a well-known and interconnecting set of blood vessels at the base of the brain. However, its lesser-known venous counterpart, the circle of Trolard, has had almost no attention in the extant medical literature. METHODS Twenty-four adult human brains underwent dissection of the circle of Trolard. When identified, its component vessels and relationships with adjacent structures were confirmed and documented with photography and measured using microcalipers. RESULTS A complete circle of Trolard was identified on 42% of specimens. Most (64%) incomplete circles were incomplete anteriorly with no anterior communicating vein. The anterior communicating veins joined the anterior cerebral veins superior to the optic chiasm and continued posteriorly. The anterior communicating veins had a mean diameter of 0.45 mm. The length of these veins ranged from 0.8 mm to 1.45 mm. Thirty-six percent of circles were incomplete posteriorly with lack of a posterior communicating vein. The posterior communicating veins were always larger and longer than the anterior cerebral veins. The posterior communicating veins had a mean diameter of 0.8 mm. The length of these veins ranged from 2.8 to 3.9 cm. In general, the circles of Trolard were more or less symmetrical. However, in 2 specimens, asymmetry existed. CONCLUSIONS A better understanding of the venous circle of Trolard might decrease iatrogenic injury during approaches to the base of the brain and improve diagnoses based on imaging of the skull base. To our knowledge, this is the first anatomical study dedicated to the circle of Trolard.
Collapse
Affiliation(s)
- William H Eskew
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Juan J Cardona
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ana Carrera
- Department of Medical Sciences, Clinical Anatomy, Embryology and Neurosciences Research Group, University of Girona, Girona, Spain
| | - Francisco Reina
- Department of Medical Sciences, Clinical Anatomy, Embryology and Neurosciences Research Group, University of Girona, Girona, Spain
| | - Yücel Doğruel
- Microneurosurgery Laboratory Yeditepe University, Istanbul, Turkey
| | - Abuzer Güngör
- Microneurosurgery Laboratory Yeditepe University, Istanbul, Turkey; Department of Neurosurgery, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Joe Iwanaga
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - R Shane Tubbs
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Anatomical Sciences, St. George's University, St. George's, West Indies, Grenada; Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, Louisiana, USA
| |
Collapse
|
33
|
Dai M, Qiao J, Shi Z, Wei X, Chen H, Shen L, Wen H, Dou Z. Effect of cerebellar transcranial magnetic stimulation with double-cone coil on dysphagia after subacute infratentorial stroke: A randomized, single-blinded, controlled trial. Brain Stimul 2023; 16:1012-1020. [PMID: 37301470 DOI: 10.1016/j.brs.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/13/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND A 10-Hz cerebellar repetitive transcranial magnetic stimulation (rTMS) could increase corticobulbar tract excitability in healthy individuals. However, its clinical efficacy for poststroke dysphagia (PSD) remains unclear. OBJECTIVE To investigate the effectiveness of 10-Hz cerebellar rTMS in PSD patients with infratentorial stroke (IS). METHODS In this single-blinded, randomized controlled trial, 42 PSD patients with subacute IS were allocated to three groups: bilateral cerebellar rTMS (biCRB-rTMS), unilateral cerebellar rTMS (uniCRB-rTMS), or sham-rTMS. The stimulation parameters were 5 trains of 50 stimuli at 10 Hz with an interval of 10 s at 90% of the thenar resting motor threshold (RMT). The Functional Oral Intake Scale (FOIS) was assessed at T0 (baseline), T1 (day 0 after intervention), and T2 (day 14 after intervention), whereas the Dysphagia Outcome and Severity Scale (DOSS), Penetration Aspiration Scale (PAS), and neurophysiological parameters were evaluated at T0 and T1. RESULTS Significant time and intervention interaction effects were observed for the FOIS score (F = 3.045, p = 0.022). The changes in the FOIS scores at T1 and T2 were both significantly higher in the biCRB-rTMS group than in the sham-rTMS group (p < 0.05). The uniCRB-rTMS and biCRB-rTMS groups demonstrated greater changes in the DOSS and PAS at T1, compared with the sham-rTMS group (p < 0.05). Bilateral corticobulbar tract excitability partly increased in the biCRB-rTMS and uniCRB-rTMS groups at T1, compared with T0. The percent changes in corticobulbar tract excitability parameters at T1 showed no difference among three groups. CONCLUSIONS A 10-Hz bilateral cerebellar rTMS is a promising, noninvasive treatment for subacute infratentorial PSD.
Collapse
Affiliation(s)
- Meng Dai
- Third affiliate hospital of sun Yat-sen university, 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Jia Qiao
- Third affiliate hospital of sun Yat-sen university, 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Zhonghui Shi
- Third affiliate hospital of sun Yat-sen university, 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Xiaomei Wei
- Third affiliate hospital of sun Yat-sen university, 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Huayu Chen
- Third affiliate hospital of sun Yat-sen university, 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Luxi Shen
- Third affiliate hospital of sun Yat-sen university, 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Hongmei Wen
- Third affiliate hospital of sun Yat-sen university, 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| | - Zulin Dou
- Third affiliate hospital of sun Yat-sen university, 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| |
Collapse
|
34
|
Mahoney-Rafferty EC, Tucker HR, Akhtar K, Herlihy R, Audil A, Shah D, Gupta M, Kochman EM, Feustel PJ, Molho ES, Pilitsis JG, Shin DS. Assessing the Location, Relative Expression and Subclass of Dopamine Receptors in the Cerebellum of Hemi-Parkinsonian Rats. Neuroscience 2023; 521:1-19. [PMID: 37116741 DOI: 10.1016/j.neuroscience.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. Yet, if and how this brain area responds to PD therapy and contributes to maintaining motor function fidelity in the face of diminished BG function remains largely unanswered. Limited research suggests that dopaminergic signaling exists in the cerebellum with functional dopamine receptors, tyrosine hydroxylase (TH) and dopamine transporters (DATs); however, much of this information is largely derived from healthy animals and humans. Here, we identified the location and relative expression of dopamine 1 receptors (D1R) and dopamine 2 receptors (D2R) in the cerebellum of a hemi-parkinsonian male rat model of PD. D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.
Collapse
Affiliation(s)
- Emily C Mahoney-Rafferty
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Heidi R Tucker
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Kainat Akhtar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Rachael Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Aliyah Audil
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Dia Shah
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Megan Gupta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Eliyahu M Kochman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Eric S Molho
- Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurosurgery, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
35
|
Zeng C, Liao S, Pu W. Trait and state-related characteristics of thalamo-cortical circuit disruption in bipolar disorder: a prospective cross-sectional study. Front Psychiatry 2023; 14:1067819. [PMID: 37304427 PMCID: PMC10250647 DOI: 10.3389/fpsyt.2023.1067819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Objective The purpose of this study is to investigate the shared and distinct thalamic-cortical circuit between bipolar depression and remission, as well as to investigate the trait and state-related characteristics of the abnormal thalamic-cortical circuit in bipolar disorder. Methods Resting-state functional magnetic resonance imaging was performed on 38 bipolar depression patients, 40 bipolar remission patients, and 39 gender-matched healthy controls (rsfMRI). The thalamic subregions were used as seed points to draw the functional connectivity of the entire brain, and then the shared and distinct thalamic-cortical circuits between bipolar depression and remission were compared. Results When compared to the healthy group, both groups of patients had significantly lower functional connectivity between the rostral temporal thalamus and the lingual gyrus, the posterior parietal thalamus, the precuneus/cerebellum, and the occipital thalamus and the precuneus; however, functional connectivity between the premotor thalamus and the superior medial frontal was significantly lower in depression. Conclusion This study discovered that both bipolar depression and remission had abnormal sensorimotor-thalamic functional connectivity, implying that it is a trait-related characteristic of bipolar disorder; however, the decline in prefrontal-thalamic connectivity exists specifically in bipolar depression, implying that it is a state-related characteristic of bipolar disorder.
Collapse
Affiliation(s)
- Can Zeng
- Department of Psychology, Shaoguan University, Shaoguan, China
| | - SuQun Liao
- Department of Psychology, Shaoguan University, Shaoguan, China
| | - Weidan Pu
- Department of Clinical Psychology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Hurtubise JM, Gorbet DJ, Hynes L, Macpherson AK, Sergio LE. Cortical and cerebellar structural correlates of cognitive-motor integration performance in females with and without persistent concussion symptoms. Brain Inj 2023; 37:397-411. [PMID: 36548113 DOI: 10.1080/02699052.2022.2158231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fifteen percent of individuals who sustain a concussion develop persistent concussion symptoms (PCS). Recent literature has demonstrated atrophy of the frontal, parietal, and cerebellar regions following acute concussive injury. The frontoparietal-cerebellar network is essential for the performance of visuomotor transformation tasks requiring cognitive-motor integration (CMI), important for daily function. PURPOSE We investigated cortical and subcortical structural differences and how these differences are associated with CMI performance in those with PCS versus healthy controls. METHODS Twenty-six age-matched female participants (13 PCS, 13 healthy) completed four visuomotor tasks. Additionally, MR-images were analyzed for cortical thickness and volume, and cerebellar lobule volume. RESULTS No statistically significant group differences were found in CMI performance. However, those with PCS demonstrated a significantly thicker and larger precuneus, and significantly smaller cerebellar lobules (VIIIa, VIIIb, X) compared to controls. When groups were combined, volumes of both the cerebellar lobules and cortical regions were associated with CMI task performance. CONCLUSION The lack of behavioral differences combined with the structural differences may reflect a compensatory mechanism for those with PCS. In addition, this study highlights the effectiveness of CMI tasks in estimating the structural integrity of the frontoparietal-cerebellar network and is among the first to demonstrate structural correlates of PCS.
Collapse
Affiliation(s)
- Johanna M Hurtubise
- School of Kinesiology and Health Science, York University, Toronto, Canada
- Centre for Sport and Exercise Education, Camosun College, Victoria, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Loriann Hynes
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | | | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, Toronto, Canada
| |
Collapse
|
37
|
Kumar N, Pruthi N. Microneurosurgical Anatomic Study of the Horizontal Fissure of the Cerebellum. World Neurosurg 2023; 172:e231-e240. [PMID: 36608802 DOI: 10.1016/j.wneu.2022.12.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The horizontal fissure of the cerebellum, which is the largest and most prominent fissure, has received less interest from anatomists and neurosurgeons. Hence, the current study aims to provide comprehensive detail about the horizontal fissure and its anatomic and surgical relationship with deeper structures such as the dentate nucleus and middle cerebellar peduncle for the benefit of the neurosurgeon. METHODS Ten whole formalin-fixed human cadaveric cerebellar hemispheres were obtained from human cadavers donated to the institution. Different parameters of the horizontal fissure were studied, such as length, depth (medial end, lateral end, and middle), sulcal and gyral variations (superficial and deep), and its close relationship, especially at depth, with the dentate nucleus and middle cerebellar peduncle. RESULTS The total length of the horizontal fissure on the right and the left side was 64.3 ± 7.9 mm (range, 53-77 mm) and 65.6 ± 8.01 mm (range, 53-79 mm), respectively. The medial third of the horizontal fissure, with the fewest vessels, was the most suitable place to puncture or start the dissection of the horizontal fissure. The surface projection of the center of the posterior border of the dentate nucleus lies within 20-21 mm on either side of the posterior midline along the horizontal fissure and is only approximately 4 mm deep from the horizontal fissure. CONCLUSIONS The anatomic measurements and relationships provided in this description of the horizontal fissure will serve as a tool for surgery selection and planning, as well as an aid to improve microneurosurgical techniques, with the final goal being better patient outcomes.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Neurosurgery, National Institute of Mental Health and Neuro-Sciences, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neuro-Sciences, Bengaluru, India.
| |
Collapse
|
38
|
Abstract
Swallowing is a complex activity requiring a sophisticated system of neurological control from neurones within the brainstem, cerebral cortices and cerebellum. The cerebellum is a critical part of the brain responsible for the modulation of movements. It receives input from motor cortical and sensory areas and fine tunes these inputs to produce coordinated motor outputs. With respect to swallowing, numerous functional imaging studies have demonstrated increased activity in the cerebellum during the task of swallowing and damage to the cerebellum following differing pathological processes is associated with dysphagia. Single pulses of transcranial magnetic stimulation (TMS) have been applied to the cerebellum and have been shown to evoke motor responses in the pharynx. Moreover, repetitive TMS (rTMS) over the cerebellum can modulate cerebral motor (pharyngeal) cortical activity. Neurostimulation has allowed a better understanding of the connections that exist between the cerebellum and cerebral swallowing motor areas in health and provides a potential treatment for neurogenic dysphagia in illness. In this review we will examine what is currently known about the role of the cerebellum in the control of swallowing, explore new findings from neurostimulatory and imaging studies and provide an overview of the future clinical applications of cerebellar stimulation for treating dysphagia.
Collapse
Affiliation(s)
- Ayodele Sasegbon
- Gastrointestinal (GI) Sciences, Faculty of Biology, Medicine and Health, Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, University of Manchester, Salford Royal Hospital (part of the Manchester Academic Health Sciences Center (MAHSC)), Salford, UK.
| | - Shaheen Hamdy
- Gastrointestinal (GI) Sciences, Faculty of Biology, Medicine and Health, Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, University of Manchester, Salford Royal Hospital (part of the Manchester Academic Health Sciences Center (MAHSC)), Salford, UK
| |
Collapse
|
39
|
Wang B, Sun H, Pan X, Ma W, Dong L, Wang Q, Meng P. The effects of intermittent theta burst stimulation of the unilateral cerebellar hemisphere on swallowing-related brain regions in healthy subjects. Front Hum Neurosci 2023; 17:1100320. [PMID: 37063103 PMCID: PMC10097892 DOI: 10.3389/fnhum.2023.1100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
ObjectiveWe aimed to investigate the effects and mechanisms of swallowing-related brain regions using resting-state functional magnetic resonance imaging (rs-fMRI) in healthy subjects who underwent intermittent theta burst stimulation (iTBS) on dominant or non-dominant cerebellar hemispheres.MethodsThirty-nine healthy subjects were randomized into three groups that completed different iTBS protocols (dominant cerebellum group, non-dominant cerebellum group and sham group). Before iTBS, the resting motor threshold (rMT) was measured by single-pulse transcranial magnetic stimulation (sTMS) on the cerebellar representation of the suprahyoid muscles, and the dominant cerebellar hemisphere for swallowing was determined. Forty-eight hours after elution, iTBS protocols were completed: in the dominant cerebellum group, iTBS was administered to the dominant cerebellar hemisphere, and the non-dominant cerebellar hemisphere was given sham stimulation; in the non-dominant cerebellum group, iTBS was administered to the non-dominant cerebellar hemisphere, and sham stimulation was delivered to the dominant cerebellar hemisphere; in the sham group, sham stimulation was applied to the cerebellum bilaterally. Rs-fMRI was performed before and after iTBS stimulation to observe changes in the fractional amplitude of low-frequency fluctuation (fALFF) in the whole brain.ResultsCompared with baseline, the dominant cerebellum group showed increased fALFF in the ipsilateral cerebellum, and decreased fALFF in the ipsilateral middle temporal gyrus and contralateral precuneus after iTBS; the iTBS of the non-dominant cerebellum group induced increased fALFF in the ipsilateral superior frontal gyrus, the calcarine fissure and the surrounding cortex, and the contralateral inferior parietal lobule; and in the sham group, there was no significant difference in fALFF. Exploring the effects induced by iTBS among groups, the dominant cerebellum group showed decreased fALFF in the contralateral calcarine fissure, and surrounding cortex compared with the sham group.ConclusionIntermittent theta burst stimulation of the dominant cerebellar hemisphere for swallowing excited the ipsilateral cerebellum, and stimulation of the non-dominant cerebellar hemisphere increased the spontaneous neural activity of multiple cerebrocortical areas related to swallowing. In conclusion, regardless of which side of the cerebellum is stimulated, iTBS can facilitate part of the brain neural network related to swallowing. Our findings provide supporting evidence that cerebellar iTBS can be used as a potential method to modulate human swallowing movement.
Collapse
Affiliation(s)
- Bingyan Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Sun
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaona Pan
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshuai Ma
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Linghui Dong
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Qiang Wang,
| | - Pingping Meng
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
- Pingping Meng,
| |
Collapse
|
40
|
Qin Y, Tang Y, Liu X, Qiu S. Neural basis of dysphagia in stroke: A systematic review and meta-analysis. Front Hum Neurosci 2023; 17:1077234. [PMID: 36742358 PMCID: PMC9896523 DOI: 10.3389/fnhum.2023.1077234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Objectives Dysphagia is a major cause of stroke infection and death, and identification of structural and functional brain area changes associated with post-stroke dysphagia (PSD) can help in early screening and clinical intervention. Studies on PSD have reported numerous structural lesions and functional abnormalities in brain regions, and a systematic review is lacking. We aimed to integrate several neuroimaging studies to summarize the empirical evidence of neurological changes leading to PSD. Methods We conducted a systematic review of studies that used structural neuroimaging and functional neuroimaging approaches to explore structural and functional brain regions associated with swallowing after stroke, with additional evidence using a live activation likelihood estimation (ALE) approach. Results A total of 35 studies were included, including 20 studies with structural neuroimaging analysis, 14 studies with functional neuroimaging analysis and one study reporting results for both. The overall results suggest that structural lesions and functional abnormalities in the sensorimotor cortex, insula, cerebellum, cingulate gyrus, thalamus, basal ganglia, and associated white matter connections in individuals with stroke may contribute to dysphagia, and the ALE analysis provides additional evidence for structural lesions in the right lentiform nucleus and right thalamus and functional abnormalities in the left thalamus. Conclusion Our findings suggest that PSD is associated with neurological changes in brain regions such as sensorimotor cortex, insula, cerebellum, cingulate gyrus, thalamus, basal ganglia, and associated white matter connections. Adequate understanding of the mechanisms of neural changes in the post-stroke swallowing network may assist in clinical diagnosis and provide ideas for the development of new interventions in clinical practice.
Collapse
Affiliation(s)
- Yin Qin
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China,*Correspondence: Yin Qin,
| | - Yuting Tang
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoying Liu
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
| | - Shuting Qiu
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
41
|
Zhong L, Wen X, Liu Z, Li F, Ma X, Liu H, Chen H. Effects of bilateral cerebellar repetitive transcranial magnetic stimulation in poststroke dysphagia: A randomized sham-controlled trial. NeuroRehabilitation 2023; 52:227-234. [PMID: 36641691 DOI: 10.3233/nre-220268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although increasing evidence indicates that cerebellar repetitive transcranial magnetic stimulation (rTMS) may be beneficial in the treatment of dysphagia, its clinical efficacy is still uncertain. OBJECTIVE To evaluate the effect of high-frequency cerebellar rTMS on poststroke dysphagia. METHODS This was a randomized, sham-controlled, double-blind trial. A total of eighty-four study participants were randomly assigned into the cerebellum and control groups. The cerebellum group received bilateral 10 Hz rTMS treatment of the pharyngeal motor area of the cerebellum. The control group was administered with sham rTMS of the pharyngeal motor area of the cerebellum. All patients underwent the same conventional swallowing rehabilitation training after the intervention 5 days a week for a total of 10 days. Assessment of swallowing function was done before treatment (baseline), after treatment (2 weeks), and during follow-up (2 weeks after treatment) using the Fiberoptic Endoscopic Dysphagia Severity Scale (FEDSS) and the Penetration-Aspiration Scale (PAS). RESULTS The interaction between time and intervention had a significant effect on PAS (P < 0.001) and FEDSS (P < 0.001). Compared to the control group, the cerebellum group exhibited significantly improved clinical swallowing function scores (PAS: P = 0.007, FEDSS: P = 0.002). CONCLUSION Bilateral cerebellar rTMS is a potential new neurorehabilitation technique for post-stroke dysphagia. Studies should aim at investigating the therapeutic mechanism of cerebellar rTMS and improve this technique.
Collapse
Affiliation(s)
- Lida Zhong
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Xin Wen
- Rehabilitation College of Gannan Medical University, Ganzhou, China
| | - Zicai Liu
- Rehabilitation College of Gannan Medical University, Ganzhou, China
| | - Fang Li
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Xiancong Ma
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Huiyu Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Hongxia Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
42
|
Chen Y, Su W, Gui CF, Guo QF, Tan HX, He L, Jiang HH, Wei QC, Gao Q. Effectiveness of cerebellar vermis intermittent theta-burst stimulation in improving trunk control and balance function for patients with subacute stroke: a randomised controlled trial protocol. BMJ Open 2023; 13:e066356. [PMID: 36631236 PMCID: PMC9835952 DOI: 10.1136/bmjopen-2022-066356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Balance impairments frequently occur after stroke. Achieving effective core trunk stability is the key to improving balance ability. However, there is still a lack of advanced well-defined rehabilitation protocols for balance improvement in patients with stroke. Intermittent theta-burst stimulation (iTBS) is a non-invasive brain activity modulation strategy that can produce long-term potentiation. The cerebellar vermis is a fundamental structure involved in balance and motor control. However, no study has demonstrated the therapeutic effect and potential mechanism of cerebellar vermis iTBS on balance after stroke. METHODS AND ANALYSIS This study will be a prospective single-centre double-blind randomised controlled clinical trial with a 3-week intervention and 3-week follow-up. Eligible participants will be randomly allocated to the experimental group or the control group in a 1:1 ratio. After routine conventional physical therapy, patients in the experimental group will receive cerebellar vermis iTBS, whereas patients in the control group will receive sham stimulation. The overall intervention period will be 5 days a week for 3 consecutive weeks. The outcomes will be measured at baseline (T0), 3 weeks postintervention (T1) and at the 3-week follow-up (T2). The primary outcomes are Berg Balance Scale and Trunk Impairment Scale scores. The secondary outcomes are balance test scores via the Balance Master system, muscle activation of the trunk and lower limbs via the surface electromyography recordings, cerebral cortex oxygen concentrations measured via the resting-state functional near-infrared spectroscopy, Fugl-Meyer Assessment of Lower Extremity and Barthel index scores. ETHICS AND DISSEMINATION This study was approved by the West China Hospital Clinical Trials and Biomedical Ethics Committee of Sichuan University. All participants will sign the informed consent form voluntarily. The results of this study will be published in peer-reviewed journals and disseminated at academic conferences. TRIAL REGISTRATION NUMBER ChiCTR2200065369.
Collapse
Affiliation(s)
- Yi Chen
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Wei Su
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Chen-Fan Gui
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Qi-Fan Guo
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Hui-Xin Tan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Lin He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Han-Hong Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Qing-Chuan Wei
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
43
|
Cerebellar deep brain stimulation for movement disorders. Neurobiol Dis 2022; 175:105899. [DOI: 10.1016/j.nbd.2022.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
44
|
Connectivity concepts in neuronal network modeling. PLoS Comput Biol 2022; 18:e1010086. [PMID: 36074778 PMCID: PMC9455883 DOI: 10.1371/journal.pcbi.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Sustainable research on computational models of neuronal networks requires published models to be understandable, reproducible, and extendable. Missing details or ambiguities about mathematical concepts and assumptions, algorithmic implementations, or parameterizations hinder progress. Such flaws are unfortunately frequent and one reason is a lack of readily applicable standards and tools for model description. Our work aims to advance complete and concise descriptions of network connectivity but also to guide the implementation of connection routines in simulation software and neuromorphic hardware systems. We first review models made available by the computational neuroscience community in the repositories ModelDB and Open Source Brain, and investigate the corresponding connectivity structures and their descriptions in both manuscript and code. The review comprises the connectivity of networks with diverse levels of neuroanatomical detail and exposes how connectivity is abstracted in existing description languages and simulator interfaces. We find that a substantial proportion of the published descriptions of connectivity is ambiguous. Based on this review, we derive a set of connectivity concepts for deterministically and probabilistically connected networks and also address networks embedded in metric space. Beside these mathematical and textual guidelines, we propose a unified graphical notation for network diagrams to facilitate an intuitive understanding of network properties. Examples of representative network models demonstrate the practical use of the ideas. We hope that the proposed standardizations will contribute to unambiguous descriptions and reproducible implementations of neuronal network connectivity in computational neuroscience.
Collapse
|
45
|
Qiao J, Wu ZM, Ye QP, Dai M, Dai Y, He ZT, Dou ZL. Characteristics of dysphagia among different lesion sites of stroke: A retrospective study. Front Neurosci 2022; 16:944688. [PMID: 36090270 PMCID: PMC9449127 DOI: 10.3389/fnins.2022.944688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Objective This study aims to compare the characteristics of dysphagia among different lesion sites and explore the possible risk factors that are relevant to penetration and aspiration after stroke. Materials and methods Data on patients with post-stroke dysphagia were collected. Major measures of the videofluoroscopic swallowing study included pharyngeal transit duration (PTD), pharyngeal response duration (PRD), soft palate elevation duration (SED), stage transition duration (STD), hyoid bone anterior-horizontal displacement (HAD), hyoid bone superior-horizontal displacement (HSD), upper esophageal sphincter opening (UESO), Pharyngeal Residual Grade (PRG), and Penetration Aspiration Scale (PAS). Included patients were divided into supratentorial (deep or lobar intracerebral) and infratentorial stroke groups. The Kruskal–Wallis test, Spearman’s correlation analysis, and multivariate logistic regression analyses were used to test the difference and the correlation between those measures. Time-to-event endpoints (oral feeding) were analyzed by the Kaplan–Meier method. Results A total of 75 patients were included in this study. Significant differences were demonstrated in PTD, PRD, SED, STD, HAD, HSD, UESO, PAS, and PRG between supratentorial and infratentorial stroke groups (p < 0.05). The PRG score of the lobar intracerebral subgroup was significantly higher (p < 0.05) than that of the deep intracerebral and lobar + deep intracerebral stroke subgroups, while HSD was significantly shorter (p < 0.01). Spearman’s correlation analysis revealed that PAS was related to PTD, PRG, HAD, and UESO (p < 0.05). Multivariate logistic regression analysis demonstrated that HAD and PRG may be risk factors for penetration and aspiration (p < 0.05). Kaplan–Meier survival plot showed that there was a significant difference in time to oral feeding between supratentorial and infratentorial stroke groups (p < 0.01). Conclusion Infratentorial stroke may lead to worse swallowing function as compared with supratentorial stroke, and lobar intracerebral stroke may be worse than deep intracerebral stroke. Suitable preventive measures may be considered for patients with higher PRG scores and shorter HSD to avoid penetration and aspiration.
Collapse
Affiliation(s)
- Jia Qiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhi-min Wu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiu-ping Ye
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meng Dai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Dai
- Clinical Medical College of Acupuncture, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-tong He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zu-lin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zu-lin Dou,
| |
Collapse
|
46
|
High-Frequency Cerebellar rTMS Improves the Swallowing Function of Patients with Dysphagia after Brainstem Stroke. Neural Plast 2022; 2022:6259693. [PMID: 35992301 PMCID: PMC9388260 DOI: 10.1155/2022/6259693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To explore the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the swallowing motor area of the cerebellum in patients with dysphagia after brainstem stroke. Methods A total of 36 patients with dysphagia after brainstem stroke were recruited and divided into 3 groups. Before stimulation, single-pulse transcranial magnetic stimulation (TMS) was used to determine the swallowing dominant cerebellar hemisphere and the representation of the mylohyoid muscle. The three groups of patients received bilateral cerebellar sham stimulation, dominant cerebellar rTMS + contralateral sham stimulation, or bilateral cerebellar rTMS. The stimulus plan for each side was 10 Hz, 80% resting movement threshold (rMT), 250 pulses, 1 s per stimulus, and 9 s intervals. Sham rTMS was performed with the coil held at 90° to the scalp. The changes in the motor evoked potential (MEP) amplitude and the clinical swallowing function scales of the patients after stimulation were compared among the three groups. Results 34 patients were finally included for statistical analysis. The scores of penetration aspiration scale (PAS) and functional dysphagia scale (FDS) of the patients after 2 weeks of rTMS in the unilateral stimulation group and bilateral stimulation group were better than that in the sham stimulation group, and there was no significant difference between the two groups. The increase in the MEP amplitude of the cerebral hemisphere in the bilateral stimulation group was higher than that in the other two groups, and the increase in the MEP amplitude in the unilateral stimulation group was higher than that in sham stimulation group. There was no correlation between the improvement in patients' clinical swallowing function (PAS scores and FDS scores) and the increase in MEP amplitude in either the unilateral stimulation group or the bilateral stimulation group. Conclusion High-frequency rTMS in the cerebellum can improve swallowing function in PSD patients and increase the excitability of the representation of swallowing in the bilateral cerebral hemispheres. Compared with unilateral cerebellar rTMS, bilateral stimulation increased the excitability of the cerebral swallowing cortex more significantly, but there was no significant difference in clinical swallowing function.
Collapse
|
47
|
Haghshomar M, Shobeiri P, Seyedi SA, Abbasi-Feijani F, Poopak A, Sotoudeh H, Kamali A, Aarabi MH. Cerebellar Microstructural Abnormalities in Parkinson's Disease: a Systematic Review of Diffusion Tensor Imaging Studies. CEREBELLUM (LONDON, ENGLAND) 2022; 21:545-571. [PMID: 35001330 DOI: 10.1007/s12311-021-01355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Diffusion tensor imaging (DTI) is now having a strong momentum in research to evaluate the neural fibers of the CNS. This technique can study white matter (WM) microstructure in neurodegenerative disorders, including Parkinson's disease (PD). Previous neuroimaging studies have suggested cerebellar involvement in the pathogenesis of PD, and these cerebellum alterations can correlate with PD symptoms and stages. Using the PRISMA 2020 framework, PubMed and EMBASE were searched to retrieve relevant articles. Our search revealed 472 articles. After screening titles and abstracts, and full-text review, and implementing the inclusion criteria, 68 papers were selected for synthesis. Reviewing the selected studies revealed that the patterns of reduction in cerebellum WM integrity, assessed by fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity measures can differ symptoms and stages of PD. Cerebellar diffusion tensor imaging (DTI) changes in PD patients with "postural instability and gait difficulty" are significantly different from "tremor dominant" PD patients. Freezing of the gate is strongly related to cerebellar involvement depicted by DTI. The "reduced cognition," "visual disturbances," "sleep disorders," "depression," and "olfactory dysfunction" are not related to cerebellum microstructural changes on DTI, while "impulsive-compulsive behavior" can be linked to cerebellar WM alteration. Finally, higher PD stages and longer disease duration are associated with cerebellum white matter alteration depicted by DTI. Depiction of cerebellar white matter involvement in PD is feasible by DTI. There is an association with disease duration and severity and several clinical presentations with DTI findings. This clinical-imaging association may eventually improve disease management.
Collapse
Affiliation(s)
- Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, No. 10, Al-e-Ahmad and Chamran Highway intersection, Tehran, 1411713137, Iran.
| | | | | | - Amirhossein Poopak
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center-PNC, University of Padova, Padua, Italy
| |
Collapse
|
48
|
Radmard S, Zesiewicz TA, Kuo SH. Evaluation of Cerebellar Ataxic Patients. Neurol Clin 2022; 41:21-44. [PMID: 36400556 DOI: 10.1016/j.ncl.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Phenotypic, metabolic, and biogenesis properties of human stem cell-derived cerebellar spheroids. Sci Rep 2022; 12:12880. [PMID: 35896708 PMCID: PMC9329474 DOI: 10.1038/s41598-022-16970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Human cerebellum consists of high density and complexity of neurons. Thus, it is challenging to differentiate cerebellar-like organoids with similar cellular markers and function to the human brain. Our previous study showed that the combination of retinoic acid (RA), Wingless/integrated (Wnt) activator, and Sonic Hedgehog (SHH) activator promotes cerebellar differentiation from human induced pluripotent stem cells (hiPSCs). This study examined phenotypic, metabolic, and biogenesis in early cerebellar development. Cerebellum spheroids were differentiated from human iPSK3 cells. During day 7–14, RA and Wnt activator CHIR99021 were used and SHH activator purmorphamine (PMR) was added later to promote ventralization. Gene expression for early cerebellar layer markers, metabolism, and extracellular vesicle (EV) biogenesis were characterized. Zinc-induced neurotoxicity was investigated as a proof-of-concept of neurotoxicity study. Flow cytometry results showed that there was no significant difference in NEPH3, PTF1A, OLIG2, and MATH1 protein expression between RCP (RA-CHIR-PMR) versus the control condition. However, the expression of cerebellar genes for the molecular layer (BHLE22), the granule cell layer (GABRB2, PAX6, TMEM266, KCNIP4), the Bergmann glial cells (QK1, DAO), and the Purkinje cell layer (ARHGEF33, KIT, MX1, MYH10, PPP1R17, SCGN) was significantly higher in the RCP condition than the control. The shift in metabolic pathways toward glycolysis was observed for RCP condition. The EV biogenesis marker expression was retained. Mild zinc-induced neurotoxicity may exist when zinc exposure exceeds 1.0 µM. RCP treatment can promote specific cerebellar-like differentiation from hiPSCs indicated by gene expression of early cerebellar markers and regionally enriched genes. The higher cerebellar marker expression is accompanied by the elevated glycolysis with the retained EV biogenesis. This study should advance the understanding of biomarkers during early cerebellar development for cerebellum organoid engineering and neurotoxicity study.
Collapse
|
50
|
Nayak SB, Sumalatha S, Shetty SD. A rare additional lobe of cerebellum, projecting from its superior surface. Anat Cell Biol 2022; 55:376-379. [PMID: 35692090 PMCID: PMC9519761 DOI: 10.5115/acb.22.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Human cerebellum plays a vital role in motor coordination, regulation of muscle tone and maintaining the equilibrium of the body. It seldom shows anatomical/morphological variations. Herein, we report the presence of a small additional lobe projecting out on the superior surface of the right cerebellar hemisphere in the para-vermal area in an adult male cadaver. There was a notch on the tentorial surface of the occipital lobe of the right cerebral hemisphere, corresponding to the additional lobe of cerebellum. The additional lobe was histologically normal, with no evidence of any tumour cells. Knowledge of this variation is of importance to radiologists, neuroanatomists and neurosurgeons.
Collapse
Affiliation(s)
- Satheesha Badagabettu Nayak
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Suhani Sumalatha
- Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Surekha Devadasa Shetty
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|