1
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025:10.1038/s41568-024-00784-6. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Liu X, Wang J, Wu LJ, Trinh B, Tsai RYL. IMPDH Inhibition Decreases TERT Expression and Synergizes the Cytotoxic Effect of Chemotherapeutic Agents in Glioblastoma Cells. Int J Mol Sci 2024; 25:5992. [PMID: 38892179 PMCID: PMC11172490 DOI: 10.3390/ijms25115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Laura J. Wu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Britni Trinh
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Robert Y. L. Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Guterres A, Abrahim M, da Costa Neves PC. The role of immune subtyping in glioma mRNA vaccine development. Immunotherapy 2023; 15:1057-1072. [PMID: 37431617 DOI: 10.2217/imt-2023-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| | - Mayla Abrahim
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| | - Patrícia Cristina da Costa Neves
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
4
|
Paul P, Banerjee M. A Comprehensive View(COUP D'OEIL) of Brain Tumors from Eastern India. World Neurosurg 2023; 175:e1237-e1245. [PMID: 37427703 DOI: 10.1016/j.wneu.2023.04.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Brain tumors have always fascinated and intrigued histopathologists due to their diverse morphology and rarity. Recent surge in the molecular developments has further posed a challenge in diagnosis especially in a resource limited setting. Therefore, comprehensive tumor registries have become quintessential to compare our existing database with new found knowledge. METHODS A descriptive retrospective study was carried out on archival data of 5 years in a neuroscience institute. All neurosurgical cases operated with complete clinical history and definitive histopathological diagnosis were included. The cases were analyzed with reference to age, sex, location of the lesion, grade of the tumor, and immunohistochemical profile as available and compared with existing registries and literature. RESULTS The primary brain tumors accounted for 38.29% of all pathologies. Majority of cases clustered around 40-70 years of age (65%). Pediatric (0-19 years) cases comprised 7%. Most common primary brain tumor found in the adult population was meningioma (28%) followed by Glioblastoma (25%). The most common neoplasm in pediatric age group were gliomas (46.29%) followed by embryonal neoplasms. Pituitary adenomas (PAs) constituted 16% of all intracranial neoplasm. Gonadotroph adenoma was the most common of the nonfunctional adenomas constituting one half of the PAs (51.72%). Somatotroph adenoma was most common in the functional group constituting 20% of all PAs. CONCLUSIONS The layout of cases when compared with available brain tumor registries showed nearly similar trends in distribution. Our study succored data from the population in eastern part of India of which our institute is a major referral centre for neurosurgical cases.
Collapse
Affiliation(s)
- Paramita Paul
- Assistant Professor, Pathology, HBCH and MPMMMCC, Varanasi, India
| | - Moulima Banerjee
- Demonstrator, Pathology, Burdwan Medical College, Purba Barddhaman, India.
| |
Collapse
|
5
|
Zhang Z, Gu W, Hu M, Zhang G, Yu F, Xu J, Deng J, Xu L, Mei J, Wang C, Qiu F. Based on clinical Ki-67 expression and serum infiltrating lymphocytes related nomogram for predicting the diagnosis of glioma-grading. Front Oncol 2022; 12:696037. [PMID: 36147928 PMCID: PMC9488114 DOI: 10.3389/fonc.2022.696037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCompelling evidence indicates that elevated peripheral serum lymphocytes are associated with a favorable prognosis in various cancers. However, the association between serum lymphocytes and glioma is contradictory. In this study, a nomogram was established to predict the diagnosis of glioma-grading through Ki-67 expression and serum lymphocytes.MethodsWe performed a retrospective analysis of 239 patients diagnosed with LGG and 178 patients with HGG. Immunohistochemistry was used to determine the Ki-67 expression. Following multivariate logistic regression analysis, a nomogram was established and used to identify the most related factors associated with HGG. The consistency index (C-index), decision curve analysis (DCA), and a calibration curve were used to validate the model.ResultsThe number of LGG patients with more IDH1/2 mutations and 1p19q co-deletion was greater than that of HGG patients. The multivariate logistic analysis identified Ki-67 expression, serum lymphocyte count, and serum albumin (ALU) as independent risk factors associated with HGG, and these factors were included in a nomogram in the training cohort. In the validation cohort, the nomogram demonstrated good calibration and high consistency (C-index = 0.794). The Spearman correlation analysis revealed a significant association between HGG and serum lymphocyte count (r = −0.238, P <0.001), ALU (r = −0.232, P <0.001), and Ki-67 expression (r = 0.457, P <0.001). Furthermore, the Ki-67 expression was negatively correlated with the serum lymphocyte count (r = −0.244, P <0.05). LGG patients had lower Ki-67 expression and higher serum lymphocytes compared with HGG patients, and a combination of these two variables was significantly higher in HGG patients.ConclusionThe constructed nomogram is capable of predicting the diagnosis of glioma-grade. A decrease in the level of serum lymphocyte count and increased Ki-67 expression in HGG patients indicate that their immunological function is diminished and the tumor is more aggressive.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiguo Gu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Nanchang, China
| | - Mingbin Hu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Nanchang, China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinbiao Xu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianxiong Deng
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Molecular Pathology Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Molecular Pathology Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Feng Qiu, ; Jinhong Mei, ; Chunliang Wang,
| | - Chunliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Feng Qiu, ; Jinhong Mei, ; Chunliang Wang,
| | - Feng Qiu
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Nanchang, China
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Feng Qiu, ; Jinhong Mei, ; Chunliang Wang,
| |
Collapse
|
6
|
Valente Aguiar P, Sousa O, Silva R, Vaz R, Linhares P. Early atypical malignant transformation of diffuse low-grade astrocytoma: The importance of genotyping. NEUROCIRUGIA (ENGLISH EDITION) 2022; 33:31-34. [PMID: 34998489 DOI: 10.1016/j.neucie.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/19/2020] [Indexed: 06/14/2023]
Abstract
Diffuse astrocytoma (WHO grade II) has classically been considered a slow growing tumour, typically affecting young adults, with tendency for late malignant conversion. We describe a case of early atypical malignant transformation of diffuse astrocytoma seventeen months after complete surgical removal, as an intraventricular high-grade glioma (HGG). Retrospective laboratory findings for the presence of IDH 1/2 (isocitrate dehydrogenase) mutations were negative. There is growing evidence that IDH-wildtype (wt) astrocytomas behave more aggressively, therefore identifying IDH-mutation status should be mandatory in order to determine disease prognosis and guide treatment course.
Collapse
Affiliation(s)
- Pedro Valente Aguiar
- Department of Neurosurgery, Centro Hospitalar Universitário São João, Oporto, Portugal; Faculty of Medicine, Oporto University, Portugal.
| | - Osvaldo Sousa
- Department of Neurosurgery, Centro Hospitalar Universitário São João, Oporto, Portugal; Faculty of Medicine, Oporto University, Portugal
| | - Roberto Silva
- Department of Anatomical Pathology, Centro Hospitalar Universitário São João, Oporto, Portugal
| | - Rui Vaz
- Department of Neurosurgery, Centro Hospitalar Universitário São João, Oporto, Portugal; Faculty of Medicine, Oporto University, Portugal; Neurosciences Centre, Hospital CUF, Oporto, Portugal
| | - Paulo Linhares
- Department of Neurosurgery, Centro Hospitalar Universitário São João, Oporto, Portugal; Faculty of Medicine, Oporto University, Portugal; Neurosciences Centre, Hospital CUF, Oporto, Portugal
| |
Collapse
|
7
|
Gao Y, Wu Y, Zhang N, Yuan H, Wang F, Xu H, Yu J, Ma J, Hou S, Cao X. IDH1 gene mutation activates Smad signaling molecules to regulate the expression levels of cell cycle and biological rhythm genes in human glioma U87‑MG cells. Mol Med Rep 2021; 23:354. [PMID: 33760141 PMCID: PMC7974315 DOI: 10.3892/mmr.2021.11993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Isocitrate dehydrogenase1 (IDH1) mutation is the most important genetic change in glioma. The most common IDH1 mutation results in the amino acid substitution of arginine 132 (Arg/R132), which is located at the active site of the enzyme. IDH1 Arg132His (R132H) mutation can reduce the proliferative rate of glioma cells. Numerous diseases follow circadian rhythms, and there is growing evidence that circadian disruption may be a risk factor for cancer in humans. Dysregulation of the circadian clock serves an important role in the development of malignant tumors, including glioma. Brain-Muscle Arnt-Like protein 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) are the main biological rhythm genes. The present study aimed to further study whether there is an association between IDH1 R132H mutation and biological rhythm in glioma, and whether this affects the occurrence of glioma. The Cancer Genome Atlas (TCGA) database was used to detect the expression levels of the biological rhythm genes BMAL1 and CLOCK in various types of tumor. Additionally, U87-MG cells were infected with wild-type and mutant IDH1 lentiviruses. Colony formation experiments were used to detect cell proliferation in each group, cell cycle distribution was detected by flow cytometry and western blotting was used to detect the expression levels of wild-type and mutant IDH1, cyclins, biological rhythm genes and Smad signaling pathway-associated genes in U87-MG cells. TCGA database results suggested that BMAL1 and CLOCK were abnormally expressed in glioma. Cells were successfully infected with wild-type and mutant IDH1 lentiviruses. Colony formation assay revealed decreased cell proliferation in the IDH1 R132H mutant group. The cell cycle distribution detected by flow cytometry indicated that IDH1 gene mutation increased the G1 phase ratio and decreased the S phase ratio in U87-MG cells. The western blotting results demonstrated that IDH1 R132H mutation decreased the expression levels of the S phase-associated proteins Cyclin A and CDK2, and increased the expression levels of the G1 phase-associated proteins Cyclin D3 and CDK4, but did not significantly change the expression levels of the G2/M phase-associated protein Cyclin B1. The expression levels of the positive and negative rhythm regulation genes BMAL1, CLOCK, period (PER s (PER1, 2 and 3) and cryptochrom (CRY)s (CRY1 and 2) were significantly decreased, those of the Smad signaling pathway-associated genes Smad2, Smad3 and Smad2-3 were decreased, and those of phosphorylated (p)-Smad2, p-Smad3 and Smad4 were increased. Therefore, the present results suggested that the IDH1 R132H mutation may alter the cell cycle and biological rhythm genes in U87-MG cells through the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Yongying Gao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yanwei Wu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ningmei Zhang
- Department of Pathology, Tumor Hospital, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hongmei Yuan
- Functional Department, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia 750021, P.R. China
| | - Fei Wang
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia 750001, P.R. China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiaxiang Yu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jie Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shaozhang Hou
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
8
|
Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D, Krek A, Ma W, Zhu Y, Ji J, Calinawan A, Whiteaker JR, Colaprico A, Stathias V, Omelchenko T, Song X, Raman P, Guo Y, Brown MA, Ivey RG, Szpyt J, Guha Thakurta S, Gritsenko MA, Weitz KK, Lopez G, Kalayci S, Gümüş ZH, Yoo S, da Veiga Leprevost F, Chang HY, Krug K, Katsnelson L, Wang Y, Kennedy JJ, Voytovich UJ, Zhao L, Gaonkar KS, Ennis BM, Zhang B, Baubet V, Tauhid L, Lilly JV, Mason JL, Farrow B, Young N, Leary S, Moon J, Petyuk VA, Nazarian J, Adappa ND, Palmer JN, Lober RM, Rivero-Hinojosa S, Wang LB, Wang JM, Broberg M, Chu RK, Moore RJ, Monroe ME, Zhao R, Smith RD, Zhu J, Robles AI, Mesri M, Boja E, Hiltke T, Rodriguez H, Zhang B, Schadt EE, Mani DR, Ding L, Iavarone A, Wiznerowicz M, Schürer S, Chen XS, Heath AP, Rokita JL, Nesvizhskii AI, Fenyö D, Rodland KD, Liu T, Gygi SP, Paulovich AG, Resnick AC, Storm PB, Rood BR, Wang P. Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell 2020; 183:1962-1985.e31. [PMID: 33242424 PMCID: PMC8143193 DOI: 10.1016/j.cell.2020.10.044] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
Collapse
Affiliation(s)
- Francesca Petralia
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Tignor
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mateusz Koptyra
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Antonio Colaprico
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Pharmacology, Institute for Data Science and Computing, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Tatiana Omelchenko
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A Brown
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard G Ivey
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John Szpyt
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjukta Guha Thakurta
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Selim Kalayci
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02412, USA
| | - Lizabeth Katsnelson
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Wang
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jacob J Kennedy
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Lei Zhao
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian M Ennis
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Valerie Baubet
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lamiya Tauhid
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jena V Lilly
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer L Mason
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bailey Farrow
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Young
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah Leary
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Javad Nazarian
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA; Department of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich 8032, Switzerland
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert M Lober
- Department of Neurosurgery, Dayton Children's Hospital, Dayton, OH 45404, USA
| | - Samuel Rivero-Hinojosa
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Joshua M Wang
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Matilda Broberg
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02412, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Neurology, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; International Institute for Molecular Oncology, 61-203 Poznań, Poland
| | - Stephan Schürer
- Department of Pharmacology, Institute for Data Science and Computing, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Xi S Chen
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allison P Heath
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Fenyö
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Steven P Gygi
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Brian R Rood
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA.
| | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Valente Aguiar P, Sousa O, Silva R, Vaz R, Linhares P. Early atypical malignant transformation of diffuse low-grade astrocytoma: The importance of genotyping. Neurocirugia (Astur) 2020; 33:S1130-1473(20)30126-3. [PMID: 33162332 DOI: 10.1016/j.neucir.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Diffuse astrocytoma (WHO grade II) has classically been considered a slow growing tumour, typically affecting young adults, with tendency for late malignant conversion. We describe a case of early atypical malignant transformation of diffuse astrocytoma seventeen months after complete surgical removal, as an intraventricular high-grade glioma (HGG). Retrospective laboratory findings for the presence of IDH 1/2 (isocitrate dehydrogenase) mutations were negative. There is growing evidence that IDH-wildtype (wt) astrocytomas behave more aggressively, therefore identifying IDH-mutation status should be mandatory in order to determine disease prognosis and guide treatment course.
Collapse
Affiliation(s)
- Pedro Valente Aguiar
- Department of Neurosurgery, Centro Hospitalar Universitário São João, Oporto, Portugal; Faculty of Medicine, Oporto University, Portugal.
| | - Osvaldo Sousa
- Department of Neurosurgery, Centro Hospitalar Universitário São João, Oporto, Portugal; Faculty of Medicine, Oporto University, Portugal
| | - Roberto Silva
- Department of Anatomical Pathology, Centro Hospitalar Universitário São João, Oporto, Portugal
| | - Rui Vaz
- Department of Neurosurgery, Centro Hospitalar Universitário São João, Oporto, Portugal; Faculty of Medicine, Oporto University, Portugal; Neurosciences Centre, Hospital CUF, Oporto, Portugal
| | - Paulo Linhares
- Department of Neurosurgery, Centro Hospitalar Universitário São João, Oporto, Portugal; Faculty of Medicine, Oporto University, Portugal; Neurosciences Centre, Hospital CUF, Oporto, Portugal
| |
Collapse
|
10
|
Ruiz-Rodado V, Lita A, Dowdy T, Celiku O, Saldana AC, Wang H, Yang CZ, Chari R, Li A, Zhang W, Song H, Zhang M, Ahn S, Davis D, Chen X, Zhuang Z, Herold-Mende C, Walters KJ, Gilbert MR, Larion M. Metabolic plasticity of IDH1 -mutant glioma cell lines is responsible for low sensitivity to glutaminase inhibition. Cancer Metab 2020; 8:23. [PMID: 33101674 PMCID: PMC7579920 DOI: 10.1186/s40170-020-00229-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Background Targeting glutamine metabolism in cancer has become an increasingly vibrant area of research. Mutant IDH1 (IDH1mut) gliomas are considered good candidates for targeting this pathway because of the contribution of glutamine to their newly acquired function: synthesis of 2-hydroxyglutarate (2HG). Methods We have employed a combination of 13C tracers including glutamine and glucose for investigating the metabolism of patient-derived IDH1mut glioma cell lines through NMR and LC/MS. Additionally, genetic loss-of-function (in vitro and in vivo) approaches were performed to unravel the adaptability of these cell lines to the inhibition of glutaminase activity. Results We report the adaptability of IDH1mut cells’ metabolism to the inhibition of glutamine/glutamate pathway. The glutaminase inhibitor CB839 generated a decrease in the production of the downstream metabolites of glutamate, including those involved in the TCA cycle and 2HG. However, this effect on metabolism was not extended to viability; rather, our patient-derived IDH1mut cell lines display a metabolic plasticity that allows them to overcome glutaminase inhibition. Conclusions Major metabolic adaptations involved pathways that can generate glutamate by using alternative substrates from glutamine, such as alanine or aspartate. Indeed, asparagine synthetase was upregulated both in vivo and in vitro revealing a new potential therapeutic target for a combinatory approach with CB839 against IDH1mut gliomas.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Adrian Lita
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Orieta Celiku
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Alejandra Cavazos Saldana
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Chun Zhang Yang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, National Institutes of Health, Frederick, Maryland USA
| | - Aiguo Li
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Wei Zhang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Hua Song
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Meili Zhang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Susie Ahn
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Dionne Davis
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Xiang Chen
- Structural Biophysics Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Frederick, Maryland USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Kylie J Walters
- Structural Biophysics Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Frederick, Maryland USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 37 Convent Drive, Building 37, Room 1136A, Bethesda, Maryland USA
| |
Collapse
|
11
|
Stylli SS. Novel Treatment Strategies for Glioblastoma. Cancers (Basel) 2020; 12:cancers12102883. [PMID: 33049911 PMCID: PMC7599818 DOI: 10.3390/cancers12102883] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor in adults. It is a highly invasive disease, making it difficult to achieve a complete surgical resection, resulting in poor prognosis with a median survival of 12–15 months after diagnosis, and less than 5% of patients survive more than 5 years. Surgical, instrument technology, diagnostic and radio/chemotherapeutic strategies have slowly evolved over time, but this has not translated into significant increases in patient survival. The current standard of care for GBM patients involving surgery, radiotherapy, and concomitant chemotherapy temozolomide (known as the Stupp protocol), has only provided a modest increase of 2.5 months in median survival, since the landmark publication in 2005. There has been considerable effort in recent years to increase our knowledge of the molecular landscape of GBM through advances in technology such as next-generation sequencing, which has led to the stratification of the disease into several genetic subtypes. Current treatments are far from satisfactory, and studies investigating acquired/inherent resistance to current therapies, restricted drug delivery, inter/intra-tumoral heterogeneity, drug repurposing and a tumor immune-evasive environment have been the focus of intense research over recent years. While the clinical advancement of GBM therapeutics has seen limited progression compared to other cancers, developments in novel treatment strategies that are being investigated are displaying encouraging signs for combating this disease. This aim of this editorial is to provide a brief overview of a select number of these novel therapeutic approaches.
Collapse
Affiliation(s)
- Stanley S. Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; or
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
12
|
Malueka RG, Dwianingsih EK, Bayuangga HF, Panggabean AS, Argo IW, Donurizki AD, Shaleh S, Wicaksono AS, Dananjoyo K, Asmedi A, Hartanto RA. Clinicopathological Features and Prognosis of Indonesian Patients with Gliomas with IDH Mutation: Insights into Its Significance in a Southeast Asian Population. Asian Pac J Cancer Prev 2020; 21:2287-2295. [PMID: 32856857 PMCID: PMC7771930 DOI: 10.31557/apjcp.2020.21.8.2287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Gliomas remain one of the most common primary brain tumors. Mutations in the isocitrate dehydrogenase (IDH) gene are associated with a distinct set of clinicopathological profiles. However, the distribution and significance of these mutations have never been studied in the Indonesian population. This study aimed to elucidate the association between IDH mutations and clinicopathological as well as prognostic profiles of Indonesian patients with gliomas. Methods: In total, 106 patients with gliomas were recruited from a tertiary academic medical center in Yogyakarta, Indonesia. Formalin-fixed paraffin-embedded and fresh tissue specimens were obtained and sectioned for hematoxylin-eosin staining and immunohistochemical examinations. Genomic DNA was isolated and analyzed for the presence of IDH mutations using standard polymerase chain reaction and nucleotide sequencing methods. Clinicopathological data were collected from medical records. Results: Although no IDH2 mutation was identified, IDH1 mutations were found in 23 (21.7%) of the patients. Patients with IDH1 mutations tended to have a history of smoking and a shorter interval between onset of symptoms and initial surgical interventions. Frontal lobe involvement, oligodendroglial histology, lower Ki67 expression, WHO grades II and III gliomas, and methylated O6-methylguanine-DNA methyltransferase (MGMT) promoters were significantly associated with the presence of IDH1 mutations. Compared with patients with IDH1-wild-type, patients with IDH1 mutation were observed to have a longer overall survival. Conclusions: IDH1 mutations are associated with certain clinicopathological and prognostic profiles in Indonesian patients with gliomas. This finding demonstrates the importance of identifying IDH mutations as part of the management of patients with glioma in Indonesia.
Collapse
Affiliation(s)
- Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Halwan Fuad Bayuangga
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Andre Stefanus Panggabean
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ibnu Widya Argo
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Aditya Dwi Donurizki
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Sabillal Shaleh
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Adiguno Suryo Wicaksono
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Kusumo Dananjoyo
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Asmedi
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rachmat Andi Hartanto
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Molecular Classification of Diffuse Gliomas. Can J Neurol Sci 2020; 47:464-473. [DOI: 10.1017/cjn.2020.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT:Technological advances in the field of molecular genetics have improved the ability to classify brain tumors into subgroups with distinct clinical features and important therapeutic implications. The World Health Organization’s newest update on classification of gliomas (2016) incorporated isocitrate dehydrogenase 1 and 2 mutations, ATRX loss, 1p/19q codeletion status, and TP53 mutations to allow for improved classification of glioblastomas, low-grade and anaplastic gliomas. This paper reviews current advances in the understanding of diffuse glioma classification and the impact of molecular markers and DNA methylation studies on survival of patients with these tumors. We also discuss whether the classification and grading of diffuse gliomas should be based on histological findings, molecular markers, or DNA methylation subgroups in future iterations of the classification system.
Collapse
|
14
|
Sun C, Xiao L, Zhao Y, Shi J, Yuan Y, Gu Y, Zhang F, Gao X, Yang Y, Yang R, Qin J, Zhang J, Wang C, Wang Y, Wang Z, Hu P, Chang T, Wang L, Wang G, Chen H, Li Z, Ye J. Wild-Type IDH1 and Mutant IDH1 Opposingly Regulate Podoplanin Expression in Glioma. Transl Oncol 2020; 13:100758. [PMID: 32208352 PMCID: PMC7097522 DOI: 10.1016/j.tranon.2020.100758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations occur frequently in lower-grade gliomas, which result in genome-wide epigenetic alterations. The wild-type IDH1 is reported to participate in lipid biosynthesis and amino acid metabolism, but its role in tumorigenesis is still unclear. In this study, the expressions of IDH1 and podoplanin (Pdpn) were determined in IDH-mutated and IDH-wild-type gliomas, and their relationships in glioma were further analyzed. In addition, the regulation of wild-type IDH1 and mutant IDH1 on Pdpn expression was investigated by luciferase assays and promoter methylation analysis. Our study showed that Pdpn was almost undetectable in IDH-mutated glioma but strongly expressed in higher-grade IDH-wild-type glioma. Pdpn overexpression promoted the migration of glioma cells but had little effect on cell growth. Moreover, Pdpn expression was positively correlated with the increased wild-type IDH1 levels in IDH-wild-type glioma. Consistently, the wild-type IDH1 greatly promoted the transcription and expression of Pdpn, but the mutant IDH1 and D-2-hydroxyglutarate significantly suppressed Pdpn expression in glioma cells. Besides, our results revealed that the methylation of CpG islands in the Pdpn promoter was opposingly regulated by wild-type and mutant IDH1 in glioma. Collectively, our results indicated that wild-type and mutant IDH1 opposingly controlled the Pdpn expression in glioma by regulating its promoter methylation, which provides a basis for understanding the relationship between wild-type and mutant IDH1 in epigenetic regulation and tumorigenesis.
Collapse
Affiliation(s)
- Chao Sun
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032; Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Liming Xiao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Yuanlin Zhao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Jiankuan Shi
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032; Department of Neurology, International Medical Center Hospital, Xi'an, China, 710100
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Yu Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Feng Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Xing Gao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Ying Yang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Risheng Yang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Junhui Qin
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Jin Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Chao Wang
- Department of Pathology, Chengdu Military General Hospital, Chengdu, China, 610083
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Zhe Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Peizhen Hu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Gang Wang
- Department of General Surgery, the 74th Group Army Hospital, Guangzhou, China, 510318
| | - Huangtao Chen
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
| | - Jing Ye
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032; Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
| |
Collapse
|
15
|
Evangelista L, Cuppari L, Bellu L, Bertin D, Caccese M, Reccia P, Zagonel V, Lombardi G. Comparison Between 18F-Dopa and 18F-Fet PET/CT in Patients with Suspicious Recurrent High Grade Glioma: A Literature Review and Our Experience. Curr Radiopharm 2020; 12:220-228. [PMID: 30644351 DOI: 10.2174/1874471012666190115124536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
PURPOSES The aims of the present study were to: 1- critically assess the utility of L-3,4- dihydroxy-6-18Ffluoro-phenyl-alanine (18F-DOPA) and O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) Positron Emission Tomography (PET)/Computed Tomography (CT) in patients with high grade glioma (HGG) and 2- describe the results of 18F-DOPA and 18F-FET PET/CT in a case series of patients with recurrent HGG. METHODS We searched for studies using the following databases: PubMed, Web of Science and Scopus. The search terms were: glioma OR brain neoplasm and DOPA OR DOPA PET OR DOPA PET/CT and FET OR FET PET OR FET PET/CT. From a mono-institutional database, we retrospectively analyzed the 18F-DOPA and 18F-FET PET/CT of 29 patients (age: 56 ± 12 years) with suspicious for recurrent HGG. All patients underwent 18F-DOPA or 18F-FET PET/CT for a multidisciplinary decision. The final definition of recurrence was made by magnetic resonance imaging (MRI) and/or multidisciplinary decision, mainly based on the clinical data. RESULTS Fifty-one articles were found, of which 49 were discarded, therefore 2 studies were finally selected. In both the studies, 18F-DOPA and 18F-FET as exchangeable in clinical practice particularly for HGG patients. From our institutional experience, in 29 patients, we found that sensitivity, specificity and accuracy of 18F-DOPA PET/CT in HGG were 100% (95% confidence interval- 95%CI - 81-100%), 63% (95%CI: 39-82%) and 62% (95%CI: 39-81%), respectively. 18F-FET PET/CT was true positive in 4 and true negative in 4 patients. Sensitivity, specificity and accuracy for 18F-FET PET/CT in HGG were 100%. CONCLUSION 18F-DOPA and 18F-FET PET/CT have a similar diagnostic accuracy in patients with recurrent HGG. However, 18F-DOPA PET/CT could be affected by inflammation conditions (false positive) that can alter the final results. Large comparative trials are warranted in order to better understand the utility of 18F-DOPA or 18F-FET PET/CT in patients with HGG.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lea Cuppari
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Luisa Bellu
- Radiation Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Daniele Bertin
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Mario Caccese
- Oncology 1 Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Pasquale Reccia
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Vittorina Zagonel
- Oncology 1 Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giuseppe Lombardi
- Oncology 1 Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| |
Collapse
|
16
|
Xu W, Liu Z, Ren H, Peng X, Wu A, Ma D, Liu G, Liu L. Twenty Metabolic Genes Based Signature Predicts Survival of Glioma Patients. J Cancer 2020; 11:441-449. [PMID: 31897239 PMCID: PMC6930419 DOI: 10.7150/jca.30923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Glioma, caused by carcinogenesis of brain and spinal glial cells, is the most common primary malignant brain tumor. To find the important indicator for glioma prognosis is still a challenge and the metabolic alteration of glioma has been frequently reported recently. Methods: In our current work, a risk score model based on the expression of twenty metabolic genes was developed using the metabolic gene expressions in The Cancer Genome Atlas (TCGA) dataset, the methods of which included the cox multivariate regression and the random forest variable hunting, a kind of machine learning algorithm, and the risk score generated from this model is used to make predictions in the survival of glioma patients in the training dataset. Subsequently, the result was further verified in other three verification sets (GSE4271, GSE4412 and GSE16011). Risk score related pathways collected in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were identified using Gene Set Enrichment Analysis (GSEA). Results: The risk score generated from our model makes good predictions in the survival of glioma patients in the training dataset and other three verification sets. By assessing the relationships between clinical indicators and the risk score, we found that the risk score was an independent and significant indicator for the prognosis of glioma patients. Simultaneously, we conducted a survival analysis of the patients who received chemotherapy and who did not, finding that the risk score was equally valid in both cases. And signaling pathways related to the genesis and development of multiple cancers were also identified. Conclusions: In summary, our risk score model is predictive for 967 glioma patients' survival from four independent datasets, and the risk score is a meaningful and independent parameter of the clinicopathological information.
Collapse
Affiliation(s)
- Wenfang Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Zhenhao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - He Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Xueqing Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Aoshen Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| |
Collapse
|
17
|
Alattar AA, Carroll KT, Bryant AK, Hirshman B, Joshi R, Carter BS, Harismendy O, Chen CC. Prognostic Importance of Age, Tumor Location, and Tumor Grade in Grade II Astrocytomas: An Integrated Analysis of the Cancer Genome Atlas and the Surveillance, Epidemiology, and End Results Database. World Neurosurg 2019; 121:e411-e418. [DOI: 10.1016/j.wneu.2018.09.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/16/2018] [Indexed: 12/27/2022]
|
18
|
Carroll KT, Chen CC. In Reply to “Comments on Results of Carroll et al’s Study on Survival Benefits of Gross Total Resection”. World Neurosurg 2018; 116:479-480. [DOI: 10.1016/j.wneu.2018.05.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022]
|
19
|
Su C, Li H, Gao W. GLUT5 increases fructose utilization and promotes tumor progression in glioma. Biochem Biophys Res Commun 2018; 500:462-469. [PMID: 29660339 DOI: 10.1016/j.bbrc.2018.04.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Abstract
Fructose is now such an important component of human diets, and several studies have found that some cancer cells could utilize fructose to overcome low glucose micro-environment, but the study on the role of fructose in glioma is rare. To explore the role of fructose in glioma, we detected the proliferation and colony formation ability of glioma cells in fructose medium, and found that the abilities of proliferation and colony formation of glioma cells in fructose medium were similar with abilities in glucose medium, however, fructose just partly restored proliferation ability of normal glial cells. To explore the mechanism, we compared the expression level of GLUT5 (Glucose transporter type 5) in these cell lines, and the results showed that glioma cell lines had higher GLUT5 expression than normal glial cell lines. And knockdown of GLUT5 could significantly inhabit cell proliferation of glioma cells in fructose medium. Furthermore, we found that GLUT5 was also higher expressed in glioma tissues, and GLUT5 expression correlated significantly with glioma malignancy and poor survival of glioma patients (p < 0.01). In addition, we also demonstrated that knockdown of GLUT5 could significantly inhabit tumor proliferation in vivo, and intake fructose could increase tumor volume prominently. Taken together, our data show that fructose can be used by glioma cells, and restrict the fructose intake or targeting GLUT5 could be efficacious strategies in glioma.
Collapse
Affiliation(s)
- Chunhai Su
- Department of Neurosurgery, Jining NO.1 People's Hospital, Jining 272011, Shandong, China.
| | - Hui Li
- Department of Nursing, Jining Medical University, Jining 272011, Shandong, China.
| | - Wenbo Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou 256600, Shandong, China.
| |
Collapse
|
20
|
Bashir A, Brennum J, Broholm H, Law I. The diagnostic accuracy of detecting malignant transformation of low-grade glioma using O-(2-[18F]fluoroethyl)-l-tyrosine positron emission tomography: a retrospective study. J Neurosurg 2018; 130:451-464. [PMID: 29624154 DOI: 10.3171/2017.8.jns171577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/02/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The diagnostic accuracy of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET scanning in detecting the malignant transformation of low-grade gliomas (LGGs) is controversial. In this study, the authors retrospectively assessed the diagnostic potential of FET PET in patients with MRI-suspected malignant progression of LGGs that had previously been treated and the relationship between FET uptake and MRI and molecular biomarkers. METHODS Forty-two patients who had previously undergone surgical or multimodal treatment for a histologically verified LGG were referred for FET PET assessment because of clinical signs and/or MRI findings suggestive of tumor progression. Maximal and mean tumor-to-brain ratios (TBRmax and TBRmean, respectively) on FET PET as well as kinetic FET PET parameters (time to peak [TTP] and time-activity curve [TAC]) were determined. Final diagnoses were confirmed histologically. The diagnostic accuracy of FET parameters, separately and combined, for the detection of malignant progression was evaluated using receiver operating characteristic (ROC) curve analysis. Possible predictors that might influence the diagnostic accuracy of FET PET were assessed using multiple linear regression analysis. Spearman’s rank correlation r method was applied to determine the correlation between TBRmax and TAC, and molecular biomarkers from tumor tissues. RESULTS A total of 47 FET PET scans were obtained and showed no significant association between FET parameters and contrast enhancement on MRI. ROC curve analyses overall were unable to demonstrate any significant differentiation between nontransformed LGGs and LGGs that had transformed to high-grade gliomas when evaluating FET parameters separately or combined. After excluding the oligodendroglial subgroup, a significant difference was observed between nontransformed and transformed LGGs when combining FET parameters (i.e., TBRmax > 1.6, TAC describing a plateau or decreasing pattern, and TTP < 25 minutes), with the best result yielded by a combined analysis of TBRmax > 1.6 and TAC with a plateau or decreasing pattern (sensitivity 75% and specificity 83%, p = 0.003). The difference was even greater when patients who had previously undergone oncological treatment were also excluded (sensitivity 93% and specificity 100%, p = 0.001). Multiple linear regression analysis revealed that the presence of an oligodendroglial component (p = 0.029), previous oncological treatment (p = 0.039), and the combined FET parameters (p = 0.027) were significant confounding factors in the detection of malignant progression. TBRmax was positively correlated with increasing cell density (p = 0.040) and inversely correlated with IDH1 mutation (p = 0.006). CONCLUSIONS A single FET PET scan obtained at the time of radiological and/or clinical progression seems to be of limited value in distinguishing transformed from nontransformed LGGs, especially if knowledge of the primary tumor histopathology is not known. Therefore, FET PET imaging alone is not adequate to replace histological confirmation, but it may provide valuable information on the location and delineation of active tumor tissue, as well as an assessment of tumor biology in a subgroup of LGGs.
Collapse
Affiliation(s)
- Asma Bashir
- Departments of1Clinical Physiology, Nuclear Medicine & PET
| | | | - Helle Broholm
- 3Pathology, National University Hospital, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ian Law
- Departments of1Clinical Physiology, Nuclear Medicine & PET
| |
Collapse
|
21
|
Carroll KT, Bryant AK, Hirshman B, Alattar AA, Joshi R, Gabel B, Carter BS, Harismendy O, Vaida F, Chen CC. Interaction Between the Contributions of Tumor Location, Tumor Grade, and Patient Age to the Survival Benefit Associated with Gross Total Resection. World Neurosurg 2018; 111:e790-e798. [PMID: 29309983 DOI: 10.1016/j.wneu.2017.12.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Gross total resection (GTR) in patients with glioblastoma (GB) and anaplastic astrocytoma (AA) is associated with improved survival. We examined how tumor location, tumor grade, and age affected this benefit. METHODS We selected patients with lobar AA or GB in the Surveillance, Epidemiology, and End Results database from 1999 to 2010. Survival analyses were performed using Kaplan-Meier curves and Cox proportional hazards models. RESULTS We identified and studied 1429 patients with lobar AA and 12,537 patients with lobar GB in the Surveillance, Epidemiology, and End Results database. In multivariate Cox proportional hazards analysis, GTR of frontal lobe AA was associated with approximately 50% reduction in risk of death compared with subtotal resection (STR) (hazard ratio 0.51; 95% confidence interval, 0.36-0.73; P < 0.001). This hazard ratio corresponds to a median increase in overall survival of >8 years with GTR compared with STR. In nonfrontal AAs, there was no survival difference between GTR and STR (hazard ratio 0.79; 95% confidence interval, 0.58-1.08; P = 0.143). Location-specific survival benefit from GTR in AAs was significant in patients ≤50 years old but was not evident in patients >50 years old. In patients with GB, no location-dependent survival benefit with GTR was observed. CONCLUSIONS Our results demonstrate complex interaction between tumor grade, frontal lobe location, and age in their various contributions to survival benefit gained from GTR. The greatest survival benefit of GTR relative to STR was observed in patients ≤50 years old with frontal AAs.
Collapse
Affiliation(s)
- Kate T Carroll
- School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Alex K Bryant
- School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Brian Hirshman
- Department of Neurosurgery, University of California, San Diego, San Diego, California, USA
| | - Ali A Alattar
- School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Rushikesh Joshi
- School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Brandon Gabel
- Department of Neurosurgery, University of California, San Diego, San Diego, California, USA
| | - Bob S Carter
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier Harismendy
- Moores Cancer Center, University of California, San Diego, San Diego, California, USA
| | - Florin Vaida
- Department of Family Medicine and Public Health, University of California, San Diego, San Diego, California, USA
| | - Clark C Chen
- Department of Neurosurgery, University of California, San Diego, San Diego, California, USA; Moores Cancer Center, University of California, San Diego, San Diego, California, USA.
| |
Collapse
|
22
|
2-Hydroxyglutarate Detection by Short Echo Time Magnetic Resonance Spectroscopy in Routine Imaging Study of Brain Glioma at 3.0 T. J Comput Assist Tomogr 2018; 42:469-474. [DOI: 10.1097/rct.0000000000000705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Visani M, Acquaviva G, Marucci G, Paccapelo A, Mura A, Franceschi E, Grifoni D, Pession A, Tallini G, Brandes AA, de Biase D. Non-canonical IDH1 and IDH2 mutations: a clonal and relevant event in an Italian cohort of gliomas classified according to the 2016 World Health Organization (WHO) criteria. J Neurooncol 2017; 135:245-254. [PMID: 28748342 DOI: 10.1007/s11060-017-2571-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/13/2017] [Indexed: 02/05/2023]
Abstract
According to the 2016 World Health Organization (WHO) classification of tumors of the central nervous system, assessment of exon 4 mutations in isocitrate dehydrogenase 1 or 2 genes (IDH1 or IDH2) is an essential step in the characterization of gliomas. The p.R132H mutation is the most frequent alteration in IDH genes, however other non-canonical IDH mutations can be identified. The aim of this study is to investigate in depth the prevalence of non-R132H IDH ("non-canonical") mutations in brain tumors classified according to the 2016 WHO scheme and their clonal distribution in neoplastic cells. A total of 288 consecutive cases of brain gliomas (grade II-IV) were analyzed for exon 4 IDH1 and IDH2 mutations. IDH1 and IDH2 analysis was performed using next generation sequencing. Non-canonical IDH mutations were identified in 13/52 (25.0%) grade II gliomas (astrocytomas: 8/31, 25.8%; oligodendrogliomas: 5/21, 23.8%) and in 5/40 (12.5%) grade III gliomas (astrocytomas: 3/25, 12.0%; oligodendrogliomas: 2/15, 13.3%). They were not identified in 196 grade IV gliomas (192 glioblastomas, 4 gliosarcomas). In the large majority (>80%) of tumors IDH mutations, both IDH1-R132H and the non-canonical ones, were present in the large majority (>80%) of neoplastic cells. Our data highlight the importance of investigating not only the IDH1-R132H mutation but also the non-canonical ones. These mutations are clonally distributed, with proportions of mutated neoplastic cells overlapping with those of p.R132H, a finding consistent with their driver role in gliomagenesis.
Collapse
Affiliation(s)
- Michela Visani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy
| | - Giorgia Acquaviva
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy
| | - Gianluca Marucci
- Anatomic Pathology Unit, AUSL of Bologna, Via Altura 3, 40139, Bologna, Italy
- Department of Neuropathology, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Alexandro Paccapelo
- Department of Oncology, AUSL Bologna - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Antonella Mura
- Department of Oncology, AUSL Bologna - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Enrico Franceschi
- Department of Oncology, AUSL Bologna - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Giovanni Tallini
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy.
- Anatomia Patologica, ASL Bologna, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Scuola di Medicina e Chirurgia, Università di Bologna, Via Altura 3, 40139, Bologna, Italy.
| | - Alba A Brandes
- Department of Oncology, AUSL Bologna - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Lopes M, Carvalho B, Vaz R, Linhares P. Influence of neutrophil-lymphocyte ratio in prognosis of glioblastoma multiforme. J Neurooncol 2017; 136:173-180. [PMID: 29076002 DOI: 10.1007/s11060-017-2641-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/22/2017] [Indexed: 01/04/2023]
Abstract
Neutrophil-lymphocyte ratio (NLR) is a hematological marker of systemic inflammation and several studies demonstrate an association between a higher NLR and a worse prognosis in many malignancies. However, literature analyzing its prognostic value in glioblastoma multiforme (GBM) is still scarce. We intended to analyze the correlation of NLR with overall survival and progression-free survival in patients with GBM performing a retrospective review of the patients with diagnosis of GBM submitted to a resection surgery in the department of neurosurgery of a tertiary care hospital, between January/2005 and January/2013. 140 patients were included. Mean age at surgery was 62.9 ± 10.0 years and mean age at death was 64.4 ± 9.8 years. Mean overall survival was 19.4 ± 14.3 months and mean progression-free survival was 9.4 ± 8.7 months. There was no correlation of NLR, platelets-lymphocyte ratio (PLR) or absolute counts of neutrophils, lymphocytes and platelets with overall survival in multivariate analysis. However, a preoperative NLR ≤ 5 correlated with a shorter progression-free survival [HR 1.56 (SD 95% 1.04-2.34); p = 0.032]. We performed a subgroup analysis of patients who completed Stupp protocol. In this subgroup of 117 patients, a preoperative NLR > 7 correlated with a shorter overall survival [HR 1.65 (SD 95% 1.07-2.53); p = 0.023]. The results from our total cohort didn't confirm the correlation between a higher NRL and worse survival in GBM. However, in the subgroup analysis of patients who completed Stupp protocol, a higher NLR was an independent prognostic factor to a shorter overall survival, similar to existent literature data about GBM.
Collapse
Affiliation(s)
- Marta Lopes
- Department of Neurology, Hospital São Sebastião, Entre Douro e Vouga Hospital Centre, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal.
| | - Bruno Carvalho
- Department of Neurosurgery, Hospital São João, São João Hospital Centre, Oporto, Portugal
- Faculty of Medicine, Oporto University, Oporto, Portugal
| | - Rui Vaz
- Department of Neurosurgery, Hospital São João, São João Hospital Centre, Oporto, Portugal
- Faculty of Medicine, Oporto University, Oporto, Portugal
- Neurosciences Center, Hospital CUF Porto, Oporto, Portugal
| | - Paulo Linhares
- Department of Neurosurgery, Hospital São João, São João Hospital Centre, Oporto, Portugal
- Faculty of Medicine, Oporto University, Oporto, Portugal
- Neurosciences Center, Hospital CUF Porto, Oporto, Portugal
| |
Collapse
|
25
|
Fujii Y, Muragaki Y, Maruyama T, Nitta M, Saito T, Ikuta S, Iseki H, Hongo K, Kawamata T. Threshold of the extent of resection for WHO Grade III gliomas: retrospective volumetric analysis of 122 cases using intraoperative MRI. J Neurosurg 2017; 129:1-9. [PMID: 28885120 DOI: 10.3171/2017.3.jns162383] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE WHO Grade III gliomas are relatively rare and treated with multiple modalities such as surgery, chemotherapy, and radiotherapy. The impact of the extent of resection (EOR) on improving survival in patients with this tumor type is unclear. Moreover, because of the heterogeneous radiological appearance of Grade III gliomas, the MRI sequence that best correlates with tumor volume is unknown. In the present retrospective study, the authors evaluated the prognostic significance of EOR. METHODS Clinical and radiological data from 122 patients with newly diagnosed WHO Grade III gliomas who had undergone intraoperative MRI-guided resection at a single institution between March 2000 and December 2011 were analyzed retrospectively. Patients were divided into 2 groups by histological subtype: 81 patients had anaplastic astrocytoma (AA) or anaplastic oligoastrocytoma (AOA), and 41 patients had anaplastic oligodendroglioma (AO). EOR was calculated using pre- and postoperative T2-weighted and contrast-enhanced T1-weighted MR images. Univariate and multivariate analyses were performed to evaluate the prognostic significance of EOR on overall survival (OS). RESULTS The 5-, 8-, and 10-year OS rates for all patients were 74.28%, 70.59%, and 65.88%, respectively. The 5- and 8-year OS rates for patients with AA and AOA were 72.2% and 67.2%, respectively, and the 10-year OS rate was 62.0%. On the other hand, the 5- and 8-year OS rates for patients with AO were 79.0% and 79.0%; the 10-year OS rate is not yet available. The median pre- and postoperative T2-weighted high-signal intensity volumes were 56.1 cm3 (range 1.3-268 cm3) and 5.9 cm3 (range 0-180 cm3), respectively. The median EOR of T2-weighted high-signal intensity lesions (T2-EOR) and contrast-enhanced T1-weighted lesions were 88.8% (range 0.3%-100%) and 100% (range 34.0%-100%), respectively. A significant survival advantage was associated with resection of 53% or more of the preoperative T2-weighted high-signal intensity volume in patients with AA and AOA, but not in patients with AO. Univariate analysis showed that preoperative Karnofsky Performance Scale score (p = 0.0019), isocitrate dehydrogenase 1 ( IDH1) mutation (p = 0.0008), and T2-EOR (p = 0.0208) were significant prognostic factors for survival in patients with AA and AOA. Multivariate analysis demonstrated that T2-EOR (HR 3.28; 95% CI 1.22-8.81; p = 0.0192) and IDH1 mutation (HR 3.90; 95% CI 1.53-10.75; p = 0.0044) were predictive of survival in patients with AA and AOA. CONCLUSIONS T2-EOR was one of the most important prognostic factors for patients with AA and AOA. A significant survival advantage was associated with resection of 53% or more of the preoperative T2-weighted high-signal intensity volume in patients with AA and AOA.
Collapse
Affiliation(s)
- Yu Fujii
- 1Department of Neurosurgery and.,3Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshihiro Muragaki
- 1Department of Neurosurgery and.,2Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo; and
| | - Takashi Maruyama
- 1Department of Neurosurgery and.,2Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo; and
| | - Masayuki Nitta
- 1Department of Neurosurgery and.,2Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo; and
| | | | - Soko Ikuta
- 2Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo; and
| | - Hiroshi Iseki
- 2Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo; and
| | - Kazuhiro Hongo
- 3Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This review will discuss the role of several key players in glioma classification and biology, namely isocitrate dehydrogenase 1 and 2 (IDH1/2), alpha thalassemia/mental retardation syndrome X-linked (ATRX), B-Raf (BRAF), telomerase reverse transcriptase (TERT), and H3K27M. RECENT FINDINGS IDH1/2 mutation delineates oligoden-droglioma, astrocytoma, and secondary glioblastoma (GBM) from primary GBM and lower-grade gliomas with biology similar to GBM. Additional mutations including TERT, 1p/19q, and ATRX further guide glioma classification and diagnosis, as well as pointing directions toward individualized treatments for these distinct molecular subtypes. ATRX and TERT mutations suggest the importance of telomere maintenance in gliomagenesis. BRAF alterations are key in certain low-grade gliomas and pediatric gliomas but rarely in high-grade gliomas in adults. Histone mutations (e.g., H3K27M) and their effect on chromatin modulation are novel mechanisms of cancer generation and uniquely seen in midline gliomas in children and young adults. Over the past decade, a remarkable accumulation of knowledge from the genomic study of gliomas has led to reclassification of tumors, new understanding of oncogenic mechanisms, and novel treatment strategies.
Collapse
|
27
|
Yang Y, Mao Q, Wang X, Liu Y, Mao Y, Zhou Q, Luo J. An analysis of 170 glioma patients and systematic review to investigate the association between IDH-1 mutations and preoperative glioma-related epilepsy. J Clin Neurosci 2016; 31:56-62. [PMID: 27406953 DOI: 10.1016/j.jocn.2015.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 02/05/2023]
Abstract
Seizure is a common presenting symptom of glioma, and many biomarkers have been suggested to be associated with preoperative seizure; however, the relationships between IDH (isocitrate dehydrogenase) mutations and glioma-related epilepsy only recently been studied. The authors aimed to examine the correlations between IDH mutations in glioma patients with preoperative seizures and tumor location. A series of 170 glioma samples were analyzed for IDH1 R132H mutations (amino acid change from arginine to histidine at codon 132) with immunohistochemistry (IHC) staining and for IDH mutations with direct DNA sequencing when the IHC results were negative. If either the IHC or direct DNA sequencing result was positive, the IDH status was defined as mutated. The results of the IDH mutation examinations were used to analyze the relationship between mutations and glioma-related epilepsy. The study population consisted of 64 (37.6%) World Health Organization (WHO) grade II gliomas, 58 (34.1%) grade III, and 48 (28.3%) grade IV gliomas. A total of 84 samples with IDH1 mutations were observed in our study, and 54 of these presented with seizures as the initial symptoms, whereas 28 of the patients with wild-type IDH status presented with seizures (p=0.043 for the WHO grade II gliomas, p=0.002 for the grade III gliomas and p=0.942 for the grade IV gliomas, chi-squared tests). Among the WHO grade II and III gliomas, IDH1 mutations were significantly associated with preoperative seizures, but no significant relationship between IDH mutations and preoperative seizures was found with glioblastoma multiforme.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Neurosurgery, Waiguoxuexiang No. 37, West China Hospital, Si Chuan University, Chengdu 610041, Sichuan Province, China
| | - Qing Mao
- Department of Neurosurgery, Waiguoxuexiang No. 37, West China Hospital, Si Chuan University, Chengdu 610041, Sichuan Province, China.
| | - Xiang Wang
- Department of Neurosurgery, Waiguoxuexiang No. 37, West China Hospital, Si Chuan University, Chengdu 610041, Sichuan Province, China
| | - Yanhui Liu
- Department of Neurosurgery, Waiguoxuexiang No. 37, West China Hospital, Si Chuan University, Chengdu 610041, Sichuan Province, China
| | - Yunhe Mao
- West China Medical School of Si Chuan University, Chengdu 610041, Sichuan Province, China
| | - Qiao Zhou
- Department of Neuropathology, West China Hospital, Si Chuan University, Chengdu 610041, Sichuan Province, China
| | - Jiewen Luo
- Department of Neurosurgery, Waiguoxuexiang No. 37, West China Hospital, Si Chuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
28
|
Padwal JA, Dong X, Hirshman BR, Hoi-Sang U, Carter BS, Chen CC. Superior Efficacy of Gross Total Resection in Anaplastic Astrocytoma Patients Relative to Glioblastoma Patients. World Neurosurg 2016; 90:186-193. [DOI: 10.1016/j.wneu.2016.02.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
29
|
Prognostic Value of O-(2-[18F]-Fluoroethyl)-L-Tyrosine-Positron Emission Tomography Imaging for Histopathologic Characteristics and Progression-Free Survival in Patients with Low-Grade Glioma. World Neurosurg 2016; 89:230-9. [PMID: 26855307 DOI: 10.1016/j.wneu.2016.01.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE O-(2-[18F]-fluoroethyl)-L-tyrosine positron emission tomography ((18)F-FET-PET) imaging is applied for tumor grading, prognostic stratification, and diagnosis of tumor recurrence, especially in high-grade gliomas. Experience with (18)F-FET-PET imaging in low-grade gliomas is limited. Therefore, the objective of the present study was to assess (18)F-FET-PET tracer uptake in low-grade gliomas and to investigate possible correlations with contrast enhancement in magnetic resonance imaging (MRI) and histopathology. METHODS A total of 65 patients (29 female, 36 male, median age 38 years) with newly diagnosed or recurrent low-grade gliomas for whom preoperative MRI and (18)F-FET-PET imaging were available were included. Tumor entity, tumor location, as well as histopathology (isocitrate dehydrogenase [IDH] 1/2 mutation, Ki67, p53, oligodendroglial differentiation, 1p19q codeletion), and progression-free survival were assessed. (18)F-FET-PET images were acquired and fused to MRI (T2-weighted fluid-attenuated inversion recovery) and tumor volume was measured in areas with a tumor-to-background ratio >1.3, >1.6, and >2.0 and in MRI. RESULTS PET tracer uptake was observed in 78.5% of all World Health Organization Grade I and II tumors. (18)F-FET uptake showed a high negative predictive value for oligodendroglial components and for 1p19q codeletion. No further significant correlation between histologic features, progression-free survival, or IDH1/2 mutation status and tracer uptake was observed. CONCLUSIONS We found that 78.5% of low-grade gliomas do show elevated tracer uptake in (18)F-FET-PET imaging. Low-grade glioma without tracer uptake exclude oligodendroglial differentiation and 1p19q codeletion. Further differentiation between molecular subtypes is not possible with static (18)F-FET-PET. No correlation of progression-free survival to tracer uptake and IDH1/2-mutation status was observed.
Collapse
|
30
|
Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 2015; 17:239-55. [PMID: 25810009 PMCID: PMC4372648 DOI: 10.1016/j.neo.2015.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ying Jiang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hanchong Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Da Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
31
|
Aukkanimart R, Boonmars T, Juasook A, Sriraj P, Boonjaraspinyo S, Wu Z, Laummuanwai P, Pairojkul C, Khuntikeo N, Rattanasuwan P. Altered Expression of Oxidative Metabolism Related Genes in Cholangiocarcinomas. Asian Pac J Cancer Prev 2015; 16:5875-81. [PMID: 26320466 DOI: 10.7314/apjcp.2015.16.14.5875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly fatal cancer for which the molecular mechanisms and diagnostic markers are obscure. We therefore investigated the kinetic expression of isocitrate dehydrogenase-1 (IDH1), isocitrate dehydrogenase-2 (IDH2) and homogentisate 1,2-dioxygenase (HGD) during the tumorigenesis of O. viverrini infection-associated CCA in an animal model, and confirmed down-regulation of expression in human cases of opisthorchiasis-associated CCA through real time PCR. Kinetic expression of HGD, IDH1 and IDH2 in the animal model of O. viverrini infection-induced CCA was correlated with human CCA cases. In the animal model, expression of HGD was decreased at all time points (p<0.01) and expression of both IDH1 and IDH2 was decreased in the CCA group. In human cases, expression of HGD, IDH1 and IDH2 was decreased more than 2 fold in 55 cases (70.5%), 25 cases (32.1%) and 24 cases (30.8%) respectively. The present study suggests that reduction of HGD, IDH1 and IDH2 may be involve in cholangiocarcinoma genesis and may be useful for molecular diagnosis.
Collapse
Affiliation(s)
- Ratchadawan Aukkanimart
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand E-mail : ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Proteomic analysis of a nasopharyngeal carcinoma cell line and a nasopharyngeal epithelial cell line. TUMORI JOURNAL 2015; 101:676-83. [PMID: 26108243 DOI: 10.5301/tj.5000345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an epithelial malignancy exhibiting a strong geographic preference and a close association with Epstein-Barr virus (EBV). The aim of this study was to investigate the precise mechanism of nasopharyngeal epithelial-to-NPC tumorigenesis and to identify possible biomarkers and targets for therapy. METHODS Proteomic analysis was performed on the immortalized nasopharyngeal epithelial cell line NP69 and the NPC cell line C666. RESULTS A comparative analysis of total lysates from the cell lines using 2-D gel electrophoresis-mass spectrometry resulted in the identification of 87 different protein spots. The different proteins were grouped into 5 main categories: (i) energy production and general metabolism, (ii) adaptation/stress tolerance, (iii) cell proliferation, (iv) cell structure and (v) epithelial-mesenchymal transition. The detection of metabolism-related proteins indicated that the NPC cells relied on aerobic glycolysis, with reduced use of the citric acid cycle. Glucose uptake and lactate secretion increased in the medium of C666 compared with NP69. CONCLUSIONS The present study revealed that glycolysis was up-regulated in the NPC cell lines compared with nasopharyngeal epithelial cells. A number of molecules involved in metabolism were identified, and further investigations will be needed to validate these potential biomarkers or targets.
Collapse
|
33
|
Cordier D, Gozé C, Schädelin S, Rigau V, Mariani L, Duffau H. A better surgical resectability of WHO grade II gliomas is independent of favorable molecular markers. J Neurooncol 2014; 121:185-93. [PMID: 25261925 DOI: 10.1007/s11060-014-1623-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022]
Abstract
A higher extent of resection (EOR) in WHO grade II gliomas (GIIG) is correlated with longer survival. However, the molecular markers also feature prognostic relevance. Here, we examined whether maximal EOR was related to the genetic profile. We retrospectively investigated the predictive value of 1p19q, IDH1, 53 expression and Ki67 index for the EOR in 200 consecutive GIIGs (2007-2013). Data were modeled in a linear model. The analysis was performed with two statistical methods (arcsin-sqrt and Beta-regression model with logit link). There was no deletion 1p19q in 118 cases, codeletion 1p19q (57 cases), single deletion 1p (4 cases) or19q (16 cases). 155 patients had a mutation of IDH1. p53 was graded in 4 degrees (0:92 cases, 1:52 cases, 2:31 cases, 3:8 cases). Mean Ki67 index was 5.2 % (range 1-20 %). Mean preoperative tumor volume was 60.8 cm(3) (range 3.3-250 cm(3)) and mean EOR was 0.917 (range 0.574-1). The statistical analysis was significant for a lower EOR in patients with codeletion 1p19q (OR 0.738, p = 0.0463) and with a single deletion 19q (OR 0.641, p = 0.0168). There was no significant correlation between IDH1 or p53 and the EOR. Higher Ki67 was marginally associated with higher EOR (p = 0.0603). The study demonstrates in a large cohort of GIIG that a higher EOR is not attributable to favorable genetic markers. This original result supports maximal surgical resection as an important therapeutic factor per se to optimize prognosis, independently of the molecular pattern.
Collapse
Affiliation(s)
- Dominik Cordier
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France
| | | | | | | | | | | |
Collapse
|
34
|
Vanan MI, Eisenstat DD. Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neurooncol Pract 2014; 1:145-157. [PMID: 26034626 DOI: 10.1093/nop/npu022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 11/12/2022] Open
Abstract
High-grade gliomas (HGGs) constitute ∼15% of all primary brain tumors in children and adolescents. Routine histopathological diagnosis is based on tissue obtained from biopsy or, preferably, from the resected tumor itself. The majority of pediatric HGGs are clinically and biologically distinct from histologically similar adult malignant gliomas; these differences may explain the disparate responses to therapy and clinical outcomes when comparing children and adults with HGG. The recently proposed integrated genomic classification identifies 6 distinct biological subgroups of glioblastoma (GBM) throughout the age spectrum. Driver mutations in genes affecting histone H3.3 (K27M and G34R/V) coupled with mutations involving specific proteins (TP53, ATRX, DAXX, SETD2, ACVR1, FGFR1, NTRK) induce defects in chromatin remodeling and may play a central role in the genesis of many pediatric HGGs. Current clinical practice in pediatric HGGs includes surgical resection followed by radiation therapy (in children aged > 3 years) with concurrent and adjuvant chemotherapy with temozolomide. However, these multimodality treatment strategies have had a minimal impact on improving survival. Ongoing clinical trials are investigating new molecular targets, chemoradiation sensitization strategies, and immunotherapy. Future clinical trials of pediatric HGG will incorporate the distinction between GBM molecular subgroups and stratify patients using group-specific biomarkers.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| | - David D Eisenstat
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| |
Collapse
|
35
|
Waterfall JJ, Killian JK, Meltzer PS. The role of mutation of metabolism-related genes in genomic hypermethylation. Biochem Biophys Res Commun 2014; 455:16-23. [PMID: 25111818 DOI: 10.1016/j.bbrc.2014.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
Genetic mutations, metabolic dysfunction, and epigenetic misregulation are commonly considered to play distinct roles in tumor development and maintenance. However, intimate relationships between these mechanisms are now emerging. In particular, mutations in genes for the core metabolic enzymes IDH, SDH, and FH are significant drivers of diverse tumor types. In each case, the resultant accumulation of particular metabolites inhibits TET enzymes responsible for oxidizing 5-methylcytosine, leading to pervasive DNA hypermethylation.
Collapse
Affiliation(s)
- Joshua J Waterfall
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - J Keith Killian
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Piruat JI, Millán-Uclés A. Genetically modeled mice with mutations in mitochondrial metabolic enzymes for the study of cancer. Front Oncol 2014; 4:200. [PMID: 25126540 PMCID: PMC4115665 DOI: 10.3389/fonc.2014.00200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial dysfunction has long been implicated in progression of cancer. As a paradigm, the “Warburg effect,” which by means of a switch toward anaerobic metabolism enables cancer cells to proliferate in oxygen limiting conditions, is well established. Besides this metabolic transformation of tumors, it has been discovered that mutations in genes encoding mitochondrial proteins are the etiological factors in different types of cancer. This confers to mitochondrial dysfunction a causative role, rather than resultant, in tumor genesis beyond its role in tumor progression and development. Mitochondrial proteins encoded by tumor-suppressor genes are part of the succinate-dehydrogenase, the fumarate-hydratase, and the mitochondrial isocitrate-dehydrogenase enzymes, all of them participating in the Krebs cycle. The spectrum of tumors associated with mutations in these genes is becoming larger and varies between each enzyme. Several mechanisms of tumorigenesis have been proposed for the different enzymatic defects, most of them based on studies using cellular and animal models. Regarding the molecular pathways implicated in the oncogenic transformation, one of the first accepted theories was based on the constitutive expression of the hypoxia-inducible factor 1α (Hif1α) at normal oxygen tension, a theory referred to as “pseudo-hypoxic drive.” This mechanism has been linked to the three types of mutations, thus suggesting a central role in cancer. However, other alternative molecular processes, such as oxidative stress or altered chromatin remodeling, have been also proposed to play an onco-pathogenic role. In the recent years, the role of oncometabolites, a new concept emerged from biochemical studies upon these tumors, has acquired relevance as responsible for tumor formation. Nevertheless, the actual contribution of each of these mechanisms has not been definitively established. In this review, we summarize the results obtained from mouse strains genetically modified in the three different enzymes.
Collapse
Affiliation(s)
- José I Piruat
- Departamento de Hematología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville , Spain
| | - Africa Millán-Uclés
- Departamento de Hematología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville , Spain
| |
Collapse
|
37
|
Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O, Hawkins C, Majewski J, Jones C, Costello JF, Iavarone A, Aldape K, Brennan CW, Jabado N, Pfister SM. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14:92-107. [PMID: 24457416 PMCID: PMC4003223 DOI: 10.1038/nrc3655] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have extended our understanding of the molecular biology that underlies adult glioblastoma over many years. By contrast, high-grade gliomas in children and adolescents have remained a relatively under-investigated disease. The latest large-scale genomic and epigenomic profiling studies have yielded an unprecedented abundance of novel data and provided deeper insights into gliomagenesis across all age groups, which has highlighted key distinctions but also some commonalities. As we are on the verge of dissecting glioblastomas into meaningful biological subgroups, this Review summarizes the hallmark genetic alterations that are associated with distinct epigenetic features and patient characteristics in both paediatric and adult disease, and examines the complex interplay between the glioblastoma genome and epigenome.
Collapse
Affiliation(s)
- Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| | - Sebastian Bender
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| | - David T.W. Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jacques Grill
- Brain Tumor Program, Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Institute, Universite Paris Sud, 114 Rue Eduoard Vaillant, 94805 Villejuif, France
| | - Oren Becher
- Division of Pediatric Hematology/Oncology, Duke University Medical Center, DUMC 91001, Durham, NC 27710, USA
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jacek Majewski
- Division of Experimental Medicine and Department of Human Genetics, McGill University and McGill University Health Centre, 2155 Guy Street, Montreal, QC, H3H 2R9, Canada
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Joseph F. Costello
- Brain Tumor Research Center, Department of Neurosurgery, University of California, 2340 Sutter St., San Francisco, CA 94143, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics and Departments of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kenneth Aldape
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0085, Houston, TX 77030, USA
| | - Cameron W. Brennan
- Human Oncology & Pathogenesis Program and Department of Neurosurgery, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Nada Jabado
- Division of Experimental Medicine and Department of Human Genetics, McGill University and McGill University Health Centre, 2155 Guy Street, Montreal, QC, H3H 2R9, Canada
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| |
Collapse
|
38
|
C-terminally truncated form of αB-crystallin is associated with IDH1 R132H mutation in anaplastic astrocytoma. J Neurooncol 2014; 117:53-65. [PMID: 24473683 DOI: 10.1007/s11060-014-1371-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Malignant gliomas are the most common human primary brain tumors. Point mutation of amino acid arginine 132 to histidine (R132H) in the IDH1 protein leads to an enzymatic gain-of-function and is thought to promote gliomagenesis. Little is known about the downstream effects of the IDH1 mutation on protein expression and how and whether changes in protein expression are involved in tumor formation or propagation. In the current study, we used 2D DIGE (difference gel electrophoresis) and mass spectrometry to analyze differences in protein expression between IDH1(R132H) mutant and wild type anaplastic (grade III) astrocytoma from human brain cancer tissues. We show that expression levels of many proteins are altered in IDH1(R132H) mutant anaplastic astrocytoma. Some of the most over-expressed proteins in the mutants include several forms of αB-crystallin, a small heat-shock and anti-apoptotic protein. αB-crystallin proteins are elevated up to 22-fold in IDH1(R132H) mutant tumors, and αB-crystallin expression appears to be controlled at the post-translational level. We identified the most abundant form of αB-crystallin as a low molecular weight species that is C-terminally truncated. We also found that overexpression of αB-crystallin can be induced by transfecting U251 human glioblastoma cell lines with the IDH1(R132H) mutation. In conclusion, the association of a C-terminally truncated form of αB-crystallin protein with the IDH1(R132H) mutation is a novel finding that could impact apoptosis and stress response in IDH1 mutant glioma.
Collapse
|
39
|
Bensaad K, Harris AL. Hypoxia and metabolism in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:1-39. [PMID: 24272352 DOI: 10.1007/978-1-4614-5915-6_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interest in targeting metabolism has been renewed in recent years as research increases understanding of the altered metabolic profile of tumor cells compared with that of normal cells. Metabolic reprogramming allows cancer cells to survive and proliferate in the hostile tumor microenvironment. These metabolic changes support energy generation, anabolic processes, and the maintenance of redox potential, mechanisms that are all essential for the proliferation and survival of tumor cells. The metabolic switch in a number of key metabolic pathways is mainly regulated by genetic events, rendering cancer cells addicted to certain nutrients, such as glutamine. In addition, hypoxia is induced when highly proliferative tumor cells distance themselves from an oxygen supply. Hypoxia-inducible factor 1α is largely responsible for alterations in metabolism that support the survival of hypoxic tumor cells. Metabolic alterations and dependencies of cancer cells may be exploited to improve anticancer therapy. This chapter reviews the main aspects of altered metabolism in cancer cells, emphasizing recent advances in glucose, glutamine, and lipid metabolism.
Collapse
Affiliation(s)
- Karim Bensaad
- CRUK Hypoxia and Angiogenesis Group, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK,
| | | |
Collapse
|
40
|
Abstract
Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.
Collapse
|
41
|
Wang C, Funk CC, Eddy JA, Price ND. Transcriptional analysis of aggressiveness and heterogeneity across grades of astrocytomas. PLoS One 2013; 8:e76694. [PMID: 24146911 PMCID: PMC3795736 DOI: 10.1371/journal.pone.0076694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human astrocytoma grades and hopefully can contribute towards improvements in diagnosis and therapy choices. Our results also identify a number of testable hypotheses relating to astrocytoma etiology that may prove helpful in developing much-needed biomarkers for earlier disease detection.
Collapse
Affiliation(s)
- Chunjing Wang
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, United States of America
| | - Cory C. Funk
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - James A. Eddy
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Bioengineering, University of Illinois, Urbana, Illinois, United States of America
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, United States of America
- Department of Bioengineering, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
42
|
Mur P, Mollejo M, Ruano Y, de Lope ÁR, Fiaño C, García JF, Castresana JS, Hernández-Laín A, Rey JA, Meléndez B. Codeletion of 1p and 19q determines distinct gene methylation and expression profiles in IDH-mutated oligodendroglial tumors. Acta Neuropathol 2013; 126:277-89. [PMID: 23689617 DOI: 10.1007/s00401-013-1130-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/04/2023]
Abstract
Oligodendroglial tumors (OTs) are primary brain tumors that show variable clinical and biological behavior. The 1p/19q codeletion is frequent in these tumors, indicating a better prognosis and/or treatment response. Recently, the prognostically favorable CpG island methylator phenotype (CIMP) in gliomas (G-CIMP+) was associated with mutations in the isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 (IDH) genes, as opposed to G-CIMP- tumors, highlighting the relevance of epigenetic mechanisms. We performed a whole-genome methylation study in 46 OTs, and a gene expression study of 25 tumors, correlating the methylation and transcriptomic profiles with molecular and clinical variables. Here, we identified two different epigenetic patterns within the previously described main G-CIMP+ profile. Both IDH mutation-associated methylation profiles featured one group of OTs with 1p/19q loss (CD-CIMP+), most of which were pure oligodendrogliomas, and a second group with intact 1p/19q and frequent TP53 mutation (CIMP+), most of which exhibited a mixed histopathology. A third group of OTs lacking the CIMP profile (CIMP-), and with a wild-type IDH and an intact 1p/19q, similar to the G-CIMP- subgroup, was also observed. The three CIMP groups presented a significantly better (CD-CIMP+), intermediate (CIMP+) or worse (CIMP-) prognosis. Furthermore, transcriptomic analyses revealed CIMP-specific gene expression signatures, indicating the impact of genetic status (IDH mutation, 1p/19q codeletion, TP53 mutation) on gene expression, and pointing to candidate biomarkers. Therefore, the CIMP profiles contributed to the identification of subgroups of OTs characterized by different prognoses, histopathologies, molecular features and gene expression signatures, which may help in the classification of OTs.
Collapse
|
43
|
IDH1 mutation is associated with improved overall survival in patients with glioblastoma: a meta-analysis. Tumour Biol 2013; 34:3555-9. [DOI: 10.1007/s13277-013-0934-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022] Open
|
44
|
Cairns RA, Mak TW. Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 2013; 3:730-41. [PMID: 23796461 DOI: 10.1158/2159-8290.cd-13-0083] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heterozygous mutations in catalytic arginine residues of isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) are common in glioma, acute myeloid leukemia, chondrosarcoma, cholangiocarcinoma, and angioimmunoblastic T-cell lymphoma. The mutant enzymes acquire a neomorphic activity that converts α-ketoglutarate (α-KG) to D-2-hydroxyglutarate (D2HG), a rare metabolite. In cells and tissues expressing mutant IDH, D2HG concentrations are highly elevated. D2HG may act as an "oncometabolite" by inhibiting a class of α-KG-dependent enzymes involved in epigenetic regulation, collagen synthesis, and cell signaling. Knock-in mouse models of IDH1 mutations have shed light on these mechanisms and will provide valuable animal models for further investigation.
Collapse
Affiliation(s)
- Rob A Cairns
- Campbell Family Cancer Research Institute at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
45
|
Sandberg CJ, Altschuler G, Jeong J, Strømme KK, Stangeland B, Murrell W, Grasmo-Wendler UH, Myklebost O, Helseth E, Vik-Mo EO, Hide W, Langmoen IA. Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Exp Cell Res 2013; 319:2230-43. [PMID: 23791939 DOI: 10.1016/j.yexcr.2013.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/19/2013] [Accepted: 06/07/2013] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most common brain tumor. Median survival in unselected patients is <10 months. The tumor harbors stem-like cells that self-renew and propagate upon serial transplantation in mice, although the clinical relevance of these cells has not been well documented. We have performed the first genome-wide analysis that directly relates the gene expression profile of nine enriched populations of glioblastoma stem cells (GSCs) to five identically isolated and cultivated populations of stem cells from the normal adult human brain. Although the two cell types share common stem- and lineage-related markers, GSCs show a more heterogeneous gene expression. We identified a number of pathways that are dysregulated in GSCs. A subset of these pathways has previously been identified in leukemic stem cells, suggesting that cancer stem cells of different origin may have common features. Genes upregulated in GSCs were also highly expressed in embryonic and induced pluripotent stem cells. We found that canonical Wnt-signaling plays an important role in GSCs, but not in adult human neural stem cells. As well we identified a 30-gene signature highly overexpressed in GSCs. The expression of these signature genes correlates with clinical outcome and demonstrates the clinical relevance of GSCs.
Collapse
|