1
|
Zhang S, Chen Y, Hu Q, Zhao T, Wang Z, Zhou Y, Wei Y, Zhao H, Wang J, Yang Y, Zhang J, Shi S, Zhang Y, Yang L, Fu Z, Liu K. SOX2 inhibits LLGL2 polarity protein in esophageal squamous cell carcinoma via miRNA-142-3p. Cancer Biol Ther 2022; 23:1-15. [PMID: 36131361 PMCID: PMC9519027 DOI: 10.1080/15384047.2022.2126248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022] Open
Abstract
ABBREVIATIONS CCK-8, Cell Counting Kit 8; Chip, Chromatin Immunoprecipitation; EC, Esophageal cancer; EMT, epithelial-to-mesenchymal transition; ESCC, Esophageal squamous cell carcinomas; LLGL2, lethal (2) giant larvae protein homolog 2; LLGL2ov, LLGL2 overexpression; MET, mesenchymal-epithelial transition; miRNAs, MicroRNAs; PRM-MS, Parallel reaction monitoring-Mass spectrometry; SD, Standard deviation; SOX, sex determining region Y (SRY)-like box; SOX2-Kd, SOX2-knockdwon; TUNEL, TdT-mediated dUTP Nick-End Labeling.
Collapse
Affiliation(s)
- Shihui Zhang
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yunyun Chen
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiong Hu
- School of Medicine, Xiamen University, Xiamen, China
- Department of Clinic Medical Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Tingting Zhao
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhuo Wang
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yijian Zhou
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yuxuan Wei
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Junkai Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaxin Yang
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Jiaying Zhang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, China
| | - Yujun Zhang
- School of Medicine, Xiamen University, Xiamen, China
| | - Ling Yang
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhichao Fu
- Department of radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, China
| | - Kuancan Liu
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Zhang L, Lovell S, De Vita E, Jagtap PKA, Lucy D, Goya Grocin A, Kjær S, Borg A, Hennig J, Miller AK, Tate EW. A KLK6 Activity-Based Probe Reveals a Role for KLK6 Activity in Pancreatic Cancer Cell Invasion. J Am Chem Soc 2022; 144:22493-22504. [PMID: 36413626 DOI: 10.1021/jacs.2c07378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer has the lowest survival rate of all common cancers due to late diagnosis and limited treatment options. Serine hydrolases are known to mediate cancer progression and metastasis through initiation of signaling cascades and cleavage of extracellular matrix proteins, and the kallikrein-related peptidase (KLK) family of secreted serine proteases have emerging roles in pancreatic ductal adenocarcinoma (PDAC). However, the lack of reliable activity-based probes (ABPs) to profile KLK activity has hindered progress in validation of these enzymes as potential targets or biomarkers. Here, we developed potent and selective ABPs for KLK6 by using a positional scanning combinatorial substrate library and characterized their binding mode and interactions by X-ray crystallography. The optimized KLK6 probe IMP-2352 (kobs/I = 11,000 M-1 s-1) enabled selective detection of KLK6 activity in a variety of PDAC cell lines, and we observed that KLK6 inhibition reduced the invasiveness of PDAC cells that secrete active KLK6. KLK6 inhibitors were combined with N-terminomics to identify potential secreted protein substrates of KLK6 in PDAC cells, providing insights into KLK6-mediated invasion pathways. These novel KLK6 ABPs offer a toolset to validate KLK6 and associated signaling partners as targets or biomarkers across a range of diseases.
Collapse
Affiliation(s)
- Leran Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Scott Lovell
- Department of Life Sciences, University of Bath, Bath BA2 7AX, U.K
| | - Elena De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Daniel Lucy
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Andrea Goya Grocin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, U.K
| | - Annabel Borg
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, U.K
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| |
Collapse
|
3
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
4
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
5
|
Kallikrein-Related Peptidase 6 (KLK6) as a Contributor toward an Aggressive Cancer Cell Phenotype: A Potential Role in Colon Cancer Peritoneal Metastasis. Biomolecules 2022; 12:biom12071003. [PMID: 35883559 PMCID: PMC9312869 DOI: 10.3390/biom12071003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Kallikrein-related peptidases (KLKs) are implicated in many cancer-related processes. KLK6, one of the 15 KLK family members, is a promising biomarker for diagnosis of many cancers and has been associated with poor prognosis of colorectal cancer (CRC) patients. Herein, we evaluated the expression and cellular functions of KLK6 in colon cancer-derived cell lines and in clinical samples from CRC patients. We showed that, although many KLKs transcripts are upregulated in colon cancer-derived cell lines, KLK6, KLK10, and KLK11 are the most highly secreted proteins. KLK6 induced calcium flux in HT29 cells by activation and internalization of protease-activated receptor 2 (PAR2). Furthermore, KLK6 induced extracellular signal–regulated kinases 1 and 2 (ERK1/2) phosphorylation. KLK6 suppression in HCT-116 colon cancer cells decreased the colony formation, increased cell adhesion to extracellular matrix proteins, and reduced spheroid formation and compaction. Immunohistochemistry (IHC) analysis demonstrated ectopic expression of KLK6 in human colon adenocarcinomas but not in normal epithelia. Importantly, high levels of KLK6 protein were detected in the ascites of CRC patients with peritoneal metastasis, but not in benign ascites. These data indicate that KLK6 overexpression is associated with aggressive CRC, and may be applied to differentiate between benign and malignant ascites.
Collapse
|
6
|
Baumann A, Isak D, Lohbeck J, Jagtap PKA, Hennig J, Miller AK. Scalable synthesis and structural characterization of reversible KLK6 inhibitors. RSC Adv 2022; 12:26989-26993. [PMID: 36320846 PMCID: PMC9490775 DOI: 10.1039/d2ra04670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Scalable asymmetric syntheses of two kallikrein-related protease 6 (KLK6) inhibitors are reported. The inhibitors are assembled by linking enantiomerically enriched fragments via amide bond formation, followed by conversion of a cyano group to an amidine. One fragment, an amine, was prepared using the Ellman auxiliary, and a lack of clarity in the literature regarding the stereochemical outcome of this reaction was solved via X-ray crystallographic analysis of two derivatives. Complexes of the inhibitors bound to human KLK6 were solved by X-ray crystallography, revealing the binding poses. We report scalable syntheses of two potent and selective kallikrein related peptidase 6 (KLK6) inhibitors, as well as X-ray crystal structures of both inhibitors as protein-ligand complexes.![]()
Collapse
Affiliation(s)
- Andreas Baumann
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Daniel Isak
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jasmin Lohbeck
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Aubry K. Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Sugai T, Osakabe M, Niinuma T, Eizuka M, Tanaka Y, Yamada S, Yanagawa N, Otsuka K, Sasaki A, Matsumoto T, Suzuki H. Comprehensive analyses of microRNA and mRNA expression in colorectal serrated lesions and colorectal cancer with a microsatellite instability phenotype. Genes Chromosomes Cancer 2021; 61:161-171. [PMID: 34846081 DOI: 10.1002/gcc.23016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) expression is dysregulated in human tumors, thereby contributing to tumorigenesis through altered expression of mRNA. Thus, identification of the relationships between miRNAs and mRNAs is important for evaluating the molecular mechanisms of tumors. In addition, elucidation of the molecular features of serrated lesions is essential in colorectal tumorigenesis. Here, we examined the relationships of miRNA and mRNA expressed in serrated lesions, including 26 sessile serrated lesions (SSLs), 12 traditional serrated adenomas (TSAs), and 11 colorectal cancers (CRCs) with a microsatellite instability (MSI) phenotype using crypt isolation. We divided the samples into the first and second cohorts for validation. Array-based expression analyses were used to evaluate miRNAs and mRNAs with opposite expression patterns in isolated tumor glands. In addition, we validated the relationships of miRNA/mRNA pairs in the second cohort using real-time polymerase chain reaction. We found that the expression of miRNA-5787 was correlated with reciprocal expression of two mRNAs, that is, SRRM2 and POLR2J3, in SSL samples. In TSA samples, two pairs of miRNAs/mRNAs showing opposite expression patterns, that is, miRNA-182-5p/ETF1 and miRNA-200b-3p/MYB, were identified. Ultimately, three pairs of miRNAs/mRNAs with opposite expression patterns, including miRNA-222-3p/SLC26A3, miRNA-6753-3p/FABP1, and miRNA-222-3p/OLFM4, were retained in CRC with an MSI phenotype. Finally, we performed transfection with an miR-222-3p mimic to confirm the expression of SLC26A3 and OLFM4; the results showed that ectopic expression of miR-222-3p moderately suppressed OLFM4 and downregulated SLC26A3 to some extent. Overall, our results provided basic insights into the evaluation of colorectal tumorigenesis of serrated lesions and CRC with an MSI phenotype.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University, School of Medicine, Cyuuouku, Sapporo, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Yoshihito Tanaka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Shun Yamada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Koki Otsuka
- Department of Surgery, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Akira Sasaki
- Department of Surgery, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Shiwagun'yahabachou, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, School of Medicine, Cyuuouku, Sapporo, Japan
| |
Collapse
|
8
|
Zhou D, He Y, Li H, Huang W. KLK6 mediates stemness and metabolism of gastric carcinoma cells via the PI3K/AKT/mTOR signaling pathway. Oncol Lett 2021; 22:824. [PMID: 34691251 DOI: 10.3892/ol.2021.13085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/23/2021] [Indexed: 01/02/2023] Open
Abstract
Gastric cancer is a common tumor of the digestive system, which can occur in any part of the stomach. Kallikrein 6 (KLK6) is a trypsin-like serine protease and has been found to be involved in extracellular matrix remodeling, tumor invasion and nervous system plasticity. Our previous study reported that KLK6 suppressed HGC-27 gastric cancer cell growth by inhibiting epithelial-mesenchymal transition; however, the mechanism of action underlying the effect of KLK6 still remains unclear. The aim of the present study was to investigate the effect and the underlying mechanism of KLK6 on stem cell-like properties and metabolism in gastric carcinoma cells. The HGC-27 cell line was transfected with KLK6 overexpression (OV-KLK6) and interference (short hairpin-KLK6) vectors, then the transfection efficiency was confirmed using western blot analysis and reverse transcription-quantitative PCR. The percentage of CD133+ and CD44+ cells was detected using flow cytometry, while the protein expression levels of the stem-associated genes, Nanog, Oct-4, SOX2 and Notch1, the metabolic markers, hexokinase (HK)1, HK2, GLUT1, and the proteins within the PI3K signaling pathway, phosphorylated (p)-PI3K, p-AKT and p-mTOR, were determined using western blot analysis. Biochemical kits were used to measure ATP production, lactic acid content and glucose uptake. A tumorigenicity assay was performed with nude mice to detect gastric tumor volume, and the protein expression level of Oct-4, Nanog, HK1, HK2 and GLUT1, and the mRNA expression level of KLK6 was also determined in gastric tumor tissues of mice. Compared with that in the control group, KLK6 protein and mRNA expression levels were significantly decreased in the four sh-RNA groups (P<0.05). Among them, sh-RNA-3 induced the lowest KLK6 expression and was used to silence KLK6 in subsequent experiments. Compared with that in the control and negative control groups, the percentage of CD133+ and CD44+ cells, the protein expression level of Oct-4, Nanog, HK1, HK2, GLUT1, p-PI3K, p-AKT and p-mTOR, and ATP content, lactic acid production, glucose uptake and gastric tumor volume were significantly decreased by sh-KLK6 (P<0.05), whereas KLK6 overexpression induced the opposite effect (P<0.05). In conclusion, KLK6 modulated stemness properties and cell metabolic profile in gastric carcinoma cells and the mechanism may be associated with the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Vascular Surgery, First People's Hospital of Xiangyang City, Hubei Medical College, Xiangyang, Hubei 441000, P.R. China
| | - Yanping He
- Department of Vascular Surgery, First People's Hospital of Xiangyang City, Hubei Medical College, Xiangyang, Hubei 441000, P.R. China
| | - Hengping Li
- Department of Vascular Surgery, First People's Hospital of Xiangyang City, Hubei Medical College, Xiangyang, Hubei 441000, P.R. China
| | - Weidong Huang
- Department of Vascular Surgery, First People's Hospital of Xiangyang City, Hubei Medical College, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
9
|
Hua Q, Sun Z, Liu Y, Shen X, Zhao W, Zhu X, Xu P. KLK8 promotes the proliferation and metastasis of colorectal cancer via the activation of EMT associated with PAR1. Cell Death Dis 2021; 12:860. [PMID: 34552064 PMCID: PMC8458432 DOI: 10.1038/s41419-021-04149-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Kallikrein-related peptidase 8 (KLK8) acts as an oncogene or anti-oncogene in various tumours, and the abnormal expression of KLK8 is involved in the carcinogenesis of several tumours. However, the role of KLK8 in colorectal cancer (CRC) and the underlying mechanism remain largely unclear. In this study, the carcinogenic effect of KLK8 was determined via CCK-8 and colony formation assays in vitro and a xenograft model in nude mice in vivo. The metastasis-promoting effect of KLK8 was investigated with transwell migration and invasion assays and wound-healing assay in vitro and a metastasis model in nude mice in vivo. Bioinformatics analyses and mechanistic experiments were conducted to elucidate the molecular mechanism. Herein, we reported that KLK8 had a promotive effect on the proliferation, migration and invasion of RKO and SW480 cells. Epithelial-mesenchymal transition (EMT) played an important role in the promotive effects of KLK8 on CRC. In addition, protease-activated receptor-1 (PAR-1) antagonist SCH79797 but not protease-activated receptor-2 (PAR-2) antagonist FSLLRY-NH2 attenuated the proliferation, migration and invasion of KLK8-upregulated RKO and SW480 cells. PAR-1 antagonist SCH79797 reduced the tumour volume of xenograft model and decreased the metastatic nodules in the livers of metastasis model. Furthermore, SCH79797 could reverse the positive impact of KLK8 on the EMT process in CRC both in vitro and in vivo. Taken together, these findings demonstrated for the first time that KLK8 promoted EMT and CRC progression, and this effect might be, at least partly mediated by PAR1-dependent pathway.
Collapse
Affiliation(s)
- Qing Hua
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Zhirong Sun
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China
| | - Yi Liu
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China
| | - Xuefang Shen
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, 200433, Shanghai, China.
| | - Pingbo Xu
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China.
| |
Collapse
|
10
|
Zhou LY, Lin SN, Rieder F, Chen MH, Zhang SH, Mao R. Noncoding RNAs as Promising Diagnostic Biomarkers and Therapeutic Targets in Intestinal Fibrosis of Crohn's Disease: The Path From Bench to Bedside. Inflamm Bowel Dis 2021; 27:971-982. [PMID: 33324986 PMCID: PMC8344842 DOI: 10.1093/ibd/izaa321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irreversible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remarkable variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other organs. The main points of this review include the following: • Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis • Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling • Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other organs.
Collapse
Affiliation(s)
- Long-Yuan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Si-Nan Lin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Min-Hu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Sheng-Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Pandey R, Zhou M, Chen Y, Darmoul D, Kisiel CC, Nfonsam VN, Ignatenko NA. Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer. Genes (Basel) 2021; 12:749. [PMID: 34065672 PMCID: PMC8157155 DOI: 10.3390/genes12050749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome enrichment, and protein interaction methods. KLK6-high cases had a distinct spectrum of mutations in titin (TTN), APC, K-RAS, and MUC16 genes. Differentially expressed genes (DEGs) found in the KLK6-overexpressing CRCs were associated with cell signaling, extracellular matrix organization, and cell communication regulatory pathways. The top KLK6-interaction partners were found to be the members of kallikrein family (KLK7, KLK8, KLK10), extracellular matrix associated proteins (keratins, integrins, small proline rich repeat, S100A families) and TGF-β, FOS, and Ser/Thr protein kinase signaling pathways. Expression of selected KLK6-associated genes was validated in a subset of paired normal and tumor CRC patient-derived organoid cultures. The performed analyses identified KLK6 itself and a set of genes, which are co-expressed with KLK6, as potential clinical biomarkers for the management of the CRC disease.
Collapse
Affiliation(s)
- Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| | - Muhan Zhou
- Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; (M.Z.); (Y.C.)
| | - Yuliang Chen
- Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; (M.Z.); (Y.C.)
| | - Dalila Darmoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France;
| | - Conner C. Kisiel
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| | - Valentine N. Nfonsam
- Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA;
| | - Natalia A. Ignatenko
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
12
|
De Vita E, Smits N, van den Hurk H, Beck EM, Hewitt J, Baillie G, Russell E, Pannifer A, Hamon V, Morrison A, McElroy SP, Jones P, Ignatenko NA, Gunkel N, Miller AK. Synthesis and Structure-Activity Relationships of N-(4-Benzamidino)-Oxazolidinones: Potent and Selective Inhibitors of Kallikrein-Related Peptidase 6. ChemMedChem 2020; 15:79-95. [PMID: 31675166 PMCID: PMC7004151 DOI: 10.1002/cmdc.201900536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease that belongs to the family of tissue kallikreins. Aberrant expression of KLK6 has been found in different cancers and neurodegenerative diseases, and KLK6 is currently studied as a potential target in these pathologies. We report a novel series of KLK6 inhibitors discovered in a high-throughput screen within the European Lead Factory program. Structure-guided design based on docking studies enabled rapid progression of a hit cluster to inhibitors with improved potency, selectivity and pharmacokinetic properties. In particular, inhibitors 32 ((5R)-3-(4-carbamimidoylphenyl)-N-((S)-1-(naphthalen-1-yl)propyl)-2-oxooxazolidine-5-carboxamide) and 34 ((5R)-3-(6-carbamimidoylpyridin-3-yl)-N-((1S)-1-(naphthalen-1-yl)propyl)-2-oxooxazolidine-5-carboxamide) have single-digit nanomolar potency against KLK6, with over 25-fold and 100-fold selectivities against the closely related enzyme trypsin, respectively. The most potent compound, 32, effectively reduces KLK6-dependent invasion of HCT116 cells. The high potency in combination with good solubility and low clearance of 32 make it a good chemical probe for KLK6 target validation in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Elena De Vita
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Faculty of BiosciencesUniversity of Heidelberg69120HeidelbergGermany
| | - Niels Smits
- Pivot Park Screening CentreKloosterstraat 95349 ABOss (TheNetherlands
| | | | - Elizabeth M. Beck
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Joanne Hewitt
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Gemma Baillie
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Emily Russell
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Andrew Pannifer
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Véronique Hamon
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Angus Morrison
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Stuart P. McElroy
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Philip Jones
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Natalia A. Ignatenko
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZ 85721USA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZ 85721USA
| | - Nikolas Gunkel
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Aubry K. Miller
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| |
Collapse
|
13
|
Moradi-Marjaneh R, Khazaei M, Ferns GA, Aghaee-Bakhtiari SH. The Role of TGF-β Signaling Regulatory MicroRNAs in the Pathogenesis of Colorectal Cancer. Curr Pharm Des 2019; 24:4611-4618. [PMID: 30636580 DOI: 10.2174/1381612825666190110150705] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with a high mortality rate. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in normal intestinal tissue function, but has also been implicated in the development of CRC. MicroRNAs (miRNAs) have also recently emerged as important regulators of cancer development and progression. They act by targeting multiple signaling pathways including the TGF-β signaling pathway. There is growing evidence demonstrating that miRNAs target various components of the TGF-β signaling pathway, including TGF-β1, TGF-β2, regulatory SMADs (SMAD1, 2, 3, 5 and 9), co-mediator SMAD4, inhibitory SMADs (SMAD6 and 7) and the TGF-β receptors, and thereby alter the proliferation and migration of CRC cells. In this review, we summarize the data concerning the interaction between TGF-β signaling pathway and miRNAs with the aim to better understanding the CRC molecular mechanisms and hence better management of this disease.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Seyed H Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Chen H, Sells E, Pandey R, Abril ER, Hsu CH, Krouse RS, Nagle RB, Pampalakis G, Sotiropoulou G, Ignatenko NA. Kallikrein 6 protease advances colon tumorigenesis via induction of the high mobility group A2 protein. Oncotarget 2019; 10:6062-6078. [PMID: 31692974 PMCID: PMC6817440 DOI: 10.18632/oncotarget.27153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) overexpression is commonly observed in primary tumors of colorectal cancer (CRC) patients and has been associated with tumor aggressiveness, metastasis, and poor prognosis. We previously established a unique contribution of KLK6 in colon cancer metastasis via a specific network of microRNAs and mRNAs. Here we evaluated the cellular functions of KLK6 protease in Caco-2 colon adenocarcinoma cell line after introduction of the enzymatically active or inactive form of the enzyme. We found that proteolytically active KLK6 increased Caco-2 cells invasiveness in vitro and decreased the animal survival in the orthotopic colon cancer model. The active KLK6 induced phosphorylation of SMAD 2/3 proteins leading to the altered expression of the epithelial-mesenchymal transition (EMT) markers. KLK6 overexpression also induced the RNA-binding protein LIN28B and high-mobility group AT-hook 2 (HMGA2) transcription factor, two essential regulators of cell invasion and metastasis. In the CRC patients, KLK6 protein levels were elevated in the non-cancerous distant and adjacent tissues, compared to their paired tumor tissues (p < 0.0001 and p = 0.0157, respectively). Patients with mutant K-RAS tumors had significantly higher level of KLK6 protein in the luminal surface of non-cancerous distant tissue, compared to the corresponding tissues of the patients with K-RAS wild type tumors (p ≤ 0.05). Furthermore, KLK6 and HMGA2 immunohistochemistry (IHC) scores in patients' tumors and paired adjacent tissues positively correlated (Spearman correlation P < 0.01 and p = 0.03, respectively). These findings demonstrate the critical function of the KLK6 enzyme in colon cancer progression and its contribution to the signaling network in colon cancer.
Collapse
Affiliation(s)
- Hwudaurw Chen
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Earlphia Sells
- Biochemistry and Molecular and Cellular Biology Graduate Program, Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Ritu Pandey
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Chiu-Hsieh Hsu
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Robert S. Krouse
- University of Arizona College of Medicine, Tucson, AZ, USA
- Southern Arizona Veterans Affairs Health Care System, Tucson, AZ, USA
| | - Raymond B. Nagle
- Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | - Natalia A. Ignatenko
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Uddin MN, Li M, Wang X. Identification of Transcriptional Markers and microRNA-mRNA Regulatory Networks in Colon Cancer by Integrative Analysis of mRNA and microRNA Expression Profiles in Colon Tumor Stroma. Cells 2019; 8:cells8091054. [PMID: 31500382 PMCID: PMC6769865 DOI: 10.3390/cells8091054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of microRNAs (miRNAs) and genes in tumor microenvironment (TME) has been associated with the pathogenesis of colon cancer. An integrative exploration of transcriptional markers (gene signatures) and miRNA–mRNA regulatory networks in colon tumor stroma (CTS) remains lacking. Using two datasets of mRNA and miRNA expression profiling in CTS, we identified differentially expressed miRNAs (DEmiRs) and differentially expressed genes (DEGs) between CTS and normal stroma. Furthermore, we identified the transcriptional markers which were both gene targets of DEmiRs and hub genes in the protein–protein interaction (PPI) network of DEGs. Moreover, we investigated the associations between the transcriptional markers and tumor immunity in colon cancer. We identified 17 upregulated and seven downregulated DEmiRs in CTS relative to normal stroma based on a miRNA expression profiling dataset. Pathway analysis revealed that the downregulated DEmiRs were significantly involved in 25 KEGG pathways (such as TGF-β, Wnt, cell adhesion molecules, and cytokine–cytokine receptor interaction), and the upregulated DEmiRs were involved in 10 pathways (such as extracellular matrix (ECM)-receptor interaction and proteoglycans in cancer). Moreover, we identified 460 DEGs in CTS versus normal stroma by a meta-analysis of two gene expression profiling datasets. Among them, eight upregulated DEGs were both hub genes in the PPI network of DEGs and target genes of the downregulated DEmiRs. We found that three of the eight DEGs were negative prognostic factors consistently in two colon cancer cohorts, including COL5A2, EDNRA, and OLR1. The identification of transcriptional markers and miRNA–mRNA regulatory networks in CTS may provide insights into the mechanism of tumor immune microenvironment regulation in colon cancer.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
16
|
Ju Q, Zhao YJ, Dong Y, Cheng C, Zhang S, Yang Y, Li P, Ge D, Sun B. Identification of a miRNA-mRNA network associated with lymph node metastasis in colorectal cancer. Oncol Lett 2019; 18:1179-1188. [PMID: 31423178 PMCID: PMC6607389 DOI: 10.3892/ol.2019.10460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Lymph node metastasis is an important step in the progression of colorectal cancer (CRC); however, the underlying mechanisms are still unknown. The aim of the present study was to identify the gene expression pattern during lymph node metastasis in CRC and to identify upstream microRNAs (miRNAs) to explore the underlying mechanisms in detail. A total of 305 differently expressed genes (DEGs) were identified, including 227 upregulated genes and 78 downregulated genes in lymph node metastasis. Pathway and process enrichment analysis demonstrated that DEGs were significantly enriched in ‘NABA CORE MATRISOME’, ‘extracellular matrix assembly’, ‘antimicrobial humoral response’ and ‘Toll-like receptor signaling’ pathways. The top 10 hub genes were identified by protein-protein interaction network, and sub-networks revealed that these genes were involved in significant pathways, including ‘neutrophil chemotaxis’ and ‘Smooth Muscle Contraction’. In addition, 73 mature differently expressed miRNAs associated with lymph node metastasis were identified, of which 48 were upregulated and 25 were downregulated. Six miRNAs were identified to regulate DEGs. Additionally, based on the relationship between miRNAs and transcription factors, a miRNA-TF-mRNA network was constructed. In conclusion, DEGs, miRNAs and their interactions and pathways were identified in lymph node metastasis in CRC, which provided insight into the mechanism of CRC metastasis and may be used to develop novel targets for CRC treatment.
Collapse
Affiliation(s)
- Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yan-Jie Zhao
- School of Public Health, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yong Dong
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Cong Cheng
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuanming Yang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ping Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Dongmei Ge
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bo Sun
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
17
|
Di Meo A, Wang C, Cheng Y, Diamandis EP, Yousef GM. The miRNA-kallikrein interaction: a mosaic of epigenetic regulation in cancer. Biol Chem 2019; 399:973-982. [PMID: 29604203 DOI: 10.1515/hsz-2018-0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
The kallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases with trypsin- and chymotrypsin-like activities. Dysregulated expression and/or aberrant activation of KLKs has been linked to various pathophysiological processes, including cancer. Many KLKs have been identified as potential cancer biomarkers. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by pairing to the 3' untranslated region (UTR) of complimentary mRNA targets. miRNAs are dysregulated in many cancers, including prostate, kidney and ovarian cancers. Several studies have shown that miRNAs are involved in the post-transcriptional regulation of KLKs. However, recent evidence suggests that miRNAs can also act as downstream effectors of KLKs. In this review, we provide an update on the epigenetic regulation of KLKs by miRNAs. We also present recent experimental evidence that supports the regulatory role of KLKs on miRNA networks. The potential diagnostic and therapeutic applications of miRNA-kallikrein interactions are also discussed.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Cong Wang
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| |
Collapse
|
18
|
Sinharay S, Randtke EA, Howison CM, Ignatenko NA, Pagel MD. Detection of Enzyme Activity and Inhibition during Studies in Solution, In Vitro and In Vivo with CatalyCEST MRI. Mol Imaging Biol 2019; 20:240-248. [PMID: 28726131 DOI: 10.1007/s11307-017-1092-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The detection of enzyme activities and evaluation of enzyme inhibitors have been challenging with magnetic resonance imaging (MRI). To address this need, we have developed a diamagnetic, nonmetallic contrast agent and a protocol known as catalyCEST MRI that uses chemical exchange saturation transfer (CEST) to detect enzyme activity as well as enzyme inhibition. PROCEDURES We synthesized a diamagnetic MRI contrast agent that has enzyme responsive and enzyme unresponsive CEST signals. We tested the ability of this agent to detect the activity of kallikrein 6 (KLK6) in biochemical solutions, in vitro and in vivo, with and without a KLK6 inhibitor. RESULTS The agent detected KLK6 activity in solution and also detected KLK6 inhibition by antithrombin III. KLK6 activity was detected during in vitro studies with HCT116 colon cancer cells, relative to the detection of almost no activity in a KLK6-knockdown HCT116 cell line and HCT116 cells treated with antithrombin III inhibitor. Finally, strong enzyme activity was detected within an in vivo HCT116 tumor model, while lower enzyme activity was detected in a KLK6 knockdown tumor model and in the HCT116 tumor model treated with antithrombin III inhibitor. In all cases, comparisons of the enzyme responsive and enzyme unresponsive CEST signals were critical for the detection of enzyme activity. CONCLUSIONS This study has established that catalyCEST MRI with an exogenous diaCEST agent can evaluate enzyme activity and inhibition in solution, in vitro and in vivo.
Collapse
Affiliation(s)
- Sanhita Sinharay
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Edward A Randtke
- Department of Medical Imaging, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ, 84724-5024, USA
| | - Christine M Howison
- Department of Medical Imaging, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ, 84724-5024, USA
| | - Natalia A Ignatenko
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.,University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA. .,Department of Medical Imaging, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ, 84724-5024, USA. .,University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA. .,Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.
| |
Collapse
|
19
|
Izadi F. Differential Connectivity in Colorectal Cancer Gene Expression Network. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 29843204 PMCID: PMC6305824 DOI: 10.29252/.23.1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the challenging types of cancers; thus, exploring effective biomarkers related to colorectal could lead to significant progresses toward the treatment of this disease. METHODS In the present study, CRC gene expression datasets have been reanalyzed. Mutual differentially expressed genes across 294 normal mucosa and adjacent tumoral samples were then utilized in order to build two independent transcriptional regulatory networks. By analyzing the networks topologically, genes with differential global connectivity related to cancer state were determined for which the potential transcriptional regulators including transcription factors were identified. RESULTS The majority of differentially connected genes (DCGs) were up-regulated in colorectal transcriptome experiments. Moreover, a number of these genes have been experimentally validated as cancer or CRC-associated genes. The DCGs, including GART, TGFB1, ITGA2, SLC16A5, SOX9, and MMP7, were investigated across 12 cancer types. Functional enrichment analysis followed by detailed data mining exhibited that these candidate genes could be related to CRC by mediating in metastatic cascade in addition to shared pathways with 12 cancer types by triggering the inflammatory events. DISCUSSION Our study uncovered correlated alterations in gene expression related to CRC susceptibility and progression that the potent candidate biomarkers could provide a link to disease.
Collapse
Affiliation(s)
- Fereshteh Izadi
- Sari Agricultural Sciences and Natural Resources University (SANRU), Farah Abad Road, Mazandaran 4818168984, Iran,Corresponding Author: Fereshteh Izadi Sari Agricultural Sciences and Natural Resources University (SANRU), Farah Abad Road, Mazandaran 4818168984, Iran; Mobile: (+98-918) 6291302; E-mail:
| |
Collapse
|
20
|
Kanth P, Hazel MW, Boucher KM, Yang Z, Wang L, Bronner MP, Boylan KE, Burt RW, Westover M, Neklason DW, Delker DA. Small RNA sequencing of sessile serrated polyps identifies microRNA profile associated with colon cancer. Genes Chromosomes Cancer 2018; 58:23-33. [PMID: 30265426 DOI: 10.1002/gcc.22686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Sessile serrated adenoma/polyps (SSA/Ps) of the colon account for 20-30% of all colon cancers. Small non-coding RNAs, including microRNAs (miRNAs), may function as oncogenes or tumor suppressor genes involved in cancer development. Small RNA sequencing (RNA-seq) was used to characterize miRNA profiles in SSA/Ps, hyperplastic polyps (HPs), adenomatous polyps and paired uninvolved colon. Our 108 small RNA-seq samples' results were compared to small RNA-seq data from 212 colon cancers from the Cancer Genome Atlas. Twenty-three and six miRNAs were differentially expressed in SSA/Ps compared to paired uninvolved colon and HPs, respectively. Differential expression of MIR31-5p, MIR135B-5p and MIR378A-5p was confirmed by RT-qPCR. SSA/P-specific miRNAs are similarly expressed in colon cancers containing genomic aberrations described in serrated cancers. Correlation of miRNA expression with consensus molecular subtypes suggests more than one subtype is associated with the serrated neoplasia pathway. Canonical pathway analysis suggests many of these miRNAs target growth factor signaling pathways.
Collapse
Affiliation(s)
- Priyanka Kanth
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, Salt Lake City, Utah
| | - Mark W Hazel
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Zhihong Yang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Li Wang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut
| | - Mary P Bronner
- Huntsman Cancer Institute, Salt Lake City, Utah.,Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | - Randall W Burt
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, Salt Lake City, Utah
| | | | - Deborah W Neklason
- Huntsman Cancer Institute, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Don A Delker
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
21
|
Khoury N, Zingkou E, Pampalakis G, Sofopoulos M, Zoumpourlis V, Sotiropoulou G. KLK6 protease accelerates skin tumor formation and progression. Carcinogenesis 2018; 39:1529-1536. [DOI: 10.1093/carcin/bgy110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nikolas Khoury
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| | | | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| |
Collapse
|
22
|
Pellatt AJ, Mullany LE, Herrick JS, Sakoda LC, Wolff RK, Samowitz WS, Slattery ML. The TGFβ-signaling pathway and colorectal cancer: associations between dysregulated genes and miRNAs. J Transl Med 2018; 16:191. [PMID: 29986714 PMCID: PMC6038278 DOI: 10.1186/s12967-018-1566-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background The TGFβ-signaling pathway plays an important role in the pathogenesis of colorectal cancer (CRC). Loss of function of several genes within this pathway, such as bone morphogenetic proteins (BMPs) have been seen as key events in CRC progression. Methods In this study we comprehensively evaluate differential gene expression (RNASeq) of 81 genes in the TGFβ-signaling pathway and evaluate how dysregulated genes are associated with miRNA expression (Agilent Human miRNA Microarray V19.0). We utilize paired carcinoma and normal tissue from 217 CRC cases. We evaluate the associations between differentially expressed genes and miRNAs and sex, age, disease stage, and survival months. Results Thirteen genes were significantly downregulated and 14 were significantly upregulated after considering fold change (FC) of > 1.50 or < 0.67 and multiple comparison adjustment. Bone morphogenetic protein genes BMP5, BMP6, and BMP2 and growth differentiation factor GDF7 were downregulated. BMP4, BMP7, INHBA (Inhibin beta A), TGFBR1, TGFB2, TGIF1, TGIF2, and TFDP1 were upregulated. In general, genes with the greatest dysregulation, such as BMP5 (FC 0.17, BMP6 (FC 0.25), BMP2 (FC 0.32), CDKN2B (FC 0.32), MYC (FC 3.70), BMP7 (FC 4.17), and INHBA (FC 9.34) showed dysregulation in the majority of the population (84.3, 77.4, 81.1, 80.2, 82.0, 51.2, and 75.1% respectively). Four genes, TGFBR2, ID4, ID1, and PITX2, were un-associated or slightly upregulated in microsatellite-stable (MSS) tumors while downregulated in microsatellite-unstable (MSI) tumors. Eight dysregulated genes were associated with miRNA differential expression. E2F5 and THBS1 were associated with one or two miRNAs; RBL1, TGFBR1, TGIF2, and INHBA were associated with seven or more miRNAs with multiple seed-region matches. Evaluation of the joint effects of mRNA:miRNA identified interactions that were stronger in more advanced disease stages and varied by survival months. Conclusion These data support an interaction between miRNAs and genes in the TGFβ-signaling pathway in association with CRC risk. These interactions are associated with unique clinical characteristics that may provide targets for further investigations. Electronic supplementary material The online version of this article (10.1186/s12967-018-1566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
23
|
Gladitz J, Klink B, Seifert M. Network-based analysis of oligodendrogliomas predicts novel cancer gene candidates within the region of the 1p/19q co-deletion. Acta Neuropathol Commun 2018; 6:49. [PMID: 29890994 PMCID: PMC5996550 DOI: 10.1186/s40478-018-0544-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
Oligodendrogliomas are primary human brain tumors with a characteristic 1p/19q co-deletion of important prognostic relevance, but little is known about the pathology of this chromosomal mutation. We developed a network-based approach to identify novel cancer gene candidates in the region of the 1p/19q co-deletion. Gene regulatory networks were learned from gene expression and copy number data of 178 oligodendrogliomas and further used to quantify putative impacts of differentially expressed genes of the 1p/19q region on cancer-relevant pathways. We predicted 8 genes with strong impact on signaling pathways and 14 genes with strong impact on metabolic pathways widespread across the region of the 1p/19 co-deletion. Many of these candidates (e.g. ELTD1, SDHB, SEPW1, SLC17A7, SZRD1, THAP3, ZBTB17) are likely to push, whereas others (e.g. CAP1, HBXIP, KLK6, PARK7, PTAFR) might counteract oligodendroglioma development. For example, ELTD1, a functionally validated glioblastoma oncogene located on 1p, was overexpressed. Further, the known glioblastoma tumor suppressor SLC17A7 located on 19q was underexpressed. Moreover, known epigenetic alterations triggered by mutated SDHB in paragangliomas suggest that underexpressed SDHB in oligodendrogliomas may support and possibly enhance the epigenetic reprogramming induced by the IDH-mutation. We further analyzed rarely observed deletions and duplications of chromosomal arms within oligodendroglioma subcohorts identifying putative oncogenes and tumor suppressors that possibly influence the development of oligodendroglioma subgroups. Our in-depth computational study contributes to a better understanding of the pathology of the 1p/19q co-deletion and other chromosomal arm mutations. This might open opportunities for functional validations and new therapeutic strategies.
Collapse
|
24
|
Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018; 399:821-836. [DOI: 10.1515/hsz-2017-0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Gastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression of KLKs in human malignancies is often regulated by KLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to target KLKs and therefore alter their expression levels. The biomarker utility of KLKs has been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels of KLKs in these types of cancer.
Collapse
Affiliation(s)
- Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| |
Collapse
|
25
|
Motieghader H, Kouhsar M, Najafi A, Sadeghi B, Masoudi-Nejad A. mRNA-miRNA bipartite network reconstruction to predict prognostic module biomarkers in colorectal cancer stage differentiation. MOLECULAR BIOSYSTEMS 2018; 13:2168-2180. [PMID: 28861579 DOI: 10.1039/c7mb00400a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomarker detection is one of the most important and challenging problems in cancer studies. Recently, non-coding RNA based biomarkers such as miRNA expression levels have been used for early diagnosis of many cancer types. In this study, a systems biology approach was used to detect novel miRNA based biomarkers for CRC diagnosis in early stages. The mRNA expression data from three CRC stages (Low-grade Intraepithelial Neoplasia (LIN), High-grade Intraepithelial Neoplasia (HIN) and Adenocarcinoma) were used to reconstruct co-expression networks. The networks were clustered to extract co-expression modules and detected low preserved modules among CRC stages. Then, the experimentally validated mRNA-miRNA interaction data were applied to reconstruct three mRNA-miRNA bipartite networks. Twenty miRNAs with the highest degree (hub miRNAs) were selected in each bipartite network to reconstruct three bipartite subnetworks for further analysis. The analysis of these hub miRNAs in the bipartite subnetworks revealed 30 distinct important miRNAs as prognostic markers in CRC stages. There are two novel CRC related miRNAs (hsa-miR-190a-3p and hsa-miR-1277-5p) in these 30 hub miRNAs that have not been previously reported in CRC. Furthermore, a drug-gene interaction network was reconstructed to detect potential candidate drugs for CRC treatment. Our analysis shows that the hub miRNAs in the mRNA-miRNA bipartite network are very essential in CRC progression and should be investigated precisely in future studies. In addition, there are many important target genes in the results that may be critical in CRC progression and can be analyzed as therapeutic targets in future research.
Collapse
Affiliation(s)
- Habib Motieghader
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
26
|
Tailor PD, Kodeboyina SK, Bai S, Patel N, Sharma S, Ratnani A, Copland JA, She JX, Sharma A. Diagnostic and prognostic biomarker potential of kallikrein family genes in different cancer types. Oncotarget 2018; 9:17876-17888. [PMID: 29707153 PMCID: PMC5915161 DOI: 10.18632/oncotarget.24947] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose The aim of this study was to compare and contrast the expression of all members of the Kallikrein (KLK) family of genes across 15 cancer types and to evaluate their utility as diagnostic and prognostic biomarkers. Results Severe alterations were found in the expression of different Kallikrein genes across various cancers. Interestingly, renal clear cell and papillary carcinomas have similar kallikrein expression profiles, whereas, chromophobe renal cell carcinoma has a unique expression profile. Several KLK genes have excellent biomarker potential (AUC > 0.90) for chromophobe renal cell carcinoma (KLK2, KLK3, KLK4, KLK7, KLK15), renal papillary carcinoma (KLK1, KLK6, KLK7), clear cell renal cell carcinoma (KLK1, KLK6), thyroid carcinoma (KLK2, KLK4, KLK13, KLK15) and colon adenocarcinoma (KLK6, KLK7, KLK8, KLK10). Several KLK genes were significantly associated with mortality in clear cell renal cell carcinoma (KLK2: HR = 1.69; KLK4: HR = 1.63; KLK8: HR = 1.71; KLK10: HR = 2.12; KLK11: HR = 1.76; KLK14: HR = 1.86), papillary renal cell carcinoma (KLK6: HR = 3.38, KLK7: HR = 2.50), urothelial bladder carcinoma (KLK5: HR = 1.89, KLK6: HR = 1.71, KLK8: HR = 1.60), and hepatocellular carcinoma (KLK13: HR = 1.75). Methods The RNA-seq gene expression data were downloaded from The Cancer Genome Atlas (TCGA). Statistical analyses, including differential expression analysis, receiver operating characteristic curves and survival analysis (Cox proportional-hazards regression models) were performed. Conclusions A comprehensive analysis revealed the changes in the expression of different KLK genes associated with specific cancers and highlighted their potential as a diagnostic and prognostic tool.
Collapse
Affiliation(s)
- Prashant D Tailor
- Medical College of Georgia, Augusta University, Augusta, GA, USA.,Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | | | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | - Akshay Ratnani
- Medical College of Georgia, Augusta University, Augusta, GA, USA.,Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | | | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.,Department of Population Health Sciences, Augusta University, Augusta, GA, USA
| |
Collapse
|
27
|
Sun LN, Zhi Z, Chen LY, Zhou Q, Li XM, Gan WJ, Chen S, Yang M, Liu Y, Shen T, Xu Y, Li JM. SIRT1 suppresses colorectal cancer metastasis by transcriptional repression of miR-15b-5p. Cancer Lett 2017; 409:104-115. [PMID: 28923398 DOI: 10.1016/j.canlet.2017.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/29/2017] [Accepted: 09/10/2017] [Indexed: 12/19/2022]
Abstract
The class III deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family proteins, plays a key role in many types of cancers including colorectal cancer (CRC). Here we report that SIRT1 suppressed CRC metastasis in vitro and in vivo as a negative regulator for miR-15b-5p transcription. Mechanistically, SIRT1 impaired regulatory effects of activator protein (AP-1) on miR-15b-5p trans-activation through deacetylation of AP-1. Importantly, acyl-CoA oxidase 1 (ACOX1), a key enzyme of the fatty acid oxidation (FAO) pathway, was found as a direct target for miR-15b-5p. SIRT1 expression was positively correlated with ACOX1 expression in CRC cells and in xenografts. Moreover, ACOX1 overexpression attenuated the augmentation of migration and invasion of CRC cells by miR-15b-5p overexpression. In conclusion, our study demonstrated a functional role of the SIRT1/miR-15b-5p/ACOX1 axis in CRC metastasis and suggested a potential target for metastatic CRC therapy.
Collapse
Affiliation(s)
- Li-Na Sun
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Zheng Zhi
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Liang-Yan Chen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Qun Zhou
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiu-Ming Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Wen-Juan Gan
- First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Shu Chen
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Meng Yang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Yao Liu
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Tong Shen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Jian-Ming Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|