1
|
Zhang J, Cui T, Xu J, Wang P, Lv C, Pan G. The potential of cancer stem cells for personalized risk assessment and therapeutic intervention in individuals with intrahepatic cholangiocarcinoma. Discov Oncol 2024; 15:306. [PMID: 39048806 PMCID: PMC11269542 DOI: 10.1007/s12672-024-01179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that intrahepatic cholangiocarcinoma (ICC) is a stem cell-based disease, but information on the biology of cancer stem cells (CSC) in ICC is very limited. METHODS ICC RNA-seq cohorts from three different public databases were integrated and the protein-coding genes were divided into different modules using "WGCNA" to screen the most relevant modules with CSC scores. Least Absolute Shrinkage and Selection Operator (LASSO) regression were introduced to construct prognostic classification models. In addition, the extent of immune cell infiltration in patients in different risk groups was assessed based on the ESTIMATE, CIBERSORT, MCP-Counter, and single sample gene set enrichment analysis (ssGSEA) algorithms. Finally, the correlation between different risk scores and common drugs was analyzed by pRRophetic package and Spearman method. RESULTS In the present study, we found that a high CSC score was associated with a poorer prognosis in patients with ICC. The yellow module obtained by WGCNA was significantly positively correlated with the CSCs score, in which 8 genes were served to build a prognostic classification model, and the obtained risk score was negatively correlated with CSCs score and prognosis. The low-risk score was more suitable for immunotherapy, and the high-risk score was more suitable for treatment with 11 antitumor drugs. CONCLUSION This study revealed the regulatory role of CSC-mediated EMT, angiogenesis, and immunomodulatory biological processes in ICC, and applied a prognostic classification model to highlight the great potential of CSC for personalized risk assessment, chemotherapy, and immunotherapy intervention in ICC individuals.
Collapse
Affiliation(s)
- Jian Zhang
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Tao Cui
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Jiaobang Xu
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Peng Wang
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Chongqing Lv
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Guozheng Pan
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China.
| |
Collapse
|
2
|
Cai Y, Wang S. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping. Brief Bioinform 2024; 25:bbae061. [PMID: 38426322 PMCID: PMC10939425 DOI: 10.1093/bib/bbae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer is a complex and high-mortality disease regulated by multiple factors. Accurate cancer subtyping is crucial for formulating personalized treatment plans and improving patient survival rates. The underlying mechanisms that drive cancer progression can be comprehensively understood by analyzing multi-omics data. However, the high noise levels in omics data often pose challenges in capturing consistent representations and adequately integrating their information. This paper proposed a novel variational autoencoder-based deep learning model, named Deeply Integrating Latent Consistent Representations (DILCR). Firstly, multiple independent variational autoencoders and contrastive loss functions were designed to separate noise from omics data and capture latent consistent representations. Subsequently, an Attention Deep Integration Network was proposed to integrate consistent representations across different omics levels effectively. Additionally, we introduced the Improved Deep Embedded Clustering algorithm to make integrated variable clustering friendly. The effectiveness of DILCR was evaluated using 10 typical cancer datasets from The Cancer Genome Atlas and compared with 14 state-of-the-art integration methods. The results demonstrated that DILCR effectively captures the consistent representations in omics data and outperforms other integration methods in cancer subtyping. In the Kidney Renal Clear Cell Carcinoma case study, cancer subtypes were identified by DILCR with significant biological significance and interpretability.
Collapse
Affiliation(s)
- Yueyi Cai
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| |
Collapse
|
3
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
4
|
Yang YT, Engleberg AI, Yuzbasiyan-Gurkan V. Establishment and Characterization of Cell Lines from Canine Metastatic Osteosarcoma. Cells 2023; 13:25. [PMID: 38201229 PMCID: PMC10778184 DOI: 10.3390/cells13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the advancements in treatments for other cancers, the outcomes for osteosarcoma (OSA) patients have not improved in the past forty years, especially in metastatic patients. Moreover, the major cause of death in OSA patients is due to metastatic lesions. In the current study, we report on the establishment of three cell lines derived from metastatic canine OSA patients and their transcriptome as compared to normal canine osteoblasts. All the OSA cell lines displayed significant upregulation of genes in the epithelial mesenchymal transition (EMT) pathway, and upregulation of key cytokines such as CXCL8, CXCL10 and IL6. The two most upregulated genes are MX1 and ISG15. Interestingly, ISG15 has recently been identified as a potential therapeutic target for OSA. In addition, there is notable downregulation of cell cycle control genes, including CDKN2A, CDKN2B and THBS1. At the protein level, p16INK4A, coded by CDKN2A, was undetectable in all the canine OSA cell lines, while expression of the tumor suppressor PTEN was variable, with one cell line showing complete absence and others showing low levels of expression. In addition, the cells express a variety of actionable genes, including KIT, ERBB2, VEGF and immune checkpoint genes. These findings, similar to those reported in human OSA, point to some genes that can be used for prognosis, targeted therapies and novel drug development for both canine and human OSA patients.
Collapse
Affiliation(s)
- Ya-Ting Yang
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Alexander I. Engleberg
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
- Department of Microbiology & Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Song Y, Fioramonti M, Bouvencourt G, Dubois C, Blanpain C, Van Keymeulen A. Cell type and stage specific transcriptional, chromatin and cell-cell communication landscapes in the mammary gland. Heliyon 2023; 9:e17842. [PMID: 37456014 PMCID: PMC10339025 DOI: 10.1016/j.heliyon.2023.e17842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
The mammary gland (MG) is composed of three main epithelial lineages, the basal cells (BC), the estrogen receptor (ER) positive luminal cells (ER+ LC), and the ER negative LC (ER- LC). Defining the cell identity of each lineage and how it is modulated throughout the different stages of life is important to understand how these cells function and communicate throughout life. Here, we used transgenic mice specifically labelling ER+ LC combined to cell surface markers to isolate with high purity the 3 distinct cell lineages of the mammary gland and defined their expression profiles and chromatin landscapes by performing bulk RNAseq and ATACseq of these isolated populations in puberty, adulthood and mid-pregnancy. Our analysis identified conserved genes, ligands and transcription factor (TF) associated with a specific lineage throughout life as well as genes, ligands and TFs specific for a particular stage of the MG. In summary, our study identified genes and TF network associated with the identity, function and cell-cell communication of the different epithelial lineages of the MG at different stages of life.
Collapse
Affiliation(s)
- Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
6
|
Malgundkar SH, Tamimi Y. Exosomes as crucial emerging tools for intercellular communication with therapeutic potential in ovarian cancer. Future Sci OA 2023; 9:FSO833. [PMID: 37006229 PMCID: PMC10051132 DOI: 10.2144/fsoa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
More than two-thirds of epithelial ovarian cancer (EOC) patients are diagnosed at advanced stages due to the lack of sensitive biomarkers. Currently, exosomes are intensively investigated as non-invasive cancer diagnostic markers. Exosomes are nanovesicles released in the extracellular milieu with the potential to modulate recipient cells' behavior. EOC cells release many altered exosomal cargoes that exhibit clinical relevance to tumor progression. Exosomes represent powerful therapeutic tools (drug carriers or vaccines), posing a promising option in clinical practice for curing EOC in the near future. In this review, we highlight the importance of exosomes in cell–cell communication, epithelial–mesenchymal transition (EMT), and their potential to serve as diagnostic and prognostic factors, particularly in EOC.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| |
Collapse
|
7
|
Kumar U, Castellanos-Uribe M, May ST, Yagüe E. Adaptive resistance is not responsible for long-term drug resistance in a cellular model of triple negative breast cancer. Gene 2023; 850:146930. [PMID: 36195266 DOI: 10.1016/j.gene.2022.146930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Resistance to cancer therapeutics represents a leading cause of mortality and is particularly important in cancers, such as triple negative breast cancer, for which no targeted therapy is available, as these are only treated with traditional chemotherapeutics. Cancer, as well as bacterial, drug resistance can be intrinsic, acquired or adaptive. Adaptive cancer drug resistance is gaining attention as a mechanism for the generation of long-term drug resistance as is the case with bacterial antibiotic resistance. We have used a cellular model of triple negative breast cancer (CAL51) and its drug resistance derivative (CALDOX) to gain insight into genome-wide expression changes associated with long-term doxorubicin (a widely used anthracycline for cancer treatment) resistance and doxorubicin-induced stress. Previous work indicates that both naïve and resistance cells have a functional p53-p21 axis controlling cell cycle at G1, although this is not a driver for drug resistance, but down-regulation of TOP2A (topoisomerase IIα). As expected, CALDOX cells have a signature characterized, in addition to down-regulation of TOP2A, by genes and pathways associated with drug resistance, metastasis and stemness. Both CAL51 and CALDOX stress signatures share 12 common genes (TRIM22, FAS, SPATA18, SULF2, CDKN1A, GDF15, MYO6, CXCL5, CROT, EPPK1, ZMAT3 and CD44), with roles in the above-mentioned pathways, indicating that these cells have similar functional responses to doxorubicin relaying on the p53 control of apoptosis. Eight genes are shared by both drug stress signatures (in CAL51 and CALDOX cells) and CALDOX resistant cells (FAS, SULF2, CDKN1A, CXCL5, CD44, SPATA18, TRIM22 and CROT), many of them targets of p53. This corroborates experimental data indicating that CALDOX cells, even in the absence of drug, have activated, at least partially, the p53-p21 axis and DNA damage response. Although this eight-gene signature might be an indicator of adaptive resistance, as this transient phenomenon due to short-term stress may not revert to its original state upon withdrawal of the stressor, previous experimental data indicates that the p53-p21 axis is not responsible for doxorubicin resistance. Importantly, TOP2A is not responsive to doxorubicin treatment and thus absent in both drug stress signatures. This indicates that during the generation of doxorubicin resistance, cells acquire genetic changes likely to be random, leading to down regulation of TOP2A, but selected during the generation of cells due to the presence of drug in the culture medium. This poses a considerable constraint for the development of strategies aimed at avoiding the emergence of drug resistance in the clinic.
Collapse
Affiliation(s)
- Uttom Kumar
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Marcos Castellanos-Uribe
- Nottingham Arabidopsis Stock Centre, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Ernesto Yagüe
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom.
| |
Collapse
|
8
|
Werner H, LeRoith D. Hallmarks of cancer: The insulin-like growth factors perspective. Front Oncol 2022; 12:1055589. [PMID: 36479090 PMCID: PMC9720135 DOI: 10.3389/fonc.2022.1055589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The identification of a series of attributes or hallmarks that are shared by virtually all cancer cells constitutes a true milestone in cancer research. The conceptualization of a catalogue of common genetic, molecular, biochemical and cellular events under a unifying Hallmarks of Cancer idea had a major impact in oncology. Furthermore, the fact that different types of cancer, ranging from pediatric tumors and leukemias to adult epithelial cancers, share a large number of fundamental traits reflects the universal nature of the biological events involved in oncogenesis. The dissection of a complex disease like cancer into a finite directory of hallmarks is of major basic and translational relevance. The role of insulin-like growth factor-1 (IGF1) as a progression/survival factor required for normal cell cycle transition has been firmly established. Similarly well characterized are the biochemical and cellular activities of IGF1 and IGF2 in the chain of events leading from a phenotypically normal cell to a diseased one harboring neoplastic traits, including growth factor independence, loss of cell-cell contact inhibition, chromosomal abnormalities, accumulation of mutations, activation of oncogenes, etc. The purpose of the present review is to provide an in-depth evaluation of the biology of IGF1 at the light of paradigms that emerge from analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent years as a promising therapeutic target, we believe that a careful exploration of this signaling system might be of critical importance on our ability to design and optimize cancer therapies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Li D, Lai W, Fan D, Fang Q. Protein biomarkers in breast cancer-derived extracellular vesicles for use in liquid biopsies. Am J Physiol Cell Physiol 2021; 321:C779-C797. [PMID: 34495763 DOI: 10.1152/ajpcell.00048.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their noninvasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenjia Lai
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Di Fan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Sino-Danish Center for Education and Research, Beijing, People's Republic of China
| |
Collapse
|
10
|
Liu T, Ye P, Ye Y, Han B. MicroRNA-216b targets HK2 to potentiate autophagy and apoptosis of breast cancer cells via the mTOR signaling pathway. Int J Biol Sci 2021; 17:2970-2983. [PMID: 34345220 PMCID: PMC8326127 DOI: 10.7150/ijbs.48933] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Patients suffering from breast cancer (BC) still have a poor response to treatments, even though early detection and improved therapy have contributed to a reduced mortality. Recent studies have been inspired on the association between microRNAs (miRs) and therapies of BC. The current study set out to investigate the role of miR-216b in BC, and further analyze the underlining mechanism. Firstly, hexokinase 2 (HK2) and miR-216b were characterized in BC tissues and cells by RT-qPCR and Western blot assay. In addition, the interaction between HK2 and miR-216b was analyzed using dual luciferase reporter assay. BC cells were further transfected with a series of miR-126b mimic or inhibitor, or siRNA targeting HK2, so as to analyze the regulatory mechanism of miR-216b, HK2 and mammalian target of rapamycin (mTOR) signaling pathway, and to further explore their regulation in BC cellular behaviors. The results demonstrated that HK2 was highly expressed and miR-216b was poorly expressed in BC cells and tissues. HK2 was also verified as a target of miR-216b with online databases and dual luciferase reporter assay. Functionally, miR-216b was found to be closely associated with BC progression via inactivating mTOR signaling pathway by targeting HK2. Moreover, cell viability, migration and invasion were reduced as a result of miR-216b upregulation or HK2 silencing, while autophagy, cell cycle arrest and apoptosis were induced. Taken together, our findings indicated that miR-216 down-regulates HK2 to inactivate the mTOR signaling pathway, thus inhibiting the progression of BC. Hence, this study highlighted a novel target for BC treatment.
Collapse
Affiliation(s)
- Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| | - Ping Ye
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Yuanyuan Ye
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| | - Baosan Han
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| |
Collapse
|
11
|
Tan Y, Luo X, Lv W, Hu W, Zhao C, Xiong M, Yi Y, Wang D, Wang Y, Wang H, Wu Y, Zhang Q. Tumor-derived exosomal components: the multifaceted roles and mechanisms in breast cancer metastasis. Cell Death Dis 2021; 12:547. [PMID: 34039961 PMCID: PMC8155106 DOI: 10.1038/s41419-021-03825-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023]
Abstract
Breast cancer (BC) is the most frequently invasive malignancy and the leading cause of tumor-related mortality among women worldwide. Cancer metastasis is a complex, multistage process, which eventually causes tumor cells to colonize and grow at the metastatic site. Distant organ metastases are the major obstacles to the management of advanced BC patients. Notably, exosomes are defined as specialized membrane-enclosed extracellular vesicles with specific biomarkers, which are found in a wide variety of body fluids. Recent studies have demonstrated that exosomes are essential mediators in shaping the tumor microenvironment and BC metastasis. The transferred tumor-derived exosomes modify the capability of invasive behavior and organ-specific metastasis in recipient cells. BC exosomal components, mainly including noncoding RNAs (ncRNAs), proteins, lipids, are the most investigated components in BC metastasis. In this review, we have emphasized the multifaceted roles and mechanisms of tumor-derived exosomes in BC metastasis based on these important components. The underlying mechanisms mainly include the invasion behavior change, tumor vascularization, the disruption of the vascular barrier, and the colonization of the targeted organ. Understanding the significance of tumor-derived exosomal components in BC metastasis is critical for yielding novel routes of BC intervention.
Collapse
Affiliation(s)
- Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiao Luo
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Weijie Hu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yi Yi
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dawei Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yichen Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Haiping Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
12
|
Nephronectin as a Matrix Effector in Cancer. Cancers (Basel) 2021; 13:cancers13050959. [PMID: 33668838 PMCID: PMC7956348 DOI: 10.3390/cancers13050959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The extracellular matrix provides an important scaffold for cells and tissues of multicellular organisms. The scaffold not only provides a secure anchorage point, but also functions as a reservoir for signalling molecules, sequestered and released when necessary. A dysregulated extracellular matrix may therefore modulate cellular behaviour, as seen during cancer progression. The extracellular matrix protein nephronectin was discovered two decades ago and found to regulate important embryonic developmental processes. Loss of either nephronectin or its receptor, integrin α8β1, leads to underdeveloped kidneys. Recent findings show that nephronectin is also dysregulated in breast cancer and plays a role in promoting metastasis. To enable therapeutic intervention, it is important to fully understand the role of nephronectin and its receptors in cancer progression. In this review, we summarise the literature on nephronectin, analyse the structure and domain-related functions of nephronectin and link these functions to potential roles in cancer progression. Abstract The extracellular matrix protein nephronectin plays an important regulatory role during embryonic development, controlling renal organogenesis through integrin α8β1 association. Nephronectin has three main domains: five N-terminal epidermal growth factor-like domains, a linker region harbouring two integrin-binding motifs (RGD and LFEIFEIER), and a C-terminal MAM domain. In this review, we look into the domain-related functions of nephronectin, and tissue distribution and expression. During the last two decades it has become evident that nephronectin also plays a role during cancer progression and in particular metastasis. Nephronectin is overexpressed in both human and mouse breast cancer compared to normal breast tissue where the protein is absent. Cancer cells expressing elevated levels of nephronectin acquire increased ability to colonise distant organs. In particular, the enhancer-motif (LFEIFEIER) which is specific to the integrin α8β1 association induces viability via p38 MAPK and plays a role in colonization. Integrins have long been desired as therapeutic targets, where low efficiency and receptor redundancy have been major issues. Based on the summarised publications, the enhancer-motif of nephronectin could present a novel therapeutic target.
Collapse
|
13
|
Hong W, Kong M, Qi M, Bai H, Fan Z, Zhang Z, Sun A, Fan X, Xu Y. BRG1 Mediates Nephronectin Activation in Hepatocytes to Promote T Lymphocyte Infiltration in ConA-Induced Hepatitis. Front Cell Dev Biol 2021; 8:587502. [PMID: 33553140 PMCID: PMC7858674 DOI: 10.3389/fcell.2020.587502] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Fulminant hepatitis (FH) is a major cause of acute liver failure. Concanavalin A (ConA) belongs to the lectin family and is frequently used as an inducer of FH in animal models. ConA induced FH is characterized by massive accumulation of T lymphocytes in the liver. A host of chemoattractive substances are known to promote T cell homing to the liver during acute hepatitis. Here we investigated the involvement of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, in FH. BRG1-flox mice were crossed to Alb-Cre mice to generate hepatocyte conditional BRG1 knockout (LKO) mice. The mice were peritoneally injected with a single dose of ConA to induce FH. BRG1 deficiency mitigated ConA-induced FH in mice. Consistently, there were fewer T lymphocyte infiltrates in the LKO livers compared to the wild type (WT) livers paralleling downregulation of T cell specific cytokines. Further analysis revealed that BRG1 deficiency repressed the expression of several chemokines critical for T cell homing including nephronectin (Npnt). BRG1 knockdown blocked the induction of Npnt in hepatocytes and attenuated T lymphocyte migration in vitro, which was reversed by the addition of recombinant nephronectin. Mechanistically, BRG1 interacted with β-catenin to directly bind to the Npnt promoter and activate Npnt transcription. Importantly, a positive correlation between infiltration of CD3+ T lymphocyes and nephronectin expression was detected in human acute hepatitis biopsy specimens. In conclusion, our data identify a novel role for BRG1 as a promoter of T lymphocyte trafficking by activating Npnt transcription in hepatocytes. Targeting the BRG1-Npnt axis may yield novel therapeutic solutions for FH.
Collapse
Affiliation(s)
- Wenxuan Hong
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China
| | - Mengwen Qi
- Laboratory Center for Experimental Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Hui Bai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Aijun Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
14
|
Saferali A, Xu Z, Sheynkman GM, Hersh CP, Cho MH, Silverman EK, Laederach A, Vollmers C, Castaldi PJ. Characterization of a COPD-Associated NPNT Functional Splicing Genetic Variant in Human Lung Tissue via Long-Read Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.20.20203927. [PMID: 33173926 PMCID: PMC7654922 DOI: 10.1101/2020.10.20.20203927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. Genome-wide association studies (GWAS) have identified over 80 loci that are associated with COPD and emphysema, however for most of these loci the causal variant and gene are unknown. Here, we utilize lung splice quantitative trait loci (sQTL) data from the Genotype-Tissue Expression project (GTEx) and short read sequencing data from the Lung Tissue Research Consortium (LTRC) to characterize a locus in nephronectin ( NPNT ) associated with COPD case-control status and lung function. We found that the rs34712979 variant is associated with alternative splice junction use in NPNT , specifically for the junction connecting the 2nd and 4th exons (chr4:105898001-105927336) (p=4.02×10 -38 ). This association colocalized with GWAS data for COPD and lung spirometry measures with a posterior probability of 94%, indicating that the same causal genetic variants in NPNT underlie the associations with COPD risk, spirometric measures of lung function, and splicing. Investigation of NPNT short read sequencing revealed that rs34712979 creates a cryptic splice acceptor site which results in the inclusion of a 3 nucleotide exon extension, coding for a serine residue near the N-terminus of the protein. Using Oxford Nanopore Technologies (ONT) long read sequencing we identified 13 NPNT isoforms, 6 of which are predicted to be protein coding. Two of these are full length isoforms which differ only in the 3 nucleotide exon extension whose occurrence differs by genotype. Overall, our data indicate that rs34712979 modulates COPD risk and lung function by creating a novel splice acceptor which results in the inclusion of a 3 nucelotide sequence coding for a serine in the nephronectin protein sequence. Our findings implicate NPNT splicing in contributing to COPD risk, and identify a novel serine insertion in the nephronectin protein that warrants further study.
Collapse
|
15
|
Sarfstein R, Lapkina-Gendler L, Nagaraj K, Laron Z, Werner H. Identification of nephronectin as a new target for IGF1 action. Eur J Cancer 2020; 141:115-127. [PMID: 33130549 DOI: 10.1016/j.ejca.2020.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis has a key role in normal growth and development. Laron syndrome (LS) is a type of dwarfism that results from mutation of the GH receptor, leading to congenital IGF1 deficiency. Epidemiological studies have shown that LS patients are protected from cancer. Genome-wide profiling led to the identification of a series of metabolic genes whose differential expression in LS might be linked to cancer protection. Nephronectin (NPNT) is an intracellular and secreted extracellular matrix protein with important roles in kidney development. NPNT was identified as the top-downregulated gene in LS-derived cells in comparison with ethnic-, age- and gender-matched controls (p-value = 0.0148; fold-change = -3.12 versus controls). NPNT has not been previously linked to the IGF1 signaling pathway. The present study was aimed at evaluating the hypothesis that NPNT is a new target for IGF1 action and that decreased expression of NPNT in LS is correlated with cancer protection. METHODS Basal and IGF1-stimulated NPNT expression were assessed in LS lymphoblastoid cells as well as in human breast and prostate cancer cells. NPNT silencing experiments were conducted using siRNA methodology. RESULTS We provide evidence that IGF1 stimulates NPNT expression in LS-derived lymphoblastoids and various cancer cell lines. In addition, we demonstrate that NPNT silencing results in diminished activation of the AKT and ERK1/2 pathways, with ensuing decreases in cellular proliferation. CONCLUSIONS Our data identified the NPNT gene as a target for IGF1 action. The clinical implications of the functional and physical interactions between NPNT and the IGF1 pathway merit further investigation.
Collapse
Affiliation(s)
- Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lena Lapkina-Gendler
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Laron
- Endocrine and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva 49292, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Shalom and Varda Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
16
|
Mei D, Zhao B, Zhang J, Xu H, Huang B. Nephronectin is a prognostic biomarker and promotes gastric cancer cell proliferation, migration and invasion. Histol Histopathol 2020; 35:1263-1274. [PMID: 32935851 DOI: 10.14670/hh-18-260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is a malignant disease with high incidence and mortality rates worldwide. Nephronectin (NPNT) was found to be dysregulated in some kinds of cancer. The goal of our study was to explore the expression profile of NPNT based on large numbers of GC samples with detailed clinicopathological and prognostic data from our institution and the data from a public database. A total of 117 GC samples and 73 corresponding non-tumorous adjacent tissues (NATs) were obtained from GC patients and used to detect expression of NPNT through immunohistochemistry. Western blot and qRT-PCR were performed to examine expression of NPNT in GC cell lines. Our results found that the positive expression ratio of NPNT in GC tissues is significantly higher than that in NATs (p<0.001). Chi-squared analysis results showed positive expression ratio of NPNT was significantly associated with depth of tumor invasion (p=0.049) and TNM stage (p=0.017). Kaplan-Meier survival and cox analysis results showed that patients with positive NPNT protein expression tend to have poorer prognosis than those with negative NPNT expression (p=0.0032) and NPNT expression was independent prognostic factor. High expression level was seen in GC cell lines. Furthermore, through a series of cancer cell proliferation, invasion and migration associated experiments, we found that NPNT could evidently promote GC cell proliferation, invasion and migration, as well as epithelial-mesenthymal transition. In summary, NPNT was evidently overexpressed in GC and had an oncogenic role. In the future, NPNT could serve as a promising therapeutic target for treating GC patients.
Collapse
Affiliation(s)
- Di Mei
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, PR China.,Department of General Surgery, Huludao Center Hospital, Huludao, PR China
| | - Bochao Zhao
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Jiale Zhang
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Huimian Xu
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Baojun Huang
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
17
|
Nephronectin promotes breast cancer brain metastatic colonization via its integrin-binding domains. Sci Rep 2020; 10:12237. [PMID: 32699247 PMCID: PMC7376038 DOI: 10.1038/s41598-020-69242-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
This study demonstrates a role for the extracellular matrix protein nephronectin (NPNT) in promoting experimental breast cancer brain metastasis, possibly through enhanced binding to- and migration through brain endothelial cells. With the introduction of more targeted breast cancer treatments, a prolonged survival has resulted during the last decade. Consequently, an increased number of patients develop metastasis in the brain, a challenging organ to treat. We recently reported that NPNT was highly expressed in primary breast cancer and associated with unfavourable prognosis. The current study addresses our hypothesis that NPNT promotes brain metastases through its integrin-binding motifs. SAGE-sequencing revealed that NPNT was significantly up-regulated in human breast cancer tissue compared to pair-matched normal breast tissue. Human brain metastatic breast cancers expressed both NPNT and its receptor, integrin α8β1. Using an open access repository; BreastMark, we found a correlation between high NPNT mRNA levels and poor prognosis for patients with the luminal B subtype. The 66cl4 mouse cell line was used for expression of wild-type and mutant NPNT, which is unable to bind α8β1. Using an in vivo model of brain metastatic colonization, 66cl4-NPNT cells showed an increased ability to form metastatic lesions compared to cells with mutant NPNT, possibly through reduced endothelial adhesion and transmigration.
Collapse
|
18
|
Eckhardt BL, Cao Y, Redfern AD, Chi LH, Burrows AD, Roslan S, Sloan EK, Parker BS, Loi S, Ueno NT, Lau PKH, Latham B, Anderson RL. Activation of Canonical BMP4-SMAD7 Signaling Suppresses Breast Cancer Metastasis. Cancer Res 2020; 80:1304-1315. [PMID: 31941699 DOI: 10.1158/0008-5472.can-19-0743] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
Abstract
Metastasis is the major cause of death in patients with cancer; with no therapeutic cure, treatments remain largely palliative. As such, new targets and therapeutic strategies are urgently required. Here, we show that bone morphogenetic protein-4 (BMP4) blocks metastasis in animal models of breast cancer and predicts improved survival in patients. In preclinical models of spontaneous metastasis, BMP4 acted as an autocrine mediator to modulate a range of known metastasis-regulating genes, including Smad7, via activation of canonical BMP-SMAD signaling. Restored BMP4 expression or therapeutically administered BMP4 protein, blocked metastasis and increased survival by sensitizing cancer cells to anoikis, thereby reducing the number of circulating tumor cells. Gene silencing of Bmp4 or its downstream mediator Smad7, reversed this phenotype. Administration of recombinant BMP4 markedly reduced spontaneous metastasis to lung and bone. Elevated levels of BMP4 and SMAD7 were prognostic for improved recurrence-free survival and overall survival in patients with breast cancer, indicating the importance of canonical BMP4 signaling in the suppression of metastasis and highlighting new avenues for therapy against metastatic disease. SIGNIFICANCE: Targeting the BMP4-SMAD7 signaling axis presents a novel therapeutic strategy to combat metastatic breast cancer, a disease that has had no reduction in patient mortality over 20 years. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/6/1304/F1.large.jpg.
Collapse
Affiliation(s)
- Bedrich L Eckhardt
- Morgan Welch Inflammatory Breast Cancer Research and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Yuan Cao
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew D Redfern
- School of Medicine, University of Western Australia, Perth, Australia
| | - Lap Hing Chi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Allan D Burrows
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Suraya Roslan
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, Victoria, Australia
| | - Belinda S Parker
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Sherene Loi
- Research Division, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter K H Lau
- Department of Health Western Australia, Perth, Australia.,Cancer Medicine, Peter MacCallum Cancer Centre, Parkville, Australia
| | - Bruce Latham
- Department of Anatomical Pathology, Fiona Stanley Hospital, Perth, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.,Research Division, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Kon S, Honda M, Ishikawa K, Maeda M, Segawa T. Antibodies against nephronectin ameliorate anti-type II collagen-induced arthritis in mice. FEBS Open Bio 2019; 10:107-117. [PMID: 31705832 PMCID: PMC6943231 DOI: 10.1002/2211-5463.12758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix protein nephronectin (Npnt) is known to be critical for kidney development, but its function in inflammatory diseases is unknown. Here, we developed a new enzyme‐linked immunosorbent assay system to detect Npnt in various autoimmune diseases, which revealed that plasma Npnt levels are increased in various mouse autoimmune models. We also report that antibodies against the α8β1 integrin‐binding region of Npnt protect mice from anti‐type II collagen‐induced arthritis, suggesting that Npnt may be a potential therapeutic target molecule for the prevention of autoimmune arthritis.
Collapse
Affiliation(s)
- Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Japan
| | - Machiko Honda
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Japan
| | | | | | | |
Collapse
|
20
|
Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019; 17:5. [PMID: 31686989 PMCID: PMC6820930 DOI: 10.1186/s12953-019-0154-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- HuiSu Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
21
|
Ezrin promotes breast cancer progression by modulating AKT signals. Br J Cancer 2019; 120:703-713. [PMID: 30804430 PMCID: PMC6461860 DOI: 10.1038/s41416-019-0383-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023] Open
Abstract
Background Ezrin, which is known as a cytoskeleton linker protein, is closely linked with the metastatic progression of cancer and is frequently abnormally expressed in aggressive cancer types. However, the possible involvement of Ezrin in metastasis and angiogenesis in breast cancer remains unclear. Methods Immunohistochemical analysis of Ezrin was performed on both BC samples (n = 117) and normal epithelium samples (n = 47). In vivo and in vitro assays were performed to validate the effect of Ezrin on AKT pathway-mediated BC progression. Results In this study, Ezrin was found to be upregulated in BC tissues, which was linked with aggressive tumour characteristics and poor prognosis. Moreover, we showed that Ezrin promotes BC proliferation, migration, invasion, and angiogenesis in vitro and in vivo. Mechanistic analysis showed that Ezrin interacted with AKT, and promoted its kinase activity, thereby regulating the AKT pathway in BC. Conclusions In all, we propose a model for an Ezrin/AKT oncoprotein axis, which provides novel insight into how Ezrin contributes to BC progression.
Collapse
|
22
|
Toraskar J, Magnussen SN, Hagen L, Sharma A, Hoang L, Bjørkøy G, Svineng G, Steigedal TS. A Novel Truncated Form of Nephronectin Is Present in Small Extracellular Vesicles Isolated from 66cl4 Cells. J Proteome Res 2019; 18:1237-1247. [PMID: 30707844 DOI: 10.1021/acs.jproteome.8b00859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles are emerging as biomarkers in breast cancer. Our recent report suggested that an intracellular granular staining pattern of the extracellular matrix protein nephronectin (NPNT) in breast tumor sections correlated with a poor prognosis. Furthermore, the results showed that NPNT is localized in extracellular vesicles derived from mouse breast cancer cells. In this study, we performed proteomic analysis that revealed that several proteins, including tumor-promoting molecules, are differentially expressed in the cargo of small extracellular vesicles (sEVs) derived from NPNT-expressing mouse breast cancer cells. We also identified three different forms of NPNT at 80, 60, and 20 kDa. We report that the native form of NPNT at 60 kDa becomes further glycosylated and is detected as the 80 kDa NPNT, which may be processed by matrix metalloproteinases to a shorter form of around 20 kDa, which has not previously been described. Although both 80 and 20 kDa NPNT are detected in sEVs derived from breast cancer cells, the 20 kDa form of NPNT is concentrated in sEVs. In summary, we show that a novel truncated form of NPNT is found in sEVs derived from breast cancer cells.
Collapse
Affiliation(s)
- Jimita Toraskar
- Cancer Clinic , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway
| | - Synnøve N Magnussen
- Department of Medical Biology, Faculty of Health Sciences , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Lars Hagen
- Cancer Clinic , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway.,PROMEC, Proteomics and Modomics Experimental Core Facility , Norwegian University of Science and Technology , N-7030 Trondheim , Norway
| | - Animesh Sharma
- PROMEC, Proteomics and Modomics Experimental Core Facility , Norwegian University of Science and Technology , N-7030 Trondheim , Norway
| | | | | | - Gunbjørg Svineng
- Department of Medical Biology, Faculty of Health Sciences , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Tonje S Steigedal
- Cancer Clinic , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway
| |
Collapse
|
23
|
Herman H, Fazakas C, Haskó J, Molnár K, Mészáros Á, Nyúl-Tóth Á, Szabó G, Erdélyi F, Ardelean A, Hermenean A, Krizbai IA, Wilhelm I. Paracellular and transcellular migration of metastatic cells through the cerebral endothelium. J Cell Mol Med 2019; 23:2619-2631. [PMID: 30712288 PMCID: PMC6433661 DOI: 10.1111/jcmm.14156] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer and melanoma are among the most frequent cancer types leading to brain metastases. Despite the unquestionable clinical significance, important aspects of the development of secondary tumours of the central nervous system are largely uncharacterized, including extravasation of metastatic cells through the blood-brain barrier. By using transmission electron microscopy, here we followed interactions of cancer cells and brain endothelial cells during the adhesion, intercalation/incorporation and transendothelial migration steps. We observed that brain endothelial cells were actively involved in the initial phases of the extravasation by extending filopodia-like membrane protrusions towards the tumour cells. Melanoma cells tended to intercalate between endothelial cells and to transmigrate by utilizing the paracellular route. On the other hand, breast cancer cells were frequently incorporated into the endothelium and were able to migrate through the transcellular way from the apical to the basolateral side of brain endothelial cells. When co-culturing melanoma cells with cerebral endothelial cells, we observed N-cadherin enrichment at melanoma-melanoma and melanoma-endothelial cell borders. However, for breast cancer cells N-cadherin proved to be dispensable for the transendothelial migration both in vitro and in vivo. Our results indicate that breast cancer cells are more effective in the transcellular type of migration than melanoma cells.
Collapse
Affiliation(s)
- Hildegard Herman
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Aurel Ardelean
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - István A Krizbai
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Huang T, Deng CX. Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers. Int J Biol Sci 2019; 15:1-11. [PMID: 30662342 PMCID: PMC6329932 DOI: 10.7150/ijbs.27796] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer related exosomes are nano-size membrane vesicles that play important roles in tumor microenvironment. Emerging evidence indicates that exosomes can load unique cargoes, including proteins and nucleic acids that reflect the condition of tumor. Therefore, exosomes are being used as diagnostic and prognostic biomarkers for various cancers. In this review, we describe the current progresses of cancer related exosomes, including their biogenesis, molecular contents, biological functions, sources where they are derived from, and methods for their detection. We will also discuss the current exosomal biomarkers and the utilization of them for early diagnosis and prognostics in cancer.
Collapse
Affiliation(s)
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
25
|
Toraskar J, Magnussen SN, Chawla K, Svineng G, Steigedal TS. Nephronectin mediates p38 MAPK-induced cell viability via its integrin-binding enhancer motif. FEBS Open Bio 2018; 8:1992-2001. [PMID: 30524949 PMCID: PMC6275265 DOI: 10.1002/2211-5463.12544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Nephronectin (NPNT) is an extracellular matrix (ECM) protein involved in kidney development. We recently reported intracellular NPNT as a potential prognostic marker in breast cancer and that NPNT promotes metastasis in an integrin-dependent manner. Here, we used reverse-phase protein array (RPPA) to analyze NPNT-triggered intracellular signaling in the 66cl4 mouse breast cancer cell line. The results showed that the integrin-binding enhancer motif is important for the cellular effects upon NPNT interaction with its receptors, including phosphorylation of p38 mitogen-activated protein kinase (MAPK). Furthermore, analysis using prediction tools suggests involvement of NPNT in promoting cell viability. In conclusion, our results indicate that NPNT, via its integrin-binding motifs, promotes cell viability through phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Jimita Toraskar
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Central Norway Regional Health AuthorityStjørdalNorway
| | - Synnøve N. Magnussen
- Department of Medical BiologyFaculty of Health SciencesUiT‐The Arctic University of NorwayTromsøNorway
| | - Konika Chawla
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Bioinformatics Core Facility‐BioCoreNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Gunbjørg Svineng
- Department of Medical BiologyFaculty of Health SciencesUiT‐The Arctic University of NorwayTromsøNorway
| | - Tonje S. Steigedal
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Central Norway Regional Health AuthorityStjørdalNorway
| |
Collapse
|
26
|
Wang D, Zhao C, Gao L, Wang Y, Gao X, Tang L, Zhang K, Li Z, Han J, Xiao J. NPNT promotes early-stage bone metastases in breast cancer by regulation of the osteogenic niche. J Bone Oncol 2018; 13:91-96. [PMID: 30591862 PMCID: PMC6303384 DOI: 10.1016/j.jbo.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Patients with breast cancer are often afflicted by bone metastases, while the establishment and growth of bone metastases depend on interaction between cancer cells and the host environment. Moreover, osteoblasts, which play a vital role in cancer cells survival and colonization, can form an osteogenic niche in early stage of bone metastases. Also, it is widely accepted that there is a genetic determinant during bone metastases. Nephronectin (NPNT) is an extracellular matrix protein which has shown biological activities in breast cancer metastases and osteoblasts differentiation. But the role of NPNT in mediating breast cancer bone metastases remains elusive. In the present study, we revealed that up regulation of NPNT is associated with incidence of bone metastases. What's more, NPNT could significantly enhance the tumor cell clone formation but not proliferation and migration. We further demonstrated that NPNT significantly enhance osteoblast differentiation and tumor adhesion. Thus, we proposed that cancer secreted NPNT may be a novel marker with potential value of prediction and diagnosis of breast cancer bone metastases.
Collapse
Affiliation(s)
- Dongsheng Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Chenglong Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Liangliang Gao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
- Department of orthopedics, Shanghai Kaiyuan Orthopedic Hospital, Shanghai, China
| | - Yao Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Xin Gao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Liang Tang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Kun Zhang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Zhenxi Li
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
- Coressponding authors.
| | - Jing Han
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Coressponding authors.
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
- Coressponding authors.
| |
Collapse
|