1
|
Olver CS. Laser Capture Microdissection of Tertiary Lymphoid Structures from Formalin-Fixed Paraffin-Embedded Sections of Canine Cutaneous and Subcutaneous Sarcomas for NanoString Direct RNA Counting. Methods Mol Biol 2025; 2864:127-140. [PMID: 39527220 DOI: 10.1007/978-1-0716-4184-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Laser capture microdissection (LCM) of formalin-fixed, paraffin-embedded sections is a way to analyze gene expression of morphologically distinct areas of tissue, as microscopically visualized with stained tissue sections. Herein, I describe a method for laser dissecting lymphoid aggregates in canine cutaneous and subcutaneous sarcomas and their adjacent sarcoma tissue to determine the differential expression of RNA as determined by NanoString® nCounter technology. Canine soft tissue sarcomas (STS) are diversely derived mesenchymal neoplasms that, regardless of exact histogenesis, behave similarly and thus have been grouped together as a diagnostic entity. The risk of recurrence and/or metastasis depends on the extent of surgical excision and histologic grade. Lymphoid aggregates are described in these tumors but have not been characterized. In humans, lymphoid aggregates characterized as tertiary lymphoid structures (TLS) improve the prognosis of several tumors, including sarcomas. We sought to determine if RNA expressed by lymphoid aggregates in canine sarcomas was compatible with TLS RNA expression. This chapter describes tissue preparation, staining, laser capture microdissection, and RNA isolation in preparation for digital RNA counting.
Collapse
Affiliation(s)
- Christine S Olver
- Colorado State University College of Veterinary Medicine and Biomedical Sciences, Clinical Pathology Section, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Files R, Cardoso C, Prada J, Silva F, Pires I. Syndecan-1 and E-Cadherin Expression in Canine Cutaneous Squamous Cell Carcinoma. Vet Sci 2024; 11:652. [PMID: 39728992 DOI: 10.3390/vetsci11120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) in dogs is a locally invasive tumor that typically occurs in areas of poorly pigmented skin due to sun exposure. Identifying new biomarkers, such as syndecan-1 (CD138) and E-cadherin, is fundamental for tumor diagnosis and prognosis. Dysregulation of syndecan-1, expressed in epithelial tissue, fibroblasts, and plasma cells, is associated with poor prognosis in several types of cancer. Similarly, E-cadherin, which plays a crucial role in cell adhesion and epithelial functionality, is also linked to adverse outcomes. This study evaluated the expression of syndecan-1 and E-cadherin in 47 cases of canine cutaneous squamous cell carcinoma. The results showed that the intensity of syndecan-1 decreased with increasing tumor aggressiveness, and its presence in the stroma was significantly associated with tumor grade. E-cadherin also demonstrated a decrease in intensity with increasing malignancy. However, the association between syndecan-1 and E-cadherin was not statistically significant. E-cadherin reduction and stromal syndecan-1 positivity seem to be associated with tumor aggressiveness in canine cutaneous squamous cell carcinoma. Further studies are needed to explore their roles in tumor progression.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Cláudia Cardoso
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Gualtieri P, Lee BI, Beeney A, Hart C, Leary D, Martin T, Boss MK. Response of Spontaneous Oral Tumors in Canine Cancer Patients Treated with Stereotactic Body Radiation Therapy (SBRT). Radiat Res 2024; 202:807-824. [PMID: 39478420 DOI: 10.1667/rade-24-00079.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024]
Abstract
The objective of this study is describe outcome and toxicity for dogs with oral tumors, specifically oral malignant melanoma (OMM), squamous cell carcinoma (SCC), and soft tissue sarcoma (STS) after stereotactic body radiation therapy (SBRT). A single institution retrospective study was conducted. Outcomes were analyzed using Kaplan-Meier analysis and Cox proportional hazard analysis. Treatment responses at different time points were evaluated with Pearson's Chi-squared test to identify prognostic factors. Acute and late toxicities were recorded according to VRTOG criteria and were analyzed to identify risk factors. Adverse events other than acute and late toxicities were recorded. A total of 98 patients met the inclusion criteria (OMM n = 37; SCC n = 18; STS n = 43). The SBRT prescription was 1-6 fractions, with a total dose range of 12-40 Gy. Local progression-free survival (PFS) for OMM, SCC, and STS was 187, 253, and 161 days, respectively. Overall PFS was 152 days and median survival time (MST) was 270 days, with no statistical difference between tumor types. The presence of lymph node metastasis and the use of elective nodal irradiation (ENI) were associated with shorted PFS and MST. Severe acute toxicities to organs at risk affected 10/85 (11.8%) of patients. Osteoradionecrosis and oronasal fistula formation occurred in 23/81 (28.4%) of patients and was significantly associated with tumor type (SCC, P = 0.006). SBRT can be offered as a treatment option for oral tumors in dogs. Toxicities were common and warrant risk factor considerations and adjustments to current SBRT protocols.
Collapse
Affiliation(s)
- Patricia Gualtieri
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Ber-In Lee
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Amber Beeney
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Cullen Hart
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Tiffany Martin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Mary-Keara Boss
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
4
|
Beebe E, Krudewig C, Motamed Z, Malbon A, Markkanen E. Stromal Expression Profiling Reveals Immune-Driven Adaption to Malignancy in Canine Melanoma Subtypes. Vet Comp Oncol 2024. [PMID: 39420530 DOI: 10.1111/vco.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Canine mucosal melanoma (CMM) is the most common oral malignancy in dogs and is significantly more aggressive than its cutaneous counterpart (CCM), yet the reasons for this disparity remain unclear. Cancer-associated stroma (CAS) plays a crucial role in tumour progression, but a detailed understanding of CAS in canine melanoma is missing. To assess stromal reprogramming, we analysed CAS from 21 CMM, 14 CCM and normal stroma from 10 skin and 9 oral mucosa samples by laser-capture microdissection followed by RNA sequencing. Results were assessed in relation to subtypes, prognostic factors including mitotic count (MC), ulceration, necrosis, pigmentation and immune cell infiltration (CD3, CD20 and CD68), scored using immunohistochemistry and RNA in situ hybridisation. Stromal reprogramming was evident in both subtypes but significantly more pronounced in CMM. Immune-excluded tumours exhibited higher MC than desert/cold ones. MC strongly correlated with genes associated with B-cells, T-helper cells and CTLA4 in CCM, suggesting CAS reprogramming to depend on tumour malignancy. Finally, we identify an immune-suppressive stromal signature in a subset of CMM characterised by the downregulation of key immune checkpoints and pathways. Together, these findings provide a solid foundation for understanding the role of CAS in canine melanoma, specific to cutaneous and mucosal subtypes.
Collapse
Affiliation(s)
- Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christiane Krudewig
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Zahra Motamed
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alexandra Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, Midlothian, UK
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Cahill JA, Smith LA, Gottipati S, Torabi TS, Graim K. Bringing the Genomic Revolution to Comparative Oncology: Human and Dog Cancers. Annu Rev Biomed Data Sci 2024; 7:107-129. [PMID: 38648188 PMCID: PMC11343685 DOI: 10.1146/annurev-biodatasci-102423-111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Dogs are humanity's oldest friend, the first species we domesticated 20,000-40,000 years ago. In this unequaled collaboration, dogs have inadvertently but serendipitously been molded into a potent human cancer model. Unlike many common model species, dogs are raised in the same environment as humans and present with spontaneous tumors with human-like comorbidities, immunocompetency, and heterogeneity. In breast, bladder, blood, and several pediatric cancers, in-depth profiling of dog and human tumors has established the benefits of the dog model. In addition to this clinical and molecular similarity, veterinary studies indicate that domestic dogs have relatively high tumor incidence rates. As a result, there are a plethora of data for analysis, the statistical power of which is bolstered by substantial breed-specific variability. As such, dog tumors provide a unique opportunity to interrogate the molecular factors underpinning cancer and facilitate the modeling of new therapeutic targets. This review discusses the emerging field of comparative oncology, how it complements human and rodent cancer studies, and where challenges remain, given the rapid proliferation of genomic resources. Increasingly, it appears that human's best friend is becoming an irreplaceable component of oncology research.
Collapse
Affiliation(s)
- James A Cahill
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Leslie A Smith
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Soumya Gottipati
- Department of Computer Science, Princeton University, Princeton, New Jersey, USA
| | - Tina Salehi Torabi
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Kiley Graim
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
6
|
Ploypetch S, Luo X, Zhao S, Roytrakul S, Li L, Suriyaphol G. Salivary metabolomic identification of biomarker candidates for oral melanoma and oral squamous cell carcinoma in dogs. J Vet Intern Med 2024; 38:2293-2304. [PMID: 38703129 PMCID: PMC11256132 DOI: 10.1111/jvim.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Oral melanoma (OM) and oral squamous cell carcinoma (OSCC) are frequently diagnosed in dogs, presenting a challenge in distinguishing them from benign oral tumors (BN). Salivary metabolomic biomarkers offer a practical solution because of saliva's direct contact with tumors and the noninvasive nature of collection. OBJECTIVE Assess the diversity and abundance of the salivary metabolome in dogs with BN, OM, and OSCC using amine/phenol submetabolome analysis and high-performance chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS). ANIMALS Study included 11 BN, 24 OM, 10 OSCC, and 20 healthy control dogs. METHODS Case-control cross-sectional study was conducted to assess salivary submetabolic profiles in dogs with BN, OM, and OSCC and healthy dogs. Samples were labeled with 12C-dansyl chloride and analyzed using CIL LC-MS targeted to amine- and phenol-containing metabolites for amine/phenol submetabolome analysis. RESULTS Distinct clusters and significant differences in metabolite concentrations were observed among the oral cancer, BN, and control groups. A total of 154 and 66 metabolites showed significantly altered concentrations, particularly in OM and OSCC, respectively, when compared with BN (Padj < .05). Potential metabolic biomarkers were identified for each cancer, including decreased concentrations of seryl-arginine and sarcosine in OSCC. Moreover, high-confidence putative metabolites were identified, including an increase in tryptophyl-threonine and a decrease in 1,2-dihydroxynapthalene-6-sulfonic acid and hydroxyprolyl-hydroxyproline for OM. CONCLUSIONS AND CLINICAL IMPORTANCE We identified high coverage of the amine/phenol submetabolome, including seryl-arginine, and sarcosine, in OSCC. Our findings emphasize the potential of these biomarkers for distinguishing between oral OSCC and BN in dogs.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand
| | - Xian Luo
- The Metabolomics Innovation CentreUniversity of AlbertaEdmontonAlbertaCanada
| | - Shuang Zhao
- The Metabolomics Innovation CentreUniversity of AlbertaEdmontonAlbertaCanada
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Liang Li
- The Metabolomics Innovation CentreUniversity of AlbertaEdmontonAlbertaCanada
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| |
Collapse
|
7
|
Peralta S, Katt W, Balkman C, Butler S, Carney P, Todd-Donato A, Drozd M, Duhamel G, Fiani N, Ford J, Grenier J, Hayward J, Heikinheimo K, Hume K, Moore E, Puri R, Sylvester S, Warshaw S, Webb S, White A, Wright A, Cerione R. Opportunities for targeted therapies: trametinib as a therapeutic approach to canine oral squamous cell carcinomas. RESEARCH SQUARE 2024:rs.3.rs-4289451. [PMID: 38746473 PMCID: PMC11092801 DOI: 10.21203/rs.3.rs-4289451/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Oral tumors are relatively common in dogs, and canine oral squamous cell carcinoma (COSCC) is the most prevalent oral malignancy of epithelial origin. COSCC is locally aggressive with up to 20% of patients showing regional or distant metastasis at the time of diagnosis. The treatment of choice most typically involves wide surgical excision. Although long-term remission is possible, treatments are associated with significant morbidity and can negatively impact functionality and quality of life. OSCCs have significant upregulation of the RAS-RAF-MEK-MAPK signaling axis, and we had previously hypothesized that small-molecule inhibitors that target RAS signaling might effectively inhibit tumor growth and progression. Here, we demonstrate that the MEK inhibitor trametinib, an FDA-approved drug for human cancers, significantly blocks the growth of several COSCC cell lines established from current patient tumor samples. We further show clinical evidence that the drug is able to cause significant tumor regression in some patients with spontaneously occurring COSCC. Given the limited treatment options available and the high rate of owner rejection of these offered options, these findings provide new hope that more acceptable treatment options may soon enter the veterinary clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jennifer Grenier
- RNA Sequencing Core and Center for Reproductive Genomics. Cornell University, Ithaca, NY
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Satthathum C, Srisampane S, Jariyarangsrirattana P, Anusorn P, Sattasathuchana P, Thengchaisri N. Characteristics of canine oral tumors: Insights into prevalence, types, and lesion distribution. J Adv Vet Anim Res 2023; 10:554-562. [PMID: 37969809 PMCID: PMC10636079 DOI: 10.5455/javar.2023.j709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 11/17/2023] Open
Abstract
Objective The escalating prevalence of canine oral tumors has emerged as a considerable health concern. This study examined the prevalence, types, and distributions of lesions linked to canine oral tumors. Material and Methods The medical records of 526 dogs diagnosed with oral tumors were analyzed to determine the prevalence, types, and distributions. Tumor stages were classified into four categories using the tumor node metastasis system. Results Among the 526 dogs, there were 118 cases of benign tumors and 408 cases of malignant tumors. Acanthomatous ameloblastoma was the most common benign tumor (43.22%), while melanoma was the most common malignant tumor (51.23%). The gingiva was the most common site for both benign and malignant lesions, accounting for 89.83% and 63.73% of cases, respectively. Melanoma, squamous cell carcinoma, and fibrosarcoma were primarily located in the gingiva, whereas osteosarcoma was commonly found in the mandible. Most tumors were classified as stage III (ranging from 46.84% to 74.58%). Of the reported cases, 56.08% were males and 43.92% were females, and the most common breed was mixed at 30.41%, followed by Poodle at 14.25% and Shih Tzu at 11.40%. Moreover, patients with malignant oral tumors (11.6 ± 3.1 years) were significantly older than those with benign tumors (8.9 ± 3.4 years, p < 0.0001). Conclusion Gingiva was the primary site for oral tumors, and mainly classified as stage III. These findings emphasize the increasing occurrence of oral tumors in senior and geriatric dogs and provide insights into the prevalent types and distribution.
Collapse
Affiliation(s)
- Chakkarin Satthathum
- Faculty of Veterinary Medicine, Surgery Unit, Kasetsart University Veterinary Teaching Hospital, Kasetsart University, Bangkok, Thailand
| | - Supreeya Srisampane
- Faculty of Veterinary Medicine, Veterinary Diagnostic Center, Kasetsart University, Bangkok, Thailand
| | - Pollawat Jariyarangsrirattana
- Faculty of Veterinary Medicine, Surgery Unit, Kasetsart University Veterinary Teaching Hospital, Kasetsart University, Bangkok, Thailand
| | - Pitak Anusorn
- Faculty of Veterinary Medicine, Surgery Unit, Kasetsart University Veterinary Teaching Hospital, Kasetsart University, Bangkok, Thailand
| | - Panpicha Sattasathuchana
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Naris Thengchaisri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
9
|
Ettlin J, Bauer A, Opitz L, Malbon A, Markkanen E. Deciphering Stromal Changes between Metastatic and Non-metastatic Canine Mammary Carcinomas. J Mammary Gland Biol Neoplasia 2023; 28:14. [PMID: 37391533 PMCID: PMC10313573 DOI: 10.1007/s10911-023-09542-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Cancer-associated stroma (CAS) is widely recognized to influence development and progression of epithelial tumours including breast cancer. Canine mammary tumours (CMTs) such as simple canine mammary carcinomas represent valuable models for human breast cancer also with respect to stromal reprogramming. However, it remains unclear whether and how CAS changes in metastatic tumours compared to non-metastatic ones. To characterize stromal changes between metastatic and non-metastatic CMTs and identify potential drivers of tumour progression, we analysed CAS and matched normal stroma from 16 non-metastatic and 15 metastatic CMTs by RNA-sequencing of microdissected FFPE tissue. We identified 1438 differentially regulated genes between CAS and normal stroma, supporting previous results demonstrating stromal reprogramming in CMTs to be comparable with CAS in human breast cancer and validating deregulation of pathways and genes associated with CAS. Using primary human fibroblasts activated by treatment with TGFβ, we demonstrate some of the strongest expression changes to be conserved in fibroblasts across species. Furthermore, we identify 132 differentially expressed genes between CAS from metastatic and non-metastatic tumours, with strong changes in pathways including chemotaxis, regulation of apoptosis, immune response and TGFβ signalling and validate deregulation of several targets using RT-qPCR. Finally, we identify specific upregulation of COL6A5, F5, GALNT3, CIT and MMP11 in metastatic CAS, suggesting high stromal expression of these targets to be linked to malignancy and metastasis of CMTs. In summary, our data present a resource supporting further research into stromal changes of the mammary gland in relation to metastasis with implications for both canine and human mammary cancer.
Collapse
Affiliation(s)
- Julia Ettlin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zürich, 8057, Switzerland
| | - Alina Bauer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zürich, 8057, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zürich, ETH Zürich/University of Zurich, Zürich, 8057, Switzerland
| | - Alexandra Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zürich, 8057, Switzerland
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, Midlothian, EH25 9RG, Scotland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
10
|
Peralta S, Webb SM, Katt WP, Grenier JK, Duhamel GE. Highly recurrent BRAF p.V595E mutation in canine papillary oral squamous cell carcinoma. Vet Comp Oncol 2023; 21:138-144. [PMID: 36451536 DOI: 10.1111/vco.12869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral epithelial malignancy in dogs. It exhibits locally aggressive biological behaviour with the potential to metastasize, and a reported 1-year survival rate of 0% when left untreated. Expression studies suggest that aberrant MAPK signalling plays a key role in canine OSCC tumorigenesis, which is consistent with BRAF and HRAS MAPK-activating mutations reported in some tumours. Several morphological subtypes of canine OSCC have been described, with papillary, conventional, and basaloid as the most common patterns. We hypothesized that mutational differences may underlie these phenotypic variations. In this study, targeted Sanger sequencing and restriction fragment length polymorphism assays demonstrate that up to 85.7% of canine papillary OSCC (n = 14) harbour a BRAF p.V595E mutation. Assessment of neoplastic epithelial cell proliferation using Ki67 immunolabelling (n = 10) confirmed a relatively high proliferation activity, consistent with their known aggressive clinical behaviour. These findings underscore a consistent genetic feature of canine papillary OSCC and provide a basis for the development of novel diagnostic and targeted therapeutic approaches that can improve the quality of veterinary care.
Collapse
Affiliation(s)
- Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Suzin M Webb
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - William P Katt
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer K Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerald E Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Beebe E, Pöschel A, Kunz L, Wolski W, Motamed Z, Meier D, Guscetti F, Nolff MC, Markkanen E. Proteomic profiling of canine fibrosarcoma and adjacent peritumoral tissue. Neoplasia 2023; 35:100858. [PMID: 36508875 PMCID: PMC9761855 DOI: 10.1016/j.neo.2022.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Fibrosarcoma (FSA) are rare soft tissue tumors that display aggressive local behavior and invasive growth leading to high rates of tumor recurrence. While the low incidence in humans hampers detailed understanding of the disease, FSA are frequent in dogs and present potential models for the human condition. However, a lack of in-depth molecular characterization of FSA and unaffected peritumoral tissue (PTT) in both species impedes the translational potential of dogs. To address this shortcoming, we characterized canine FSA and matched skeletal muscle, adipose and connective tissue using laser-capture microdissection (LCM) and LC-MS/MS in 30 formalin-fixed paraffin embedded (FFPE) specimens. Principal component analysis of 3'530 different proteins detected across all samples clearly separates the four tissues, with several targets strongly differentiating tumor from all three PTTs. 25 proteins were exclusively found in tumor tissue in ≥80% of cases. Among these, CD68 (a macrophage marker), Optineurin (OPTN), Nuclear receptor coactivator 5 (NCOA5), RAP1GDS1 (Rap1 GTPase-GDP dissociation stimulator 1) and Stromal cell derived factor 2 like 1 (SDF2L1) were present in ≥90% of FSA. Protein expression across all FSA was highly homogeneous and characterized by MYC and TP53 signaling, hyperactive EIF2 and immune-related changes as well as strongly decreased oxidative phosphorylation and oxidative lipid metabolism. Finally, we demonstrate significant molecular homology between canine FSA and human soft-tissue sarcomas, emphasizing the relevance of studying canine FSA as a model for human FSA. In conclusion, we provide the first detailed overview of proteomic changes in FSA and surrounding PTT with relevance for the human disease.
Collapse
Affiliation(s)
- Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Amiskwia Pöschel
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Laura Kunz
- Functional Genomics Center Zürich, ETH Zürich/University of Zurich, 8057 Zürich, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zürich, ETH Zürich/University of Zurich, 8057 Zürich, Switzerland
| | - Zahra Motamed
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Daniela Meier
- Zyto/Histo Diagnostik Labor Freienstein, 8427 Freienstein, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Mirja C Nolff
- Small Animal Surgery, Tierspital Zürich, 8057 Zürich, Switzerland.
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland.
| |
Collapse
|
12
|
Identification of EDIL3 biomarkers as a biomarker and potential therapeutic target of canine mammary carcinomas based on integrated bioinformatics analysis. Vet Immunol Immunopathol 2022; 249:110432. [DOI: 10.1016/j.vetimm.2022.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
|
13
|
Polak KZ, Schaffer P, Donaghy D, Zenk MC, Olver CS. Iron, hepcidin, and microcytosis in canine hepatocellular carcinoma. Vet Clin Pathol 2022; 51:208-215. [PMID: 35274348 DOI: 10.1111/vcp.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/01/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Erythrocyte microcytosis in some dogs with hepatocellular carcinoma (HCC) suggests a derangement in systemic iron. Hepcidin, the master regulator of iron, is secreted by the liver in response to interleukin 6 (IL-6) and/or bone morphogenetic protein 6 (BMP6) and can cause microcytosis. OBJECTIVES Pilot study to compare the quantities of hepcidin, IL-6, and BMP6 RNA molecules in archival tumoral (HCC) and adjacent peritumoral (non-HCC) hepatic tissue to determine if they are different between tissue types or associated with microcytosis. METHODS RNA was isolated from formalin-fixed, paraffin-embedded HCC and non-HCC tissue from seven microcytic dogs and four normocytic dogs. Digital RNA counts of hepcidin, IL-6, or BMP6, and six other iron-regulatory genes were determined using the Nanostring nCounter system. The area of blue on each section was digitally evaluated to measure the extent of Prussian blue staining objectively. Parameters were compared between HCC and non-HCC tissue and between microcytic and normocytic groups. RESULTS Hepcidin was decreased, and transferrin receptor 1 (TfR1) was increased in HCC tissue compared with non-HCC tissue. Non-HCC hepcidin RNA counts correlated negatively with MCV and positively with the extent of iron staining. Hepcidin expression was higher in non-HCC tissue of microcytic cases than in normocytic cases. CONCLUSIONS Canine HCC cases showed relatively increased iron staining in non-HCC tissue and decreased hepcidin RNA in HCC tissue. Microcytic cases had higher hepcidin RNA in non-HCC tissue than normocytic cases. Future studies may extend these findings to protein quantification, cellular localization of RNA changes, and determining if iron loading in canine liver is a predisposing factor for HCC.
Collapse
Affiliation(s)
- Klaudia Z Polak
- College of Veterinary Medicine and Biomedical Sciences, Clinical Pathology Section, Colorado State University, Fort Collins, Colorado, USA
| | - Paula Schaffer
- College of Veterinary Medicine and Biomedical Sciences, Clinical Pathology Section, Colorado State University, Fort Collins, Colorado, USA
| | - Dillon Donaghy
- College of Veterinary Medicine and Biomedical Sciences, Clinical Pathology Section, Colorado State University, Fort Collins, Colorado, USA
| | - Madison C Zenk
- College of Veterinary Medicine and Biomedical Sciences, Clinical Pathology Section, Colorado State University, Fort Collins, Colorado, USA
| | - Christine S Olver
- College of Veterinary Medicine and Biomedical Sciences, Clinical Pathology Section, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Peralta S, Duhamel GE, Katt WP, Heikinheimo K, Miller AD, Ahmed F, McCleary-Wheeler AL, Grenier JK. Comparative transcriptional profiling of canine acanthomatous ameloblastoma and homology with human ameloblastoma. Sci Rep 2021; 11:17792. [PMID: 34493785 PMCID: PMC8423744 DOI: 10.1038/s41598-021-97430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Ameloblastomas are odontogenic tumors that are rare in people but have a relatively high prevalence in dogs. Because canine acanthomatous ameloblastomas (CAA) have clinicopathologic and molecular features in common with human ameloblastomas (AM), spontaneous CAA can serve as a useful translational model of disease. However, the molecular basis of CAA and how it compares to AM are incompletely understood. In this study, we compared the global genomic expression profile of CAA with AM and evaluated its dental origin by using a bulk RNA-seq approach. For these studies, healthy gingiva and canine oral squamous cell carcinoma served as controls. We found that aberrant RAS signaling, and activation of the epithelial-to-mesenchymal transition cellular program are involved in the pathogenesis of CAA, and that CAA is enriched with genes known to be upregulated in AM including those expressed during the early stages of tooth development, suggesting a high level of molecular homology. These results support the model that domestic dogs with spontaneous CAA have potential for pre-clinical assessment of targeted therapeutic modalities against AM.
Collapse
Affiliation(s)
- Santiago Peralta
- Department of Clinical Sciences, Clinical Programs Center, College of Veterinary Medicine, Cornell University, Box 31, Ithaca, NY, 14853, USA.
| | - Gerald E Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - William P Katt
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku and Turku University Hospital, Turku, Finland
| | - Andrew D Miller
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Faraz Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Angela L McCleary-Wheeler
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Jennifer K Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Noguchi S, Hirano K, Tanimoto N, Shimada T, Akiyoshi H. SLUG is upregulated and induces epithelial mesenchymal transition in canine oral squamous cell carcinoma. Vet Comp Oncol 2021; 20:134-141. [PMID: 34310030 DOI: 10.1111/vco.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
SLUG, encoded by the Snai2 gene, is known to play a role in epithelial-mesenchymal transition (EMT), which contributes to cell invasion and metastasis in some types of human carcinomas. However, the mechanisms and roles of EMT in canine squamous cell carcinoma (SCC) have not yet been elucidated. We have previously established canine oral SCC cell lines, including tonsillar SCC, and in this study, we evaluated the effects of SLUG on the phenotypes regarding EMT of canine SCC cells. First, immunohistochemical analysis revealed that SLUG is upregulated in canine oral SCC tissues compared to that in non-tumoural oral mucosa. Furthermore, gain-of-function and loss-of-function of SLUG revealed that SLUG partly contributed to migration and invasion of cells, as well as the upregulation of EMT markers such as vimentin and SNAIL. Thus, the current study suggests that SLUG promotes cell migration and invasion through EMT induction in canine oral SCC, as well as human cancers.
Collapse
Affiliation(s)
- Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kazuya Hirano
- Laboratory of Veterinary Radiology, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Osaka, Japan
| | - Nanami Tanimoto
- Laboratory of Veterinary Radiology, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Osaka, Japan
| | - Terumasa Shimada
- Veterinary Medical Center, Osaka Prefecture University, Osaka, Japan
| | - Hideo Akiyoshi
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
16
|
Pantelyushin S, Ranninger E, Guerrera D, Hutter G, Maake C, Markkanen E, Bettschart-Wolfensberger R, Rohrer Bley C, Läubli H, vom Berg J. Cross-Reactivity and Functionality of Approved Human Immune Checkpoint Blockers in Dogs. Cancers (Basel) 2021; 13:785. [PMID: 33668625 PMCID: PMC7918463 DOI: 10.3390/cancers13040785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Rodent cancer models have limitations in predicting efficacy, tolerability and accompanying biomarkers of ICIs in humans. Companion dogs suffering from neoplastic diseases have gained attention as a highly relevant translational disease model. Despite successful reports of PD-1/PD-L1 blockade in dogs, no compounds are available for veterinary medicine. METHODS Here, we assessed suitability of seven FDA-approved human ICIs to target CTLA-4 or PD-1/PD-L1 in dogs. Cross-reactivity and blocking potential was assessed using ELISA and flow cytometry. Functional responses were assessed on peripheral blood mononuclear cells (PBMCs) derived from healthy donors (n = 12) and cancer patient dogs (n = 27) as cytokine production after stimulation. Immune composition and target expression of healthy donors and cancer patients was assessed via flow cytometry. RESULTS Four candidates showed cross-reactivity and two blocked the interaction of canine PD-1 and PD-L1. Of those, only atezolizumab significantly increased cytokine production of healthy and patient derived PBMCs in vitro. Especially lymphoma patient PBMCs responded with increased cytokine production. In other types of cancer, response to atezolizumab appeared to correlate with a lower frequency of CD8 T cells. CONCLUSIONS Cross-functionality of atezolizumab encourages reverse translational efforts using (combination) immunotherapies in companion dog tumor patients to benefit both veterinary and human medicine.
Collapse
Affiliation(s)
- Stanislav Pantelyushin
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Elisabeth Ranninger
- Department of Clinical and Diagnostic Services, Section of Anesthesiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (E.R.); (R.B.-W.)
| | - Diego Guerrera
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland; (G.H.); (H.L.)
- Department of Neurosurgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Department of Clinical and Diagnostic Services, Section of Anesthesiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (E.R.); (R.B.-W.)
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Heinz Läubli
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland; (G.H.); (H.L.)
- Division of Medical Oncology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
| |
Collapse
|
17
|
Hernández IB, Kromhout JZ, Teske E, Hennink WE, van Nimwegen SA, Oliveira S. Molecular targets for anticancer therapies in companion animals and humans: what can we learn from each other? Theranostics 2021; 11:3882-3897. [PMID: 33664868 PMCID: PMC7914358 DOI: 10.7150/thno.55760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Despite clinical successes in the treatment of some early stage cancers, it is undeniable that novel and innovative approaches are needed to aid in the fight against cancer. Targeted therapies offer the desirable feature of tumor specificity while sparing healthy tissues, thereby minimizing side effects. However, the success rate of translation of these therapies from the preclinical setting to the clinic is dramatically low, highlighting an important point of necessary improvement in the drug development process in the oncology field. The practice of a comparative oncology approach can address some of the current issues, by introducing companion animals with spontaneous tumors in the linear drug development programs. In this way, animals from the veterinary clinic get access to novel/innovative therapies, otherwise inaccessible, while generating robust data to aid therapy refinement and increase translational success. In this review, we present an overview of targetable membrane proteins expressed in the most well-characterized canine and feline solid cancers, greatly resembling the counterpart human malignancies. We identified particular areas in which a closer collaboration between the human and veterinary clinic would benefit both human and veterinary patients. Considerations and challenges to implement comparative oncology in the development of anticancer targeted therapies are also discussed.
Collapse
|