1
|
Shin JH, Lee CM, Song JJ. Transcutaneous auricular vagus nerve stimulation mitigates gouty inflammation by reducing neutrophil infiltration in BALB/c mice. Sci Rep 2024; 14:25630. [PMID: 39463429 PMCID: PMC11514149 DOI: 10.1038/s41598-024-77272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
Gouty inflammation, caused by uric acid crystal deposition, primarily affects tissues around the toe joints and triggers potent inflammatory responses. Current treatments focus on alleviating inflammation and pain using pharmaceutical agents, which can lead to side effects and complications. This has generated interest in non-pharmacological interventions, such as non-invasive vagus nerve stimulation (VNS). In this study, we explored the anti-inflammatory mechanisms of transcutaneous auricular vagus nerve stimulation (taVNS) in a mouse model of acute gout. Gouty inflammation was induced by injecting monosodium urate (MSU) crystals into the ankle joints of BALB/c mice. The effects of taVNS on the expression of inflammatory cytokines and chemokines in the ankle joint tissue were assessed using real-time quantitative PCR (qPCR), western blotting, histological assessments (H&E staining), and immunohistochemistry (IHC). The role of α7 nicotinic acetylcholine receptors (α7nAChR) was also evaluated by signal blocking. Our findings revealed that MSU significantly elevated gout-associated inflammatory cascades and mediators in the ankle joint. Notably, taVNS at 200 µA and 25 Hz effectively reduced these inflammatory responses, decreasing neutrophil infiltration and chemoattraction within the tissue. taVNS showed significant anti-inflammatory properties by suppressing neutrophil activity, offering a novel therapeutic approach for gout beyond conventional pharmacological methods. Additionally, taVNS holds potential for managing various chronic joint diseases. These results highlight taVNS as a promising non-pharmacological therapy for chronic inflammation.
Collapse
Affiliation(s)
- Jae Hee Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Korea
| | - Chan Mi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Korea.
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Korea.
- Neurive Institute, Neurive Co., Ltd., Seoul, 08308, Korea.
| |
Collapse
|
2
|
Ramaraj SG, Elamaran D, Tabata H, Zhang F, Liu X. Biocompatible triboelectric energy generators (BT-TENGs) for energy harvesting and healthcare applications. NANOSCALE 2024; 16:18251-18273. [PMID: 39282966 DOI: 10.1039/d4nr01987c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Electronic waste (e-waste) has become a significant environmental and societal challenge, necessitating the development of sustainable alternatives. Biocompatible and biodegradable electronic devices offer a promising solution to mitigate e-waste and provide viable alternatives for various applications, including triboelectric nanogenerators (TENGs). This review provides a comprehensive overview of recent advancements in biocompatible, biodegradable, and implantable TENGs, emphasizing their potential as energy scavengers for healthcare devices. The review delves into the fabrication processes of self-powered TENGs using natural biopolymers, highlighting their biodegradability and compatibility with biological tissues. It further explores the biomedical applications of ultrasound-based TENGs, including their roles in wound healing and energy generation. Notably, the review presents the novel application of TENGs for vagus nerve stimulation, demonstrating their potential in neurotherapeutic interventions. Key findings include the identification of optimal biopolymer materials for TENG fabrication, the effectiveness of TENGs in energy harvesting from physiological movements, and the potential of these devices in regenerative medicine. Finally, the review discusses the challenges in scaling up the production of implantable TENGs from biomaterials, addressing issues such as mechanical stability, long-term biocompatibility, and integration with existing medical devices, outlining future research opportunities to enhance their performance and broaden their applications in the biomedical field.
Collapse
Affiliation(s)
- Sankar Ganesh Ramaraj
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai-602105, Tamilnadu, India
| | - Durgadevi Elamaran
- Graduate School of Arts and Sciences College of Arts and Sciences, The University of Tokyo, Komaba Campus, Tokyo, Japan.
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China.
- Division of Research and Development, Lovely Professional University, Phagwara, India
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Graphene Basic Science Research Center, Beijing Graphene Institute (BGI), Beijing, 100095, China
| |
Collapse
|
3
|
Edalati S, Meyer JS, Aravot D, Barac YD. Vagal nerve stimulation potential therapeutic benefits in acute lung rejection and transplantation. Transpl Immunol 2024; 86:102105. [PMID: 39128810 DOI: 10.1016/j.trim.2024.102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Allograft rejection, accompanied by a rise in proinflammatory cytokines, is a leading cause of morbidity and mortality after lung transplantation. Immunosuppressive treatments are routinely employed as an effective way to prevent rejection, however, there is still an unmet need to develop new strategies to reduce the damage caused to transplanted organs by innate inflammatory responses. Recent research has shown that activating the vagus nerve's efferent arm regulates cytokine production and improves survival in experimental conditions of cytokine excess, such as sepsis, hemorrhagic shock, ischemia-reperfusion injury, among others. The cholinergic anti-inflammatory pathway can provide a localized, fast, and discrete response to inflammation by controlling the neuroimmune response and preventing excessive inflammation. This review intends to assess and discuss, the influence of noninvasive vagal nerve stimulation for prophylactic measures and supporting treatment in patients undergoing organ transplantation rejection with a prominent T-cell mediated immune response as a means of attenuating inflammation and leukocyte infiltration of the graft vessels.
Collapse
Affiliation(s)
- Shaun Edalati
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - J Sam Meyer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva, Israel
| | - Dan Aravot
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva, Israel
| | - Yaron D Barac
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva, Israel
| |
Collapse
|
4
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. Ascending Vagal Sensory and Central Noradrenergic Pathways Modulate Retrieval of Passive Avoidance Memory in Male Rats. J Neurosci Res 2024; 102:e25390. [PMID: 39373381 DOI: 10.1002/jnr.25390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. These new findings support the view that gut vagal afferents and the cNTSNA-to-vlBNST circuit play a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Inge Estefania Guerrero
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Zhai F, Lv Y, Shi F, Li S, Guo Z, Yang Y, Chen J, Lu J. The nucleus of solitary tract (NTS) synchronizes sleep-wake-state-dependent cortical activity through the parabrachial nucleus (PB) in rat. Sleep Med 2024; 122:45-50. [PMID: 39121823 DOI: 10.1016/j.sleep.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The medullary nucleus of solitary tract (NTS) and its afferents of vagus nerve have long been investigated in regulation of cortical activity and sleep promotion. However, the underlying neural circuit by which the NTS regulates electroencephalogram (EEG) and sleep remain unclear. As the NTS has a strong projection to the pontine arousal site, the parabrachial nucleus (PB), we proposed the NTS via the pontine parabrachial nucleus (PB) regulates cortical activity and sleep. METHODS We bilaterally and directly stimulated the NTS neurons by chemogenetic approach and NTS terminals in the PB by optogenetic approach and examined changes in EEG and sleep in rats. RESULTS Opto- and chemo-stimulation of the NTS and NTS-PB pathway altered neither sleep amounts nor patterns; however, both stimulations consistently increased EEG delta (0.5-4.0 Hz) EEG power during non-rapid-eye-movement (NREM) sleep and alpha-beta (10-30 Hz) EEG power during wake and REM sleep. CONCLUSION Our results indicate that the NTS via its projections to the PB synchronizes low frequency EEG during NREM sleep and high frequency EEG during wake and REM sleep. This pathway may serve the neural foundation for the vagus nerve stimulation (VNS) treating cortical disorders.
Collapse
Affiliation(s)
- Feng Zhai
- Department of Otolaryngology, Shanghai Children's Medical Center and Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Yudan Lv
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA; Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Fang Shi
- Department of Otolaryngology-Head & Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Sichen Li
- McCourt School of Public Policy, Georgetown University, Washington, DC, 20057, USA
| | - Zhenni Guo
- Stroke Center, The First Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Yi Yang
- Stroke Center, The First Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Jie Chen
- Department of Otolaryngology, Shanghai Children's Medical Center and Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA; Stroke Center, The First Hospital of Jilin University, Changchun, Jilin, 130000, China.
| |
Collapse
|
6
|
Guo K, Lu Y, Wang X, Duan Y, Li H, Gao F, Wang J. Multi-level exploration of auricular acupuncture: from traditional Chinese medicine theory to modern medical application. Front Neurosci 2024; 18:1426618. [PMID: 39376538 PMCID: PMC11456840 DOI: 10.3389/fnins.2024.1426618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
As medical research advances and technology rapidly develops, auricular acupuncture has emerged as a point of growing interest. This paper delves into the intricate anatomy of auricular points, their significance and therapeutic principles in traditional Chinese medicine (TCM), and the underlying mechanisms of auricular acupuncture in contemporary medicine. The aim is to delve deeply into this ancient and mysterious medical tradition, unveiling its multi-layered mysteries in the field of neurostimulation. The anatomical structure of auricular points is complex and delicate, and their unique neurovascular network grants them a special status in neurostimulation therapy. Through exploration of these anatomical features, we not only comprehend the position of auricular points in TCM theory but also provide a profound foundation for their modern medical applications. Through systematic review, we synthesize insights from traditional Chinese medical theory for modern medical research. Building upon anatomical and classical theoretical foundations, we focus on the mechanisms of auricular acupuncture as a unique neurostimulation therapy. This field encompasses neuroregulation, pain management, psychological wellbeing, metabolic disorders, and immune modulation. The latest clinical research not only confirms the efficacy of auricular stimulation in alleviating pain symptoms and modulating metabolic diseases at the endocrine level but also underscores its potential role in regulating patients' psychological wellbeing. This article aims to promote a comprehensive understanding of auricular acupuncture by demonstrating its diverse applications and providing substantial evidence to support its broader adoption in clinical practice.
Collapse
Affiliation(s)
- Kaixin Guo
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Lu
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuping Wang
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunfeng Duan
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxiao Gao
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian Wang
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Chen Y, Wang F, Li T, Zhao L, Gong A, Nan W, Ding P, Fu Y. Considerations and discussions on the clear definition and definite scope of brain-computer interfaces. Front Neurosci 2024; 18:1449208. [PMID: 39161655 PMCID: PMC11330831 DOI: 10.3389/fnins.2024.1449208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Brain-computer interface (BCI) is a revolutionizing human-computer interaction with potential applications in both medical and non-medical fields, emerging as a cutting-edge and trending research direction. Increasing numbers of groups are engaging in BCI research and development. However, in recent years, there has been some confusion regarding BCI, including misleading and hyped propaganda about BCI, and even non-BCI technologies being labeled as BCI. Therefore, a clear definition and a definite scope for BCI are thoroughly considered and discussed in the paper, based on the existing definitions of BCI, including the six key or essential components of BCI. In the review, different from previous definitions of BCI, BCI paradigms and neural coding are explicitly included in the clear definition of BCI provided, and the BCI user (the brain) is clearly identified as a key component of the BCI system. Different people may have different viewpoints on the definition and scope of BCI, as well as some related issues, which are discussed in the article. This review argues that a clear definition and definite scope of BCI will benefit future research and commercial applications. It is hoped that this review will reduce some of the confusion surrounding BCI and promote sustainable development in this field.
Collapse
Affiliation(s)
- Yanxiao Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Tianwen Li
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhao
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Anmin Gong
- School of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xi’an, China
| | - Wenya Nan
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Cibulcova V, Koenig J, Jackowska M, Jandackova VK. Influence of a 2-week transcutaneous auricular vagus nerve stimulation on memory: findings from a randomized placebo controlled trial in non-clinical adults. Clin Auton Res 2024; 34:447-462. [PMID: 39039354 DOI: 10.1007/s10286-024-01053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Memory plays an essential role in daily life and is one of the first functions to deteriorate in cognitive impairment and dementia. Transcutaneous vagus nerve stimulation (tVNS) is a promising therapeutic method; however, its ability to enhance memory is underexplored, especially considering long-term stimulation. We aimed to investigate the effect of a 2-week course of auricular tVNS (taVNS) on memory in a non-clinical population. METHODS This single-blind randomized placebo-wait-list controlled trial recruited 76 participants (30 men; mean age 48.32 years) and randomized them into four groups: early active/sham taVNS and late active/sham taVNS. Participation in the study lasted 4 weeks; early groups underwent 2 weeks intervention immediately following the first study site visit (days 0-13) and late groups 2 weeks after the first study site visit (days 14-27). Active and sham taVNS included 2 weeks of daily 4-h neurostimulation at the tragus or earlobe, respectively. To assess memory, we used the Rey Auditory Verbal Learning Test. RESULTS Two weeks of active taVNS, but not sham taVNS, improved immediate recall and short-term memory score both in early and late groups. Furthermore, the improvements persisted over subsequent follow-up in early active taVNS. Importantly, the effect of active taVNS was superior to sham for immediate recall in both early and late groups. There were no statistical differences in delayed recall. CONCLUSION Our findings suggest that taVNS has potential to improve memory, particularly immediate recall, and may be an effective method in preventing memory loss and mitigating cognitive aging.
Collapse
Affiliation(s)
- Veronika Cibulcova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 703 00, Czech Republic.
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Ostrava, Czech Republic.
| | - Julian Koenig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | | | - Vera Kr Jandackova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 703 00, Czech Republic
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
10
|
Abdennadher M, Rohatgi P, Saxena A. Vagus Nerve Stimulation Therapy in Epilepsy: An Overview of Technical and Surgical Method, Patient Selection, and Treatment Outcomes. Brain Sci 2024; 14:675. [PMID: 39061416 PMCID: PMC11275221 DOI: 10.3390/brainsci14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Epilepsy affects over 65 million people worldwide. One-third of people with epilepsy do not respond to medication and may benefit from surgery. Vagus nerve stimulation (VNS) is the first neuromodulation therapy for the treatment of drug-resistant epilepsy. This method is used in combination with anti-seizure medications in adults and in the pediatric population. VNS has also been demonstrated to have benefits for some epilepsy comorbidities, such as depression, and can be used in combination with other neuromodulation therapies in epilepsy. The authors present an overview of VNS physiology, patient selection, surgery and risks, neuromodulation therapy, and application to epilepsy comorbidities.
Collapse
Affiliation(s)
- Myriam Abdennadher
- Neurology Department, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Pratik Rohatgi
- Neurosurgery Department, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | | |
Collapse
|
11
|
Sévoz-Couche C, Liao W, Foo HYC, Bonne I, Lu TB, Tan Qi Hui C, Azhar SH, Peh WYX, Yen SC, Wong WSF. Direct vagus nerve stimulation: A new tool to control allergic airway inflammation through α7 nicotinic acetylcholine receptor. Br J Pharmacol 2024; 181:1916-1934. [PMID: 38430056 DOI: 10.1111/bph.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Asthma is characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. The use of nicotinic agents to mimic the cholinergic anti-inflammatory pathway (CAP) controls experimental asthma. Yet, the effects of vagus nerve stimulation (VNS)-induced CAP on allergic inflammation remain unknown. EXPERIMENTAL APPROACH BALB/c mice were sensitized and challenged with house dust mite (HDM) extract and treated with active VNS (5 Hz, 0.5 ms, 0.05-1 mA). Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts and cytokine levels. Lungs were examined by histopathology and electron microscopy. KEY RESULTS In the HDM mouse asthma model, VNS at intensities equal to or above 0.1 mA (VNS 0.1) but not sham VNS reduced BAL fluid differential cell counts and alveolar macrophages expressing α7 nicotinic receptors (α7nAChR), goblet cell hyperplasia, and collagen deposition. Besides, VNS 0.1 also abated HDM-induced elevation of type 2 cytokines IL-4 and IL-5 and was found to block the phosphorylation of transcription factor STAT6 and expression level of IRF4 in total lung lysates. Finally, VNS 0.1 abrogated methacholine-induced hyperresponsiveness in asthma mice. Prior administration of α-bungarotoxin, a specific inhibitor of α7nAChR, but not propranolol, a specific inhibitor of β2-adrenoceptors, abolished the therapeutic effects of VNS 0.1. CONCLUSION AND IMPLICATIONS Our data revealed the protective effects of VNS on various clinical features in allergic airway inflammation model. VNS, a clinically approved therapy for depression and epilepsy, appears to be a promising new strategy for controlling allergic asthma.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- INSERM, UMRS1158 Neurophysiologie Respiratoire et Clinique, Sorbonne Université, Paris, France
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore
| | - Hazel Y C Foo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore
| | - Isabelle Bonne
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thong Beng Lu
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Caris Tan Qi Hui
- Advanced imaging and Histology Core, Immunology Program, Life Science Institute, National University of Singapore, Singapore
| | - Syaza Hazwany Azhar
- Advanced imaging and Histology Core, Immunology Program, Life Science Institute, National University of Singapore, Singapore
| | - Wendy Yen Xian Peh
- The N.1 Institute for Health, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Shih-Cheng Yen
- The N.1 Institute for Health, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
12
|
Sansone A. The central role of mindful parenting in child's emotional regulation and human flourishing: a blueprint perspective. Front Psychol 2024; 15:1420588. [PMID: 38988375 PMCID: PMC11233750 DOI: 10.3389/fpsyg.2024.1420588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
This article provides an innovative perspective of emotional-regulation and human flourishing which acknowledges the fundamental role of early parent-child experiences in shaping brain structure and functioning involved in emotional regulation and the central role of mindful parenting in facilitating emotional regulation in both parent and child (co-regulation). In this perspective paper the author underlines not only the central role of emotions and emotional regulation in human development and flourishing, but also the importance of maternal mental health, mindfulness, and a connected supportive community during pregnancy and postnatally in facilitating emotional regulation in both the caregiver and the infant and thus promoting secure attachment. The role of alloparenting and how we evolved to share childrearing is introduced, and emotional regulation is described not as an individual phenomenon but a relational embodied process. The associations between right brain functioning, mindfulness and secure attachment, all leading to emotional regulation, wellbeing, and resilience are described. Sharing findings and perspectives offer an opportunity for insights and reflection upon what strategies could be created to promote relational emotional regulation and wellbeing in early life, thus human flourishing leading to a peaceful society.
Collapse
Affiliation(s)
- Antonella Sansone
- Faculty of Society and Design, School of Psychology, Bond University, Robina, Gold Coast, QLD, Australia
| |
Collapse
|
13
|
Abdullahi A, Etoom M, Badaru UM, Elibol N, Abuelsamen AA, Alawneh A, Zakari UU, Saeys W, Truijen S. Vagus nerve stimulation for the treatment of epilepsy: things to note on the protocols, the effects and the mechanisms of action. Int J Neurosci 2024; 134:560-569. [PMID: 36120993 DOI: 10.1080/00207454.2022.2126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Epilepsy is a chronic brain disorder that is characterized by repetitive un-triggered seizures that occur severally within 24 h or more. Non-pharmacological methods for the management of epilepsy were discussed. The non-pharmacological methods include the vagus nerve stimulation (VNS) which is subdivided into invasive and non-invasive techniques. For the non-invasive techniques, the auricular VNS, stimulation of the cervical branch of vagus nerve in the neck, manual massage of the neck, and respiratory vagal nerve stimulation were discussed. Similarly, the stimulation parameters used and the mechanisms of actions through which VNS improves seizures were also discussed. Use of VNS to reduce seizure frequency has come a long way. However, considering the cost and side effects of the invasive method, non-invasive techniques should be given a renewed attention. In particular, respiratory vagal nerve stimulation should be considered. In doing this, the patients should for instance carry out slow-deep breathing exercise 6 to 8 times every 3 h during the waking hours. Slow-deep breathing can be carried out by the patients on their own; therefore this can serve as a form of self-management.HIGHLIGHTSEpilepsy can interfere with the patients' ability to carry out their daily activities and ultimately affect their quality of life.Medications are used to manage epilepsy; but they often have their serious side effects.Vagus nerve stimulation (VNS) is gaining ground especially in the management of refractory epilepsy.The VNS is administered through either the invasive or the non-invasive methodsThe invasive method of VNS like the medication has potential side effects, and can be costly.The non-invasive method includes auricular VNS, stimulation of the neck muscles and skin and respiratory vagal nerve stimulation via slow-deep breathing exercises.The respiratory vagal nerve stimulation via slow-deep breathing exercises seems easy to administer even by the patients themselves.Consequently, it is our opinion that patients with epilepsy be made to carry out slow-deep breathing exercise 6-8 times every 3 h during the waking hours.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Nigeria
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Mohammad Etoom
- Department of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan
| | | | - Nuray Elibol
- Department of Physiotherapy and Rehabilitation Sciences, Ege University, Izmir, Turkey
| | | | - Anoud Alawneh
- Department of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan
| | - Usman Usman Zakari
- Department of Physiotherapy, Federal Medical Center, Birnin Kudu, Jigawa State, Nigeria
| | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Vitale V, Bindi F, Velloso Alvarez A, de la Cuesta-Torrado M, Sala G, Sgorbini M. Transcutaneous Auricular Vagal Nerve Stimulation in Healthy Non-Sedated Horses: A Feasibility Study. Vet Sci 2024; 11:241. [PMID: 38921988 PMCID: PMC11209208 DOI: 10.3390/vetsci11060241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to evaluate the feasibility of transcutaneous auricular vagal nerve stimulation (tAVNS) in healthy horses and its effect on heart rate variability (HRV). The study comprised three phases: the selection of mares, their acclimatization to the tAVNS, and the stimulation phase. Stimulation was performed with two electrodes positioned on the right pinna. The settings were 0.5 mA, 250 μs, and 25 Hz for pulse amplitude, pulse width, and pulse frequency, respectively. HRV was analysed before (B1), during (T), and after (B2) the tAVNS. From the 44 mares initially included, only 7 completed the three phases. In these mares, the heart rate (HR) was significantly lower, and frequency domain parameters showed an increased parasympathetic tone in B2 compared with B1. However, in 3/7 mares, the HR was significantly higher during T compared with B1 and B2, compatible with a decreased parasympathetic tone, while in 4/7 mares, the HR was significantly lower and the parasympathetic nervous system index was significantly higher during T and B2 compared with B1. The tAVNS is an economical and easy procedure to perform and has the potential to stimulate vagal activity; however, it was poorly tolerated in the mares included in this study.
Collapse
Affiliation(s)
- Valentina Vitale
- Department of Animal Medicine and Surgery, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Alfara del Patriarca, Spain; (A.V.A.); (M.d.l.C.-T.)
| | - Francesca Bindi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56122 Pisa, Italy; (F.B.); (G.S.); (M.S.)
| | - Ana Velloso Alvarez
- Department of Animal Medicine and Surgery, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Alfara del Patriarca, Spain; (A.V.A.); (M.d.l.C.-T.)
| | - María de la Cuesta-Torrado
- Department of Animal Medicine and Surgery, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Alfara del Patriarca, Spain; (A.V.A.); (M.d.l.C.-T.)
| | - Giulia Sala
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56122 Pisa, Italy; (F.B.); (G.S.); (M.S.)
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56122 Pisa, Italy; (F.B.); (G.S.); (M.S.)
| |
Collapse
|
15
|
Horinouchi T, Nezu T, Saita K, Date S, Kurumadani H, Maruyama H, Kirimoto H. Transcutaneous auricular vagus nerve stimulation enhances short-latency afferent inhibition via central cholinergic system activation. Sci Rep 2024; 14:11224. [PMID: 38755234 PMCID: PMC11099104 DOI: 10.1038/s41598-024-61958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
The present study examined the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on short-latency afferent inhibition (SAI), as indirect biomarker of cholinergic system activation. 24 healthy adults underwent intermittent taVNS (30 s on/30 s off, 30 min) or continuous taVNS at a frequency of 25 Hz (15 min) along with earlobe temporary stimulation (15 min or 30 min) were performed in random order. The efficiency with which the motor evoked potential from the abductor pollicis brevis muscle by transcranial magnetic stimulation was attenuated by the preceding median nerve conditioning stimulus was compared before taVNS, immediately after taVNS, and 15 min after taVNS. Continuous taVNS significantly increased SAI at 15 min post-stimulation compared to baseline. A positive correlation (Pearson coefficient = 0.563, p = 0.004) was observed between baseline SAI and changes after continuous taVNS. These results suggest that 15 min of continuous taVNS increases the activity of the cholinergic nervous system, as evidenced by the increase in SAI. In particular, the increase after taVNS was more pronounced in those with lower initial SAI. This study provides fundamental insight into the clinical potential of taVNS for cholinergic dysfunction.
Collapse
Affiliation(s)
- Takayuki Horinouchi
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Kazuya Saita
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shota Date
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kurumadani
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
16
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. An ascending vagal sensory-central noradrenergic pathway modulates retrieval of passive avoidance memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588717. [PMID: 38645069 PMCID: PMC11030408 DOI: 10.1101/2024.04.09.588717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. Results To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. Conclusions These new findings support the view that a gut vagal afferent-to-cNTSNA-to-vlBNST circuit plays a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University
| | | | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University
| |
Collapse
|
17
|
Gerges ANH, Graetz L, Hillier S, Uy J, Hamilton T, Opie G, Vallence AM, Braithwaite FA, Chamberlain S, Hordacre B. Transcutaneous auricular vagus nerve stimulation modifies cortical excitability in middle-aged and older adults. Psychophysiology 2024:e14584. [PMID: 38602055 DOI: 10.1111/psyp.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
There is a growing interest in the clinical application of transcutaneous auricular vagus nerve stimulation (taVNS). However, its effect on cortical excitability, and whether this is modulated by stimulation duration, remains unclear. We evaluated whether taVNS can modify excitability in the primary motor cortex (M1) in middle-aged and older adults and whether the stimulation duration moderates this effect. In addition, we evaluated the blinding efficacy of a commonly reported sham method. In a double-blinded randomized cross-over sham-controlled study, 23 healthy adults (mean age 59.91 ± 6.87 years) received three conditions: active taVNS for 30 and 60 min and sham for 30 min. Single and paired-pulse transcranial magnetic stimulation was delivered over the right M1 to evaluate motor-evoked potentials. Adverse events, heart rate and blood pressure measures were evaluated. Participant blinding effectiveness was assessed via guesses about group allocation. There was an increase in short-interval intracortical inhibition (F = 7.006, p = .002) and a decrease in short-interval intracortical facilitation (F = 4.602, p = .014) after 60 min of taVNS, but not 30 min, compared to sham. taVNS was tolerable and safe. Heart rate and blood pressure were not modified by taVNS (p > .05). Overall, 96% of participants detected active stimulation and 22% detected sham stimulation. taVNS modifies cortical excitability in M1 and its effect depends on stimulation duration in middle-aged and older adults. taVNS increased GABAAergic inhibition and decreased glutamatergic activity. Sham taVNS protocol is credible but there is an imbalance in beliefs about group allocation.
Collapse
Affiliation(s)
- Ashraf N H Gerges
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Lynton Graetz
- College of Education, Psychology and Social Work, Flinders University, Adelaide, South Australia, Australia
| | - Susan Hillier
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Jeric Uy
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Taya Hamilton
- Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Western Australia, Australia
| | - George Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ann-Maree Vallence
- School of Psychology, College of Health and Education, Murdoch University, Perth, Western Australia, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Felicity A Braithwaite
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Saran Chamberlain
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Raj-Koziak D, Gos E, Kutyba J, Ganc M, Jedrzejczak WW, Skarzynski PH, Skarzynski H. Effectiveness of transcutaneous vagus nerve stimulation for the treatment of tinnitus: an interventional prospective controlled study. Int J Audiol 2024; 63:250-259. [PMID: 36799648 DOI: 10.1080/14992027.2023.2177894] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVES The aim of this interventional non-randomised prospective controlled study was to assess the effectiveness of transcutaneous vagus nerve stimulation (tVNS) in human subjects with tinnitus. DESIGN The ParasymTM tVNS device was paired with an auditory stimulation. Treatment and observations were conducted over 12 weeks. Audiological evaluation was performed. Responses from a set of questionnaires and quantitative electroencephalography (qEEG) before and after treatment were collected. Voice measurements were done to assess possible side-effects of tVNS. STUDY SAMPLE The study involved 29 adults who had chronic tinnitus (15 patients who underwent tVNS paired with sounds and a control group of 14 patients who did not). RESULTS In general, subjective and objective measurements of tinnitus showed no improvement in the study group compared to the controls, although certain parameters as gauged by the questionnaires did statistically improve. The loudness and frequency of tinnitus remained the same in both groups. For the qEEG, activity in the theta band increased significantly in the study group compared to the control group. CONCLUSIONS The tVNS was not effective in reducing tinnitus symptoms in our study group. However, changes in the theta band suggest there might be cortical effects that might, with sustained treatment, lead to improvements.
Collapse
Affiliation(s)
- Danuta Raj-Koziak
- Tinnitus Department, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Elżbieta Gos
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Justyna Kutyba
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Małgorzata Ganc
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - W Wiktor Jedrzejczak
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Piotr H Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
- Heart Failure and Cardiac Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
- Institute of Sensory Organs, Warsaw, Poland
| | - Henryk Skarzynski
- Department of Otorhinolaryngosurgery, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
19
|
Kumar S, Agarwal N, Sanal TS. Effectiveness of coma arousal therapy on patients with disorders of consciousness - A systematic review and meta-analysis. Brain Circ 2024; 10:119-133. [PMID: 39036297 PMCID: PMC11259325 DOI: 10.4103/bc.bc_112_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Disorders of consciousness (DOC) incorporate stages of awareness and arousal. Through coma arousal therapy sensory deprivation experienced by patients with DOC can be mitigated. Nevertheless, consensus concerning its effectiveness on these patients is still fractional. PURPOSE This review aims to investigate the effectiveness of coma arousal therapies on patients with DOC. METHODS A meta-analysis was performed by searching electronic databases using search terms, the studies investigating the effect of coma arousal therapy in patients with DOC using the Coma Recovery Scale-Revised and Glasgow Coma Scale as outcome measures were included. The risk of bias was assessed, using Cochrane and Joanna Briggs Institute critical appraisal tools. Further, analysis was conducted for the included studies. RESULTS Out of 260 studies, 45 trials were reviewed and assessed for bias, with 31 studies included for analysis. The analysis demonstrates a significant difference in pre- and post - sensory stimulation, vagus nerve stimulation, transcranial magnetic stimulation, and transcranial direct current stimulation. Sensory stimulation showed the greatest mean difference of -4.96; 95% CI = -5.76 to - 4.15. The patients who underwent intervention after 3 months of illness showed significant improvement. CONCLUSION The result shows that sensory stimulation, transcranial magnetic stimulation, and transcranial direct stimulation can improve behavioral outcomes of patients with DOC, wherein sensory stimulation is found to be more effective.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Department of Neurophysiotherapy, KAHER Institute of Physiotherapy, Belagavi, Karnataka, India
| | - Nupur Agarwal
- Department of Neurophysiotherapy, KAHER Institute of Physiotherapy, Belagavi, Karnataka, India
| | | |
Collapse
|
20
|
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, Gorlewicz JL, Leuthardt EC. Does Vibrotactile Stimulation of the Auricular Vagus Nerve Enhance Working Memory? A Behavioral and Physiological Investigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586365. [PMID: 38585960 PMCID: PMC10996508 DOI: 10.1101/2024.03.24.586365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular VNS (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. Objective We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. Method This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). Results In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d ' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d ' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. Conclusion Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory. Highlights Vibrotactile stimulation of the auricular vagus nerve increases general arousal.Vibrotactile stimulation of the auricular vagus nerve mitigates arousal decreases as subjects continuously perform working memory tasks.6 Hz Vibrotactile auricular vagus nerve stimulation is a potential intervention for enhancing working memory performance.
Collapse
|
21
|
Strain MM, Conley NJ, Kauffman LS, Espinoza L, Fedorchak S, Martinez PC, Crook ME, Jalil M, Hodes GE, Abbott SB, Güler AD, Campbell JN, Boychuk CR. Dorsal motor vagal neurons can elicit bradycardia and reduce anxiety-like behavior. iScience 2024; 27:109137. [PMID: 38420585 PMCID: PMC10901094 DOI: 10.1016/j.isci.2024.109137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Cardiovagal neurons (CVNs) innervate cardiac ganglia through the vagus nerve to control cardiac function. Although the cardioinhibitory role of CVNs in nucleus ambiguus (CVNNA) is well established, the nature and functionality of CVNs in dorsal motor nucleus of the vagus (CVNDMV) is less clear. We therefore aimed to characterize CVNDMV anatomically, physiologically, and functionally. Optogenetically activating cholinergic DMV neurons resulted in robust bradycardia through peripheral muscarinic (parasympathetic) and nicotinic (ganglionic) acetylcholine receptors, but not beta-1-adrenergic (sympathetic) receptors. Retrograde tracing from the cardiac fat pad labeled CVNNA and CVNDMV through the vagus nerve. Using whole-cell patch-clamp, CVNDMV demonstrated greater hyperexcitability and spontaneous action potential firing ex vivo despite similar resting membrane potentials, compared to CVNNA. Chemogenetically activating DMV also caused significant bradycardia with a correlated reduction in anxiety-like behavior. Thus, DMV contains uniquely hyperexcitable CVNs and is capable of cardioinhibition and robust anxiolysis.
Collapse
Affiliation(s)
- Misty M. Strain
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Lily S. Kauffman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Maisie E. Crook
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Stephen B.G. Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Carie R. Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
22
|
Parente J, Carolyna Gianlorenco A, Rebello-Sanchez I, Kim M, Mario Prati J, Kyung Kim C, Choi H, Song JJ, Fregni F. Neural, Anti-Inflammatory, and Clinical Effects of Transauricular Vagus Nerve Stimulation in Major Depressive Disorder: A Systematic Review. Int J Neuropsychopharmacol 2024; 27:pyad058. [PMID: 37870480 PMCID: PMC10972554 DOI: 10.1093/ijnp/pyad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The discovery of effective treatments for major depressive disorder (MDD) may help target different brain pathways. Invasive vagus nerve stimulation (VNS) is an effective neuromodulation technique for the treatment of MDD; however, the effectiveness of the noninvasive technique, transauricular VNS (taVNS), remains unknown. Moreover, a mechanistic understanding of the neural effects behind its biological and therapeutic effects is lacking. This review aimed to evaluate the clinical evidence and the neural and anti-inflammatory effects of taVNS in MDD. METHODS Two searches were conducted using a systematic search strategy reviewed the clinical efficacy and neural connectivity of taVNS in MDD in humans and evaluated the changes in inflammatory markers after taVNS in humans or animal models of depression. A risk of bias assessment was performed in all human studies. RESULTS Only 5 studies evaluated the effects of taVNS in patients with depression. Although the studies demonstrated the efficacy of taVNS in treating depression, they used heterogeneous methodologies and limited data, thus preventing the conduct of pooled quantitative analyses. Pooled analysis could not be performed for studies that investigated the modulation of connectivity between brain areas; of the 6 publications, 5 were based on the same experiment. The animal studies that analyzed the presence of inflammatory markers showed a reduction in the level of pro-inflammatory cytokines or receptor expression. CONCLUSIONS Data on the clinical efficacy of taVNS in the treatment of MDD are limited. Although these studies showed positive results, no conclusions can be drawn regarding this topic considering the heterogeneity of these studies, as in the case of functional connectivity studies. Based on animal studies, the application of taVNS causes a decrease in the level of inflammatory factors in different parts of the brain, which also regulate the immune system. Therefore, further studies are needed to understand the effects of taVNS in patients with MDD.
Collapse
Affiliation(s)
- Joao Parente
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | | | | | - Minkyung Kim
- Department of Neurology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jose Mario Prati
- Department of Physical Therapy, Federal University of Sao Carlos, Sao Paulo, Brazil
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- Neurive Co., Ltd., Gimhae, Republic of Korea
| | - Jae-Jun Song
- Neurive Co., Ltd., Gimhae, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, Gorlewicz JL, Leuthardt EC. Does vibrotactile stimulation of the auricular vagus nerve enhance working memory? A behavioral and physiological investigation. Brain Stimul 2024; 17:460-468. [PMID: 38593972 PMCID: PMC11268363 DOI: 10.1016/j.brs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. OBJECTIVE We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. METHOD This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). RESULTS In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. CONCLUSION Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory.
Collapse
Affiliation(s)
- Gansheng Tan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Josh Adams
- Department of Aerospace and Mechanical Engineering, Saint Louis University, MO, USA
| | - Kara Donovan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip Demarest
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon T Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Department of Neuroscience, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna L Gorlewicz
- Department of Aerospace and Mechanical Engineering, Saint Louis University, MO, USA
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Department of Neuroscience, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Guo Y, Gharibani P. Analgesic Effects of Vagus Nerve Stimulation on Visceral Hypersensitivity: A Direct Comparison Between Invasive and Noninvasive Methods in Rats. Neuromodulation 2024; 27:284-294. [PMID: 37191611 DOI: 10.1016/j.neurom.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVES The aims of this study were to investigate analgesic effects of vagus nerve stimulation (VNS) on visceral hypersensitivity (VH) in a rodent model of functional dyspepsia (FD) and to compare invasive VNS with noninvasive auricular VNS (aVNS). MATERIALS AND METHODS Eighteen ten-day-old male rats were gavaged with 0.1% iodoacetamide (IA) or 2% sucrose solution for six days. After eight weeks, IA-treated rats were implanted with electrodes for VNS or aVNS (n = 6 per group). Different parameters, varying in frequency and stimulation duty cycle, were tested to find the best parameter based on the improvement of VH assessed by electromyogram (EMG) during gastric distension. RESULTS Compared with sucrose-treated rats, visceral sensitivity was increased significantly in IA-treated "FD" rats and ameliorated remarkably by VNS (at 40, 60, and 80 mm Hg; p ≤ 0.02, respectively) and aVNS (at 60 and 80 mm Hg; p ≤ 0.05, respectively) with the parameter of 100 Hz and 20% duty cycle. There was no significant difference in area under the curve of EMG responses between VNS and aVNS (at 60 and 80 mm Hg, both p > 0.05). Spectral analysis of heart rate variability revealed a significant enhancement in vagal efferent activity while applying VNS/aVNS compared with sham stimulation (p < 0.01). In the presence of atropine, no significant differences were noted in EMG after VNS/aVNS. Naloxone blocked the analgesic effects of VNS/aVNS. CONCLUSIONS VNS/aVNS with optimized parameter elicits ameliorative effects on VH, mediated by autonomic and opioid mechanisms. aVNS is as effective as direct VNS and has great potential for treating visceral pain in patients with FD.
Collapse
Affiliation(s)
- Yu Guo
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Payam Gharibani
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Division of Neuroimmunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Manzotti A, Panisi C, Pivotto M, Vinciguerra F, Benedet M, Brazzoli F, Zanni S, Comassi A, Caputo S, Cerritelli F, Chiera M. An in-depth analysis of the polyvagal theory in light of current findings in neuroscience and clinical research. Dev Psychobiol 2024; 66:e22450. [PMID: 38388187 DOI: 10.1002/dev.22450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 02/24/2024]
Abstract
The polyvagal theory has led to the understanding of the functions of the autonomic nervous system in biological development in humans, since the vagal system, a key structure within the polyvagal theory, plays a significant role in addressing challenges of the mother-child dyad. This article aims to summarize the neurobiological aspects of the polyvagal theory, highlighting some of its strengths and limitations through the lens of new evidence emerging in several research fields-including comparative anatomy, embryology, epigenetics, psychology, and neuroscience-in the 25 years since the theory's inception. Rereading and incorporating the polyvagal idea in light of modern scientific findings helps to interpret the role of the vagus nerve through the temporal dimension (beginning with intrauterine life) and spatial dimension (due to the numerous connections of the vagus with various structures and systems) in the achievement and maintenance of biopsychosocial well-being, from the uterus to adulthood.
Collapse
Affiliation(s)
- Andrea Manzotti
- Division of Neonatology, "V. Buzzi" Children's Hospital, ASST-FBF-Sacco, Milan, Italy
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Cristina Panisi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Micol Pivotto
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Matteo Benedet
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Silvia Zanni
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Alberto Comassi
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Sara Caputo
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Francesco Cerritelli
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| | - Marco Chiera
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| |
Collapse
|
26
|
Strain MM, Conley NJ, Kauffman LS, Espinoza L, Fedorchak S, Martinez PC, Crook ME, Jalil M, Hodes GE, Abbott SBG, Güler AD, Campbell JN, Boychuk CR. Dorsal Motor Vagal Neurons Can Elicit Bradycardia and Reduce Anxiety-Like Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566855. [PMID: 38014247 PMCID: PMC10680764 DOI: 10.1101/2023.11.14.566855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cardiovagal neurons (CVNs) innervate cardiac ganglia through the vagus nerve to control cardiac function. Although the cardioinhibitory role of CVNs in nucleus ambiguus (CVNNA) is well established, the nature and functionality of CVNs in dorsal motor nucleus of the vagus (CVNDMV) is less clear. We therefore aimed to characterize CVNDMV anatomically, physiologically, and functionally. Optogenetically activating cholinergic DMV neurons resulted in robust bradycardia through peripheral muscarinic (parasympathetic) and nicotinic (ganglionic) acetylcholine receptors, but not beta-1-adrenergic (sympathetic) receptors. Retrograde tracing from the cardiac fat pad labeled CVNNA and CVNDMV through the vagus nerve. Using whole cell patch clamp, CVNDMV demonstrated greater hyperexcitability and spontaneous action potential firing ex vivo despite similar resting membrane potentials, compared to CVNNA. Chemogenetically activating DMV also caused significant bradycardia with a correlated reduction in anxiety-like behavior. Thus, DMV contains uniquely hyperexcitable CVNs capable of cardioinhibition and robust anxiolysis.
Collapse
Affiliation(s)
- Misty M. Strain
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | | | - Lily S. Kauffman
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | | | - Maisie E. Crook
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Carie R. Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| |
Collapse
|
27
|
Hoornenborg C, van Dijk T, Bruggink J, van Beek A, van Dijk G. Acute sub-diaphragmatic anterior vagus nerve stimulation increases peripheral glucose uptake in anaesthetized rats. IBRO Neurosci Rep 2023; 15:50-56. [PMID: 37415729 PMCID: PMC10320406 DOI: 10.1016/j.ibneur.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
The sub-diaphragmatic vagus innervates various organs involved in the control of glucose homeostasis including the liver, pancreas and the intestines. In the current study, we investigated the effect of acute electrical stimulation of the anterior trunk of the sub-diaphragmatic vagus on glucose fluxes in anaesthetized adult male rats. After overnight fast, rats underwent either vagus nerve stimulation (VNS+, n = 11; rectangular pulses at 5 Hz, 1.5 mA, 1 msec pulse width) or sham stimulation (VNS-; n = 11) for 120 min under isoflurane anesthesia. Before stimulation, the rats received an i.v. bolus of 1 mL/kg of a sterilized aqueous solution containing 125 mg/mL of D-[6,6-2H2] glucose. Endogenous glucose production (EGP) and glucose clearance rate (GCR) were calculated by kinetic analysis from the wash-out of injected D-[6,6-2H2]glucose from the circulation. VNS+ resulted in lower glucose levels compared to the VNS- group (p < 0.05), with similar insulin levels. EGP was similar in both groups, but the GCR was higher in the VNS+ group compared to the VNS- group (p < 0.001). Circulating levels of the sympathetic transmitter norepinephrine were reduced by VNS+ relative to VNS- treatment (p < 0.01). It is concluded that acute anterior sub-diaphragmatic VNS causes stimulation of peripheral glucose uptake, while plasma insulin levels remained similar, and this is associated with lower activity of the sympathetic nervous system.
Collapse
Affiliation(s)
- C.W. Hoornenborg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Behavioral Neuroscience, University of Groningen, Groningen, the Netherlands
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - T.H. van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - J.E. Bruggink
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Behavioral Neuroscience, University of Groningen, Groningen, the Netherlands
| | - A.P. van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G. van Dijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Behavioral Neuroscience, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
28
|
Lu HC, Gevirtz R, Yang CC, Hauson AO. Heart Rate Variability Biofeedback for Mild Traumatic Brain Injury: A Randomized-Controlled Study. Appl Psychophysiol Biofeedback 2023; 48:405-421. [PMID: 37335413 PMCID: PMC10582136 DOI: 10.1007/s10484-023-09592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
To determine whether heart rate variability biofeedback (HRV-BF) training, compared to a psychoeducation control condition can strengthen the integration of the central and autonomic nervous systems as measured by neuropsychological measures in patients with mild traumatic brain injury (mTBI). Participants were recruited from two university hospitals in Taipei, Taiwan. A total of 49 participants with mTBI were recruited for this study. Forty-one participants completed the study, 21 in the psychoeducation group and 20 in the HRV-BF group. Randomized controlled study. The Taiwanese Frontal Assessment Battery, the Semantic Association of Verbal Fluency Test, the Taiwanese version of the Word Sequence Learning Test, the Paced Auditory Serial Addition Test-Revised, and the Trail Making Test were used as performance-based neuropsychological functioning measures. The Checklist of Post-concussion Symptoms, the Taiwanese version of the Dysexecutive Questionnaire, the Beck Anxiety Inventory, the Beck Depression Inventory, and the National Taiwan University Irritability Scale were used as self-report neuropsychological functioning measures. Furthermore, heart rate variability pre- vs. post-training was used to measure autonomic nervous system functioning. Executive, information processing, verbal memory, emotional neuropsychological functioning, and heart rate variability (HRV) were improved significantly in the HRV-BF group at the posttest whereas the psychoeducation group showed no change. HRV biofeedback is a feasible technique following mild TBI that can improve neuropsychological and autonomic nervous system functioning. HRV-BF may be clinically feasible for the rehabilitation of patients with mTBI.
Collapse
Affiliation(s)
- Hsueh Chen Lu
- California School of Professional Psychology at Alliant International University, Clinical Psychology PhD Program, San Diego, CA, USA
| | - Richard Gevirtz
- California School of Professional Psychology at Alliant International University, Clinical Psychology PhD Program, San Diego, CA, USA.
| | - Chi Cheng Yang
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Alexander O Hauson
- California School of Professional Psychology at Alliant International University, Clinical Psychology PhD Program, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.Org), San Diego, CA, USA
| |
Collapse
|
29
|
Aljuhani T, Coker-Bolt P, Katikaneni L, Ramakrishnan V, Brennan A, George MS, Badran BW, Jenkins D. Use of non-invasive transcutaneous auricular vagus nerve stimulation: neurodevelopmental and sensory follow-up. Front Hum Neurosci 2023; 17:1297325. [PMID: 38021221 PMCID: PMC10666166 DOI: 10.3389/fnhum.2023.1297325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To assess the impact of non-invasive transcutaneous auricular vagal nerve stimulation (taVNS) paired with oral feeding on long-term neurodevelopmental and sensory outcomes. Method We tested 21 of 35 children who as infants were gastrostomy tube (G-tube) candidates and participated in the novel, open-label trial of taVNS paired with oral feeding. To evaluate possible effects on development at 18-months after infant taVNS, we performed the Bayley-III (n = 10) and Sensory Profile (SP-2, n = 12) assessments before the COVID pandemic, and Cognitive Adaptive Test (CAT), Clinical Linguistics and Auditory Milestone (CLAMS), Ages and Stages Questionnaire (ASQ), and Peabody Developmental Motor Scales-2 gross motor tests as possible during and after the pandemic. We compared outcomes for infants who attained full oral feeds during taVNS ('responders') or received G-tubes ('non-responders'). Results At a mean of 19-months, taVNS 'responders' showed significantly better general sensory processing on the SP-2 than 'non-responders'. There were no differences in other test scores, which were similar to published outcomes for infants who required G-tubes. Conclusion This is the first report of neurodevelopmental follow-up in infants who received taVNS-paired feeding. They had similar developmental outcomes as historical control infants failing oral feeds who received G-tubes. Our data suggests that infants who attained full oral feeds had better sensory processing.
Collapse
Affiliation(s)
- Turki Aljuhani
- Division of Health Science and Research, Medical University of South Carolina, Charleston, SC, United States
- Department of Occupational Therapy, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Patricia Coker-Bolt
- Doctorate of Occupational Therapy Program, Hawai’i Pacific University, Honolulu, HI, United States
| | - Lakshmi Katikaneni
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Alyssa Brennan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Mark S. George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, Unites States
| | - Bashar W. Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Dorothea Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
30
|
Rizvi MR, Sharma A, Hasan S, Ahmad F, Asad MR, Iqbal A, Alghadir AH. Exploring the impact of integrated polyvagal exercises and knee reinforcement in females with grade II knee osteoarthritis: a randomized controlled trial. Sci Rep 2023; 13:18964. [PMID: 37923783 PMCID: PMC10624888 DOI: 10.1038/s41598-023-45908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
This study aimed to compare the effects of knee strengthening exercises to those of polyvagal theory-based exercises combined with knee strengthening exercises on selected outcomes in women with grade II knee osteoarthritis (OA). A randomized controlled trial was conducted, in which 60 female participants diagnosed with grade II knee OA, with a mean age of 57.27 ± 7.81 years and knee pain rated between 4 and 7 on the visual analog scale (VAS), were assigned to either the knee strengthening exercise group (Group 1, n = 30) or the polyvagal theory-based exercise plus knee strengthening exercise group (Group 2, n = 30). Pre- and posttreatment assessment of outcome variables, including WOMAC scores (joint pain, joint stiffness, functional limitations, and the overall index), WHOQOL scores (overall quality of life, general health, physical, psychological, social, and environmental domains), and heart rate variability (HRV, time and frequency domains), were analyzed. Group 2 demonstrated significantly greater reductions in joint pain, stiffness, and functional limitations than Group 1 after the intervention. Group 2 presented with significantly improved WOMAC scores, indicating better overall outcomes. Group 2 showed significant improvements in the psychological and social domains regarding quality of life. There were no significant differences in the physical domain or the environmental domain. Group 2 showed a significant increase in high-frequency power (HF) and a significant decrease in the LF/HF ratio, suggesting improved autonomic regulation. A combination of polyvagal exercise and knee strengthening training resulted in superior outcomes compared to knee strengthening exercises alone in women with grade II knee OA. These findings support the potential effectiveness of incorporating polyvagal exercises as an adjunctive intervention for osteoarthritis management.
Collapse
Affiliation(s)
- Moattar Raza Rizvi
- Department of Physiotherapy, School of Allied Health Science, Manav Rachna International Institute of Research and Studies, Faridabad, 121004, India
| | - Ankita Sharma
- Department of Physiotherapy, School of Allied Health Science, Manav Rachna International Institute of Research and Studies, Faridabad, 121004, India
| | - Shahnaz Hasan
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohammad Rehan Asad
- Department of Basic Sciences, College of Medicine, Majmaah University, Al-Majmaah, 15341, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box. 10219, Riyadh, 11433, Saudi Arabia.
| | - Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box. 10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
31
|
Wang L, Gao F, Wang Z, Liang F, Dai Y, Wang M, Wu J, Chen Y, Yan Q, Wang L. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci 2023; 17:1286267. [PMID: 37920298 PMCID: PMC10618368 DOI: 10.3389/fnins.2023.1286267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Wang S, Wang Y, Lin L, Li Z, Liu F, Zhu L, Chen J, Zhang N, Cao X, Ran S, Liu G, Gao P, Sun W, Peng L, Zhuang J, Meng H. Layer-Specific BTX-A Delivery to the Gastric Muscularis Achieves Effective Weight Control and Metabolic Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300822. [PMID: 37552813 PMCID: PMC10558648 DOI: 10.1002/advs.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/03/2023] [Indexed: 08/10/2023]
Abstract
The rising incidence of health-endangering obesity constantly calls for more effective treatments. Gastric intramural injection of botulinum neurotoxin A (BTX-A) as a new modality carries great promise yet inconsistent therapeutic efficacy. A layer-specific delivery strategy enabled by dissolving microneedles is hence pioneered to investigate the working site of BTX-A and the resulting therapeutic effects. The drug-loaded tips of the layer-specific gastric paralysis microneedles (LGP-MN) rapidly release and achieve uniform distribution of BTX-A within the designated gastric wall layers. In an obesity rat model, the LGP-MNs not only prove safer than conventional injection, but also demonstrate consistently better therapeutic effects with muscular layer delivery, including 16.23% weight loss (3.06-fold enhancement from conventional injection), 55.20% slower gastric emptying rate, improved liver steatosis, lowered blood lipids, and healthier gut microbiota. Further hormonal study reveals that the elevated production of stomach-derived glucagon-like peptide-1 due to the muscularis-targeting LGP-MN treatment is an important contributor to its unique glucose tolerance-improving effect. This study provides clear indication of the gastric muscularis as the most favorable working site of BTX-A for weight loss and metabolic improvement purposes, and meanwhile suggests that the LGP-MNs could serve as a novel clinical approach to treat obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Siqi Wang
- Department of General Surgery and Obesity and Metabolic Disease CenterChina–Japan Friendship HospitalBeijing100029China
| | - Yuqiong Wang
- Department of Mechanical and Automation EngineeringThe Chinese University of HongkongHongkong999077China
- School of Biological Science and Medical EngineeringBeihang UniversityBeijing100191China
| | - Long Lin
- Engineering College of Peking UniversityPeking universityBeijing100029China
- School of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Zongjie Li
- Shanghai Veterinary Research InstituteChinese Academy of Agricultural ScienceShanghai200241China
| | - Fengyi Liu
- School of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Long Zhu
- School of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jie Chen
- Department of UltrasoundChina–Japan Friendship HospitalBeijing100029China
| | - Nianrong Zhang
- Department of General Surgery and Obesity and Metabolic Disease CenterChina–Japan Friendship HospitalBeijing100029China
| | - Xinyu Cao
- Department of General Surgery and Obesity and Metabolic Disease CenterChina–Japan Friendship HospitalBeijing100029China
| | - Sunman Ran
- Department of General Surgery and Obesity and Metabolic Disease CenterChina–Japan Friendship HospitalBeijing100029China
| | - Genzheng Liu
- Department of General Surgery and Obesity and Metabolic Disease CenterChina–Japan Friendship HospitalBeijing100029China
| | - Peng Gao
- Department of Clinical LaboratoryChina–Japan Friendship HospitalBeijing100029China
| | - Weiliang Sun
- Institute of Clinical Medical SciencesChina–Japan Friendship HospitalBeijing100029China
| | - Liang Peng
- Institute of Clinical Medical SciencesChina–Japan Friendship HospitalBeijing100029China
| | - Jian Zhuang
- School of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Hua Meng
- Department of General Surgery and Obesity and Metabolic Disease CenterChina–Japan Friendship HospitalBeijing100029China
| |
Collapse
|
33
|
D'Agostini M, Burger AM, Jelinčić V, von Leupoldt A, Van Diest I. Effects of transcutaneous auricular vagus nerve stimulation on P300 magnitudes and salivary alpha-amylase during an auditory oddball task. Biol Psychol 2023; 182:108646. [PMID: 37481230 DOI: 10.1016/j.biopsycho.2023.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neurostimulation technique that is thought to modulate noradrenergic activity. Previous studies have demonstrated inconsistent effects of taVNS on noradrenergic activity, which is possibly due to insufficient statistical power, suboptimal stimulation parameter settings, and data collection procedures. In this preregistered within-subject experiment, 44 healthy participants received taVNS and sham (earlobe) stimulation during two separate experimental sessions. Stimulation intensity was individually calibrated to the maximum level below pain. During each session, participants received the stimulation continuously ten minutes before an auditory novelty oddball task till the end of the experimental session. The P3b component of the event-related potential served as a marker of phasic noradrenergic activity, whereas P3a magnitude was explored as an index of dopaminergic activity. Salivary alpha-amylase (sAA) was measured as an index of tonic noradrenergic activity before and at the end of the stimulation. The taVNS and sham conditions did not differ in P3a or P3b magnitudes, nor sAA secretion. These findings call into question whether taVNS, administered continuously at high, nonpainful stimulation intensities, reliably augments noradrenergic activity via the vagus nerve.
Collapse
Affiliation(s)
- Martina D'Agostini
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium.
| | - Andreas M Burger
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium
| | - Valentina Jelinčić
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium
| | - Andreas von Leupoldt
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium
| | - Ilse Van Diest
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium
| |
Collapse
|
34
|
Lin FV, Heffner KL. Autonomic nervous system flexibility for understanding brain aging. Ageing Res Rev 2023; 90:102016. [PMID: 37459967 PMCID: PMC10530154 DOI: 10.1016/j.arr.2023.102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
A recent call was made for autonomic nervous system (ANS) measures as digital health markers for early detection of Alzheimer's disease and related dementia (AD/ADRD). Nevertheless, contradictory or inconclusive findings exist. To help advance understanding of ANS' role in dementia, we draw upon aging and dementia-related literature, and propose a framework that centers on the role of ANS flexibility to guide future work on application of ANS function to differentiating the degree and type of dementia-related brain pathologies. We first provide a brief review of literature within the past 10 years on ANS and dementia-related brain pathologies. Next, we present an ANS flexibility model, describing how the model can be applied to understand these brain pathologies, as well as differentiate or even be leveraged to modify typical brain aging and dementia. Lastly, we briefly discuss the implication of the model for understanding resilience and vulnerability to dementia-related outcomes.
Collapse
Affiliation(s)
- Feng V Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, USA; Wu Tsai Neurosciences Institute, Stanford University, USA.
| | - Kathi L Heffner
- School of Nursing, University of Rochester, USA; Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, USA
| |
Collapse
|
35
|
Biniaz-Harris N, Kuvaldina M, Fallon BA. Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation. Antibiotics (Basel) 2023; 12:1347. [PMID: 37760644 PMCID: PMC10525519 DOI: 10.3390/antibiotics12091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Lyme disease, the most common tick-borne disease in the United States, is caused by infection with the spirochete Borrelia burgdorferi. While most patients with acute Lyme disease recover completely if treated with antibiotics shortly after the onset of infection, approximately 10-30% experience post-treatment symptoms and 5-10% have residual symptoms with functional impairment (post-treatment Lyme disease syndrome or PTLDS). These patients typically experience pain, cognitive problems, and/or fatigue. This narrative review provides a broad overview of Lyme disease, focusing on neuropsychiatric manifestations and persistent symptoms. While the etiology of persistent symptoms remains incompletely understood, potential explanations include persistent infection, altered neural activation, and immune dysregulation. Widely recognized is that new treatment options are needed for people who have symptoms that persist despite prior antibiotic therapy. After a brief discussion of treatment approaches, the article focuses on vagus nerve stimulation (VNS), a neuromodulation approach that is FDA-approved for depression, epilepsy, and headache syndromes and has been reported to be helpful for other diseases characterized by inflammation and neural dysregulation. Transcutaneous VNS stimulates the external branch of the vagus nerve, is minimally invasive, and is well-tolerated in other conditions with few side effects. If well-controlled double-blinded studies demonstrate that transcutaneous auricular VNS helps patients with chronic syndromes such as persistent symptoms after Lyme disease, taVNS will be a welcome addition to the treatment options for these patients.
Collapse
Affiliation(s)
- Nicholas Biniaz-Harris
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
| | - Mara Kuvaldina
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian A. Fallon
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
36
|
Lehnertz H, Broehl T, Rings T, von Wrede R, Lehnertz K. Modifying functional brain networks in focal epilepsy by manual visceral-osteopathic stimulation of the vagus nerve at the abdomen. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205476. [PMID: 37520657 PMCID: PMC10374317 DOI: 10.3389/fnetp.2023.1205476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
Non-invasive transcutaneous vagus nerve stimulation elicits similar therapeutic effects as invasive vagus nerve stimulation, offering a potential treatment alternative for a wide range of diseases, including epilepsy. Here, we present a novel, non-invasive stimulation of the vagus nerve, which is performed manually viscero-osteopathically on the abdomen (voVNS). We explore the impact of short-term voVNS on various local and global characteristics of EEG-derived, large-scale evolving functional brain networks from a group of 20 subjects with and without epilepsy. We observe differential voVNS-mediated alterations of these characteristics that can be interpreted as a reconfiguration and modification of networks and their stability and robustness properties. Clearly, future studies are necessary to assess the impact of such a non-pharmaceutical intervention on clinical decision-making in the treatment of epilepsy. However, our findings may add to the current discussion on the importance of the gut-brain axis in health and disease. Clinical Trial Registration: https://drks.de/search/en/trial/DRKS00029914, identifier DRKS00029914.
Collapse
Affiliation(s)
- Hendrik Lehnertz
- BMT Internationale Akademie für Biodynamische Manuelle Therapie GmbH, Bühler, Switzerland
| | - Timo Broehl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Olsen LK, Solis E, McIntire LK, Hatcher-Solis CN. Vagus nerve stimulation: mechanisms and factors involved in memory enhancement. Front Hum Neurosci 2023; 17:1152064. [PMID: 37457500 PMCID: PMC10342206 DOI: 10.3389/fnhum.2023.1152064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been recognized as a useful neuromodulation tool to target the central nervous system by electrical stimulation of peripheral nerves. Activation of the nucleus of the solitary tract (NTS) in the brainstem by vagal afferent nerve fibers allows for modulation of various higher order brain regions, including limbic and cerebral cortex structures. Along with neurological and psychiatric indications, clinical and preclinical studies suggest that VNS can improve memory. While the underlying mechanisms to improve memory with VNS involve brain areas, such as the prefrontal cortex and processes including alertness and arousal, here we focus on VNS-induced memory improvements related to the hippocampus, the main area implicated in memory acquisition. In addition, we detail research demonstrating that a targeted approach to VNS can modify memory outcomes and delve into the molecular mechanisms associated with these changes. These findings indicate that a greater understanding of VNS mechanisms while also considering stimulation parameters, administration site, timing in relation to training, and sex-specific factors, may allow for optimal VNS application to enhance memory.
Collapse
Affiliation(s)
- Laura K. Olsen
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Ernesto Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Aerospace Physiology, Wright-Patterson Air Force Base, OH, United States
- Consortium of Universities of the Washington Metropolitan Area, Washington, DC, United States
| | - Lindsey K. McIntire
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Infoscitex Corporation, Dayton, OH, United States
| | - Candice N. Hatcher-Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
| |
Collapse
|
38
|
Baião R, Capitão LP, Higgins C, Browning M, Harmer CJ, Burnet PWJ. Multispecies probiotic administration reduces emotional salience and improves mood in subjects with moderate depression: a randomised, double-blind, placebo-controlled study. Psychol Med 2023; 53:3437-3447. [PMID: 35129111 PMCID: PMC10277723 DOI: 10.1017/s003329172100550x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The potential antidepressant properties of probiotics have been suggested, but their influence on the emotional processes that may underlie this effect is unclear. METHODS Depressed volunteers (n = 71) were recruited into a randomised double-blind, placebo-controlled study to explore the effects of a daily, 4-week intake of a multispecies probiotic or placebo on emotional processing and cognition. Mood, anxiety, positive and negative affect, sleep, salivary cortisol and serum C-reactive peptide (CRP) were assessed before and after supplementation. RESULTS Compared with placebo, probiotic intake increased accuracy at identifying faces expressing all emotions (+12%, p < 0.05, total n = 51) and vigilance to neutral faces (mean difference between groups = 12.28 ms ± 6.1, p < 0.05, total n = 51). Probiotic supplementation also reduced reward learning (-9%, p < 0.05, total n = 51), and interference word recall on the auditory verbal learning task (-18%, p < 0.05, total n = 50), but did not affect other aspects of cognitive performance. Although actigraphy revealed a significant group × night-time activity interaction, follow up analysis was not significant (p = 0.094). Supplementation did not alter salivary cortisol or circulating CRP concentrations. Probiotic intake significantly reduced (-50% from baseline, p < 0.05, n = 35) depression scores on the Patient Health Questionnaire-9, but these did not correlate with the changes in emotional processing. CONCLUSIONS The impartiality to positive and negative emotional stimuli or reward after probiotic supplementation have not been observed with conventional antidepressant therapies. Further studies are required to elucidate the significance of these changes with regard to the mood-improving action of the current probiotic.
Collapse
Affiliation(s)
- Rita Baião
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Liliana P. Capitão
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Cameron Higgins
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip W. J. Burnet
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
39
|
Agorastos A, Mansueto AC, Hager T, Pappi E, Gardikioti A, Stiedl O. Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines 2023; 11:1591. [PMID: 37371686 DOI: 10.3390/biomedicines11061591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The autonomic nervous system (ANS) is responsible for the precise regulation of tissue functions and organs and, thus, is crucial for optimal stress reactivity, adaptive responses and health in basic and challenged states (survival). The fine-tuning of central ANS activity relies on the internal central autonomic regulation system of the central autonomic network (CAN), while the peripheral activity relies mainly on the two main and interdependent peripheral ANS tracts, the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). In disease, autonomic imbalance is associated with decreased dynamic adaptability and increased morbidity and mortality. Acute or prolonged autonomic dysregulation, as observed in stress-related disorders, affects CAN core centers, thereby altering downstream peripheral ANS function. One of the best established and most widely used non-invasive methods for the quantitative assessment of ANS activity is the computerized analysis of heart rate variability (HRV). HRV, which is determined by different methods from those used to determine the fluctuation of instantaneous heart rate (HR), has been used in many studies as a powerful index of autonomic (re)activity and an indicator of cardiac risk and ageing. Psychiatric patients regularly show altered autonomic function with increased HR, reduced HRV and blunted diurnal/circadian changes compared to the healthy state. The aim of this article is to provide basic knowledge on ANS function and (re)activity assessment and, thus, to support a much broader use of HRV as a valid, transdiagnostic and fully translational dynamic biomarker of stress system sensitivity and vulnerability to stress-related disorders in neuroscience research and clinical psychiatric practice. In particular, we review the functional levels of central and peripheral ANS control, the main neurobiophysiologic theoretical models (e.g., polyvagal theory, neurovisceral integration model), the precise autonomic influence on cardiac function and the definition and main aspects of HRV and its different measures (i.e., time, frequency and nonlinear domains). We also provide recommendations for the proper use of electrocardiogram recordings for HRV assessment in clinical and research settings and highlight pathophysiological, clinical and research implications for a better functional understanding of the neural and molecular mechanisms underlying healthy and malfunctioning brain-heart interactions in individual stress reactivity and psychiatric disorders.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 56430 Thessaloniki, Greece
| | - Alessandra C Mansueto
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
- Centre for Urban Mental Health, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Torben Hager
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eleni Pappi
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Gardikioti
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Health, Safety and Environment, Vrije Universiteit (VU) Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
40
|
Mathieson T, Jimaja W, Triponez F, Licker M, Karenovics W, Makovac P, Muradbegovic M, Belfontali V, Bédat B, Demarchi MS. Safety of continuous intraoperative vagus nerve neuromonitoring during thyroid surgery. BJS Open 2023; 7:zrad039. [PMID: 37289251 PMCID: PMC10249491 DOI: 10.1093/bjsopen/zrad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Continuous intraoperative neuromonitoring has successfully demonstrated to predict impending damage to the recurrent laryngeal nerve, by detecting changes in electromyographic recordings. Despite the apparent benefits associated with continuous intraoperative neuromonitoring, its safety is still a debate. The aim of this study was to investigate the electrophysiological impact of continuous intraoperative neuromonitoring on the vagus nerve. METHODS In this prospective study, the amplitude of the electromyographic wave of the vagus nerve-recurrent laryngeal nerve axis was measured both proximally and distally to the stimulation electrode placed upon the vagus nerve. Electromyographic signal amplitudes were collected at three distinct events during the operation: during the dissection of the vagus nerve, before application of the continuous stimulation electrode onto the vagus nerve and after its removal. RESULTS In total, 169 vagus nerves were analysed, among 108 included patients undergoing continuous intraoperative neuromonitoring-enhanced endocrine neck surgeries. Electrode application resulted in a significant overall decrease in measured proximo-distal amplitudes of -10.94 µV (95 per cent c.i. -17.06 to -4.82 µV) (P < 0.005), corresponding to a mean(s.d.) decrease of -1.4(5.4) per cent. Before the removal of the electrode, the measured proximo-distal difference in amplitudes was -18.58 µV (95 per cent c.i. -28.31 to -8.86 µV) (P < 0.005), corresponding to a mean(s.d.) decrease of -2.50(9.59) per cent. Seven nerves suffered a loss of amplitude greater than 20 per cent of the baseline measurement. CONCLUSION In addition to supporting claims that continuous intraoperative neuromonitoring exposes the vagus nerve to injury, this study shows a mild electrophysiological impact of continuous intraoperative neuromonitoring electrode placement on the vagus nerve-recurrent laryngeal nerve axis. However, the small observed differences are negligible and were not associated with a clinically relevant outcome, making continuous intraoperative neuromonitoring a safe adjunct in selected thyroid surgeries.
Collapse
Affiliation(s)
- Timothy Mathieson
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Wedali Jimaja
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Frédéric Triponez
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Marc Licker
- Department of Anaesthesiology and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Wolfram Karenovics
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Petra Makovac
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Mirza Muradbegovic
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Valentina Belfontali
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Benoît Bédat
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Marco Stefano Demarchi
- Department of Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Mylavarapu RV, Kanumuri VV, de Rivero Vaccari JP, Misra A, McMillan DW, Ganzer PD. Importance of timing optimization for closed-loop applications of vagus nerve stimulation. Bioelectron Med 2023; 9:8. [PMID: 37101239 PMCID: PMC10134677 DOI: 10.1186/s42234-023-00110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
In recent decades, vagus nerve stimulation (VNS) therapy has become widely used for clinical applications including epilepsy, depression, and enhancing the effects of rehabilitation. However, several questions remain regarding optimization of this therapy to maximize clinical outcomes. Although stimulation parameters such as pulse width, amplitude, and frequency are well studied, the timing of stimulation delivery both acutely (with respect to disease events) and chronically (over the timeline of a disease's progression) has generally received less attention. Leveraging such information would provide a framework for the implementation of next generation closed-loop VNS therapies. In this mini-review, we summarize a number of VNS therapies and discuss (1) general timing considerations for these applications and (2) open questions that could lead to further therapy optimization.
Collapse
Affiliation(s)
| | - Vivek V Kanumuri
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Amrit Misra
- Newton Wellesley Neurology Associates, Newton, MA, USA
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Patrick D Ganzer
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA.
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
| |
Collapse
|
42
|
Bensmaia SJ, Tyler DJ, Micera S. Restoration of sensory information via bionic hands. Nat Biomed Eng 2023; 7:443-455. [PMID: 33230305 PMCID: PMC10233657 DOI: 10.1038/s41551-020-00630-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Individuals who have lost the use of their hands because of amputation or spinal cord injury can use prosthetic hands to restore their independence. A dexterous prosthesis requires the acquisition of control signals that drive the movements of the robotic hand, and the transmission of sensory signals to convey information to the user about the consequences of these movements. In this Review, we describe non-invasive and invasive technologies for conveying artificial sensory feedback through bionic hands, and evaluate the technologies' long-term prospects.
Collapse
Affiliation(s)
- Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL, USA.
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
43
|
Soltani D, Stavrakis S. Neuromodulation for the Management of Atrial Fibrillation—How to Optimize Patient Selection and the Procedural Approach. CURRENT CARDIOVASCULAR RISK REPORTS 2023. [DOI: 10.1007/s12170-023-00718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
44
|
Charalambous M, Fischer A, Potschka H, Walker MC, Raedt R, Vonck K, Boon P, Lohi H, Löscher W, Worrell G, Leeb T, McEvoy A, Striano P, Kluger G, Galanopoulou AS, Volk HA, Bhatti SFM. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet J 2023; 293:105956. [PMID: 36791876 DOI: 10.1016/j.tvjl.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich 80539, Germany
| | - Matthew C Walker
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Robrecht Raedt
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Kristl Vonck
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Paul Boon
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, and Folkhälsan Research Center, University of Helsinki, Helsinki 00014, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Andrew McEvoy
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Pasquale Striano
- IRCCS 'G. Gaslini', Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Research Institute, Rehabilitation, Transition-Palliation', PMU Salzburg, Salzburg 5020, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth 83569, Germany
| | - Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sofie F M Bhatti
- Faculty of Veterinary Medicine, Small Animal Department, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
45
|
Blanz SL, Musselman ED, Settell ML, Knudsen BE, Nicolai EN, Trevathan JK, Verner RS, Begnaud J, Skubal AC, Suminski AJ, Williams JC, Shoffstall AJ, Grill WM, Pelot NA, Ludwig KA. Spatially selective stimulation of the pig vagus nerve to modulate target effect versus side effect. J Neural Eng 2023; 20:10.1088/1741-2552/acb3fd. [PMID: 36649655 PMCID: PMC10339030 DOI: 10.1088/1741-2552/acb3fd] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023]
Abstract
Electrical stimulation of the cervical vagus nerve using implanted electrodes (VNS) is FDA-approved for the treatment of drug-resistant epilepsy, treatment-resistant depression, and most recently, chronic ischemic stroke rehabilitation. However, VNS is critically limited by the unwanted stimulation of nearby neck muscles-a result of non-specific stimulation activating motor nerve fibers within the vagus. Prior studies suggested that precise placement of small epineural electrodes can modify VNS therapeutic effects, such as cardiac responses. However, it remains unclear if placement can alter the balance between intended effect and limiting side effect. We used an FDA investigational device exemption approved six-contact epineural cuff to deliver VNS in pigs and quantified how epineural electrode location impacts on- and off-target VNS activation. Detailed post-mortem histology was conducted to understand how the underlying neuroanatomy impacts observed functional responses. Here we report the discovery and characterization of clear neuroanatomy-dependent differences in threshold and saturation for responses related to both effect (change in heart rate) and side effect (neck muscle contractions). The histological and electrophysiological data were used to develop and validate subject-specific computation models of VNS, creating a well-grounded quantitative framework to optimize electrode location-specific activation of nerve fibers governing intended effect versus unwanted side effect.
Collapse
Affiliation(s)
- Stephan L Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Megan L Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Bruce E Knudsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Evan N Nicolai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America
- Mayo Clinic, Rochester, MN, United States of America
| | - James K Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Ryan S Verner
- LivaNova USA Inc., Houston, TX, United States of America
| | - Jason Begnaud
- LivaNova USA Inc., Houston, TX, United States of America
| | - Aaron C Skubal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron J Suminski
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Warren M Grill
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
46
|
Zhou Q, Zheng Z, Wang X, Li W, Wang L, Yin C, Zhang Q, Wang Q. taVNS Alleviates Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Via Activating Basal Forebrain Cholinergic Neurons. Neurochem Res 2023; 48:1848-1863. [PMID: 36729311 DOI: 10.1007/s11064-023-03871-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of central nervous system after anesthesia or surgery. Sevoflurane, an inhalation anesthetic, may inhibit cholinergic pathway that induce neuronal death and neuroinflammation, ultimately leading to POCD. Transauricular vagus nerve stimulation (taVNS) has neuroprotective effects in POCD rats, but the mechanisms related to cholinergic system have not been revealed. Sprague-Dawley rats were anesthetized with sevoflurane to construct the POCD model. The immunotoxin 192-IgG-saporin (192-sap) selectively lesioned cholinergic neurons in the basal forebrain, which is the major source of cholinergic projections to hippocampus. After lesion, rats received 5 days of taVNS treatment (30 min per day) starting 24 h before anesthesia. Open field test and Morris water maze were used to test the cognitive function. In this study, rats exposed to sevoflurane exhibited cognitive impairment that was attenuated by taVNS. In addition, taVNS treatment activated cholinergic system in the basal forebrain and hippocampus, and downregulated the expression of apoptosis- and necroptosis-related proteins, such as cleaved Caspase-3 and p-MLKL, in the hippocampus. Meanwhile, the activation of Iba1+ microglial by sevoflurane was reduced by taVNS. 192-sap blocked the cholinergic system activation in the basal forebrain and hippocampus and inhibited taVNS-mediated neuroprotection and anti-inflammation effects in the hippocampus. Generally, our study indicated that taVNS might alleviate sevoflurane-induced hippocampal neuronal apoptosis, necroptosis and microglial activation though activating cholinergic system in the basal forebrain.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zilei Zheng
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Anesthesiology, Zhangjiakou Second Hospital, Zhangjiakou, Hebei, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Luqi Wang
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
47
|
Domenech P. Stimulation du nerf vague pour traiter l’épilepsie et la dépression résistante : vers une physiopathologie commune ? BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
48
|
LoPresti MA, Huang J, Shlobin NA, Curry DJ, Weiner HL, Lam SK. Vagus nerve stimulator revision in pediatric epilepsy patients: a technical note and case series. Childs Nerv Syst 2023; 39:435-441. [PMID: 36434283 DOI: 10.1007/s00381-022-05769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Vagus nerve stimulation (VNS) is an adjunctive treatment in children with intractable epilepsy. When lead replacement becomes necessary, the old leads are often truncated and retained and new leads are implanted at a newly exposed segment of the nerve. Direct lead removal and replacement are infrequently described, with outcomes poorly characterized. We aimed to describe our experience with feasibility of VNS lead removal and replacement in pediatric patients. METHODS Retrospective review examined 14 patients, at a single, tertiary-care, children's hospital, who underwent surgery to replace VNS leads, with complete removal of the existing lead from the vagus nerve and placement of a new lead on the same segment of the vagus nerve, via blunt and sharp dissection without use of electrocautery. Preoperative characteristics, stimulation parameters, and outcomes were collected. RESULTS Mean age at initial VNS placement was 7.6 years (SD 3.5, range 4.5-13.4). Most common etiologies of epilepsy were genetic (5, 36%) and cryptogenic (4, 29%). Lead replacement was performed at a mean of 6.0 years (SD 3.8, range 2.1-11.7) following initial VNS placement. Reasons for revision included VNS lead breakage or malfunction. There were no perioperative complications, including surgical site infection, voice changes, dysphagia, or new deficits postoperatively. Stimulation parameters after replacement surgery at last follow-up were similar compared to preoperatively, with final stimulation parameters ranging from 0.25 mA higher to 1.5 mA lower to maintain baseline seizure control. The mean length of follow-up was 7.9 years (SD 3.5, range 3.1-13.7). CONCLUSION Removal and replacement of VNS leads are feasible and can be safely performed in children. Further characterization of surgical technique, associated risk, impact on stimulation parameters, and long-term outcomes are needed to inform best practices in VNS revision.
Collapse
Affiliation(s)
- Melissa A LoPresti
- Division of Pediatric Neurosurgery, Texas Children's Hospital; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Division of Pediatric Neurosurgery, Lurie Children's Hospital; Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan Huang
- Division of Pediatric Neurosurgery, Lurie Children's Hospital; Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan A Shlobin
- Division of Pediatric Neurosurgery, Lurie Children's Hospital; Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel J Curry
- Division of Pediatric Neurosurgery, Texas Children's Hospital; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Howard L Weiner
- Division of Pediatric Neurosurgery, Texas Children's Hospital; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sandi K Lam
- Division of Pediatric Neurosurgery, Lurie Children's Hospital; Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
49
|
Bender SA, Green DB, Daniels RJ, Ganocy SP, Bhadra N, Vrabec TL. Effects on heart rate from direct current block of the stimulated rat vagus nerve. J Neural Eng 2023; 20:10.1088/1741-2552/acacc9. [PMID: 36535037 PMCID: PMC9972895 DOI: 10.1088/1741-2552/acacc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Objective.Although electrical vagus nerve stimulation has been shown to augment parasympathetic control of the heart, the effects of electrical conduction block have been less rigorously characterized. Previous experiments have demonstrated that direct current (DC) nerve block can be applied safely and effectively in the autonomic system, but additional information about the system dynamics need to be characterized to successfully deploy DC nerve block to clinical practice.Approach.The dynamics of the heart rate (HR) from DC nerve block of the vagus nerve were measured by stimulating the vagus nerve to lower the HR, and then applying DC block to restore normal rate. DC block achieved rapid, complete block, as well as partial block at lower amplitudes.Main Results. Complete block was also achieved using lower amplitudes, but with a slower induction time. The time for DC to induce complete block was significantly predicted by the amplitude; specifically, the amplitude expressed as a percentage of the current required for a rapid, 60 s induction time. Recovery times after the cessation of DC block could occur both instantly, and after a significant delay. Both blocking duration and injected charge were significant in predicting the delay in recovery to normal conduction.Significance. While these data show that broad features such as induction and recovery can be described well by the DC parameters, more precise features of the HR, such as the exact path of the induction and recoveries, are still undefined. These findings show promise for control of the cardiac autonomic nervous system, with potential to expand to the sympathetic inputs as well.
Collapse
Affiliation(s)
- Shane A. Bender
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, USA
| | - David B. Green
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, USA
| | - Robert J. Daniels
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, USA
| | - Stephen P. Ganocy
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Niloy Bhadra
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, USA
| | - Tina L. Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, USA
| |
Collapse
|
50
|
Levinson S, Miller M, Iftekhar A, Justo M, Arriola D, Wei W, Hazany S, Avecillas-Chasin JM, Kuhn TP, Horn A, Bari AA. A structural connectivity atlas of limbic brainstem nuclei. FRONTIERS IN NEUROIMAGING 2023; 1:1009399. [PMID: 37555163 PMCID: PMC10406319 DOI: 10.3389/fnimg.2022.1009399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/13/2022] [Indexed: 08/10/2023]
Abstract
Background Understanding the structural connectivity of key brainstem nuclei with limbic cortical regions is essential to the development of therapeutic neuromodulation for depression, chronic pain, addiction, anxiety and movement disorders. Several brainstem nuclei have been identified as the primary central nervous system (CNS) source of important monoaminergic ascending fibers including the noradrenergic locus coeruleus, serotonergic dorsal raphe nucleus, and dopaminergic ventral tegmental area. However, due to practical challenges to their study, there is limited data regarding their in vivo anatomic connectivity in humans. Objective To evaluate the structural connectivity of the following brainstem nuclei with limbic cortical areas: locus coeruleus, ventral tegmental area, periaqueductal grey, dorsal raphe nucleus, and nucleus tractus solitarius. Additionally, to develop a group average atlas of these limbic brainstem structures to facilitate future analyses. Methods Each nucleus was manually masked from 197 Human Connectome Project (HCP) structural MRI images using FSL software. Probabilistic tractography was performed using FSL's FMRIB Diffusion Toolbox. Connectivity with limbic cortical regions was calculated and compared between brainstem nuclei. Results were aggregated to produce a freely available MNI structural atlas of limbic brainstem structures. Results A general trend was observed for a high probability of connectivity to the amygdala, hippocampus and DLPFC with relatively lower connectivity to the orbitofrontal cortex, NAc, hippocampus and insula. The locus coeruleus and nucleus tractus solitarius demonstrated significantly greater connectivity to the DLPFC than amygdala while the periaqueductal grey, dorsal raphe nucleus, and ventral tegmental area did not demonstrate a significant difference between these two structures. Conclusion Monoaminergic and other modulatory nuclei in the brainstem project widely to cortical limbic regions. We describe the structural connectivity across the several key brainstem nuclei theorized to influence emotion, reward, and cognitive functions. An increased understanding of the anatomic basis of the brainstem's role in emotion and other reward-related processing will support targeted neuromodulatary therapies aimed at alleviating the symptoms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Simon Levinson
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- Stanford Department of Neurosurgery, Stanford University, Palo Alto CA, United States
| | - Michelle Miller
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Ahmed Iftekhar
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Monica Justo
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Arriola
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Wenxin Wei
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Saman Hazany
- Department of Radiology, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | | | - Taylor P. Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin, Germany
- Department of Neurology, Center for Brain Circuit Therapeutics, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
- Massachusetts General Hospital Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ausaf A. Bari
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|