1
|
de Los Ángeles Cintado M, De la Casa LG, González G. Anxiolytic and sedative effects of sodium valproate with different experimental paradigms in male and female rats. Neuropsychopharmacol Rep 2024. [PMID: 39270067 DOI: 10.1002/npr2.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Valproic acid or sodium valproate is a widely used drug in the treatment of epilepsy, although it also appears to have anxiolytic and sedative properties derived from its agonistic action on the GABAergic system. To analyze these potential effects of the drug, we conducted three experiments with rats using procedures designed to assess anxiety in rodents. In the first experiment, with a fear conditioning procedure, three groups of male rats were included that received either 100 mg/kg or 300 mg/kg of valproate or an equivalent volume of saline solution. In Experiment 2, recording spontaneous activity in an open field, we compared the effects of valproic acid (300 mg/kg) on male and female rats. In the third experiment, we analyzed the effect of valproic acid using a novelty-induced hypophagia test and tested again for potential differences as a function of the sex of the animals. The results showed an anxiolytic effect restricted to the 300 mg/kg dose of the drug in Experiment 1. Such an effect was restricted to the female sample in Experiment 2, but in the third experiment affected both sexes. As for the sedative effect, it was observed in all experiments irrespective of the sex of the rats. These findings hold significant implications for the treatment of anxiety disorders since valproate may offer a novel therapeutic approach for anxiety-related conditions with distinct benefits and fewer side effects. However, clinical studies are needed to validate the translation of these findings from animal models to human patients.
Collapse
Affiliation(s)
- María de Los Ángeles Cintado
- Laboratory of Animal Behavior & Neuroscience, Department of Experimental Psychology, Universidad de Sevilla, Seville, Spain
| | - Luis Gonzalo De la Casa
- Laboratory of Animal Behavior & Neuroscience, Department of Experimental Psychology, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
2
|
Salazar AL, Centanni SW. Sex Differences in Mouse Models of Voluntary Alcohol Drinking and Abstinence-Induced Negative Emotion. Alcohol 2024; 121:45-57. [PMID: 39053705 DOI: 10.1016/j.alcohol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Alcohol Use Disorder (AUD) is a growing problem worldwide, causing an incredible burden on health and the economy. Though AUD impacts people of all backgrounds and demographics, increasing evidence has suggested robust sex differences in alcohol drinking patterns and AUD-induced negative emotionality or hyperkatifeia. Rates of problematic drinking have significantly risen among women, and women face more severe negative emotional consequences in abstinence such as increased risk of comorbidity with an anxiety or mood disorder and more severe symptoms of depression. As such, a bevy of preclinical literature using contingent methods of alcohol (ethanol) consumption has amassed in recent years to better understand sex as a biological variable in alcohol drinking and abstinence-induced negative emotionality. Mice are widely used to model alcohol drinking, as they are conducive to genetic manipulation strategies, and many strains will voluntarily consume alcohol. Sex-specific results from these mouse studies, however, have been inconsistent. Therefore, this review aims to summarize the current knowledge on sex differences in AUD-related contingent ethanol drinking and abstinence-induced negative emotionality in mice. Various contingent mouse drinking models and negative emotional-based behavioral paradigms are introduced and subsequently discussed in the context of sex differences to show increasing indications of sex specificity in mouse preclinical studies of AUD. With this review, we hope to inform future research on potential sex differences in preclinical mouse models of AUD and provide mounting evidence supporting the need for more widespread inclusion of preclinical female subjects in future studies.
Collapse
Affiliation(s)
- Amanda L Salazar
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Samuel W Centanni
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
3
|
Zhang HL, Sun Y, Wu ZJ, Yin Y, Liu RY, Zhang JC, Zhang ZJ, Yau SY, Wu HX, Yuan TF, Zhang L, Adzic M, Chen G. Hippocampal PACAP signaling activation triggers a rapid antidepressant response. Mil Med Res 2024; 11:49. [PMID: 39044298 PMCID: PMC11265467 DOI: 10.1186/s40779-024-00548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.
Collapse
Affiliation(s)
- Hai-Lou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhang-Jie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rui-Yi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, 999077, China
| | - Suk-Yu Yau
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hao-Xin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai, 200030, China
| | - Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Miroslav Adzic
- "Vinča" Institute of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001, Belgrade, Serbia
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China.
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Zoicas I, Licht C, Mühle C, Kornhuber J. Repetitive transcranial magnetic stimulation (rTMS) for depressive-like symptoms in rodent animal models. Neurosci Biobehav Rev 2024; 162:105726. [PMID: 38762128 DOI: 10.1016/j.neubiorev.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) emerged as a non-invasive brain stimulation technique in the treatment of psychiatric disorders. Both preclinical and clinical studies as well as systematic reviews provide a heterogeneous picture, particularly concerning the stimulation protocols used in rTMS. Here, we present a review of rTMS effects in rodent models of depressive-like symptoms with the aim to identify the most relevant factors that lead to an increased therapeutic success. The influence of different factors, such as the stimulation parameters (stimulus frequency and intensity, duration of stimulation, shape and positioning of the coil), symptom severity and individual characteristics (age, species and genetic background of the rodents), on the therapeutic success are discussed. Accumulating evidence indicates that rTMS ameliorates a multitude of depressive-like symptoms in rodent models, most effectively at high stimulation frequencies (≥5 Hz) especially in adult rodents with a pronounced pathological phenotype. The therapeutic success of rTMS might be increased in the future by considering these factors and using more standardized stimulation protocols.
Collapse
Affiliation(s)
- Iulia Zoicas
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany.
| | - Christiane Licht
- Paracelsus Medical University, Department of Psychiatry and Psychotherapy, Prof.-Ernst-Nathan-Str. 1, Nürnberg 90419, Germany
| | - Christiane Mühle
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| | - Johannes Kornhuber
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| |
Collapse
|
5
|
Kong CH, Lee JW, Jeon M, Kang WC, Kim MS, Park K, Bae HJ, Park SJ, Jung SY, Kim SN, Kleinfelter B, Kim JW, Ryu JH. D-Pinitol mitigates post-traumatic stress disorder-like behaviors induced by single prolonged stress in mice through mineralocorticoid receptor antagonism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110990. [PMID: 38467326 DOI: 10.1016/j.pnpbp.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Woo Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Seo Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Benjamin Kleinfelter
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37240, United States of America
| | - Ji-Woon Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee Univeristy, Seoul 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Horie I, Muroi Y, Ishii T. Noradrenergic Regulation of the Medial Prefrontal Cortex Mediates Stress Coping in Postpartum Female Mice. Mol Neurobiol 2024:10.1007/s12035-024-04240-2. [PMID: 38829510 DOI: 10.1007/s12035-024-04240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
The prevalence of depression in women increases during the postpartum period. We previously reported that subchronic exposure to social stress decreased passive coping in postpartum female mice. This study aimed to investigate whether noradrenaline regulation might regulate coping styles in mice. We first determined whether a different type of stress, subchronic physical stress, decreases passive coping in postpartum females. Postpartum female, virgin female, and male mice were exposed to subchronic restraint stress (restraint stress for 4 h for 5 consecutive days). Subchronic restraint stress decreased passive coping in postpartum females but not in virgin females and males in the forced swim and tail suspension tests. We next examined the neuronal mechanism by which subchronic stress decreases passive coping in postpartum female mice. Neuronal activity and expression of noradrenergic receptors in the medial prefrontal cortex (mPFC) were analyzed using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction, respectively. The mPFC was manipulated using chemogenetics, knockdown, or an α2A adrenergic receptor (AR) antagonist. Immunohistochemistry revealed that subchronic restraint stress increased glutamatergic neuron activation in the mPFC via forced swim stress and decreased α2A AR expression in postpartum females. Chemogenetic activation of glutamatergic neurons in the mPFC, knockdown of α2AAR in the mPFC, and the α2A AR receptor antagonist atipamezole treatment decreased passive coping in postpartum females. Subchronic restraint stress decreased passive coping in postpartum females by increasing glutamatergic neuron activity in the mPFC through α2A AR attenuation. The noradrenergic regulation of the mPFC may be a new target for treating postpartum depression.
Collapse
Affiliation(s)
- Ikuko Horie
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan
| | - Yoshikage Muroi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan
| |
Collapse
|
7
|
Bhatti DL, Jin J, Cheng J, McCabe K, Lee KW, Berdasco C, Jeong YY, Sinha SC, Kim Y. Ahnak in the prefrontal cortex mediates behavioral correlates of stress resilience and rapid antidepressant action in mice. Front Mol Neurosci 2024; 17:1350716. [PMID: 38828281 PMCID: PMC11140847 DOI: 10.3389/fnmol.2024.1350716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
The prefrontal cortex (PFC) is a key neural node mediating behavioral responses to stress and the actions of ketamine, a fast-acting antidepressant. The molecular mechanisms underlying these processes, however, are not fully understood. Our recent study revealed a pivotal role of hippocampal Ahnak as a regulator of cellular and behavioral adaptations to chronic stress. However, despite its significant expression in the PFC, the contribution of cortical Ahnak to behavioral responses to stress and antidepressants remains unknown. Here, using a mouse model for chronic social stress, we find that Ahnak expression in the PFC is significantly increased in stress-resilient mice and positively correlated with social interaction after stress exposure. Conditional deletion of Ahnak in the PFC or forebrain glutamatergic neurons facilitates stress susceptibility, suggesting that Ahnak is required for behavioral resilience. Further supporting this notion, Ahnak expression in the PFC is increased after the administration of ketamine or its metabolite (2R, 6R)-hydroxynorketamine (HNK). Moreover, Ahnak deletion in forebrain glutamatergic neurons blocks the restorative behavioral effects of ketamine or HNK in stress-susceptible mice. This forebrain excitatory neuron-specific Ahnak deletion reduces the frequency of mini excitatory postsynaptic currents in layer II/III pyramidal neurons, suggesting that Ahnak may induce its behavioral effects via modulation of glutamatergic transmission in the PFC. Altogether, these data suggest that Ahnak in glutamatergic PFC neurons may be critical for behavioral resilience and antidepressant actions of ketamine or HNK in chronic social stress-exposed mice.
Collapse
Affiliation(s)
- Dionnet L. Bhatti
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Junghee Jin
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Jia Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Kathryn McCabe
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Ko-Woon Lee
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yu Young Jeong
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Subhash C. Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Weill Cornell Medicine Helen & Robert Appel Alzheimer’s Disease Research Institute, New York, NY, United States
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
8
|
Zheng Z, Zhou H, Yang L, Zhang L, Guo M. Selective disruption of mTORC1 and mTORC2 in VTA astrocytes induces depression and anxiety-like behaviors in mice. Behav Brain Res 2024; 463:114888. [PMID: 38307148 DOI: 10.1016/j.bbr.2024.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Dysfunction of the mechanistic target of rapamycin (mTOR) signaling pathway is implicated in neuropsychiatric disorders including depression and anxiety. Most studies have been focusing on neurons, and the function of mTOR signaling pathway in astrocytes is less investigated. mTOR forms two distinct complexes, mTORC1 and mTORC2, with key scaffolding protein Raptor and Rictor, respectively. The ventral tegmental area (VTA), a vital component of the brain reward system, is enrolled in regulating both depression and anxiety. In the present study, we aimed to examine the regulation effect of VTA astrocytic mTOR signaling pathway on depression and anxiety. We specifically deleted Raptor or Rictor in VTA astrocytes in mice and performed a series of behavioral tests for depression and anxiety. Deletion of Raptor and Rictor both decreased the immobility time in the tail suspension test and the latency to eat in the novelty suppressed feeding test, and increased the horizontal activity and the movement time in locomotor activity. Deletion of Rictor decreased the number of total arm entries in the elevated plus-maze test and the vertical activity in locomotor activity. These data suggest that VTA astrocytic mTORC1 plays a role in regulating depression-related behaviors and mTORC2 is involved in both depression and anxiety-related behaviors. Our results indicate that VTA astrocytic mTOR signaling pathway might be new targets for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Ziteng Zheng
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Han Zhou
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Lu Yang
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Lanlan Zhang
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Ming Guo
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China.
| |
Collapse
|
9
|
Gencturk S, Unal G. Rodent tests of depression and anxiety: Construct validity and translational relevance. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:191-224. [PMID: 38413466 PMCID: PMC11039509 DOI: 10.3758/s13415-024-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Behavioral testing constitutes the primary method to measure the emotional states of nonhuman animals in preclinical research. Emerging as the characteristic tool of the behaviorist school of psychology, behavioral testing of animals, particularly rodents, is employed to understand the complex cognitive and affective symptoms of neuropsychiatric disorders. Following the symptom-based diagnosis model of the DSM, rodent models and tests of depression and anxiety focus on behavioral patterns that resemble the superficial symptoms of these disorders. While these practices provided researchers with a platform to screen novel antidepressant and anxiolytic drug candidates, their construct validity-involving relevant underlying mechanisms-has been questioned. In this review, we present the laboratory procedures used to assess depressive- and anxiety-like behaviors in rats and mice. These include constructs that rely on stress-triggered responses, such as behavioral despair, and those that emerge with nonaversive training, such as cognitive bias. We describe the specific behavioral tests that are used to assess these constructs and discuss the criticisms on their theoretical background. We review specific concerns about the construct validity and translational relevance of individual behavioral tests, outline the limitations of the traditional, symptom-based interpretation, and introduce novel, ethologically relevant frameworks that emphasize simple behavioral patterns. Finally, we explore behavioral monitoring and morphological analysis methods that can be integrated into behavioral testing and discuss how they can enhance the construct validity of these tests.
Collapse
Affiliation(s)
- Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
10
|
Somelar-Duracz K, Jürgenson M, Viil J, Zharkovsky A, Jaako K. 'Unpredictable chronic mild stress does not exacerbate memory impairment or altered neuronal and glial plasticity in the hippocampus of middle-aged vitamin D deficient mice'. Eur J Neurosci 2024; 59:1696-1722. [PMID: 38269959 DOI: 10.1111/ejn.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Vitamin D deficiency is a worldwide health concern, especially in the elderly population. Much remains unknown about the relationship between vitamin D deficiency (VDD), stress-induced cognitive dysfunctions and depressive-like behaviour. In this study, 4-month-old male C57Bl/6J mice were fed with control or vitamin D free diet for 6 months, followed by unpredictable chronic stress (UCMS) for 8 weeks. VDD induced cognitive impairment and reduced grooming behaviour, but did not induce depressive-like behaviour. While UCMS in vitamin D sufficient mice induced expected depressive-like phenotype and impairments in the contextual fear memory, chronic stress did not manifest as an additional risk factor for memory impairments and depressive-like behaviour in VDD mice. In fact, UCMS restored self-care behaviour in VDD mice. At the histopathological level, VDD mice exhibited cell loss in the granule cell layer, reduced survival of newly generated cells, accompanied with an increased number of apoptotic cells and alterations in glial morphology in the hippocampus; however, these effects were not exacerbated by UCMS. Interestingly, UCMS reversed VDD induced loss of microglial cells. Moreover, tyrosine hydroxylase levels decreased in the striatum of VDD mice, but not in stressed VDD mice. These findings indicate that long-term VDD in adulthood impairs cognition but does not augment behavioural response to UCMS in middle-aged mice. While VDD caused cell loss and altered glial response in the DG of the hippocampus, these effects were not exacerbated by UCMS and could contribute to mechanisms regulating altered stress response.
Collapse
Affiliation(s)
- Kelli Somelar-Duracz
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Janeli Viil
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Külli Jaako
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
11
|
Lark AR, Nass SR, Hahn YK, Gao B, Milne GL, Knapp PE, Hauser KF. HIV-1 Tat and morphine interactions dynamically shift striatal monoamine levels and exploratory behaviors over time. J Neurochem 2024; 168:185-204. [PMID: 38308495 PMCID: PMC10922901 DOI: 10.1111/jnc.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.
Collapse
Affiliation(s)
| | | | | | - Benlian Gao
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Ginger L. Milne
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Pamela E. Knapp
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| | - Kurt F. Hauser
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| |
Collapse
|
12
|
Schuh KM, Ahmed J, Kwak E, Xu CX, Davis TT, Aronoff CB, Tronson NC. A mouse model of oral contraceptive exposure: Depression, motivation, and the stress response. Horm Behav 2024; 158:105470. [PMID: 38061232 DOI: 10.1016/j.yhbeh.2023.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/05/2024]
Abstract
Hormonal contraceptives, including oral contraceptives (OCs), regulate hormonal cycles and broadly affect physiological processes, including stress responsivity. Whereas many users describe overall improved mood, up to 10 % of OC users experience adverse effects, including depression and anxiety. Given the link between regulation of hypothalamic-pituitary-adrenal (HPA) axis, stress exposure, and risk for depression, it is likely that OC-effects on stress mediate increased risk or increased resilience to these disorders. In this study, we developed and characterized a tractable mouse model of OC exposure with which to identify the mechanisms underlying OC modulation of brain, behavior, and mood. Specifically, we aimed to determine whether translationally relevant doses of OC-hormones in mice mimic changes in stress responsivity observed in humans taking OCs and describe behavioral changes during OC exposure. Young adult female C57Bl/6 N mice received daily ethinyl estradiol (EE) and levonorgestrel (LVNG) in 10 % sucrose, EE and drospirenone (DRSP) in 10 % sucrose, or 10 % sucrose alone. Translationally relevant doses of EE + LVNG-exposure, but not EE + DRSP, suppressed the acute stress response, consistent with effects observed in human OC users. EE + LVNG caused a specific anhedonia-like effect, without broad changes in stress-coping behavior, other depression-like behaviors, or anxiety-like behaviors. The suppression of regular estrous cycling, together with the blunting of the corticosterone response to acute stress, demonstrate the utility of this model for future studies to identify the mechanisms underlying OC interactions with stress, motivation, and risk for depression.
Collapse
Affiliation(s)
- Kristen M Schuh
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jabir Ahmed
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Esther Kwak
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Cecilia X Xu
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Tronjay T Davis
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Chloe B Aronoff
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|
13
|
Szalanczy AM, Fitzpatrick M, Beeson A, Bui T, Dyson C, Eller S, Landry J, Scott C, Grzybowski M, Klotz J, Geurts AM, Weiner JL, Redei EE, Solberg Woods LC. Chronic stress from adolescence to adulthood increases adiposity and anxiety in rats with decreased expression of Krtcap3. Front Genet 2024; 14:1247232. [PMID: 38323241 PMCID: PMC10844407 DOI: 10.3389/fgene.2023.1247232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as a novel adiposity gene, but subsequently found that its impact on adiposity may depend on environmental stress. To more thoroughly understand the connection between Krtcap3, adiposity, and stress, we exposed wild-type (WT) and Krtcap3 knock-out (KO) rats to chronic stress then measured adiposity and behavioral outcomes. We found that KO rats displayed lower basal stress than WT rats under control conditions and exhibited metabolic and behavioral responses to chronic stress exposure. Specifically, stress-exposed KO rats gained more weight, consumed more food when socially isolated, and displayed more anxiety-like behaviors relative to control KO rats. Meanwhile, there were minimal differences between control and stressed WT rats. At study conclusion stress-exposed KO rats had increased corticosterone (CORT) relative to control KO rats with no differences between WT rats. In addition, KO rats, independent of prior stress exposure, had an increased CORT response to removal of their cage-mate (psychosocial stress), which was only seen in WT rats when exposed to chronic stress. Finally, we found differences in expression of the glucocorticoid receptor, Nr3c1, in the pituitary and colon between control and stress-exposed KO rats that were not present in WT rats. These data support that Krtcap3 expression affects stress response, potentially via interactions with Nr3c1, with downstream effects on adiposity and behavior. Future work is necessary to more thoroughly understand the role of Krtcap3 in the stress response.
Collapse
Affiliation(s)
- Alexandria M. Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Mackenzie Fitzpatrick
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Angela Beeson
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Trangdai Bui
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Christina Dyson
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Seth Eller
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Julia Landry
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Christina Scott
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeff L. Weiner
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
14
|
Witt CE, Mena S, Holmes J, Hersey M, Buchanan AM, Parke B, Saylor R, Honan LE, Berger SN, Lumbreras S, Nijhout FH, Reed MC, Best J, Fadel J, Schloss P, Lau T, Hashemi P. Serotonin is a common thread linking different classes of antidepressants. Cell Chem Biol 2023; 30:1557-1570.e6. [PMID: 37992715 DOI: 10.1016/j.chembiol.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/24/2023]
Abstract
Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of escitalopram, fluoxetine, reboxetine, and ketamine. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking, and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis, and the monoamine hypothesis).
Collapse
Affiliation(s)
- Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Rachel Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lauren E Honan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - James Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany; Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
15
|
Tsao CH, Wu KY, Su NC, Edwards A, Huang GJ. The influence of sex difference on behavior and adult hippocampal neurogenesis in C57BL/6 mice. Sci Rep 2023; 13:17297. [PMID: 37828065 PMCID: PMC10570284 DOI: 10.1038/s41598-023-44360-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Animal models have been used extensively in in vivo studies, especially within the biomedical field. Traditionally, single-sex studies, mostly males, are used to avoid any potential confounding variation caused by sex difference and the female estrous cycle. Historically, female animal subjects are believed to exhibit higher variability, and this could increase the statistical power needed to test a hypothesis. This study sets out to evaluate whether a sex difference does exist in mouse behavior, and whether female mice featured higher variability. We assessed the sensorimotor skills, anxiety-like behavior, depression-like behavior, and cognitive abilities of mice through a series of commonly used behavioral tests. Except for the stronger grip force and lower tactile sensory sensitivity detected in male mice, there was no significant difference between males and females in other tests. Furthermore, immunolabeling of neurogenesis markers suggested no significant difference between sexes in adult hippocampal neurogenesis. Within group variances were equivalent; females did not exhibit higher variability than males. However, the overall negative results could be due to the limitation of small sample size. In conclusion, our study provides evidence that sex difference in mice does not significantly influence these commonly used behavioral tests nor adult neurogenesis under basal conditions. We suggest that female mice could also be considered for test inclusion in future experiment design.
Collapse
Affiliation(s)
- Chi-Hui Tsao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kuan-Yu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Nicole Ching Su
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Andrew Edwards
- Department of Psychiatry, Dykebar Hospital, National Health Service Greater Glasgow and Clyde, Paisley, PA2 7DE, Scotland
| | - Guo-Jen Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, 333, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
16
|
Cordeira J. Daily replacement of very high-fat diet stabilizes food intake and improves mouse welfare by ensuring food quality. PLoS One 2023; 18:e0291347. [PMID: 37721935 PMCID: PMC10506720 DOI: 10.1371/journal.pone.0291347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023] Open
Abstract
Researchers are obligated to ensure food quality and provide laboratory animals with a palatable diet. Factors influencing the quality and palatability of very high-fat diet (VHFD), a widely used rodent diet, however, are understudied. We conducted experiments to establish best practices for ensuring the quality of VHFD and to improve mouse welfare. We found that VHFD in the food hopper was vulnerable first to dehydration and then oxidation within 7-days, leading to dramatic changes in food intake and food preference behavior in mice. Mitigating dehydration and oxidation of VHFD by replacing food daily, rather than weekly, stabilized feeding behavior without effect on overall cardio-metabolic health. Importantly, daily replacement of VHFD also reduced measures of anxiety-like behavior in the open field test. Refining husbandry practices to include daily replacement of VHFD can therefore ensure VHFD quality and improve animal welfare. Standardizing the practice of daily VHFD replacement may also prevent experimental confound and improve experimental reproducibility and replicability.
Collapse
Affiliation(s)
- Joshua Cordeira
- Department of Biology, Western Connecticut State University, Danbury, Connecticut, United States of America
| |
Collapse
|
17
|
Inserra A, Piot A, De Gregorio D, Gobbi G. Lysergic Acid Diethylamide (LSD) for the Treatment of Anxiety Disorders: Preclinical and Clinical Evidence. CNS Drugs 2023; 37:733-754. [PMID: 37603260 DOI: 10.1007/s40263-023-01008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 08/22/2023]
Abstract
Anxiety disorders (ADs) represent the sixth leading cause of disability worldwide, resulting in a significant global economic burden. Over 50% of individuals with ADs do not respond to standard therapies, making the identification of more effective anxiolytic drugs an ongoing research priority. In this work, we review the preclinical literature concerning the effects of lysergic acid diethylamide (LSD) on anxiety-like behaviors in preclinical models, and the clinical literature on anxiolytic effects of LSD in healthy volunteers and patients with ADs. Preclinical and clinical findings show that even if LSD may exacerbate anxiety acutely (both in "microdoses" and "full doses"), it induces long-lasting anxiolytic effects. Only two randomized controlled trials combining LSD and psychotherapy have been performed in patients with ADs with and without life-threatening conditions, showing a good safety profile and persisting decreases in anxiety outcomes. The effect of LSD on anxiety may be mediated by serotonin receptors (5-HT1A/1B, 5-HT2A/2C, and 5-HT7) and/or transporter in brain networks and circuits (default mode network, cortico-striato-thalamo-cortical circuit, and prefrontal cortex-amygdala circuit), involved in the modulation of anxiety. It remains unclear whether LSD can be an efficacious treatment alone or only when combined with psychotherapy, and if "microdosing" may elicit the same sustained anxiolytic effects as the "full doses". Further randomized controlled trials with larger sample size cohorts of patients with ADs are required to clearly define the effective regimens, safety profile, efficacy, and feasibility of LSD for the treatment of ADs.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Avenue des Pins Ouest, Montreal, QC, H3A 1A1, Canada
| | - Alexandre Piot
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Avenue des Pins Ouest, Montreal, QC, H3A 1A1, Canada.
- McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
18
|
Elkomy MH, Abo El-Ela FI, Zaki RM, Alsaidan OA, Elmowafy M, Zafar A, Shalaby K, Abdelgawad MA, Omar HA, Salama R, Eid HM. Intranasal Nanotransferosomal Gel for Quercetin Brain Targeting: II. Antidepressant Effect in an Experimental Animal Model. Pharmaceutics 2023; 15:2095. [PMID: 37631309 PMCID: PMC10457845 DOI: 10.3390/pharmaceutics15082095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Quercetin (QER) demonstrated antidepressant effects in rats exhibiting anxiety and depressive-like behaviors. In an attempt to improve QER's antidepressant activity, a QER-loaded transferosome (QER-TFS) thermosensitive gel for intranasal administration was formulated and optimized. The therapeutic effectiveness of the optimized formulation was assessed in a depressed rat model by conducting a behavioral analysis. Behavioral study criteria such as immobility, swimming, climbing, sucrose intake, number of crossed lines, rearing, active interaction, and latency to feed were all considerably enhanced by intranasal treatment with the QER-TFS in situ gel in contrast to other formulations. A nasal histopathological study indicated that the QER-TFS thermosensitive gel was safe for the nasal mucosa. An immunohistochemical analysis showed that the animals treated with the QER-TFS thermosensitive gel had the lowest levels of c-fos protein expression, and brain histopathological changes in the depressed rats were alleviated. According to pharmacodynamic, immunohistochemical, and histopathological experiments, the intranasal administration of the QER-TFS thermosensitive gel substantially alleviated depressive symptoms in rats. However, extensive preclinical investigations in higher animal models are needed to anticipate its effectiveness in humans.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Omar A. Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Hany A. Omar
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rania Salama
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia;
- Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
19
|
Athanason A, Nadav T, Cates-Gatto C, Roberts A, Roberto M, Varodayan F. Chronic ethanol alters adrenergic receptor gene expression and produces cognitive deficits in male mice. Neurobiol Stress 2023; 24:100542. [PMID: 37197395 PMCID: PMC10184141 DOI: 10.1016/j.ynstr.2023.100542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Hyperkateifia and stress-induced alcohol cravings drive relapse in individuals with alcohol use disorder (AUD). The brain stress signal norepinephrine (also known as noradrenaline) tightly controls cognitive and affective behavior and was thought to be broadly dysregulated with AUD. The locus coeruleus (LC) is a major source of forebrain norepinephrine, and it was recently discovered that the LC sends distinct projections to addiction-associated regions suggesting that alcohol-induced noradrenergic changes may be more brain region-specific than originally thought. Here we investigated whether ethanol dependence alters adrenergic receptor gene expression in the medial prefrontal cortex (mPFC) and central amgydala (CeA), as these regions mediate the cognitive impairment and negative affective state of ethanol withdrawal. We exposed male C57BL/6J mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and assessed reference memory, anxiety-like behavior and adrenergic receptor transcript levels during 3-6 days of withdrawal. Dependence bidirectionally altered mouse brain α1 and β receptor mRNA levels, potentially leading to reduced mPFC adrenergic signaling and enhanced noradrenergic influence over the CeA. These brain region-specific gene expression changes were accompanied by long-term retention deficits and a shift in search strategy in a modified Barnes maze task, as well as greater spontaneous digging behavior and hyponeophagia. Current clinical studies are evaluating adrenergic compounds as a treatment for AUD-associated hyperkatefia, and our findings can contribute to the refinement of these therapies by increasing understanding of the specific neural systems and symptoms that may be targeted.
Collapse
Affiliation(s)
- A.C. Athanason
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - T. Nadav
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - C. Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - A.J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - M. Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - F.P. Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
20
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
21
|
Nass SR, Hahn YK, Ohene-Nyako M, McLane VD, Damaj MI, Thacker LR, Knapp PE, Hauser KF. Depressive-like Behavior Is Accompanied by Prefrontal Cortical Innate Immune Fatigue and Dendritic Spine Losses after HIV-1 Tat and Morphine Exposure. Viruses 2023; 15:v15030590. [PMID: 36992299 PMCID: PMC10052300 DOI: 10.3390/v15030590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Opioid use disorder (OUD) and HIV are comorbid epidemics that can increase depression. HIV and the viral protein Tat can directly induce neuronal injury within reward and emotionality brain circuitry, including the prefrontal cortex (PFC). Such damage involves both excitotoxic mechanisms and more indirect pathways through neuroinflammation, both of which can be worsened by opioid co-exposure. To assess whether excitotoxicity and/or neuroinflammation might drive depressive behaviors in persons infected with HIV (PWH) and those who use opioids, male mice were exposed to HIV-1 Tat for eight weeks, given escalating doses of morphine during the last two weeks, and assessed for depressive-like behavior. Tat expression decreased sucrose consumption and adaptability, whereas morphine administration increased chow consumption and exacerbated Tat-induced decreases in nesting and burrowing—activities associated with well-being. Across all treatment groups, depressive-like behavior correlated with increased proinflammatory cytokines in the PFC. Nevertheless, supporting the theory that innate immune responses adapt to chronic Tat exposure, most proinflammatory cytokines were unaffected by Tat or morphine. Further, Tat increased PFC levels of the anti-inflammatory cytokine IL-10, which were exacerbated by morphine administration. Tat, but not morphine, decreased dendritic spine density on layer V pyramidal neurons in the anterior cingulate. Together, our findings suggest that HIV-1 Tat and morphine differentially induce depressive-like behaviors associated with increased neuroinflammation, synaptic losses, and immune fatigue within the PFC.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Virginia D. McLane
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Leroy R. Thacker
- Department of Biostatistics, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
- Correspondence: ; Tel.: +1-804-628-7579; Fax: +1-804-828-0676
| |
Collapse
|
22
|
Adongo DW, Mante PK, Kukuia KKE, Benneh CK, Biney RP, Boakye-Gyasi E, Amekyeh H, Harley BK, Tandoh A, Okyere PD, Woode E. Fast-onset effects of Pseudospondias microcarpa (A. Rich) Engl. (Anacardiaceae) hydroethanolic leaf extract on behavioral alterations induced by chronic mild stress in mice. PLoS One 2023; 18:e0278231. [PMID: 36730151 PMCID: PMC9894402 DOI: 10.1371/journal.pone.0278231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/10/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Pseudospondias microcarpa (Anacardiaceae) is a plant widely used traditionally for treating various central nervous system disorders. A previous study in our laboratory confirmed that the hydroethanolic leaf extract (PME) of the plant produces an antidepressant-like effect in rodent models of behavioral despair. However, its effect on depressive-like behavior induced by chronic mild stress (CMS) and its time course of action are still unknown. In this context, the long-term effects of PME on cognitive function and depressive- and anxiety-like behavior caused by CMS were assessed. METHODS Male ICR mice were exposed to CMS for nine weeks and anhedonia was evaluated by monitoring sucrose intake (SIT) weekly. PME (30, 100, or 300 mg kg-1) or fluoxetine (FLX) (3, 10, or 30 mg kg-1) was administered to the mice during the last six weeks of CMS. Behavioral tests-coat state, splash test, forced swimming test (FST), tail suspension test (TST), elevated plus maze (EPM), open field test (OFT), novelty suppressed feeding (NSF), EPM transfer latency, and Morris water maze (MWM)-were performed after the nine-week CMS period. RESULTS When the mice were exposed to CMS, their SIT and grooming behavior reduced (splash test), their coat status was poor, they became more immobile (FST and TST), more anxious (OFT, EPM, and NSF), and their cognitive function was compromised (EPM transfer latency and MWM tests). Chronic PME treatment, however, was able to counteract these effects. Additionally, following two (2) weeks of treatment, PME significantly boosted SIT in stressed mice (30 mg kg-1, P<0.05; 100 mg kg-1, P<0.05; and 300 mg kg-1, P<0.001), as compared to four (4) weeks of treatment with FLX. CONCLUSION The present findings demonstrate that PME produces a rapid and sustained antidepressant-like action and reverses behavioral changes induced by chronic exposure to mild stressors.
Collapse
Affiliation(s)
- Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
- * E-mail:
| | - Priscilla Kolibea Mante
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Charles Kwaku Benneh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Robert Peter Biney
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Benjamin Kingsley Harley
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Augustine Tandoh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Prince Dagadu Okyere
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
23
|
Saleem U, Iman S, Ahmad B, Shah MA, Bibi S, Alqarni M, Khan MS, Shah GM, Khan H, Alhasani RH, Althobaiti NA, Albalawi AE. Antidepressant activity of phytochemicals of Mangifera indica seeds assisted by integrated computational analysis. Metab Brain Dis 2023; 38:483-505. [PMID: 35344129 DOI: 10.1007/s11011-022-00955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/09/2022] [Indexed: 01/25/2023]
Abstract
Mangifera indica L., also known as mango, is a tropical fruit that belongs to the Anacardiaceae family and is prized for its juiciness, unique flavour, and worldwide popularity. The current study aimed to probe into antidepressant power (ADP) of MIS in animals and confirmation of ADP with in silico induced-fit molecular docking. The depression model was prepared by exposing mice to various stressors from 9:00 am to 2:00 pm during 42 days study period. MIS extract and fluoxetine were given daily for 30 min before exposing animals to stressors. ADP was evaluated by various behavioural tests and biochemical analysis. Results showed increased physical activity in mice under behavioural tests, plasma nitrite and malondialdehyde (MDA) levels and monoamine oxidase A (MAO-A) activity decreased dose-dependently in MIS treated mice and superoxide dismutases (SOD) levels increased in treated groups as compared to disease control. With the peculiar behaviour and significant interactions of the functional residues of target proteins with selected ligands along with the best absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, it is concluded that catechin could be the best MAO-A inhibitor at a binding energy of -8.85 kcal/mol, and two hydrogen bonds were generated with Cys406 (A) and Gly443 (A) residues of the active binding site of MAO-A enzyme. While catechin at -6.86 kcal/mol generated three hydrogen bonds with Ala263 (A) and Gly434 (A) residues of the active site of monoamine oxidase B (MAO-B) enzyme and stabilized the best conformation. Therefore, it is highly recommended to test the selected lead-like compound catechin in the laboratory with biological system analysis to confirm its activity as MAO-A and MAO-B inhibitors so it can be declared as one of the novel therapeutic options with anti-depressant activity. Our findings concluded that M. indica seeds could be a significant and alternative anti-depressant therapy.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafa Iman
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and South-East Asia, Yunnan University, Kunming, 650091, Yunnan, China
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21961, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
24
|
G Modrak C, S Wilkinson C, L Blount H, Schwendt M, A Knackstedt L. The role of mGlu receptors in susceptibility to stress-induced anhedonia, fear, and anxiety-like behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:221-264. [PMID: 36868630 DOI: 10.1016/bs.irn.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stress and trauma exposure contribute to the development of psychiatric disorders such as post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) in a subset of people. A large body of preclinical work has found that the metabotropic glutamate (mGlu) family of G protein-coupled receptors regulate several behaviors that are part of the symptom clusters for both PTSD and MDD, including anhedonia, anxiety, and fear. Here, we review this literature, beginning with a summary of the wide variety of preclinical models used to assess these behaviors. We then summarize the involvement of Group I and II mGlu receptors in these behaviors. Bringing together this extensive literature reveals that mGlu5 signaling plays distinct roles in anhedonia, fear, and anxiety-like behavior. mGlu5 promotes susceptibility to stress-induced anhedonia and resilience to stress-induced anxiety-like behavior, while serving a fundamental role in the learning underlying fear conditioning. The medial prefrontal cortex, basolateral amygdala, nucleus accumbens, and ventral hippocampus are key regions where mGlu5, mGlu2, and mGlu3 regulate these behaviors. There is strong support that stress-induced anhedonia arises from decreased glutamate release and post-synaptic mGlu5 signaling. Conversely, decreasing mGlu5 signaling increases resilience to stress-induced anxiety-like behavior. Consistent with opposing roles for mGlu5 and mGlu2/3 in anhedonia, evidence suggests that increased glutamate transmission may be therapeutic for the extinction of fear learning. Thus, a large body of literature supports the targeting of pre- and post-synaptic glutamate signaling to ameliorate post-stress anhedonia, fear, and anxiety-like behavior.
Collapse
Affiliation(s)
- Cassandra G Modrak
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States
| | - Courtney S Wilkinson
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States
| | - Harrison L Blount
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
25
|
Khantakova JN, Bondar NP, Antontseva EV, Reshetnikov VV. Once induced, it lasts for a long time: the structural and molecular signatures associated with depressive-like behavior after neonatal immune activation. Front Cell Neurosci 2022; 16:1066794. [PMID: 36619667 PMCID: PMC9812963 DOI: 10.3389/fncel.2022.1066794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Adverse factors such as stress or inflammation in the neonatal period can affect the development of certain brain structures and have negative delayed effects throughout the lifespan of an individual, by reducing cognitive abilities and increasing the risk of psychopathologies. One possible reason for these delayed effects is the neuroinflammation caused by neonatal immune activation (NIA). Neuroinflammation can lead to disturbances of neurotransmission and to reprogramming of astroglial and microglial brain cells; when combined, the two problems can cause changes in the cytoarchitecture of individual regions of the brain. In addition, neuroinflammation may affect the hypothalamic-pituitary-adrenal (HPA) axis and processes of oxidative stress, thereby resulting in higher stress reactivity. In our review, we tried to answer the questions of whether depressive-like behavior develops after NIA in rodents and what the molecular mechanisms associated with these disorders are. Most studies indicate that NIA does not induce depressive-like behavior in a steady state. Nonetheless, adult males (but not females or adolescents of both sexes) with experience of NIA exhibit marked depressive-like behavior when exposed to aversive conditions. Analyses of molecular changes have shown that NIA leads to an increase in the amount of activated microglia and astroglia in the frontal cortex and hippocampus, an increase in oxidative-stress parameters, a change in stress reactivity of the HPA axis, and an imbalance of cytokines in various regions of the brain, but not in blood plasma, thus confirming the local nature of the inflammation. Therefore, NIA causes depressive-like behavior in adult males under aversive testing conditions, which are accompanied by local inflammation and have sex- and age-specific effects.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Federal Government-Funded Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia,*Correspondence: Julia N. Khantakova
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Elena V. Antontseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vasiliy V. Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
26
|
Harris EP, Villalobos-Manriquez F, Melo TG, Clarke G, O'Leary OF. Stress during puberty exerts sex-specific effects on depressive-like behavior and monoamine neurotransmitters in adolescence and adulthood. Neurobiol Stress 2022; 21:100494. [DOI: 10.1016/j.ynstr.2022.100494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/15/2022] Open
|
27
|
Kryst J, Majcher-Maślanka I, Chocyk A. Effects of chronic fluoxetine treatment on anxiety- and depressive-like behaviors in adolescent rodents - systematic review and meta-analysis. Pharmacol Rep 2022; 74:920-946. [PMID: 36151445 PMCID: PMC9584991 DOI: 10.1007/s43440-022-00420-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
Abstract
Background Drugs prescribed for psychiatric disorders in adolescence should be studied very extensively since they can affect developing and thus highly plastic brain differently than they affect the adult brain. Therefore, we aimed to summarize animal studies reporting the behavioral consequences of chronic exposure to the most widely prescribed antidepressant drug among adolescents i.e., fluoxetine. Methods Electronic databases (Medline via Pubmed, Web of Science Core Collection, ScienceDirect) were systematically searched until April 12, 2022, for published, peer-reviewed, controlled trials concerning the effects of chronic fluoxetine administration vs. vehicle on anxiety and depression measures in naïve and stress-exposed adolescent rodents. All of the relevant studies were selected and critically appraised, and a meta-analysis of eligible studies was performed. Results A total of 18 studies were included in the meta-analysis. In naïve animals, chronic adolescent fluoxetine administration showed dose-related anxiogenic-like effects, measured as a reduction in time spent in the open arms of the elevated plus maze. No significant effects of chronic adolescent fluoxetine on depression-like behavior were reported in naïve animals, while in stress-exposed rodents chronic adolescent fluoxetine significantly decreased immobility time in the forced swim test compared to vehicle. Conclusions These results suggest that although chronic fluoxetine treatment proves positive effects in animal models of depression, it may simultaneously increase anxiety in adolescent animals in a dose-related manner. Although the clinical implications of the data should be interpreted with extreme caution, adolescent patients under fluoxetine treatment should be closely monitored. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-022-00420-w.
Collapse
Affiliation(s)
- Joanna Kryst
- Faculty of Physiotherapy, Institute for Basics Sciences, University of Physical Education, Jana Pawła II Av. 78, 31-571, Kraków, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| |
Collapse
|
28
|
Uzungil V, Tran H, Aitken C, Wilson C, Opazo CM, Li S, Payet JM, Mawal CH, Bush AI, Hale MW, Hannan AJ, Renoir T. Novel Antidepressant-Like Properties of the Iron Chelator Deferiprone in a Mouse Model of Depression. Neurotherapeutics 2022; 19:1662-1685. [PMID: 35861925 PMCID: PMC9606181 DOI: 10.1007/s13311-022-01257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/17/2022] Open
Abstract
Depressed individuals who carry the short allele for the serotonin-transporter-linked promotor region of the gene are more vulnerable to stress and have reduced response to first-line antidepressants such as selective serotonin reuptake inhibitors. Since depression severity has been reported to correlate with brain iron levels, the present study aimed to characterise the potential antidepressant properties of the iron chelator deferiprone. Using the serotonin transporter knock-out (5-HTT KO) mouse model, we assessed the behavioural effects of acute deferiprone on the Porsolt swim test (PST) and novelty-suppressed feeding test (NSFT). Brain and blood iron levels were also measured following acute deferiprone. To determine the relevant brain regions activated by deferiprone, we then measured c-Fos expression and applied network-based analyses. We found that deferiprone reduced immobility time in the PST in 5-HTT KO mice and reduced latency to feed in the NSFT in both genotypes, suggesting potential antidepressant-like effects. There was no effect on brain or blood iron levels following deferiprone treatment, potentially indicating an acute iron-independent mechanism. Deferiprone reversed the increase in c-Fos expression induced by swim stress in 5-HTT KO mice in the lateral amygdala. Functional network analyses suggest that hub regions of activity in mice treated with deferiprone include the caudate putamen and prefrontal cortex. The PST-induced increase in network modularity in wild-type mice was not observed in 5-HTT KO mice. Altogether, our data show that the antidepressant-like effects of deferiprone could be acting via an iron-independent mechanism and that these therapeutic effects are underpinned by changes in neuronal activity in the lateral amygdala.
Collapse
Affiliation(s)
- Volkan Uzungil
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Harvey Tran
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Connor Aitken
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carey Wilson
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Celeste H Mawal
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
29
|
Perepelkina OV, Poletaeva II. Selection of Mice for Object Permanence Cognitive Task Solution. Neurol Int 2022; 14:696-706. [PMID: 36135993 PMCID: PMC9502561 DOI: 10.3390/neurolint14030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The selection of mice for high (“plus”) and low (“minus”) scores in the puzzle-box test was performed over five generations. This test evaluates the success (or failure) in finding the underpass, leading to the dark part of the box, when it is blocked. This means that the mouse is either able or unable to operate the “object permanence rule” (one of the index’s cognitive abilities). For the “+” strain, animals were bred who solved the test when the underpass test blocked with a plug; the “−” strain comprised those who were unable to solve this task. In mice of the “+” strain, the proportion of animals that was able to solve “plug” stages of the test was higher than in the “−” strain and in the non-selected genetically heterogeneous population. The “+” mice ate significantly more new food in the hyponeophagia test. Animals of both strains demonstrated the ability to “manipulate” the plug blocking the underpass, touching the plug with their paws and muzzle, although the majority of “−” mice were unable to open the underpass effectively. Thus, mice of both selected strains demonstrated that they were able to understand that the underpass does exist, but only “+”-strain animals (at least the majority of them) were able to realize the solution. The selection for plug-stage solution success affected the mouse’s ability to open the hidden underpass.
Collapse
|
30
|
Sathyanesan M, Newton SS. Antidepressant-like effects of trophic factor receptor signaling. Front Mol Neurosci 2022; 15:958797. [PMID: 36081576 PMCID: PMC9445421 DOI: 10.3389/fnmol.2022.958797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
A significant body of research has demonstrated that antidepressants regulate neurotrophic factors and that neurotrophins themselves are capable of independently producing antidepressant-like effects. While brain derived neurotrophic factor (BDNF) remains the best studied molecule in this context, there are several structurally diverse trophic factors that have shown comparable behavioral effects, including basic fibroblast growth factor (FGF-2), insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF). In this review we discuss the structural and biochemical signaling aspects of these neurotrophic factors with antidepressant activity. We also include a discussion on a cytokine molecule erythropoietin (EPO), widely known and prescribed as a hormone to treat anemia but has recently been shown to function as a neurotrophic factor in the central nervous system (CNS).
Collapse
|
31
|
Patel RR, Wolfe SA, Borgonetti V, Gandhi PJ, Rodriguez L, Snyder AE, D'Ambrosio S, Bajo M, Domissy A, Head S, Contet C, Dayne Mayfield R, Roberts AJ, Roberto M. Ethanol withdrawal-induced adaptations in prefrontal corticotropin releasing factor receptor 1-expressing neurons regulate anxiety and conditioned rewarding effects of ethanol. Mol Psychiatry 2022; 27:3441-3451. [PMID: 35668157 PMCID: PMC9708587 DOI: 10.1038/s41380-022-01642-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022]
Abstract
Prefrontal circuits are thought to underlie aberrant emotion contributing to relapse in abstinence; however, the discrete cell-types and mechanisms remain largely unknown. Corticotropin-releasing factor and its cognate type-1 receptor, a prominent brain stress system, is implicated in anxiety and alcohol use disorder (AUD). Here, we tested the hypothesis that medial prefrontal cortex CRF1-expressing (mPFCCRF1+) neurons comprise a distinct population that exhibits neuroadaptations following withdrawal from chronic ethanol underlying AUD-related behavior. We found that mPFCCRF1+ neurons comprise a glutamatergic population with distinct electrophysiological properties and regulate anxiety and conditioned rewarding effects of ethanol. Notably, mPFCCRF1+ neurons undergo unique neuroadaptations compared to neighboring neurons including a remarkable decrease in excitability and glutamatergic signaling selectively in withdrawal, which is driven in part by the basolateral amygdala. To gain mechanistic insight into these electrophysiological adaptations, we sequenced the transcriptome of mPFCCRF1+ neurons and found that withdrawal leads to an increase in colony-stimulating factor 1 (CSF1) in this population. We found that selective overexpression of CSF1 in mPFCCRF1+ neurons is sufficient to decrease glutamate transmission, heighten anxiety, and abolish ethanol reinforcement, providing mechanistic insight into the observed mPFCCRF1+ synaptic adaptations in withdrawal that drive these behavioral phenotypes. Together, these findings highlight mPFCCRF1+ neurons as a critical site of enduring adaptations that may contribute to the persistent vulnerability to ethanol misuse in abstinence, and CSF1 as a novel target for therapeutic intervention for withdrawal-related negative affect.
Collapse
Affiliation(s)
- Reesha R Patel
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sarah A Wolfe
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vittoria Borgonetti
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università degli Studi di Firenze, 50139, Firenze (FI), Italy
| | - Pauravi J Gandhi
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Larry Rodriguez
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Angela E Snyder
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shannon D'Ambrosio
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Michal Bajo
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alain Domissy
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Steven Head
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Candice Contet
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - R Dayne Mayfield
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Amanda J Roberts
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
32
|
Emtyazi D, Rabelo TK, Katzman H, Campos AC, Diwan M, Gidyk D, Rabelo Dos Santos P, Giacobbe P, Lipsman N, Aubert I, Hamani C. Sex differences in long-term fear and anxiety-like responses in a preclinical model of PTSD. J Psychiatr Res 2022; 151:619-625. [PMID: 35640386 DOI: 10.1016/j.jpsychires.2022.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With a high prevalence of posttraumatic stress disorder (PTSD) in females, studying sex differences in preclinical models is of substantial importance. We have previously employed behavioural criteria to identify and characterize a subpopulation of rats that presented impaired fear extinction and long-term fear and anxiety responses following fear conditioning. We now exposed male and female rats to fear conditioning and extinction and segregated the animals into weak- (WE) and strong-extinction (SE) groups based on behavioural scores during extinction. Animals were subsequently tested for tone and context recall, as well as anxiety-like responses in the marble burying and novelty suppression of feeding (NSF) tests. Vaginal lavages were collected to characterize the phase of the estrous cycle during fear extinction. We found that females had reduced freezing during tone recall and a lower latency to feed in the NSF test. No differences were found in females undergoing extinction during high and low estrogen phases of the cycle in any of the performed tests. Overall, the percentage of animals that presented WE and SE phenotypes was similar in males and females. Both, WE males and females had increased freezing during tone and context recall. Along with our previous reports, WE males presented anxiety-like responses, particularly in the NSF compared to SE animals. In contrast, WE females buried less marbles than their SE mates. Future investigation including a larger number of behavioural tests are certainly required to corroborate our findings and ascertain potential mechanisms to explain the differences observed in our study.
Collapse
Affiliation(s)
- Delara Emtyazi
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Thallita Kelly Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Hailey Katzman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Ana Carolina Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Mustansir Diwan
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Darryl Gidyk
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | | | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Isabelle Aubert
- Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
33
|
Kukuia KKE, Torbi J, Amoateng P, Adutwum-Ofosu KK, Koomson AE, Appiah F, Tagoe TA, Mensah JA, Ameyaw EO, Adi-Dako O, Amponsah SK. Gestational iron supplementation reverses depressive-like behavior in post-partum Sprague Dawley rats: Evidence from behavioral and neurohistological studies. IBRO Neurosci Rep 2022; 12:280-296. [PMID: 35746978 PMCID: PMC9210498 DOI: 10.1016/j.ibneur.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Postpartum depression is a mood disorder that affects about 9–20% of women after child birth. Reports suggest that gestational iron deficiency can cause a deficit in behavioral, cognitive and affective functions and can precipitate depressive symptoms in mothers during the postpartum period. The present study examined the effect of iron supplementation on depressive behavior during postpartum period in a rat model. Method Female Sprague-Dawley rats were crossed. Pregnant rats received iron, fluoxetine, desferrioxamine or vehicle throughout the period of gestation. During the postpartum period, mothers from all groups were taken through the open field test (OFT), forced swim test (FST), novelty-induced hypophagia (NIH) and sacrificed for histological examination of the brains. Results Results showed that rats treated with iron-chelating agent, desferrioxamine, and vehicle during gestation exhibited increased immobility scores in the FST, increased latency to feed and reduced feeding in the NIH with corresponding decreased number of neurons and dendritic branches in the cortex of the brain. These depression-related effects were attenuated by perinatal iron supplementation which showed decreased immobility scores in the FST comparable to rats treated with fluoxetine, a clinically effective antidepressant. Iron treatment also decreased latency to feeding while increasing feeding behavior in the NIH. Iron-treated dams had a higher number of neurons with dendritic connections in the frontal cortex compared to vehicle- and desferrioxamine-treated groups. Conclusion The results suggest that, iron supplementation during gestation exerts an antidepressant-like effect in postpartum Sprague-Dawley rats, attenuates neuronal loss associated with depression and increases dendritic spine density. Iron supplementation during gestation exerts an antidepressant-like effect in postpartum Sprague-Dawley rats. Iron supplementation during gestation attenuates neuronal loss associated with depression. Iron-treated dams had a higher number of neurons with dendritic connections in the frontal cortex.
Collapse
|
34
|
The Impact of Chronic Unpredictable Mild Stress-Induced Depression on Spatial, Recognition and Reference Memory Tasks in Mice: Behavioral and Histological Study. Behav Sci (Basel) 2022; 12:bs12060166. [PMID: 35735376 PMCID: PMC9219659 DOI: 10.3390/bs12060166] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Depression-induced cognitive impairment has recently been given more attention in research. However, the relationship between depression and different types of memory is still not clear. Chronic unpredictable mild stress (CUMS) is a commonly used animal model of depression in which animals are exposed to chronic unpredictable environmental and psychological stressors, which mimics daily human life stressors. This study investigated the impact of different durations of CUMS on various types of memory (short- and long-term spatial memory and recognition memory) and investigated CUMS’ impact on the ultrastructural level by histological assessment of the hippocampus and prefrontal cortex. Twenty male C57BL/J6 mice (6 weeks old, 21.8 ± 2 g) were randomly divided into two groups (n = 10): control and CUMS (8 weeks). A series of behavioral tasks were conducted twice at weeks 5–6 (early CUMS) and weeks 7–8 (late CUMS). A tail-suspension test (TST), forced swimming test (FST), elevated zero maze (EZM), elevated plus maze (EPM), open field test (OFT), and sucrose-preference test (SPT) were used to assess anxiety and depressive symptoms. The cognitive function was assessed by the novel object recognition test (NORT; for recognition memory), Y-maze (for short-term spatial memory), and Morris water maze (MWM: for long-term spatial memory) with a probe test (for reference memory). Our data showed that 8 weeks of CUMS increased the anxiety level, reported by a significant increase in anxiety index in both EPM and EZM and a significant decrease in central preference in OFT, and depression was reported by a significant increase in immobility in the TST and FST and sucrose preference in the SPT. Investigating the impact of CUMS on various types of memory, we found that reference memory is the first memory to be affected in early CUMS. In late CUMS, all types of memory were impaired, and this was consistent with the abnormal histological features of the memory-related areas in the brain (hippocampus and prefrontal cortex).
Collapse
|
35
|
A Framework for Developing Translationally Relevant Animal Models of Stress-Induced Changes in Eating Behavior. Biol Psychiatry 2022; 91:888-897. [PMID: 34433512 PMCID: PMC8720907 DOI: 10.1016/j.biopsych.2021.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Stress often affects eating behaviors, leading to increased eating in some individuals and decreased eating in others. Identifying physiological and psychological factors that determine the direction of eating responses to stress has been a major goal of epidemiological and clinical studies. However, challenges of standardizing the stress exposure in humans hinder efforts to uncover the underlying mechanisms. The issue of what determines the direction of stress-induced feeding responses has not been directly addressed in animal models, but assays that combine stress with a feeding-related task are commonly used as readouts of other behaviors, such as anxiety. Sex, estrous cyclicity, circadian cyclicity, caloric restriction, palatable diets, elevated body weight, and properties of the stressors similarly influence feeding behavior in humans and rodent models. Yet, most rodent studies do not use conditions that are most relevant for studying feeding behavior in humans. This review proposes a conceptual framework for incorporating these influences to develop reproducible and translationally relevant assays to study effects of stress on food intake. Such paradigms have the potential to uncover links between emotional eating and obesity as well as to the etiology of eating disorders.
Collapse
|
36
|
Peptide LCGA-17 Attenuates Behavioral and Neurochemical Deficits in Rodent Models of PTSD and Depression. Pharmaceuticals (Basel) 2022; 15:ph15040462. [PMID: 35455459 PMCID: PMC9029485 DOI: 10.3390/ph15040462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
We have previously described the LCGA-17 peptide as a novel anxiolytic and antidepressant candidate that acts through the α2δ VGCC (voltage-gated calcium channel) subunit with putative synergism with GABA-A receptors. The current study tested the potential efficacy of acute and chronic intranasal (i.n.) LCGA-17 (0.05 mg/kg and 0.5 mg/kg) in rats on predator odor-induced conditioned place aversion (POCPA), a model of post-traumatic stress disorder (PTSD), and chronic unpredictable stress (CUS) that produce a range of behavioral and physiological changes that parallel symptoms of depression in humans. CUS and LCGA-17 treatment effects were tested in the sucrose preference (SPT) social interaction (SI), female urine sniffing (FUST), novelty-suppressed feeding (NSFT), and forced swim (FST) tests. Analysis of the catecholamines content in brain structures after CUS was carried out using HPLC. The efficacy of i.n. LCGA-17 was also assessed using the Elevated plus-maze (EPM) and FST. Acute LCGA-17 administration showed anxiolytic and antidepressant effects in EPM and FST, similar to diazepam and ketamine, respectively. In the POCPA study, LCGA-17 significantly reduced place aversion, with efficacy greater than doxazosin. After CUS, chronic LCGA-17 administration reversed stress-induced alterations in numerous behavioral tests (SI, FUST, SPT, and FST), producing significant anxiolytic and antidepressant effects. Finally, LCGA-17 restored the norepinephrine levels in the hippocampus following stress. Together, these results support the further development of the LCGA-17 peptide as a rapid-acting anxiolytic and antidepressant.
Collapse
|
37
|
Francois M, Canal Delgado I, Shargorodsky N, Leu CS, Zeltser L. Assessing the effects of stress on feeding behaviors in laboratory mice. eLife 2022; 11:e70271. [PMID: 35167441 PMCID: PMC8846584 DOI: 10.7554/elife.70271] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Stress often affects eating behaviors, increasing caloric intake in some individuals and decreasing it in others. The determinants of feeding responses to stress are unknown, in part because this issue is rarely studied in rodents. We focused our efforts on the novelty-suppressed feeding (NSF) assay, which uses latency to eat as readout of anxiety-like behavior, but rarely assesses feeding per se. We explored how key variables in experimental paradigms - estrous and diurnal cyclicity, age and duration of social isolation, prandial state, diet palatability, and elevated body weight - influence stress-induced anxiety-like behavior and food intake in male and female C57BL/6J mice. Latency to eat in the novel environment is increased in both sexes across most of the conditions tested, while effects on caloric intake are variable. In the common NSF assay (i.e., lean mice in the light cycle), sex-specific effects of the length of social isolation, and not estrous cyclicity, are the main source of variability. Under conditions that are more physiologically relevant for humans (i.e., overweight mice in the active phase), the novel stress now elicits robust hyperphagia in both sexes . This novel model of stress eating can be used to identify underlying neuroendocrine and neuronal substrates. Moreover, these studies can serve as a framework to integrate cross-disciplinary studies of anxiety and feeding related behaviors in rodents.
Collapse
Affiliation(s)
- Marie Francois
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Isabella Canal Delgado
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Nikolay Shargorodsky
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Cheng-Shiun Leu
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Biostatistics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Lori Zeltser
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
38
|
Kelberman MA, Anderson CR, Chlan E, Rorabaugh JM, McCann KE, Weinshenker D. Consequences of Hyperphosphorylated Tau in the Locus Coeruleus on Behavior and Cognition in a Rat Model of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1037-1059. [PMID: 35147547 PMCID: PMC9007891 DOI: 10.3233/jad-215546] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The locus coeruleus (LC) is one of the earliest brain regions to accumulate hyperphosphorylated tau, but a lack of animal models that recapitulate this pathology has hampered our understanding of its contributions to Alzheimer's disease (AD) pathophysiology. OBJECTIVE We previously reported that TgF344-AD rats, which overexpress mutant human amyloid precursor protein and presenilin-1, accumulate early endogenous hyperphosphorylated tau in the LC. Here, we used TgF344-AD rats and a wild-type (WT) human tau virus to interrogate the effects of endogenous hyperphosphorylated rat tau and human tau in the LC on AD-related neuropathology and behavior. METHODS Two-month-old TgF344-AD and WT rats received bilateral LC infusions of full-length WT human tau or mCherry control virus driven by the noradrenergic-specific PRSx8 promoter. Rats were subsequently assessed at 6 and 12 months for arousal (sleep latency), anxiety-like behavior (open field, elevated plus maze, novelty-suppressed feeding), passive coping (forced swim task), and learning and memory (Morris water maze and fear conditioning). Hippocampal microglia, astrocyte, and AD pathology were evaluated using immunohistochemistry. RESULTS In general, the effects of age were more pronounced than genotype or treatment; older rats displayed greater hippocampal pathology, took longer to fall asleep, had reduced locomotor activity, floated more, and had impaired cognition compared to younger animals. TgF344-AD rats showed increased anxiety-like behavior and impaired learning and memory. The tau virus had negligible influence on most measures. CONCLUSION Effects of hyperphosphorylated tau on AD-like neuropathology and behavioral symptoms were subtle. Further investigation of different forms of tau is warranted.
Collapse
Affiliation(s)
- Michael A. Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA 30322
- Neuroscience Program, Laney Graduate School, Emory University, Atlanta, GA 30322
| | | | - Eli Chlan
- Neuroscience Program, Laney Graduate School, Emory University, Atlanta, GA 30322
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | | | | | | |
Collapse
|
39
|
Camargo A, Dalmagro AP, Wolin IAV, Siteneski A, Zeni ALB, Rodrigues ALS. A low-dose combination of ketamine and guanosine counteracts corticosterone-induced depressive-like behavior and hippocampal synaptic impairments via mTORC1 signaling. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110371. [PMID: 34089815 DOI: 10.1016/j.pnpbp.2021.110371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023]
Abstract
Ketamine exhibits rapid and sustained antidepressant responses, but its repeated use may cause adverse effects. Augmentation strategies have been postulated to be useful for the management/reduction of ketamine's dose and its adverse effects. Based on the studies that have suggested that ketamine and guanosine may share overlapping mechanisms of action, the present study investigated the antidepressant-like effect of subthreshold doses of ketamine and guanosine in mice subjected to repeated administration of corticosterone (CORT) and the role of mTORC1 signaling for this effect. The ability of the treatment with ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.) to counteract the depressive-like behavior induced by CORT (20 mg/kg, p.o., for 21 days) in mice, was paralleled with the prevention of the CORT-induced reduction on BDNF levels, Akt (Ser473) and GSK-3β (Ser9) phosphorylation, and PSD-95, GluA1, and synapsin immunocontent in the hippocampus. No changes on mTORC1 and p70S6K immunocontent were found in the hippocampus and prefrontal cortex of any experimental group. No alterations on BDNF, Akt/GSK-3β, mTORC1/p70S6K, and synaptic proteins were observed in the prefrontal cortex of mice. The antidepressant-like and pro-synaptogenic effects elicited by ketamine plus guanosine were abolished by the pretreatment with rapamycin (0.2 nmol/site, i.c.v., a selective mTORC1 inhibitor). Our results showed that the combined administration of ketamine and guanosine at low doses counteracted CORT-induced depressive-like behavior and synaptogenic disturbances by activating mTORC1 signaling. This study supports the notion that the combined administration of guanosine and ketamine may be a useful therapeutic strategy for the management of MDD.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Paula Dalmagro
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, 89030-903, Blumenau, SC, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Aline Siteneski
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia B Zeni
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, 89030-903, Blumenau, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
40
|
Harris EP, McGovern AJ, Melo TG, Barron A, Nola YM, O'Leary OF. Juvenile Stress Exerts Sex-independent Effects on Anxiety, Antidepressant-like Behaviours and Dopaminergic Innervation of the Prelimbic Cortex in Adulthood and Does Not Alter Hippocampal Neurogenesis. Behav Brain Res 2021; 421:113725. [PMID: 34929235 DOI: 10.1016/j.bbr.2021.113725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Stress, particularly during childhood, is a major risk factor for the development of depression. Depression is twice as prevalent in women compared to men, which suggests that that biological sex also contributes to depression susceptibility. However, the neurobiology underpinning sex differences in the long-term consequences of childhood stress remains unknown. Thus, the aim of this study was to determine whether stress applied during the prepubertal juvenile period (postnatal day 27-29) in rats induces sex-specific changes in anxiety-like behaviour, anhedonia, and antidepressant-like behaviour in adulthood in males and females. The impact of juvenile stress on two systems in the brain associated with these behaviours and that develop during the juvenile period, the mesocorticolimbic dopaminergic system and hippocampal neurogenesis, were also investigated. Juvenile stress altered escape-oriented behaviours in the forced swim test in both sexes, decreased latency to drink a palatable substance in a novel environment in the novelty-induced hypophagia test in both sexes, and decreased open field supported rearing behavior in females. These behavioural changes were accompanied by stress-induced increases in tyrosine hydroxylase immunoreactivity in the prefrontal cortex of both sexes, but not other regions of the mesocorticolimbic dopaminergic system. Juvenile stress did not impact anhedonia in adulthood as measured by the saccharin preference test and had no effect hippocampal neurogenesis across the longitudinal axis of the hippocampus. These results suggest that juvenile stress has long-lasting impacts on antidepressant-like and reward-seeking behaviour in adulthood and these changes may be due to alterations to catecholaminergic innervation of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Erin P Harris
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Andrew J McGovern
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Thieza G Melo
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Yvonne M Nola
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
41
|
Levone BR, Cryan JF, O'Leary OF. Specific sub-regions of the longitudinal axis of the hippocampus mediate behavioural responses to chronic psychosocial stress. Neuropharmacology 2021; 201:108843. [PMID: 34666075 DOI: 10.1016/j.neuropharm.2021.108843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Accumulating evidence suggests that the hippocampus is functionally segregated along its longitudinal axis into a dorsal (dHi) sub-region, shown to play roles in learning & memory and a ventral sub-region (vHi), involved in anxiety and antidepressant action. Recent studies also suggest that the intermediate hippocampus (iHi) might be functionally independent, but it has received relatively little attention. We recently found that the iHi is involved in the behavioural effects of chronic treatment with the antidepressant fluoxetine in the forced swim test. However, the roles of specific sub-regions of the longitudinal axis of the hippocampus in the response to chronic stress, a risk factor for depression and anxiety disorders, has not yet been investigated. Therefore, we used excitotoxic lesions of the dHi, iHi or vHi in male C57BL/6 mice to investigate the roles of these sub-regions in the behavioural (anxiety, anhedonia, depression) responses to chronic psychosocial stress. We found that stress-induced increases in anxiety in the novelty-induced hypophagia and marble burying tests were prevented by each of the sub-region lesions, but only vHi lesions attenuated stress-induced anxiety in the open field test. Stress-induced anhedonia was reduced in dHi- and vHi- but not iHi-lesioned mice. In stressed mice, only vHi lesions induced an antidepressant-like effect in the forced swim test and prolonged latency to adopt a defeat posture during social defeat, suggesting an increase in stress resilience. Interestingly, iHi lesions increased stress-induced social avoidance in the social interaction test. In summary, we found that all hippocampal sub-regions are involved in the anxiogenic effects of chronic stress but that the iHi plays a predominant role in stress-induced social avoidance and the vHi has a predominant role in active coping behaviours and antidepressant-like behaviour following chronic stress.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
42
|
A new experimental design to study inflammation-related versus non-inflammation-related depression in mice. J Neuroinflammation 2021; 18:290. [PMID: 34895261 PMCID: PMC8666053 DOI: 10.1186/s12974-021-02330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Major depressive disorder (MDD) represents a major public health concern, particularly due to its steadily rising prevalence and the poor responsiveness to standard antidepressants notably in patients afflicted with chronic inflammatory conditions, such as obesity. This highlights the need to improve current therapeutic strategies, including by targeting inflammation based on its role in the pathophysiology and treatment responsiveness of MDD. Nevertheless, dissecting the relative contribution of inflammation in the development and treatment of MDD remains a major issue, further complicated by the lack of preclinical depression models suitable to experimentally dissociate inflammation-related vs. inflammation-unrelated depression. Methods While current models usually focus on one particular MDD risk factor, we compared in male C57BL/6J mice the behavioral, inflammatory and neurobiological impact of chronic exposure to high-fat diet (HFD), a procedure known to induce inflammation-related depressive-like behaviors, and unpredictable chronic mild stress (UCMS), a stress-induced depression model notably renowned for its responsivity to antidepressants. Results While both paradigms induced neurovegetative, depressive-like and anxiety-like behaviors, inflammation and downstream neurobiological pathways contributing to inflammation-driven depression were specifically activated in HFD mice, as revealed by increased circulating levels of inflammatory factors, as well as brain expression of microglial activation markers and enzymes from the kynurenine and tetrahydrobiopterin (BH4) pathways. In addition, serotoninergic and dopaminergic systems were differentially impacted, depending on the experimental condition. Conclusions These data validate an experimental design suitable to deeply study the mechanisms underlying inflammation-driven depression comparatively to non-inflammatory depression. This design could help to better understand the pathophysiology of treatment resistant depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02330-9.
Collapse
|
43
|
Kirson D, Steinman MQ, Wolfe SA, Bagsic SRS, Bajo M, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, Roberto M. Sex and context differences in the effects of trauma on comorbid alcohol use and post-traumatic stress phenotypes in actively drinking rats. J Neurosci Res 2021; 99:3354-3372. [PMID: 34687080 PMCID: PMC8712392 DOI: 10.1002/jnr.24972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023]
Abstract
Alcohol use disorder (AUD) and affective disorders are frequently comorbid and share underlying mechanisms that could be targets for comprehensive treatment. Post-traumatic stress disorder (PTSD) has high comorbidity with AUD, but comprehensive models of this overlap are nascent. We recently characterized a model of comorbid AUD and PTSD-like symptoms, wherein stressed rats receive an inhibitory avoidance (IA)-related footshock on two occasions followed by two-bottle choice (2BC) voluntary alcohol drinking. Stressed rats received the second footshock in a familiar (FAM, same IA box as the first footshock) or novel context (NOV, single-chambered apparatus); the FAM paradigm more effectively increased alcohol drinking in males and the NOV paradigm in females. During abstinence, stressed males displayed avoidance-like PTSD symptoms, and females showed hyperarousal-like PTSD symptoms. Rats in the model had altered spontaneous action potential-independent GABAergic transmission in the central amygdala (CeA), a brain region key in alcohol dependence and stress-related signaling. However, PTSD sufferers may have alcohol experience prior to their trauma. Here, we therefore modified our AUD/PTSD comorbidity model to provide 3 weeks of intermittent extended alcohol access before footshock and then studied the effects of NOV and FAM stress on drinking and PTSD phenotypes. NOV stress suppressed the escalation of alcohol intake and preference seen in male controls, but no stress effects were seen on drinking in females. Additionally, NOV males had decreased action potential-independent presynaptic GABA release and delayed postsynaptic GABAA receptor kinetics in the CeA compared to control and FAM males. Despite these changes to alcohol intake and CeA GABA signaling, stressed rats showed broadly similar anxiogenic-like behaviors to our previous comorbid model, suggesting decoupling of the PTSD symptoms from the AUD vulnerability for some of these animals. The collective results show the importance of alcohol history and trauma context in vulnerability to comorbid AUD/PTSD-like symptoms.
Collapse
Affiliation(s)
- Dean Kirson
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Michael Q. Steinman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Sarah A. Wolfe
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | | | - Michal Bajo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Suhas Sureshchandra
- University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, CA 92697, USA
| | - Christopher S. Oleata
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Ilhem Messaoudi
- University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, CA 92697, USA
| | - Eric P. Zorrilla
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
44
|
Graham DL, Madkour HS, Noble BL, Schatschneider C, Stanwood GD. Long-term functional alterations following prenatal GLP-1R activation. Neurotoxicol Teratol 2021; 87:106984. [PMID: 33864929 PMCID: PMC8555578 DOI: 10.1016/j.ntt.2021.106984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
Evidence supporting the use of glucagon-like peptide-1 (GLP-1) analogues to pharmacologically treat disorders beyond type 2 diabetes and obesity is increasing. However, little is known about how activation of the GLP-1 receptor (GLP-1R) during pregnancy affects maternal and offspring outcomes. We treated female C57Bl/6 J mice prior to conception and throughout gestation with a long-lasting GLP-1R agonist, Exendin-4. While GLP-1R activation has significant effects on food and drug reward, depression, locomotor activity, and cognition in adults, we found few changes in these domains in exendin-4-exposed offspring. Repeated injections of Exendin-4 had minimal effects on the dams and may have enhanced maternal care. Offspring exposed to the drug weighed significantly more than their control counterparts during the preweaning period and demonstrated alterations in anxiety-like outcomes, which indicate a developmental role for GLP-1R modulation in the stress response that may be sex-specific.
Collapse
Affiliation(s)
- Devon L Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, United States of America
| | - Haley S Madkour
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, United States of America
| | - Brenda L Noble
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, United States of America
| | - Chris Schatschneider
- Department of Psychology, Florida State University, Tallahassee, FL 32306, United States of America
| | - Gregg D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, United States of America.
| |
Collapse
|
45
|
Cameron CM, Nieto S, Bosler L, Wong M, Bishop I, Mooney L, Cahill CM. Mechanisms Underlying the Anti-Suicidal Treatment Potential of Buprenorphine. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1. [PMID: 35265942 PMCID: PMC8903193 DOI: 10.3389/adar.2021.10009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Death by suicide is a global epidemic with over 800 K suicidal deaths worlwide in 2012. Suicide is the 10th leading cause of death among Americans and more than 44 K people died by suicide in 2019 in the United States. Patients with chronic pain, including, but not limited to, those with substance use disorders, are particularly vulnerable. Chronic pain patients have twice the risk of death by suicide compared to those without pain, and 50% of chronic pain patients report that they have considered suicide at some point due to their pain. The kappa opioid system is implicated in negative mood states including dysphoria, depression, and anxiety, and recent evidence shows that chronic pain increases the function of this system in limbic brain regions important for affect and motivation. Additionally, dynorphin, the endogenous ligand that activates the kappa opioid receptor is increased in the caudate putamen of human suicide victims. A potential treatment for reducing suicidal ideation and suicidal attempts is buprenorphine. Buprenorphine, a partial mu opioid agonist with kappa opioid antagonist properties, reduced suicidal ideation in chronic pain patients with and without an opioid use disorder. This review will highlight the clinical and preclinical evidence to support the use of buprenorphine in mitigating pain-induced negative affective states and suicidal thoughts, where these effects are at least partially mediated via its kappa antagonist properties.
Collapse
Affiliation(s)
- Courtney M. Cameron
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Nieto
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lucienne Bosler
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Megan Wong
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isabel Bishop
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larissa Mooney
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine M. Cahill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Correspondence: Catherine M. Cahill,
| |
Collapse
|
46
|
Role of Quercetin in Depressive-Like Behaviors: Findings from Animal Models. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Depressive-like behavior is a highly prevalent worldwide neuropsychiatric disorder that owns a complex pathophysiologic mechanism. The available pharmacotherapy is ineffective for most patients and shown several adverse effects. Therefore, it is important to find efficacy and safe antidepressive compounds. Some phytochemicals compounds regulate the same genes and pathways targeted by drugs; therefore, diets rich in fruits and vegetables could be considered novel treatment approaches. Currently, the functional properties of quercetin acquired great interest, due to its beneficial effects on health. Quercetin is a flavonoid ubiquitously present in vegetables and fruits, interestingly for its strong antioxidant properties. The purpose of this review is to summarize the preclinical studies present in the literature, in the last ten years, aimed at illustrating the effects of quercetin pre-treatment in depressive-like behaviors. Quercetin resulted in antidepressant-like actions due to its antioxidant, anti-inflammatory, and neuroprotective effects. This pointed out the usefulness of this flavonoid as a nutraceutical compound against the development of psychological stress-induced behavioral perturbation. Therefore, quercetin or a diet containing it may become a prospective supplementation or an efficient adjuvant therapy for preventing stress-mediated depressive-like behavior.
Collapse
|
47
|
Steinman MQ, Kirson D, Wolfe SA, Khom S, D'Ambrosio SR, Spierling Bagsic SR, Bajo M, Vlkolinský R, Hoang NK, Singhal A, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, Roberto M. Importance of sex and trauma context on circulating cytokines and amygdalar GABAergic signaling in a comorbid model of posttraumatic stress and alcohol use disorders. Mol Psychiatry 2021; 26:3093-3107. [PMID: 33087855 PMCID: PMC8058115 DOI: 10.1038/s41380-020-00920-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share mechanisms that could be therapeutic targets. To facilitate mechanistic studies, we adapted an inhibitory avoidance-based "2-hit" rat model of posttraumatic stress disorder (PTSD) and identified predictors and biomarkers of comorbid alcohol (ethanol)/PTSD-like symptoms in these animals. Stressed Wistar rats received a single footshock on two occasions. The first footshock occurred when rats crossed into the dark chamber of a shuttle box. Forty-eight hours later, rats received the second footshock in a familiar (FAM) or novel (NOV) context. Rats then received 4 weeks of two-bottle choice (2BC) ethanol access. During subsequent abstinence, PTSD-like behavior responses, GABAergic synaptic transmission in the central amygdala (CeA), and circulating cytokine levels were measured. FAM and NOV stress more effectively increased 2BC drinking in males and females, respectively. Stressed male rats, especially drinking-vulnerable individuals (≥0.8 g/kg average 2-h ethanol intake with >50% ethanol preference), showed higher fear overgeneralization in novel contexts, increased GABAergic transmission in the CeA, and a profile of increased G-CSF, GM-CSF, IL-13, IL-6, IL-17a, leptin, and IL-4 that discriminated between stress context (NOV > FAM > Control). However, drinking-resilient males showed the highest G-CSF, IL-13, and leptin levels. Stressed females showed increased acoustic startle and decreased sleep maintenance, indicative of hyperarousal, with increased CeA GABAergic transmission in NOV females. This paradigm promotes key features of PTSD, including hyperarousal, fear generalization, avoidance, and sleep disturbance, with comorbid ethanol intake, in a sex-specific fashion that approximates clinical comorbidities better than existing models, and identifies increased CeA GABAergic signaling and a distinct pro-hematopoietic, proinflammatory, and pro-atopic cytokine profile that may aid in treatment.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarah A Wolfe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shannon R D'Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roman Vlkolinský
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Noah K Hoang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anshita Singhal
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Christopher S Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Eric P Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
48
|
Qureshi MA, Husain GM, Urooj M, Khan MA, Husain M, Kazmi MH. Preclinical safety, anxiolytic and antidepressant activity of Sufoof Jawahar Mohra: A Unani formulation. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Levone BR, Moloney GM, Cryan JF, O'Leary OF. Specific sub-regions along the longitudinal axis of the hippocampus mediate antidepressant-like behavioral effects. Neurobiol Stress 2021; 14:100331. [PMID: 33997156 PMCID: PMC8100619 DOI: 10.1016/j.ynstr.2021.100331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 01/15/2023] Open
Abstract
Current antidepressants are suboptimal due incomplete understanding of the neurobiology underlying their behavioral effects. However, imaging studies suggest the hippocampus is a key brain region underpinning antidepressant action. There is increasing attention on the functional segregation of the hippocampus into a dorsal region (dHi) predominantly involved in spatial learning and memory, and a ventral region (vHi) which regulates anxiety, a symptom often co-morbid with depression. However, little is known about the roles of these hippocampal sub-regions in the antidepressant response. Moreover, the area between them, the intermediate hippocampus (iHi), has received little attention. Here, we investigated the impact of dHi, iHi or vHi lesions on anxiety- and depressive-like behaviors under baseline or antidepressant treatment conditions in male C57BL/6 mice (n = 8-10). We found that in the absence of fluoxetine, vHi lesions reduced anxiety-like behavior, while none of the lesions affected other antidepressant-sensitive behaviors. vHi lesions prevented the acute antidepressant-like behavioral effects of fluoxetine in the tail suspension test and its anxiolytic effects in the novelty-induced hypophagia test. Intriguingly, only iHi lesions prevented the antidepressant effects of chronic fluoxetine treatment in the forced swim test. dHi lesions did not impact any behaviors either in the absence or presence of fluoxetine. In summary, we found that vHi plays a key role in anxiety-like behavior and its modulation by fluoxetine, while both iHi and vHi play distinct roles in fluoxetine-induced antidepressant-like behaviors.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
50
|
Vozella V, Cruz B, Natividad LA, Benvenuti F, Cannella N, Edwards S, Zorrilla EP, Ciccocioppo R, Roberto M. Glucocorticoid Receptor Antagonist Mifepristone Does Not Alter Innate Anxiety-Like Behavior in Genetically-Selected Marchigian Sardinian (msP) Rats. Int J Mol Sci 2021; 22:3095. [PMID: 33803557 PMCID: PMC8003048 DOI: 10.3390/ijms22063095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Marchigian Sardinian alcohol-preferring (msP) rats serve as a unique model of heightened alcohol preference and anxiety disorders. Their innate enhanced stress and poor stress-coping strategies are driven by a genetic polymorphism of the corticotropin-releasing factor receptor 1 (CRF1) in brain areas involved in glucocorticoid signaling. The activation of glucocorticoid receptors (GRs) regulates the stress response, making GRs a candidate target to treat stress and anxiety. Here, we examined whether mifepristone, a GR antagonist known to reduce alcohol drinking in dependent rats, decreases innate symptoms of anxiety in msPs. Male and female msPs were compared to non-selected Wistar counterparts across three separate behavioral tests. We assessed anxiety-like behavior via the novelty-induced hypophagia (NIH) assay. Since sleep disturbances and hyperarousal are common features of stress-related disorders, we measured sleeping patterns using the comprehensive lab monitoring system (CLAMS) and stress sensitivity using acoustic startle measures. Rats received an acute administration of vehicle or mifepristone (60 mg/kg) 90 min prior to testing on NIH, acoustic startle response, and CLAMS. Our results revealed that both male and female msPs display greater anxiety-like behaviors as well as enhanced acoustic startle responses compared to Wistar counterparts. Male msPs also displayed reduced sleeping bout duration versus Wistars, and female msPs displayed greater acoustic startle responses versus male msPs. Importantly, the enhanced anxiety-like behavior and startle responses were not reduced by mifepristone. Together, these findings suggest that increased expression of stress-related behaviors in msPs are not solely mediated by acute activation of GRs.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (V.V.); (B.C.); (E.P.Z.)
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (V.V.); (B.C.); (E.P.Z.)
| | - Luis A. Natividad
- College of Pharmacy, The University of Austin, Austin, TX 78712, USA;
| | - Federica Benvenuti
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (F.B.); (N.C.); (R.C.)
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (F.B.); (N.C.); (R.C.)
| | - Scott Edwards
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, LA 70112, USA;
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (V.V.); (B.C.); (E.P.Z.)
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (F.B.); (N.C.); (R.C.)
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (V.V.); (B.C.); (E.P.Z.)
| |
Collapse
|