1
|
Byrska B, Stanaszek R. Chemical composition of Ecstasy tablets seized in Poland between 2005 and 2020. Forensic Toxicol 2024:10.1007/s11419-024-00691-3. [PMID: 39017813 DOI: 10.1007/s11419-024-00691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE The most commonly associated substance found in Ecstasy tablets is MDMA (3,4-methylenedioxymethamphetamine). In our study, we showed how the composition of psychoactive ingredients in Ecstasy tablets seized on the drug market in Poland has changed in the years 2005-2020. METHODS The study material consisted of nearly 20,000 single Ecstasy tablets seized by representatives of law enforcement (the police, prosecutors) from 2005 to 2020 and analysed by the Institute of Forensic Research, Krakow, Poland. The analysis of the tablets was carried out by gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography with diode array detection (HPLC-DAD) and ultra-high-performance liquid chromatography with photodiode array detection (UHPLC-PDA). RESULTS Currently, new types of MDMA tablets are introduced onto the market, available in various colours and shapes. Our study showed that tablets sold on the street as Ecstasy have variable purity and sometimes contain little or no MDMA. The mean content of MDMA in one tablet seized in 2005-2011 decreased from 90 to 50 mg. In 2013, Ecstasy tablets with a very high MDMA content (average 195 mg per tablet) appeared on the market, but in the next 2 years, the MDMA content decreased again. From 2016, the average MDMA content began to rise again, ranging from 60 to 280 mg. CONCLUSION Tablets sold as Ecstasy also contained completely different psychoactive substances, including new psychoactive substances (NPS) (found in almost 20% of all examined tablets sold as Ecstasy) belonging to different chemical groups or their dangerous combinations (i.e. phenylethylamines, piperazines, tryptamines, cathinones, arylalkylamines, arylcyclohexylamines and piperidines). Such a large variety of psychoactive substances in Ecstasy tablets is associated with a high risk for users unaware of their composition.
Collapse
Affiliation(s)
- Bogumiła Byrska
- Professor Jan Sehn Institute of Forensic Research, Krakow, Poland.
| | - Roman Stanaszek
- Professor Jan Sehn Institute of Forensic Research, Krakow, Poland
| |
Collapse
|
2
|
The role of extracellular serotonin and MDMA in the sensitizing effects of MDMA. Behav Brain Res 2022; 430:113936. [DOI: 10.1016/j.bbr.2022.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
|
3
|
La psychothérapie assistée par la MDMA dans la prise en charge du syndrome de stress post-traumatique. PSYCHOLOGIE FRANCAISE 2021. [DOI: 10.1016/j.psfr.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Schenk S, Highgate Q. Methylenedioxymethamphetamine (MDMA): Serotonergic and dopaminergic mechanisms related to its use and misuse. J Neurochem 2021; 157:1714-1724. [PMID: 33711169 DOI: 10.1111/jnc.15348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Methylenedioxymethamphetamine (MDMA) is an amphetamine analogue that preferentially stimulates the release of serotonin (5HT) and results in relatively small increases in synaptic dopamine (DA). The ratio of drug-stimulated increases in synaptic DA, relative to 5HT, predicts the abuse liability; drugs with higher DA:5HT ratios are more likely to be abused. Nonetheless, MDMA is a drug that is misused. Clinical and preclinical studies have suggested that repeated MDMA exposure produces neuroadaptive responses in both 5HT and DA neurotransmission that might explain the development and maintenance of MDMA self-administration in some laboratory animals and the development of a substance use disorder in some humans. In this paper, we describe the research that has demonstrated an inhibitory effect of 5HT on the acquisition of MDMA self-administration and the critical role of DA in the maintenance of MDMA self-administration in laboratory animals. We then describe the circuitry and 5HT receptors that are positioned to modulate DA activity and review the limited research on the effects of MDMA exposure on these receptor mechanisms.
Collapse
Affiliation(s)
- Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
5
|
Wetering R, Schenk S. Regional changes in ∆FosB expression in rat brain following MDMA self-administration predict increased sensitivity to effects of locally infused MDMA. Addict Biol 2020; 25:e12814. [PMID: 31373119 DOI: 10.1111/adb.12814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/27/2019] [Accepted: 07/03/2019] [Indexed: 01/26/2023]
Abstract
Repeated exposure to drugs produces a plethora of persistent brain changes, some of which underlie the development of drug addiction. An important objective of addiction research is to identify the brain changes that might mediate the transition from drug use to drug misuse. The persistent accumulation of the transcription factor, ∆FosB, following repeated drug exposure provides a means of achieving this objective. Experiments were conducted on sexually mature male Sprague-Dawley rats. The effects of extensive 3,4-methylenedioxymethamphetamine (MDMA) self-administration on immunohistochemical measurements of ∆FosB accumulation in 12 brain regions was compared with a matched, drug-naive, control group. Other groups were pretreated with MDMA (0.0 or 10.0 mg/kg, ip, once daily for 5 days), and the locomotor-activating effect of MDMA (200 μg/side) microinjected bilaterally into brain regions selected on the basis of the ∆FosB results was subsequently determined. MDMA self-administration significantly increased ∆FosB expression in the nucleus accumbens core, ventromedial and dorsomedial caudate-putamen, anterior cingulate, prelimbic, infralimbic, and orbitofrontal cortex, and both the central and basolateral amygdala, but not in the ventrolateral or dorsolateral caudate-putamen. Increases in the nucleus accumbens shell were substantial but were not significant following statistical correction for multiple comparisons. MDMA pretreatment enhanced MDMA-produced hyperactivity only when administered into the nucleus accumbens or the medial, but not the lateral, caudate-putamen, mirroring the ∆FosB results. These data compare favorably to results following repeated exposure to other drugs of abuse and support the idea of common neuroplastic changes following repeated drug exposure.
Collapse
Affiliation(s)
- Ross Wetering
- School of PsychologyVictoria University of Wellington Wellington New Zealand
| | - Susan Schenk
- School of PsychologyVictoria University of Wellington Wellington New Zealand
| |
Collapse
|
6
|
Abstract
Ecstasy is an illicit drug that has been increasingly abused by young people. This synthetic drug has both stimulant and hallucinogenic effects and is usually consumed in a tablet. The side effects of ecstasy use include nausea, muscle cramping, fever, and symptoms mostly linked to muscular tension including jaw pain, facial pain, and headaches. There are few studies assessing the ecstasy effects on the oral mucosa, both clinically and histopathologically. The authors report 2 young women (22- and 27-year-old) who presented multifocal oral erosions and ulcerations. The lesions were painful and covered by a yellow-white pseudomembrane with a bright erythematous halo. By microscopy, it was observed superficial ulceration surrounded by acanthotic squamous epithelium with marked spongiosis, interstitial edema within the corion and perivascular lyphoid infiltrate, suggesting drug-induced oral mucositis. In conclusion, ecstasy use may be associated with the development of oral ulcers, which should be considered in the differential diagnosis when assessing multifocal oral ulcerations, especially in young people.
Collapse
|
7
|
Highgate Q, Schenk S. Comparison of the effects of abstinence on MDMA and cocaine self-administration in rats. Psychopharmacology (Berl) 2018; 235:3233-3241. [PMID: 30209532 DOI: 10.1007/s00213-018-5026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA) preferentially increases synaptic serotonin (5HT). This response was attenuated following repeated exposure but there was recovery as a result of abstinence. Effects of abstinence on self-administration of many drugs have been documented but the impact on MDMA self-administration is unknown. OBJECTIVE This study compared the effects of abstinence on MDMA and cocaine self-administration. METHODS Six-hour daily MDMA or cocaine sessions were conducted until a total of 350 mg/kg had been self-administered. Following this, rats were randomly assigned to either a 0- or 14-day abstinence group. Self-administration testing then continued for an additional 7 days. RESULTS The latency to self-administer 350 mg/kg was shorter for rats that self-administered cocaine. The temporal distribution of responding within each test session also differed; MDMA self-administration was high during the first hour of each session, and decreased during subsequent hours, whereas cocaine self-administration was evenly distributed throughout each hour of the session. Abstinence decreased MDMA but not cocaine self-administration. CONCLUSIONS The selective reduction of MDMA self-administration following abstinence is consistent with the idea that MDMA-stimulated 5-HT release is inhibitory to MDMA self-administration.
Collapse
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, 6011, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, 6011, New Zealand.
| |
Collapse
|
8
|
Mouri A, Noda Y, Niwa M, Matsumoto Y, Mamiya T, Nitta A, Yamada K, Furukawa S, Iwamura T, Nabeshima T. The involvement of brain-derived neurotrophic factor in 3,4-methylenedioxymethamphetamine-induced place preference and behavioral sensitization. Behav Brain Res 2017; 329:157-165. [PMID: 28472632 DOI: 10.1016/j.bbr.2017.04.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons.
Collapse
Affiliation(s)
- Akihiro Mouri
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan; Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya 468-8503, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya 468-0069, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya 468-0069, Japan
| | - Minae Niwa
- Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya 468-8503, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Yurie Matsumoto
- Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya 468-8503, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya 468-8503, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya 468-0069, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya 468-0069, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya 468-0069, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tatsunori Iwamura
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Matsuyama University, Matsuyama 790-8578, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan; Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya 468-8503, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya 468-0069, Japan; Aino University, Ibaraki 567-0012, Japan.
| |
Collapse
|
9
|
Repeated MDMA administration increases MDMA-produced locomotor activity and facilitates the acquisition of MDMA self-administration: role of dopamine D 2 receptor mechanisms. Psychopharmacology (Berl) 2017; 234:1155-1164. [PMID: 28188355 DOI: 10.1007/s00213-017-4554-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
RATIONALE Repeated exposure to ±3, 4-methylenedioxymethamphetamine (MDMA) produces sensitization to MDMA-produced hyperactivity, but the mechanisms underlying the development of this sensitized response or the relationship to the reinforcing effects of MDMA is unknown. OBJECTIVES This study determined the effect of a sensitizing regimen of MDMA exposure on the acquisition of MDMA self-administration and investigated the role of dopamine D2 receptor mechanisms. METHODS Rats received the selective D2 antagonist, eticlopride (0.0 or 0.3 mg/kg, i.p.) and MDMA (0.0 or 10.0 mg/kg, i.p.) during a five-day pretreatment regimen. Two days following the final session, the locomotor activating effects of MDMA (5 mg/kg, i.p.) and the latency to acquisition of MDMA self-administration were determined. RESULTS Pretreatment with MDMA enhanced the locomotor activating effects of MDMA and facilitated the acquisition of MDMA self-administration. Administration of eticlopride during MDMA pretreatment completely blocked the development of sensitization to MDMA-produced hyperactivity but failed to significantly alter the facilitated acquisition of MDMA self-administration. Pretreatment with eticlopride alone facilitated the acquisition of self-administration. CONCLUSIONS These data suggest that repeated MDMA exposure sensitized both the locomotor activating and reinforcing effects of MDMA. Activation of D2 receptors during MDMA pretreatment appears critical for the development of sensitization to MDMA-produced hyperactivity. The role of D2 receptor mechanisms in the development of sensitization to the reinforcing effects of MDMA is equivocal.
Collapse
|
10
|
Schenk S, Aronsen D. Contribution of Impulsivity and Serotonin Receptor Neuroadaptations to the Development of an MDMA ('Ecstasy') Substance Use Disorder. Curr Top Behav Neurosci 2017; 34:17-32. [PMID: 26718587 DOI: 10.1007/7854_2015_421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As is the case with other drugs of abuse, a proportion of ecstasy users develop symptoms consistent with a substance use disorder (SUD). In this paper, we propose that the pharmacology of MDMA, the primary psychoactive component of ecstasy tablets, changes markedly with repeated exposure and that neuroadaptations in dopamine and serotonin brain systems underlie the shift from MDMA use to MDMA misuse in susceptible subjects. Data from both the human and laboratory animal literature are synthesized to support the idea that (1) MDMA becomes a less efficacious serotonin releaser and a more efficacious dopamine releaser with the development of behaviour consistent with an SUD and (2) that upregulated serotonin receptor mechanisms contribute to the development of the MDMA SUD via dysregulated inhibitory control associated with the trait of impulsivity.
Collapse
Affiliation(s)
- Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
| | - Dane Aronsen
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
11
|
Neurochemical substrates of the rewarding effects of MDMA: implications for the development of pharmacotherapies to MDMA dependence. Behav Pharmacol 2016; 27:116-32. [PMID: 26650254 DOI: 10.1097/fbp.0000000000000210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, studies with animal models of reward, such as the intracranial self-stimulation, self-administration, and conditioned place preference paradigms, have increased our knowledge on the neurochemical substrates of the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in rodents. However, pharmacological and neuroimaging studies with human participants are scarce. Serotonin [5-hydroxytryptamine (5-HT)], dopamine (DA), endocannabinoids, and endogenous opiates are the main neurotransmitter systems involved in the rewarding effects of MDMA in rodents, but other neurotransmitters such as glutamate, acetylcholine, adenosine, and neurotensin are also involved. The most important finding of recent research is the demonstration of differential involvement of specific neurotransmitter receptor subtypes (5-HT2, 5-HT3, DA D1, DA D2, CB1, μ and δ opioid, etc.) and extracellular proteins (DA and 5-HT transporters) in the acquisition, expression, extinction, and reinstatement of MDMA self-administration and conditioned place preference. It is important to extend the research on the effects of different compounds acting on these receptors/transporters in animal models of reward, especially in priming-induced, cue-induced, and stress-induced reinstatement. Increase in knowledge of the neurochemical substrates of the rewarding effects of MDMA may contribute to the design of new pharmacological treatments for individuals who develop MDMA dependence.
Collapse
|
12
|
Ma KH, Liu TT, Weng SJ, Chen CFF, Huang YS, Chueh SH, Liao MH, Chang KW, Sung CC, Hsu TH, Huang WS, Cheng CY. Effects of dextromethorphan on MDMA-induced serotonergic aberration in the brains of non-human primates using [ 123I]-ADAM/SPECT. Sci Rep 2016; 6:38695. [PMID: 27941910 PMCID: PMC5150522 DOI: 10.1038/srep38695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 11/15/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA), a common recreational drug, is known to cause serotonergic neurotoxicity in the brain. Dextromethorphan (DM) is a widely used antitussive reported to exert anti-inflammatory effect in vivo. In this study, we examined the long-term effect of MDMA on the primate serotonergic system and the protective property of DM against MDMA-induced serotonergic abnormality using single photon emission computed tomography (SPECT). Nine monkeys (Macaca cyclopis) were divided into three groups, namely control, MDMA and co-treatment (MDMA/DM). [123I]-ADAM was used as the radioligand for serotonin transporters (SERT) in SPECT scans. SERT levels of the brain were evaluated and presented as the uptake ratios (URs) of [123I]-ADAM in several regions of interest of the brain including midbrain, thalamus and striatum. We found that the URs of [123I]-ADAM were significantly lower in the brains of MDMA than control group, indicating lower brain SERT levels in the MDMA-treated monkeys. This MDMA-induced decrease in brain SERT levels could persist for over four years. However, the loss of brain SERT levels was not observed in co-treatment group. These results suggest that DM may exert a protective effect against MDMA-induced serotonergic toxicity in the brains of the non-human primate.
Collapse
Affiliation(s)
- Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Ta Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Fu F Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Hsiu Liao
- Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | | | - Chi-Chang Sung
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Te-Hung Hsu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Gatch MB, Dolan SB, Forster MJ. Locomotor, discriminative stimulus, and place conditioning effects of MDAI in rodents. Behav Pharmacol 2016; 27:497-505. [PMID: 27028902 PMCID: PMC4965292 DOI: 10.1097/fbp.0000000000000237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5,6-Methylenedioxy-2-aminoindane (MDAI) has become a common substitute for (±)-3,4-methylenedioxymethamphetamine (MDMA) in Ecstasy. MDAI is known to produce MDMA-like discriminative stimulus effects, but it is not known whether MDAI has psychostimulant or hallucinogen-like effects. MDAI was tested for locomotor stimulant effects in mice and subsequently for discriminative stimulus effects in rats trained to discriminate cocaine (10 mg/kg, intraperitoneally), methamphetamine (1 mg/kg, intraperitoneally), ±MDMA (1.5 mg/kg, intraperitoneally), or (-)-2,5-dimethoxy-4-methylamphetamine hydrochloride (0.5 mg/kg, intraperitoneally) from saline. The ability of MDAI to produce conditioned place preference was also tested in mice. MDAI (3 to 30 mg/kg) depressed locomotor activity from 10 to 60 min. A rebound stimulant effect was observed at 1 to 3.5 h following 30 mg/kg. Lethality occurred in 8/8 mice following 100 mg/kg MDAI. Similarly, MDMA depressed locomotor activity immediately following the administration of 0.25 mg/kg and stimulant effects were observed 50-70 min following the administration of 0.5 and 1 mg/kg. MDAI fully substituted for the discriminative stimulus effects of MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4-methylamphetamine hydrochloride (5 mg/kg), and cocaine (7.5 mg/kg), but produced only 73% methamphetamine-appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects; thus, MDAI may have similar abuse potential as MDMA.
Collapse
Affiliation(s)
- Michael B Gatch
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | |
Collapse
|
14
|
Schenk S, Foote J, Aronsen D, Bukholt N, Highgate Q, Van de Wetering R, Webster J. Serotonin antagonists fail to alter MDMA self-administration in rats. Pharmacol Biochem Behav 2016; 148:38-45. [DOI: 10.1016/j.pbb.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022]
|
15
|
Adaptive Plasticity in the Hippocampus of Young Mice Intermittently Exposed to MDMA Could Be the Origin of Memory Deficits. Mol Neurobiol 2015; 53:7271-7283. [DOI: 10.1007/s12035-015-9618-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
16
|
Frau L, Costa G, Porceddu PF, Khairnar A, Castelli MP, Ennas MG, Madeddu C, Wardas J, Morelli M. Influence of caffeine on 3,4-methylenedioxymethamphetamine-induced dopaminergic neuron degeneration and neuroinflammation is age-dependent. J Neurochem 2015; 136:148-62. [DOI: 10.1111/jnc.13377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Lucia Frau
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Giulia Costa
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Amit Khairnar
- Applied Neuroscience Research Group; CEITEC - Central European Institute of Technology; Masaryk University; Brno Czech Republic
| | - Maria Paola Castelli
- Department of Biomedical Sciences; Section of Neuroscience and Clinical Pharmacology; University of Cagliari; Monserrato (CA) Italy
| | - Maria Grazia Ennas
- Department of Biomedical Sciences; Section of Neuroscience and Clinical Pharmacology; University of Cagliari; Monserrato (CA) Italy
| | - Camilla Madeddu
- Department of Biomedical Sciences; Section of Neuroscience and Clinical Pharmacology; University of Cagliari; Monserrato (CA) Italy
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology; Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| | - Micaela Morelli
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
- CNR; Institute of Neuroscience; Cagliari Italy
| |
Collapse
|
17
|
Chiu CH, Siow TY, Weng SJ, Hsu YH, Huang YS, Chang KW, Cheng CY, Ma KH. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study. PLoS One 2015; 10:e0138431. [PMID: 26378923 PMCID: PMC4574734 DOI: 10.1371/journal.pone.0138431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/30/2015] [Indexed: 12/14/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA), also known as “Ecstasy”, is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI). Rats were injected subcutaneously six times with MDMA (5 mg/kg) or saline once daily. Eight days after the last injection, manganese ions (Mn2+) were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB), and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.
Collapse
Affiliation(s)
- Chuang-Hsin Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tiing-Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hua Hsu
- Functional and Micro-Magnetic Resonance Imaging Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | | | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
18
|
Schenk S, Bradbury S. Persistent sensitisation to the locomotor activating effects of MDMA following MDMA self-administration in rats. Pharmacol Biochem Behav 2015; 132:103-107. [DOI: 10.1016/j.pbb.2015.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
|
19
|
Brennan KA, Crowther A, Putt F, Roper V, Waterhouse U, Truman P. Tobacco particulate matter self-administration in rats: differential effects of tobacco type. Addict Biol 2015; 20:227-35. [PMID: 24750334 DOI: 10.1111/adb.12099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nicotine self-administration in rats is the most widely used animal model of tobacco dependence. There is increasing evidence, however, that non-nicotinic constituents in smoke contribute to addiction and that different tobacco products contain varying levels of these constituents. The present study firstly sought to compare self-administration of pure nicotine to tobacco particulate matter (TPM) to determine if there were differences in reward-efficacy attributable to the non-nicotine constituents. Secondly, cigarette and roll-your-own (RYO) TPM groups were included and compared to determine whether different formulations of non-nicotinic constituents could impact reward. Briefly, male Sprague Dawley rats were implanted with indwelling jugular catheters for self-administration (n = 76). The reinforcing efficacy of infusions of nicotine (0.0 or 30.0 μg/kg/infusion) versus cigarette/RYO TPM (with matched nicotine content) was determined using spontaneous acquisition of self-administration on a fixed ratio schedule. The progressive ratio schedule was then employed to determine the motivation to receive each drug and within-subject dose-response curves were also produced (7.5, 15.0, 30.0 and 60.0 μg/kg/infusion nicotine). The main finding was that the RYO TPM was more reinforcing and produced a different profile of reward-related behaviour compared with both the nicotine and the cigarette TPM groups. The conclusions were that non-nicotinic components have a role in tobacco dependence and that some tobacco products could have higher abuse liability, irrespective of nicotine levels.
Collapse
Affiliation(s)
- Katharine A Brennan
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | | | |
Collapse
|
20
|
Bradbury S, Bird J, Colussi-Mas J, Mueller M, Ricaurte G, Schenk S. Acquisition of MDMA self-administration: pharmacokinetic factors and MDMA-induced serotonin release. Addict Biol 2014; 19:874-84. [PMID: 23763615 DOI: 10.1111/adb.12069] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current study aimed to elucidate the role of pharmacokinetic (PK) parameters and neurotransmitter efflux in explaining variability in (±) 3, 4-methylenedioxymethamphetamine (MDMA) self-administration in rats. PK profiles of MDMA and its major metabolites were determined after the administration of 1.0 mg/kg MDMA (iv) prior to, and following, the acquisition of MDMA self-administration. Synaptic levels of 5-hydroxytryptamine (5HT) and dopamine (DA) in the nucleus accumbens were measured following administration of MDMA (1.0 and 3.0 mg/kg, iv) using in vivo microdialysis and compared for rats that acquired or failed to acquire MDMA self-administration. Effects of the 5HT neurotoxin, 5,7 dihydroxytryptamine (5, 7-DHT), on the acquisition of MDMA and cocaine self-administration were also determined. In keeping with previous findings, approximately 50% of rats failed to meet a criterion for acquisition of MDMA self-administration. The PK profiles of MDMA and its metabolites did not differ between rats that acquired or failed to acquire MDMA self-administration. MDMA produced more overflow of 5HT than DA. The MDMA-induced 5HT overflow was lower in rats that acquired MDMA self-administration compared with those that did not acquire self-administration. In contrast, MDMA-induced DA overflow was comparable for the two groups. Prior 5,7-DHT lesions reduced tissue levels of 5HT and markedly increased the percentage of rats that acquired MDMA self-administration and also decreased the latency to acquisition of cocaine self-administration. These data suggest that 5HT limits the initial sensitivity to the positively reinforcing effects of MDMA and delays the acquisition of reliable self-administration.
Collapse
Affiliation(s)
- Sarah Bradbury
- School of Psychology; Victoria University of Wellington; New Zealand
| | - Judith Bird
- School of Psychology; Victoria University of Wellington; New Zealand
| | - Joyce Colussi-Mas
- School of Psychology; Victoria University of Wellington; New Zealand
| | - Melanie Mueller
- School of Medicine; Johns Hopkins University; Baltimore MD USA
| | - George Ricaurte
- School of Medicine; Johns Hopkins University; Baltimore MD USA
| | - Susan Schenk
- School of Psychology; Victoria University of Wellington; New Zealand
| |
Collapse
|
21
|
Oakly AC, Brox BW, Schenk S, Ellenbroek BA. A genetic deletion of the serotonin transporter greatly enhances the reinforcing properties of MDMA in rats. Mol Psychiatry 2014; 19:534-5. [PMID: 23711978 DOI: 10.1038/mp.2013.75] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A C Oakly
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - B W Brox
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - S Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - B A Ellenbroek
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
22
|
Effects of long-term exposure of 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy") on neuronal transmitter transport, brain immuno-regulatory systems and progression of experimental periodontitis in rats. Neurochem Int 2014; 72:30-6. [PMID: 24726767 DOI: 10.1016/j.neuint.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/05/2014] [Accepted: 04/03/2014] [Indexed: 11/23/2022]
Abstract
The present study was designed to investigate the effects of long-term exposure (4 weeks) to the widely used narcotic drug and putative neurotoxicant 3,4-methylenedioxymetamphetamine (MDMA; "ecstasy") on neuronal transmitter transport and progression of experimental periodontitis in male Wistar rats. The rats were exposed to MDMA (10mg/kg/day i.p.) or saline five days a week for four consecutive weeks. Exposure to MDMA induced a significant reduction in the synaptosomal reuptake of serotonin, while the uptake of dopamine was significantly increased 24h after the last injection of MDMA. In contrast, the synaptosomal uptake of noradrenaline and the vesicular uptake through the vesicular monoamine transporter 2 were not affected. In the experiments of periodontitis development, ligature-induced periodontitis was induced three days prior to MDMA administration. Compared to controls, MDMA-treated rats developed significantly more periodontitis. In conclusion, our results show that long-term exposure to MDMA affects the serotonergic and dopaminergic transport systems in the rat brain and increased the susceptibility to the psychosomatic ailment periodontitis following disturbances of brain immune-regulatory systems. These results are interesting with respect to recent research showing that changes in neurotransmitter signalling may alter the reactivity of brain-controlled immunoregulatory systems controlling pathogenic microorganisms colonizing mucosal surfaces.
Collapse
|
23
|
Harper DN, Langen AL, Schenk S. A 3-lever discrimination procedure reveals differences in the subjective effects of low and high doses of MDMA. Pharmacol Biochem Behav 2014; 116:9-15. [DOI: 10.1016/j.pbb.2013.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 11/01/2013] [Accepted: 11/08/2013] [Indexed: 11/25/2022]
|
24
|
Bird J, Schenk S. Contribution of impulsivity and novelty-seeking to the acquisition and maintenance of MDMA self-administration. Addict Biol 2013; 18:654-64. [PMID: 22784256 DOI: 10.1111/j.1369-1600.2012.00477.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been suggested that the response to novelty and impulsivity predict the latency to acquisition and maintenance of drug self-administration, respectively. The aim of this study was to examine the relationship between these two traits and (1) the latency to acquisition and (2) maintenance (drug-seeking) of 3,4-methylenedioxymethamphetamine (MDMA) self -administration. Impulsivity, measured as premature responding on the five-choice serial reaction time task (5-CSRTT), and novelty-seeking, measured as the locomotor response in a novel environment, were measured prior to self-administration. Latency to acquisition was determined as the number of test sessions required to self-administer an initial criterion of 90 infusions of 1.0 mg/kg/infusion, as well as an additional 150 infusions of 0.5 mg/kg/infusion MDMA. For some rats, the ability of MDMA [0, 5.0 or 10.0 mg/kg, intraperitoneal (IP)] to produce drug-seeking was subsequently measured, and for others, impulsivity was again measured following self-administration. Novelty-seeking was not significantly correlated with either the acquisition or drug-seeking measures of MDMA self-administration. Impulsivity was not significantly correlated with the latency to acquire self-administration of MDMA, but was significantly and positively correlated with the magnitude of MDMA-produced drug-seeking. Furthermore, MDMA self-administration produced a number of notable, but transient, deficits in the 5-CSRTT; there was an increase in omission rate and a delayed increase in premature responses in particular. These findings suggest that impulsivity, but not sensation seeking, might be a risk factor for the development of compulsive drug-seeking following withdrawal from MDMA self-administration.
Collapse
Affiliation(s)
- Judith Bird
- School of Psychology; Victoria University of Wellington; New Zealand
| | - Susan Schenk
- School of Psychology; Victoria University of Wellington; New Zealand
| |
Collapse
|
25
|
Ball KT, Slane M. Differential involvement of prelimbic and infralimbic medial prefrontal cortex in discrete cue-induced reinstatement of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats. Psychopharmacology (Berl) 2012; 224:377-85. [PMID: 22710489 PMCID: PMC4078904 DOI: 10.1007/s00213-012-2762-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/28/2012] [Indexed: 01/12/2023]
Abstract
RATIONALE The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a widely abused drug, particularly in adolescent and young adult populations. Although it was shown that MDMA-associated cues reinstate extinguished MDMA seeking in an animal relapse model, there is little information regarding the neural mechanisms underlying this behavior. OBJECTIVES Because the medial prefrontal cortex (mPFC) plays an important role in relapse to cocaine and methamphetamine seeking, we tested the effects of lidocaine inactivation of prelimbic (PL) and infralimbic (IL) subregions of mPFC on cue-induced relapse to MDMA seeking. METHODS Rats were trained to respond for MDMA infusions (0.50 mg/kg/infusion, i.v.) paired with a discrete cue in daily 2-h sessions. Responding was reinforced contingent on a modified fixed ratio 5 schedule of reinforcement. Cue-induced reinstatement tests were conducted after responding was extinguished in the absence of MDMA and the conditioned cues. Prior to reinstatement tests, rats received bilateral microinjections of either lidocaine (100 μg/0.5 μl/side) or physiological saline (0.5 μl/side) delivered to either PL or IL mPFC. RESULTS Microinjections of lidocaine into PL completely blocked reinstatement of MDMA-seeking behavior compared with saline microinjections into the same region. Lidocaine microinjections did not, however, have an effect on food-maintained responding, ruling out a nonspecific disruption of motor performance. Conversely, lidocaine inactivation of IL had no effect on reinstatement of MDMA seeking or food-maintained responding. CONCLUSIONS Our results provide direct support for PL activation in reinstatement of MDMA-seeking behavior. Moreover, akin to cocaine seeking, there appears to be differential involvement of PL and IL subregions in this behavior.
Collapse
Affiliation(s)
- Kevin T Ball
- Department of Psychology, Bloomsburg University of Pennsylvania, 400 E 2nd St, Bloomsburg, PA 17815, USA.
| | | |
Collapse
|
26
|
Wu PH, Schulz KM. Advancing addiction treatment: what can we learn from animal studies? ILAR J 2012; 53:4-13. [PMID: 23520595 DOI: 10.1093/ilar.53.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Substance addiction is a maladaptive behavior characterized by compulsive and uncontrolled self-administration of a substance (drug). Years of research indicate that addictive behavior is the result of complex interactions between the drug, the user, and the environment in which the drug is used; therefore, addiction cannot simply be attributed to the neurobiological actions of a drug. However, despite the obvious complexity of addictive behavior, animal models have both advanced understanding of addiction and contributed importantly to the development of medications to treat this disease. We briefly review recent animal models used to study drug addiction and the contribution of data generated by these animal models for the clinical treatment of addictive disorders.
Collapse
Affiliation(s)
- Peter H Wu
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Research Complex-1 North, Mail Stop 8344, 12800 East 19th Avenue, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
27
|
Methylenedioxymethamphetamine (MDMA, 'Ecstasy'): Neurodegeneration versus Neuromodulation. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058674 DOI: 10.3390/ph4070992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is widely abused as a recreational drug due to its unique psychological effects. Of interest, MDMA causes long-lasting deficits in neurochemical and histological markers of the serotonergic neurons in the brain of different animal species. Such deficits include the decline in the activity of tryptophan hydroxylase in parallel with the loss of 5-HT and its main metabolite 5-hydoxyindoleacetic acid (5-HIAA) along with a lower binding of specific ligands to the 5-HT transporters (SERT). Of concern, reduced 5-HIAA levels in the CSF and SERT density have also been reported in human ecstasy users, what has been interpreted to reflect the loss of serotonergic fibers and terminals. The neurotoxic potential of MDMA has been questioned in recent years based on studies that failed to show the loss of the SERT protein by western blot or the lack of reactive astrogliosis after MDMA exposure. In addition, MDMA produces a long-lasting down-regulation of SERT gene expression; which, on the whole, has been used to invoke neuromodulatory mechanisms as an explanation to MDMA-induced 5-HT deficits. While decreased protein levels do not necessarily reflect neurodegeneration, the opposite is also true, that is, neuroregulatory mechanisms do not preclude the existence of 5-HT terminal degeneration.
Collapse
|
28
|
Affiliation(s)
- Zoltán Sarnyai
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|