1
|
Nocentini A, Costa A, Bonardi A, Ammara A, Giovannuzzi S, Petreni A, Bartolucci G, Rani B, Leri M, Bucciantini M, Fernández-Bolaños JG, López Ó, Passani MB, Provensi G, Gratteri P, Supuran CT. Enhanced Recognition Memory through Dual Modulation of Brain Carbonic Anhydrases and Cholinesterases. J Med Chem 2024; 67:16873-16898. [PMID: 39283654 DOI: 10.1021/acs.jmedchem.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This study introduces a novel multitargeting strategy that combines carbonic anhydrase (CA) activators and cholinesterase (ChE) inhibitors to enhance cognitive functions. A series of tacrine-based derivatives with amine/amino acid moieties were synthesized and evaluated for their dual activity on brain CA isoforms and ChEs (AChE and BChE). Several derivatives, notably compounds 26, 30, 34, and 40, demonstrated potent CA activation, particularly of hCA II and VII, and strong ChE inhibition with subnanomolar to low nanomolar IC50 values. In vivo studies using a mouse model of social recognition memory showed that these derivatives significantly improved memory consolidation at doses 10-100 times lower than the reference compounds (either alone or in combination). Molecular modeling and ADMET predictions elucidated the compound binding modes and confirmed favorable pharmacokinetic and safety profiles. The findings suggest that dual modulation of CA and ChE activities is a promising strategy for treating cognitive deficits associated with neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Alessia Costa
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Ammara
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Petreni
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Gianluca Bartolucci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Barbara Rani
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville 41012, Spain
| | - Óscar López
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville 41012, Spain
| | - Maria Beatrice Passani
- Department of Health Sciences, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Gustavo Provensi
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
2
|
Chang CY, Dai W, Hu SSJ. Cannabidiol enhances socially transmitted food preference: a role of acetylcholine in the mouse basal forebrain. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06670-1. [PMID: 39158618 DOI: 10.1007/s00213-024-06670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
RATIONALE AND OBJECTIVE Rodents acquire food information from their conspecifics and display a preference for the conspecifics' consumed food. This social learning of food information from others promotes the survival of a species, and it is introduced as the socially transmitted food preference (STFP) task. The cholinergic system in the basal forebrain plays a role in the acquisition of STFP. Cannabidiol (CBD), one of the most abundant phytocannabinoids, exerts its therapeutic potential for cognitive deficits through versatile mechanisms of action, including its interaction with the cholinergic system. We hypothesize a positive relationship between CBD and STFP because acetylcholine (ACh) is involved in STFP, and CBD increases the ACh levels in the basal forebrain. MATERIALS AND METHODS Male C57BL/6J mice were trained to acquire the STFP task. We examined whether CBD affects STFP memory by administering CBD (20 mg/kg, i.p.) before the STFP social training. The involvement of cholinergic system in CBD's effect on STFP was examined by knockdown of brain acetylcholinesterase (AChE), applying a nonselective muscarinic antagonist SCO (3 mg/kg, i.p.) before CBD treatment, and measuring the basal forebrain ACh levels in the CBD-treated mice. RESULTS We first showed that CBD enhanced STFP memory. Knockdown of brain AChE also enhanced STFP memory, which mimicked CBD's effect on STFP. SCO blocked CBD's memory-enhancing effect on STFP. Our most significant finding is that the basal forebrain ACh levels in the CBD-treated mice, but not their control counterparts, were positively correlated with mice's STFP memory performance. CONCLUSION This study indicates that CBD enhances STFP memory in mice. Specifically, those which respond to CBD by increasing the muscarinic-mediated ACh signaling perform better in their STFP memory.
Collapse
Affiliation(s)
- Chih-Yu Chang
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Wen Dai
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Sherry Shu-Jung Hu
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan.
| |
Collapse
|
3
|
Ross TW, Poulter SL, Lever C, Easton A. Mice integrate conspecific and contextual information in forming social episodic-like memories under spontaneous recognition task conditions. Sci Rep 2024; 14:16159. [PMID: 38997341 PMCID: PMC11245605 DOI: 10.1038/s41598-024-66403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The ability to remember unique past events (episodic memory) may be an evolutionarily conserved function, with accumulating evidence of episodic-(like) memory processing in rodents. In humans, it likely contributes to successful complex social networking. Rodents, arguably the most used laboratory models, are also rather social animals. However, many behavioural paradigms are devoid of sociality, and commonly-used social spontaneous recognition tasks (SRTs) are open to non-episodic strategies based upon familiarity. We address this gap by developing new SRT variants. Here, in object-in-context SRTs, we asked if context could be specified by the presence/absence of either a conspecific (experiment 1) or an additional local object (experiment 2). We show that mice readily used the conspecific as contextual information to distinguish unique episodes in memory. In contrast, no coherent behavioural response emerged when an additional object was used as a potential context specifier. Further, in a new social conspecific-in-context SRT (experiment 3) where environment-based change was the context specifier, mice preferably explored a more recently-seen familiar conspecific associated with contextual mismatch, over a less recently-seen familiar conspecific presented in the same context. The results argue that, in incidental SRT conditions, mice readily incorporate conspecific cue information into episodic-like memory. Thus, the tasks offer different ways to assess and further understand the mechanisms at work in social episodic-like memory processing.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
- Centre for Learning and Memory Processes, Durham University, Durham, UK.
| | - S L Poulter
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| | - C Lever
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| |
Collapse
|
4
|
Yu M, Sun F, Xiang G, Zhang Y, Wang X, Liu X, Huang B, Li X, Zhang D. Liver kinase B-1 modulates the activity of dopamine neurons in the ventral tegmental area and regulates social memory formation. Front Mol Neurosci 2024; 17:1289476. [PMID: 38646099 PMCID: PMC11026561 DOI: 10.3389/fnmol.2024.1289476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Social memory is the ability to discriminate between familiar and unknown conspecifics. It is an important component of social cognition and is therefore essential for the establishment of social relationships. Although the neural circuit mechanisms underlying social memory encoding have been well investigated, little focus has been placed on the regulatory mechanisms of social memory processing. The dopaminergic system, originating from the midbrain ventral tegmental area (VTA), is a key modulator of cognitive function. This study aimed to illustrate its role in modulating social memory and explore the possible molecular mechanisms. Here, we show that the activation of VTA dopamine (DA) neurons is required for the formation, but not the retrieval, of social memory. Inhibition of VTA DA neurons before social interaction, but not 24 h after social interaction, significantly impaired social discrimination the following day. In addition, we showed that the activation of VTA DA neurons was regulated by the serine/threonine protein kinase liver kinase B1 (Lkb1). Deletion of Lkb1 in VTA DA neurons reduced the frequency of burst firing of dopaminergic neurons. Furthermore, Lkb1 plays an important role in regulating social behaviors. Both genetic and virus-mediated deletions of Lkb1 in the VTA of adult mice impaired social memory and subsequently attenuated social familiarization. Altogether, our results provide direct evidence linking social memory formation to the activation of VTA DA neurons in mice and illustrate the crucial role of Lkb1 in regulating VTA DA neuron function.
Collapse
Affiliation(s)
- Meng Yu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Fengjiao Sun
- Institute of Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Guo Xiang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Yuhan Zhang
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xuejun Wang
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xia Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
5
|
Bukatova S, Reichova A, Bacova Z, Bakos J. Neonatal oxytocin treatment alters levels of precursor and mature BDNF forms and modifies the expression of neuronal markers in the male rat hippocampus. Neuropeptides 2023; 102:102384. [PMID: 37741113 DOI: 10.1016/j.npep.2023.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Neuropeptide oxytocin appears to be involved in the formation of hippocampal circuitry, underlying social memory and behaviour. Recent studies point to the role of oxytocin in regulating the levels of nerve growth factors that could influence neurogenesis and neuritogenesis during the early stages of brain development. Therefore, the aim of the present study was to evaluate the early developmental effect of oxytocin administration (P2 and P3 days, two doses, 5 μg/pup, s.c.) on the expression of 1) brain-derived neurotrophic factor (BDNF) isoforms and 2) GABAergic and glutamatergic markers in the male rat hippocampus. Furthermore, we evaluated the branching of dendrites of primary hippocampal GABAergic and glutamatergic neurons in response to incubation with oxytocin (1 μM). We found that after oxytocin administration, levels of proBDNF increased on P5 and mBDNF on P7 in the CA1 hippocampal region. We also observed a reduction in the expression of glutamatergic marker (VGluT2) on P7 compared to P5 in control and oxytocin treated rats. During the early developmental stages (P5, P7, P9) the expression of GABAergic markers (Gad65 and Gad67) decreased regardless of oxytocin treatment. Incubation in a presence of oxytocin reduced branching of glutamatergic hippocampal neurons and the opposite stimulatory effect of oxytocin was observed in GABAergic neurons. These findings suggest that oxytocin affects neurotrophin isoforms in the male rat hippocampus in the early stages of development, which could explain changes in glutamatergic neurons and their morphology.
Collapse
Affiliation(s)
- Stanislava Bukatova
- Department of Neuroscience, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Reichova
- Department of Neuroscience, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Department of Neuroscience, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Department of Neuroscience, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
6
|
Orianne JF, Eustache F. Collective memory: between individual systems of consciousness and social systems. Front Psychol 2023; 14:1238272. [PMID: 37901083 PMCID: PMC10603192 DOI: 10.3389/fpsyg.2023.1238272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Following a long period of neglect, research on different facets of collective memory is now developing apace in the human and social sciences, as well as at their interface with psychology and neuroscience. This resolutely multidisciplinary renewal of interest in memory sciences has given rise to a plethora of concepts with diverse meanings (e.g., social frameworks of memory, collective, shared, collaborative, social memory). The purpose of the present study was to provide a conceptual overview from a historical perspective, and above all to clarify concepts that are often used interchangeably, even though they refer to very different realities. Based on recent research in psychology and neuroscience, we use the concept of collective memory to refer to the operations of individual systems of consciousness. Collective memory is not the memory of a collective, but that of its individual members, either as members of social groups (shared memory) or as participants in social interactions (collaborative memory). Drawing on the contributions of contemporary sociology, we show that social memory is not collective memory, as it refers not to individual systems of consciousness, but to social systems. More specifically, it is the outcome of communication operations which, through redundancy and repetition, perform a continuous and selective re-imprinting of meaning that can be used for communication. Writing, printing and the new communication technologies constitute the three historical stages in the formation and development of an autonomous social memory, independent of living memories and social interactions. In the modern era, mass media fulfill an essential function of social memory, by sorting between forgetting and remembering on a planetary scale. When thinking about the articulation between collective memory and social memory, the concept of structural coupling allows us to identify two mechanisms by which individual systems of consciousness and social systems can interact and be mutually sensitized: schemas and scripts, and social roles. Transdisciplinary approach spearheads major methodological and conceptual advances and is particularly promising for clinical practice, as it should result in a better understanding of memory pathologies, including PTSD, but also cognitive disorders in cancer (chemobrain) or in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-François Orianne
- Center for Research and Sociological Interventions (CRIS), Social Science Research Institute (IRSS), Liège University, Liège, Belgium
- Neuropsychology and Imaging of Human Memory (NIMH) Research Unit, GIP Cyceron, INSERM U1077, Caen University Hospital, PSL, EPHE, Caen University, Caen, France
| | - Francis Eustache
- Neuropsychology and Imaging of Human Memory (NIMH) Research Unit, GIP Cyceron, INSERM U1077, Caen University Hospital, PSL, EPHE, Caen University, Caen, France
| |
Collapse
|
7
|
Noh K, Cho WH, Lee BH, Kim DW, Kim YS, Park K, Hwang M, Barcelon E, Cho YK, Lee CJ, Yoon BE, Choi SY, Park HY, Jun SB, Lee SJ. Cortical astrocytes modulate dominance behavior in male mice by regulating synaptic excitatory and inhibitory balance. Nat Neurosci 2023; 26:1541-1554. [PMID: 37563296 DOI: 10.1038/s41593-023-01406-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Social hierarchy is established as an outcome of individual social behaviors, such as dominance behavior during long-term interactions with others. Astrocytes are implicated in optimizing the balance between excitatory and inhibitory (E/I) neuronal activity, which may influence social behavior. However, the contribution of astrocytes in the prefrontal cortex to dominance behavior is unclear. Here we show that dorsomedial prefrontal cortical (dmPFC) astrocytes modulate E/I balance and dominance behavior in adult male mice using in vivo fiber photometry and two-photon microscopy. Optogenetic and chemogenetic activation or inhibition of dmPFC astrocytes show that astrocytes bidirectionally control male mouse dominance behavior, affecting social rank. Dominant and subordinate male mice present distinct prefrontal synaptic E/I balance, regulated by astrocyte activity. Mechanistically, we show that dmPFC astrocytes control cortical E/I balance by simultaneously enhancing presynaptic-excitatory and reducing postsynaptic-inhibitory transmission via astrocyte-derived glutamate and ATP release, respectively. Our findings show how dmPFC astrocyte-neuron communication can be involved in the establishment of social hierarchy in adult male mice.
Collapse
Affiliation(s)
- Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Woo-Hyun Cho
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, Republic of Korea
| | - Keebum Park
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Minkyu Hwang
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Ellane Barcelon
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Yoon Kyung Cho
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, Republic of Korea
| | - Se-Young Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Cymerblit-Sabba A, Walsh C, Duan KZ, Song J, Holmes O, Young WS. Simultaneous Knockouts of the Oxytocin and Vasopressin 1b Receptors in Hippocampal CA2 Impair Social Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526271. [PMID: 36789441 PMCID: PMC9928026 DOI: 10.1101/2023.01.30.526271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxytocin (Oxt) and vasopressin (Avp) are two neuropeptides with many central actions related to social cognition. The oxytocin (Oxtr) and vasopressin 1b (Avpr1b) receptors are co-expressed in the pyramidal neurons of the hippocampal subfield CA2 and are known to play a critical role in social memory formation. How the neuropeptides perform this function in this region is not fully understood. Here, we report the behavioral effects of a life-long conditional removal (knockout, KO) of either the Oxtr alone or both Avpr1b and Oxtr from the pyramidal neurons of CA2 as well as the resultant changes in synaptic transmission within the different fields of the hippocampus. Surprisingly, the removal of both receptors results in mice that are unable to habituate to a familiar female presented for short duration over short intervals but are able to recognize and discriminate females when presented for a longer duration over a longer interval. Importantly, these double KO mice were unable to discriminate between a male littermate and a novel male. Synaptic transmission between CA3 and CA2 is enhanced in these mice, suggesting a compensatory mechanism is activated to make up for the loss of the receptors. Overall, our results demonstrate that co-expression of the receptors in CA2 is necessary to allow intact social memory processing.
Collapse
Affiliation(s)
- Adi Cymerblit-Sabba
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - Caroline Walsh
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - Kai-Zheng Duan
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - June Song
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - Oliver Holmes
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Effects of different doses of lithium on the central nervous system in the rat valproic acid model of autism. Chem Biol Interact 2023; 370:110314. [PMID: 36535311 DOI: 10.1016/j.cbi.2022.110314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Epidemiological studies have shown that low doses of lithium in the environment can have beneficial effects on mental health. Autism spectrum disorder, a neurodevelopmental disorder in which patients exhibit abnormal behaviors, pharmacological interventions usually relied on a range of psychotropic medications. However, such medications often produce severe side effects or are ineffective in symptoms. Finding alternative ways to improve abnormal behaviors in individuals with autism are warranted, in which case lithium may be a relatively safe and effective medication. Lithium salt therapy is used to treat a variety of neuropsychiatric disorders and has neuroprotective effects. In this study, we investigated the effects of different doses of lithium on neurobehavioural disorders using the rat model of autism established by valproic acid (VPA) injection. Lithium was observed to have an ameliorative effect on the social cognitive, social memory and anxiety levels in the rat model of autism. Immunofluorescence staining showed that subchronic LiCl administration (1.0 mmol/kg) significantly reduced the number of Iba-1 positive cells in the CA1 region of the hippocampus in VPA group and brought it close to the levels of control group. Significantly lower levels of the pro-inflammatory marker IL-6 were observed in the hippocampus and serum after lithium treatment. In addition, the lithium treatment increased the levels of H3K9 acetylation in the hippocampus of VPA-exposed rats. The results showed a defensive effect of environment-related lithium exposure doses on neurobehavioural deficits in the rat valproic acid model of autism, suggesting that it may be a potential drug for the treatment of autism.
Collapse
|
10
|
Basilico B, Ferrucci L, Khan A, Di Angelantonio S, Ragozzino D, Reverte I. What microglia depletion approaches tell us about the role of microglia on synaptic function and behavior. Front Cell Neurosci 2022; 16:1022431. [PMID: 36406752 PMCID: PMC9673171 DOI: 10.3389/fncel.2022.1022431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia are dynamic cells, constantly surveying their surroundings and interacting with neurons and synapses. Indeed, a wealth of knowledge has revealed a critical role of microglia in modulating synaptic transmission and plasticity in the developing brain. In the past decade, novel pharmacological and genetic strategies have allowed the acute removal of microglia, opening the possibility to explore and understand the role of microglia also in the adult brain. In this review, we summarized and discussed the contribution of microglia depletion strategies to the current understanding of the role of microglia on synaptic function, learning and memory, and behavior both in physiological and pathological conditions. We first described the available microglia depletion methods highlighting their main strengths and weaknesses. We then reviewed the impact of microglia depletion on structural and functional synaptic plasticity. Next, we focused our analysis on the effects of microglia depletion on behavior, including general locomotor activity, sensory perception, motor function, sociability, learning and memory both in healthy animals and animal models of disease. Finally, we integrated the findings from the reviewed studies and discussed the emerging roles of microglia on the maintenance of synaptic function, learning, memory strength and forgetfulness, and the implications of microglia depletion in models of brain disease.
Collapse
Affiliation(s)
| | - Laura Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Azka Khan
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Davide Ragozzino
- Laboratory Affiliated to Institute Pasteur Italia – Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- *Correspondence: Davide Ragozzino,
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- Ingrid Reverte,
| |
Collapse
|
11
|
Noradrenergic consolidation of social recognition memory is mediated by β-arrestin-biased signaling in the mouse prefrontal cortex. Commun Biol 2022; 5:1097. [PMID: 36253525 PMCID: PMC9576713 DOI: 10.1038/s42003-022-04051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Social recognition memory (SRM) is critical for maintaining social relationships and increasing the survival rate. The medial prefrontal cortex (mPFC) is an important brain area associated with SRM storage. Norepinephrine (NE) release regulates mPFC neuronal intrinsic excitability and excitatory synaptic transmission, however, the roles of NE signaling in the circuitry of the locus coeruleus (LC) pathway to the mPFC during SRM storage are unknown. Here we found that LC-mPFC NE projections bidirectionally regulated SRM consolidation. Propranolol infusion and β-adrenergic receptors (β-ARs) or β-arrestin2 knockout in the mPFC disrupted SRM consolidation. When carvedilol, a β-blocker that can mildly activate β-arrestin-biased signaling, was injected, the mice showed no significant suppression of SRM consolidation. The impaired SRM consolidation caused by β1-AR or β-arrestin2 knockout in the mPFC was not rescued by activating LC-mPFC NE projections; however, the impaired SRM by inhibition of LC-mPFC NE projections or β1-AR knockout in the mPFC was restored by activating the β-arrestin signaling pathway in the mPFC. Furthermore, the activation of β-arrestin signaling improved SRM consolidation in aged mice. Our study suggests that LC-mPFC NE projections regulate SRM consolidation through β-arrestin-biased β-AR signaling. Social memory consolidation requires norepinephrine release in the medial prefrontal cortex (mPFC), and enhancing beta-arrestin signaling in the mPFC restores social recognition memory that is normally impaired by age in mice.
Collapse
|
12
|
Bauminger H, Gaisler-Salomon I. Beyond NMDA Receptors: Homeostasis at the Glutamate Tripartite Synapse and Its Contributions to Cognitive Dysfunction in Schizophrenia. Int J Mol Sci 2022; 23:8617. [PMID: 35955750 PMCID: PMC9368772 DOI: 10.3390/ijms23158617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cognitive deficits are core symptoms of schizophrenia but remain poorly addressed by dopamine-based antipsychotic medications. Glutamate abnormalities are implicated in schizophrenia-related cognitive deficits. While the role of the NMDA receptor has been extensively studied, less attention was given to other components that control glutamate homeostasis. Glutamate dynamics at the tripartite synapse include presynaptic and postsynaptic components and are tightly regulated by neuron-astrocyte crosstalk. Here, we delineate the role of glutamate homeostasis at the tripartite synapse in schizophrenia-related cognitive dysfunction. We focus on cognitive domains that can be readily measured in humans and rodents, i.e., working memory, recognition memory, cognitive flexibility, and response inhibition. We describe tasks used to measure cognitive function in these domains in humans and rodents, and the relevance of glutamate alterations in these domains. Next, we delve into glutamate tripartite synaptic components and summarize findings that implicate the relevance of these components to specific cognitive domains. These collective findings indicate that neuron-astrocyte crosstalk at the tripartite synapse is essential for cognition, and that pre- and postsynaptic components play a critical role in maintaining glutamate homeostasis and cognitive well-being. The contribution of these components to cognitive function should be considered in order to better understand the role played by glutamate signaling in cognition and develop efficient pharmacological treatment avenues for schizophrenia treatment-resistant symptoms.
Collapse
Affiliation(s)
- Hagar Bauminger
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
13
|
Schmidt SD, Zinn CG, Cavalcante LE, Ferreira FF, Furini CRG, Izquierdo I, de Carvalho Myskiw J. Participation of Hippocampal 5-HT 5A, 5-HT 6 and 5-HT 7 Serotonin Receptors on the Consolidation of Social Recognition Memory. Neuroscience 2022; 497:171-183. [PMID: 35718219 DOI: 10.1016/j.neuroscience.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Social recognition is the ability of animals to identify and recognize a conspecific. The consolidation of social stimuli in long-term memory is crucial for the establishment and maintenance of social groups, reproduction and species survival. Despite its importance, little is known about the circuitry and molecular mechanisms involved in the social recognition memory (SRM). Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator, which plays a key role in learning and memory. Focusing on the more recently described 5-HT receptors, we investigated in the CA1 region of the dorsal hippocampus the participation of 5-HT5A, 5-HT6 and 5-HT7 receptors in the consolidation of SRM. Male Wistar rats cannulated in CA1 were subjected to a social discrimination task. In the sample phase the animals were exposed to a juvenile conspecific for 1 h. Immediately after, they received different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. The animals that received infusions of 5-HT5A receptor antagonist SB-699551 (10 µg/µL), 5-HT6 receptor agonist WAY-208466 (0.63 µg/µL) or 5-HT7 receptor agonist AS-19 (5 µg/µL) intra-CA1 were unable to recognize the familiar juvenile. This effect was blocked by the coinfusion of WAY-208466 plus 5-HT6 receptor antagonist SB-271046 (10 µg/µL) or AS-19 plus 5-HT7 receptor antagonist SB-269970 (5 µg/µL). The present study helps to clarify the neurobiological functions of the 5-HT receptors more recently described and extends our knowledge about mechanisms underlying the SRM.
Collapse
Affiliation(s)
- Scheila Daiane Schmidt
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Carolina Garrido Zinn
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Lorena Evelyn Cavalcante
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Flávia Fagundes Ferreira
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; Psychobiology and Neurocomputation Laboratory (LPBNC), Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Building 43422, Room 208A, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
The Novel Analogue of Modafinil CE-158 Protects Social Memory against Interference and Triggers the Release of Dopamine in the Nucleus Accumbens of Mice. Biomolecules 2022; 12:biom12040506. [PMID: 35454095 PMCID: PMC9033101 DOI: 10.3390/biom12040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022] Open
Abstract
Previous studies have shown that atypical dopamine-transporter-inhibitors such as modafinil and its analogues modify behavioral and cognitive functions in rodents. Here, we tested potential promnestic effects of the novel, more dopamine-transporter selective modafinil analogue CE-158 in the social discrimination memory task in male mice. Systemic administration of CE-158 1 h before the social learning event prevented the impairment of social-recognition memory following retroactive interference 3 h after the learning session of a juvenile conspecific. This effect was dose-dependent, as mice treated with 10 mg/kg, but not with 1 mg/kg CE-158, were able to discriminate between the novel and familiar conspecific despite the presentation of an interference stimulus, both 3 h and 6 h post learning. However, when 10 mg/kg of the drug was administered after learning, CE-158 failed to prevent social memory from interference. Paralleling these behavioral effects, the systemic administration of 10 mg/kg CE-158 caused a rapid and sustained elevation of extracellular dopamine in the nucleus accumbens, a brain area where dopaminergic signaling plays a key role in learning and memory function, of freely moving mice, while 1 mg/kg was not sufficient for altering dopamine levels. Taken together, our findings suggest promnestic effects of the novel dopamine-transporter-inhibitor CE-158 in a social recognition memory test that may be in part mediated via increased dopamine-neurotransmission in the nucleus accumbens. Thus, selective-dopamine-transporter-inhibitors such as CE-158 may represent interesting drug candidates for the treatment of memory complaints observed in humans with cognitive impairments and dementia.
Collapse
|
15
|
Schmidt SD, Nachtigall EG, Marcondes LA, Zanluchi A, Furini CR, Passani MB, Supuran CT, Blandina P, Izquierdo I, Provensi G, de Carvalho Myskiw J. Modulation of carbonic anhydrases activity in the hippocampus or prefrontal cortex differentially affects social recognition memory in rats. Neuroscience 2022; 497:184-195. [DOI: 10.1016/j.neuroscience.2022.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022]
|
16
|
Benedetti A, Molent C, Barcik W, Papaleo F. Social behavior in 16p11.2 and 22q11.2 copy number variations: Insights from mice and humans. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12787. [PMID: 34889032 PMCID: PMC9744525 DOI: 10.1111/gbb.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Genetic 16p11.2 and 22q11.2 deletions and duplications in humans may alter behavioral developmental trajectories increasing the risk of autism and schizophrenia spectrum disorders, and of attention-deficit/hyperactivity disorder. In this review, we will concentrate on 16p11.2 and 22q11.2 deletions' effects on social functioning, beyond diagnostic categorization. We highlight diagnostic and social sub-constructs discrepancies. Notably, we contrast evidence from human studies with social profiling performed in several mouse models mimicking 16p11.2 and 22q11.2 deletion syndromes. Given the complexity of social behavior, there is a need to assess distinct social processes. This will be important to better understand the biology underlying such genetic-dependent dysfunctions, as well as to give perspective on how therapeutic strategies can be improved. Bridges and divergent points between human and mouse studies are highlighted. Overall, we give challenges and future perspectives to sort the genetics of social heterogeneity.
Collapse
Affiliation(s)
- Arianna Benedetti
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,CNRS, GREDEGUniversité Côte d'AzurNiceFrance
| | - Cinzia Molent
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,Dipartimento di Medicina Sperimentale(Di. Mes) Università degli Studi di GenovaGenoaItaly
| | - Weronika Barcik
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
17
|
Semple BD, Raghupathi R. A Pro-social Pill? The Potential of Pharmacological Treatments to Improve Social Outcomes After Pediatric Traumatic Brain Injury. Front Neurol 2021; 12:714253. [PMID: 34489853 PMCID: PMC8417315 DOI: 10.3389/fneur.2021.714253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-induced disability in young children worldwide, and social behavior impairments in this population are a significant challenge for affected patients and their families. The protracted trajectory of secondary injury processes triggered by a TBI during early life-alongside ongoing developmental maturation-offers an extended time window when therapeutic interventions may yield functional benefits. This mini-review explores the scarce but promising pre-clinical literature to date demonstrating that social behavior impairments after early life brain injuries can be modified by drug therapies. Compounds that provide broad neuroprotection, such as those targeting neuroinflammation, oxidative stress, axonal injury and/or myelination, may prevent social behavior impairments by reducing secondary neuropathology. Alternatively, targeted treatments that promote affiliative behaviors, exemplified by the neuropeptide oxytocin, may reduce the impact of social dysfunction after pediatric TBI. Complementary literature from other early life neurodevelopmental conditions such as hypoxic ischemic encephalopathy also provides avenues for future research in neurotrauma. Knowledge gaps in this emerging field are highlighted throughout, toward the goal of accelerating translational research to support optimal social functioning after a TBI during early childhood.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, Prahran, VIC, Australia.,Department of Neurology, Alfred Health, Prahran, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
18
|
Race NS, Andrews KD, Lungwitz EA, Vega Alvarez SM, Warner TR, Acosta G, Cao J, Lu KH, Liu Z, Dietrich AD, Majumdar S, Shekhar A, Truitt WA, Shi R. Psychosocial impairment following mild blast-induced traumatic brain injury in rats. Behav Brain Res 2021; 412:113405. [PMID: 34097900 PMCID: PMC9284795 DOI: 10.1016/j.bbr.2021.113405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury (TBI) is associated with increased risk for mental health disorders, impacting post-injury quality of life and societal reintegration. TBI is also associated with deficits in psychosocial processing, defined as the cognitive integration of social and emotional behaviors, however little is known about how these deficits manifest and their contributions to post-TBI mental health. In this pre-clinical investigation using rats, a single mild blast TBI (mbTBI) induced impairment of psychosocial processing in the absence of confounding physical polytrauma, post-injury motor deficits, affective abnormalities, or deficits in non-social behavior. Impairment severity correlated with acute upregulations of a known oxidative stress metabolite, 3-hydroxypropylmercapturic acid (3-HPMA), in urine. Resting state fMRI alterations in the acute post-injury period implicated key brain regions known to regulate psychosocial behavior, including orbitofrontal cortex (OFC), which is congruent with our previous report of elevated acrolein, a marker of neurotrauma and 3-HPMA precursor, in this region following mbTBI. OFC of mbTBI-exposed rats demonstrated elevated mRNA expression of metabotropic glutamate receptors 1 and 5 (mGluR1/5) and injection of mGluR1/5-selective agonist in OFC of uninjured rats approximated mbTBI-induced psychosocial processing impairment, demonstrating a novel role for OFC in this psychosocial behavior. Furthermore, OFC may serve as a hotspot for TBI-induced disruption of psychosocial processing and subsequent mental health disorders.
Collapse
Affiliation(s)
- Nicholas S Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katharine D Andrews
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Lungwitz
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sasha M Vega Alvarez
- PULSe Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
| | - Timothy R Warner
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Jiayue Cao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Kun-Han Lu
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Zhongming Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Amy D Dietrich
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sreeparna Majumdar
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William A Truitt
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; PULSe Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, West Lafayette, IN, USA.
| |
Collapse
|
19
|
Chiodi V, Domenici MR, Biagini T, De Simone R, Tartaglione AM, Di Rosa M, Lo Re O, Mazza T, Micale V, Vinciguerra M. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J 2021; 35:e21793. [PMID: 34320234 DOI: 10.1096/fj.202100569r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Gene expression and epigenetic processes in several brain regions regulate physiological processes such as cognitive functions and social behavior. MacroH2A1.1 is a ubiquitous variant of histone H2A that regulates cell stemness and differentiation in various organs. Whether macroH2A1.1 has a modulatory role in emotional behavior is unknown. Here, we employed macroH2A1.1 knock-out (-/- ) mice to perform a comprehensive battery of behavioral tests, and an assessment of hippocampal synaptic plasticity (long-term potentiation) accompanied by whole hippocampus RNA sequencing. MacroH2A1.1-/- mice exhibit a stunningly enhancement both of sociability and of active stress-coping behavior, reflected by the increased social behavior in social activity tests and higher mobility time in the forced swim test, respectively. They also display an increased hippocampal synaptic plasticity, accompanied by significant neurotransmission transcriptional networks changes. These results suggest that systemic depletion of histone macroH2A1.1 supports an epigenetic control necessary for hippocampal function and social behavior.
Collapse
Affiliation(s)
- Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Domenici
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.,Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.,ERA Chair in Translational Stem Cell Biology, Medical University-Varna, Varna, Bulgaria.,Division of Medicine, University College London (UCL), London, UK
| |
Collapse
|
20
|
Kljakic O, Al-Onaizi M, Janíčková H, Chen KS, Guzman MS, Prado MAM, Prado VF. Cholinergic transmission from the basal forebrain modulates social memory in male mice. Eur J Neurosci 2021; 54:6075-6092. [PMID: 34308559 DOI: 10.1111/ejn.15400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Disruptions in social behaviour are prevalent in many neuropsychiatric disorders such as schizophrenia, bipolar disorder and autism spectrum disorders. However, the underlying neurochemical regulation of social behaviour is still not well understood. The central cholinergic system has been proposed to contribute to the regulation of social behaviour. For instance, decreased global levels of acetylcholine release in the brain leads to decreased social interaction and an impairment of social memory in mice. Nonetheless, it has been difficult to ascertain the specific brain areas where cholinergic signalling influences social preference and social memory. In this study, we investigated the impact of different forebrain cholinergic regions on social behaviour by examining mouse lines that differ in their regional expression level of the vesicular acetylcholine transporter-the protein that regulates acetylcholine secretion. We found that when cholinergic signalling is highly disrupted in the striatum, hippocampus, cortex and amygdala mice have intact social preference but are impaired in social memory, as they cannot remember a familiar conspecific nor recognize a novel one. A similar pattern emerges when acetylcholine release is disrupted mainly in the striatum, cortex, and amygdala; however, the ability to recognize novel conspecifics is retained. In contrast, cholinergic signalling of the striatum and amygdala does not appear to significantly contribute to the modulation of social memory and social preference. Furthermore, we demonstrated that increasing global cholinergic tone does not increase social behaviours. Together, these data suggest that cholinergic transmission from the hippocampus and cortex are important for regulating social memory.
Collapse
Affiliation(s)
- Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammed Al-Onaizi
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Helena Janíčková
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kevin S Chen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Monica S Guzman
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules 2021; 11:biom11040555. [PMID: 33918940 PMCID: PMC8069616 DOI: 10.3390/biom11040555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The ability of recognizing familiar conspecifics is essential for many forms of social interaction including reproduction, establishment of dominance hierarchies, and pair bond formation in monogamous species. Many hormones and neurotransmitters have been suggested to play key roles in social discrimination. Here we demonstrate that disruption or potentiation of histaminergic neurotransmission differentially affects short (STM) and long-term (LTM) social recognition memory. Impairments of LTM, but not STM, were observed in histamine-deprived animals, either chronically (Hdc−/− mice lacking the histamine-synthesizing enzyme histidine decarboxylase) or acutely (mice treated with the HDC irreversible inhibitor α-fluoromethylhistidine). On the contrary, restriction of histamine release induced by stimulation of the H3R agonist (VUF16839) impaired both STM and LTM. H3R agonism-induced amnesic effect was prevented by pre-treatment with donepezil, an acetylcholinesterase inhibitor. The blockade of the H3R with ciproxifan, which in turn augmented histamine release, resulted in a procognitive effect. In keeping with this hypothesis, the procognitive effect of ciproxifan was absent in both Hdc−/− and αFMH-treated mice. Our results suggest that brain histamine is essential for the consolidation of LTM but not STM in the social recognition test. STM impairments observed after H3R stimulation are probably related to their function as heteroreceptors on cholinergic neurons.
Collapse
|
22
|
Schmidt SD, Zinn CG, Behling JAK, Furian AF, Furini CRG, de Carvalho Myskiw J, Izquierdo I. Inhibition of PACAP/PAC1/VPAC2 signaling impairs the consolidation of social recognition memory and nitric oxide prevents this deficit. Neurobiol Learn Mem 2021; 180:107423. [PMID: 33705861 DOI: 10.1016/j.nlm.2021.107423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
Social recognition memory (SRM) forms the basis of social relationships of animals. It is essential for social interaction and adaptive behavior, reproduction and species survival. Evidence demonstrates that social deficits of psychiatric disorders such as autism and schizophrenia are caused by alterations in SRM processing by the hippocampus and amygdala. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptors PAC1, VPAC1 and VPAC2 are highly expressed in these regions. PACAP is a pleiotropic neuropeptide that modulates synaptic function and plasticity and is thought to be involved in social behavior. PACAP signaling also stimulates the nitric oxide (NO) production and targets outcomes to synapses. In the present work, we investigate the effect of the infusion of PACAP-38 (endogenous neuropeptide and potent stimulator of adenylyl cyclase), PACAP 6-38 (PAC1/VPAC2 receptors antagonist) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP, NO donor) in the CA1 region of the hippocampus and in the basolateral amygdala (BLA) on the consolidation of SRM. For this, male Wistar rats with cannulae implanted in CA1 or in BLA were subjected to a social discrimination paradigm, which is based on the natural ability of rodents to investigate unfamiliar conspecifics more than familiar one. In the sample phase (acquisition), animals were exposed to a juvenile conspecific for 1 h. Immediately, 60 or 150 min after, animals received one of different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. Animals that received infusions of PACAP 6-38 (40 pg/side) into CA1 immediately after the sample phase or into BLA immediately or 60 min after the sample phase were unable to recognize the familiar juvenile during the retention test. This impairment was abolished by the coinfusion of PACAP 6-38 plus SNAP (5 μg/side). These results show that the blockade of PACAP/PAC1/VPAC2 signaling in the CA1 and BLA during a restricted post-acquisition time window impairs the consolidation of SRM and that the SNAP is able to abolish this deficit. Findings like this could potentially be used in the future to influence studies of psychiatric disorders involving social behavior.
Collapse
Affiliation(s)
- Scheila Daiane Schmidt
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Carolina Garrido Zinn
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jonny Anderson Kielbovicz Behling
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Ana Flávia Furian
- Laboratory of Neurotoxicity, Federal University of Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Šabanović M, Liu H, Mlambo V, Aqel H, Chaudhury D. What it takes to be at the top: The interrelationship between chronic social stress and social dominance. Brain Behav 2020; 10:e01896. [PMID: 33070476 PMCID: PMC7749537 DOI: 10.1002/brb3.1896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Dominance hierarchies of social animal groups are very sensitive to stress. Stress experienced prior to social interactions between conspecifics may be a determinant of their future social dynamics. Additionally, long-term occupancy of a specific hierarchical rank can have psychophysiological effects which increase vulnerability to future stressors. METHODS We aimed to delineate differential effects of stress acting before or after hierarchy formation. We studied whether exposure to the chronic social defeat stress (CSDS) paradigm before a two-week-long hierarchy formation affected the attainment of a dominant status using the social confrontation tube test (TT). These animals were singly housed for at least one week before CSDS to decrease confounding effects of prior hierarchy experience. Additionally, we investigated whether social rank predicted vulnerability to CSDS, measured by a social interaction test. RESULTS In TT, mice termed as dominant (high rank) win the majority of social confrontations, while the subordinates (low rank) lose more often. Within newly established hierarchies of stress-naïve mice, the subordinate, but not dominant, mice exhibited significantly greater avoidance of novel social targets. However, following exposure to CSDS, both lowest- and highest-ranked mice exhibited susceptibility to stress as measured by decreased interactions with a novel social target. In contrast, after CSDS, both stress-susceptible (socially avoidant) and stress-resilient (social) mice were able to attain dominant ranks in newly established hierarchies. CONCLUSION These results suggest that the response to CSDS did not determine social rank in new cohorts, but low-status mice in newly established groups exhibited lower sociability to novel social targets. Interestingly, exposure of a hierarchical social group to chronic social stress led to stress susceptibility in both high- and low-status mice as measured by social interaction.
Collapse
Affiliation(s)
- Merima Šabanović
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - He Liu
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vongai Mlambo
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hala Aqel
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dipesh Chaudhury
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Netser S, Meyer A, Magalnik H, Zylbertal A, de la Zerda SH, Briller M, Bizer A, Grinevich V, Wagner S. Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nat Commun 2020; 11:5908. [PMID: 33219219 PMCID: PMC7679456 DOI: 10.1038/s41467-020-19569-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Mice and rats are widely used to explore mechanisms of mammalian social behavior in health and disease, raising the question whether they actually differ in their social behavior. Here we address this question by directly comparing social investigation behavior between two mouse and rat strains used most frequently for behavioral studies and as models of neuropathological conditions: C57BL/6 J mice and Sprague Dawley (SD) rats. Employing novel experimental systems for behavioral analysis of both subjects and stimuli during the social preference test, we reveal marked differences in behavioral dynamics between the strains, suggesting stronger and faster induction of social motivation in SD rats. These different behavioral patterns, which correlate with distinctive c-Fos expression in social motivation-related brain areas, are modified by competition with non-social rewarding stimuli, in a strain-specific manner. Thus, these two strains differ in their social behavior, which should be taken into consideration when selecting an appropriate model organism. Laboratory rat and mouse strains serve as animal models to explore brain mechanisms underlying social behavior. Here, the authors describe differences in social behavior between commonly used rat and mouse strains, which may reflect distinct dynamics of social motivation.
Collapse
Affiliation(s)
- Shai Netser
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Ana Meyer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, J5, 69159, Germany
| | - Hen Magalnik
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Asaph Zylbertal
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WCE1 6BT, UK
| | - Shani Haskal de la Zerda
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Mayan Briller
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Alexander Bizer
- Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, J5, 69159, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
25
|
Leblanc H, Ramirez S. Linking Social Cognition to Learning and Memory. J Neurosci 2020; 40:8782-8798. [PMID: 33177112 PMCID: PMC7659449 DOI: 10.1523/jneurosci.1280-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Many mammals have evolved to be social creatures. In humans, the ability to learn from others' experiences is essential to survival; and from an early age, individuals are surrounded by a social environment that helps them develop a variety of skills, such as walking, talking, and avoiding danger. Similarly, in rodents, behaviors, such as food preference, exploration of novel contexts, and social approach, can be learned through social interaction. Social encounters facilitate new learning and help modify preexisting memories throughout the lifespan of an organism. Moreover, social encounters can help buffer stress or the effects of negative memories, as well as extinguish maladaptive behaviors. Given the importance of such interactions, there has been increasing work studying social learning and applying its concepts in a wide range of fields, including psychotherapy and medical sociology. The process of social learning, including its neural and behavioral mechanisms, has also been a rapidly growing field of interest in neuroscience. However, the term "social learning" has been loosely applied to a variety of psychological phenomena, often without clear definition or delineations. Therefore, this review gives a definition for specific aspects of social learning, provides an overview of previous work at the circuit, systems, and behavioral levels, and finally, introduces new findings on the social modulation of learning. We contextualize such social processes in the brain both through the role of the hippocampus and its capacity to process "social engrams" as well as through the brainwide realization of social experiences. With the integration of new technologies, such as optogenetics, chemogenetics, and calcium imaging, manipulating social engrams will likely offer a novel therapeutic target to enhance the positive buffering effects of social experiences or to inhibit fear-inducing social stimuli in models of anxiety and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02119
- Neurophotonics Center at Boston University, Boston, Massachusetts, 02119
- Center for Systems Neuroscience at Boston University, Boston, Massachusetts, 02119
| |
Collapse
|
26
|
Quet E, Cassel JC, Cosquer B, Galloux M, Pereira De Vasconcelos A, Stéphan A. Ventral midline thalamus is not necessary for systemic consolidation of a social memory in the rat. Brain Neurosci Adv 2020; 4:2398212820939738. [PMID: 32954006 PMCID: PMC7479859 DOI: 10.1177/2398212820939738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/02/2020] [Indexed: 11/18/2022] Open
Abstract
According to the standard theory of memory consolidation, recent memories
are stored in the hippocampus before their transfer to cortical
modules, a process called systemic consolidation. The ventral midline
thalamus (reuniens and rhomboid nuclei, ReRh) takes part in this
transfer as its lesion disrupts systemic consolidation of spatial and
contextual fear memories. Here, we wondered whether ReRh lesions would
also affect the systemic consolidation of another type of memory,
namely an olfaction-based social memory. To address this question we
focused on social transmission of food preference. Adult Long-Evans
rats were subjected to N-methyl-d-aspartate-induced,
fibre-sparing lesions of the ReRh nuclei or to a sham-operation, and
subsequently trained in a social transmission of food preference
paradigm. Retrieval was tested on the next day (recent memory,
nSham = 10, nReRh = 12) or after a 25-day
delay (remote memory, nSham = 10, nReRh = 10).
All rats, whether sham-operated or subjected to ReRh lesions, learned
and remembered the task normally, whatever the delay. Compared to our
former results on spatial and contextual fear memories (Ali et al.,
2017; Klein et al., 2019; Loureiro et al., 2012; Quet et al., 2020),
the present findings indicate that the ReRh nuclei might not be part
of a generic, systemic consolidation mechanism processing all kinds of
memories in order to make them persistent. The difference between
social transmission of food preference and spatial or contextual fear
memories could be explained by the fact that social transmission of
food preference is not hippocampus-dependent and that the persistence
of social transmission of food preference memory relies on different
circuits.
Collapse
Affiliation(s)
- Etienne Quet
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Marine Galloux
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Anne Pereira De Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Aline Stéphan
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Wang Y, Dai G, Gu Z, Liu G, Tang K, Pan YH, Chen Y, Lin X, Wu N, Chen H, Feng S, Qiu S, Sun H, Li Q, Xu C, Mao Y, Zhang YE, Khaitovich P, Wang YL, Liu Q, Han JDJ, Shao Z, Wei G, Xu C, Jing N, Li H. Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies. Cell Res 2020; 30:408-420. [PMID: 32238901 PMCID: PMC7196073 DOI: 10.1038/s41422-020-0308-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
Social hierarchies emerged during evolution, and social rank influences behavior and health of individuals. However, the evolutionary mechanisms of social hierarchy are still unknown in amniotes. Here we developed a new method and performed a genome-wide screening for identifying regions with accelerated evolution in the ancestral lineage of placental mammals, where mammalian social hierarchies might have initially evolved. Then functional analyses were conducted for the most accelerated region designated as placental-accelerated sequence 1 (PAS1, P = 3.15 × 10-18). Multiple pieces of evidence show that PAS1 is an enhancer of the transcription factor gene Lhx2 involved in brain development. PAS1s isolated from various amniotes showed different cis-regulatory activity in vitro, and affected the expression of Lhx2 differently in the nervous system of mouse embryos. PAS1 knock-out mice lack social stratification. PAS1 knock-in mouse models demonstrate that PAS1s determine the social dominance and subordinate of adult mice, and that social ranks could even be turned over by mutated PAS1. All homozygous mutant mice had normal huddled sleeping behavior, motor coordination and strength. Therefore, PAS1-Lhx2 modulates social hierarchies and is essential for establishing social stratification in amniotes, and positive Darwinian selection on PAS1 plays pivotal roles in the occurrence of mammalian social hierarchies.
Collapse
Affiliation(s)
- Yuting Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyi Dai
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Zhili Gu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Guopeng Liu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510405, Guangdong, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Yujie Chen
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Xin Lin
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Haoshan Chen
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Su Feng
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Shou Qiu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Hongduo Sun
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Chuan Xu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Yanan Mao
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yong Edward Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Philipp Khaitovich
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qunxiu Liu
- Shanghai Zoological Park, 200335, Shanghai, China
| | - Jing-Dong Jackie Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Chun Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Haipeng Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| |
Collapse
|
28
|
Diana P, Joksimovic SM, Faisant A, Jevtovic-Todorovic V. Early exposure to general anesthesia impairs social and emotional development in rats. Mol Neurobiol 2020; 57:41-50. [PMID: 31494825 PMCID: PMC6980478 DOI: 10.1007/s12035-019-01755-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 11/25/2022]
Abstract
Several animal and emerging human studies suggest an association between an early exposure to general anesthesia (GA) and long-lasting problems with complex social and emotional behaviors such as inattentiveness, impulsivity, anxiogenic tendencies, as well as difficulties engaging in proper social intercourse, with significant increase in attention deficit and hyperactivity-type behaviors. To further investigate these behaviors, and to examine the potential of presently available rodent behavioral models to guide future assessments of long-term socio-emotional impairments in humans, we examined the long-term effects of GA on anxiety/fear and social behaviors. We exposed male and female Sprague-Dawley infant rats at the peak of their synaptogenesis to either GA containing midazolam (9 mg/kg, i.p.), 70% nitrous oxide (N2O) and 0.75% isoflurane (Iso) administered in 29-30% oxygen (experimental), or air (with 30% oxygen) plus the vehicle, 0.1% dimethyl sulfoxide (Sham) for 6 h. Behavioral experiments were conducted at adolescence (the open-field test) and young adulthood (the open-field test, the elevated plus-maze and the social novelty test). We report that an early exposure to GA during critical stages of brain development results in long-lasting increase in risk-taking tendencies and significant changes in the anxiety-related behaviors when tested in young adult rats. In addition, we noted novelty-seeking tendencies/less guarded behavior with changes in social discrimination. We conclude that early exposure to anesthesia may have lasting influences on emotional and social development. Importantly, our results show that currently used rodent behavioral models could be a good correlate to assess long-term socio-emotional GA-induced impairments observed in humans.
Collapse
Affiliation(s)
- Paolo Diana
- Department of Medicine, University of Padua, Padua, Italy
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado School of Medicine, 12801 E. 17th Avenue, Rm L18-4100, Aurora, CO, USA
| | - Azra Faisant
- School of Nursing, University of Virginia, Charlottesville, VA, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado School of Medicine, 12801 E. 17th Avenue, Rm L18-4100, Aurora, CO, USA.
| |
Collapse
|
29
|
Ferreira FF, Rodrigues FS, Schmidt SD, Cavalcante LE, Zinn CG, Farias CP, Furini CR, Myskiw JC, Izquierdo I. Social support favors extinction and impairs acquisition of both short- and long-term contextual fear conditioning memory. Neurosci Lett 2019; 712:134505. [DOI: 10.1016/j.neulet.2019.134505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022]
|
30
|
Tzakis N, Holahan MR. Social Memory and the Role of the Hippocampal CA2 Region. Front Behav Neurosci 2019; 13:233. [PMID: 31632251 PMCID: PMC6779725 DOI: 10.3389/fnbeh.2019.00233] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
The CA2 region of the hippocampus is a somewhat obscure area lacking in an understanding of its form and function. Until recently, the CA2 has been thought of as merely an extension of the CA3, with some referring to it as the CA3a region. Recent investigations into this area have not only delineated the CA2, but also defined it as a region distinct from both CA1 and CA3, with a unique set of cortical inputs and outputs and contributions to cognitive processes. One such process that has been shown to depend on the CA2 is the ability to recognize a novel or familiar conspecific, known as social recognition memory. Here, we review these findings and discuss the parallels between CA2 dysfunction and social impairments.
Collapse
Affiliation(s)
- Nikolaos Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
31
|
Pérez MÁ, Morales C, Santander O, García F, Gómez I, Peñaloza-Sancho V, Fuentealba P, Dagnino-Subiabre A, Moya PR, Fuenzalida M. Ketamine-Treatment During Late Adolescence Impairs Inhibitory Synaptic Transmission in the Prefrontal Cortex and Working Memory in Adult Rats. Front Cell Neurosci 2019; 13:372. [PMID: 31481877 PMCID: PMC6710447 DOI: 10.3389/fncel.2019.00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is associated with changes in the structure and function of several brain areas. Several findings suggest that these impairments are related to a dysfunction in γ-aminobutyric acid (GABA) neurotransmission in brain areas such as the medial prefrontal cortex (mPFC), the hippocampus (HPC) and the primary auditory cortex (A1); however, it is still unclear how the GABAergic system is disrupted in these brain areas. Here, we examined the effect of ketamine (Ket) administration during late adolescence in rats on inhibition in the mPFC-, ventral HPC (vHPC), and A1. We observe that Ket treatment reduced the expression of the calcium-binding protein parvalbumin (PV) and the GABA-producing enzyme glutamic acid decarboxylase 67 (GAD67) as well as decreased inhibitory synaptic efficacy in the mPFC. In addition, Ket-treated rats performed worse in executive tasks that depend on the integrity and proper functioning of the mPFC. Conversely, we do not find such changes in vHPC or A1. Together, our results provide strong experimental support for the hypothesis that during adolescence, the function of the mPFC is more susceptible than that of HPC or A1 to NMDAR hypofunction, showing apparent structure specificity. Thus, the impairment of inhibitory circuitry in mPFC could be a convergent primary site of SZ-like behavior during the adulthood.
Collapse
Affiliation(s)
- Miguel Ángel Pérez
- Laboratorio de Plasticidad Neuronal, Universidad de Valparaíso, Valparaíso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Ciencias de la Salud, Carrera de Kinesiología, Universidad Viña del Mar, Viña del Mar, Chile
| | - Camila Morales
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Odra Santander
- Laboratorio de Plasticidad Neuronal, Universidad de Valparaíso, Valparaíso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencias, Universidad de Valparaíso, Chile
| | - Francisca García
- Laboratorio de Plasticidad Neuronal, Universidad de Valparaíso, Valparaíso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencias, Universidad de Valparaíso, Chile
| | - Isabel Gómez
- Laboratorio de Neurogenética, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentín Peñaloza-Sancho
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Laboratorio de Neurobiología del Estrés, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Centro de Neurociencia Universidad Católica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Laboratorio de Neurobiología del Estrés, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo R Moya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Laboratorio de Neurogenética, Universidad de Valparaíso, Valparaíso, Chile
| | - Marco Fuenzalida
- Laboratorio de Plasticidad Neuronal, Universidad de Valparaíso, Valparaíso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
32
|
Comorbidities of early-onset temporal epilepsy: Cognitive, social, emotional, and morphologic dimensions. Exp Neurol 2019; 320:113005. [PMID: 31278943 DOI: 10.1016/j.expneurol.2019.113005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/16/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Epilepsy, the most common neurologic disorder in childhood, is associated with a subset of psychiatric dysfunctions, including cognitive deficits, and alterations in emotionality (e.g., anxiety and depression) and social functioning. In the present study, we evaluated an integrative set of behavioral responses, including cognitive/socio-cognitive and emotional dimensions, using a number of behavioral paradigms in the LiCl/pilocarpine model of status epilepticus (SE) in rats. The aims of the study were to examine whether SE affects: 1) non-associative learning (habituation of exploratory behavior); 2) investigatory response to an indifferent stimulus object; 3) sociability/social novelty preference; 4) social recognition or discrimination; and 4) short- and long-term memory in the Morris water maze (MWM). Finally, we investigated the morphology of key brain structures involved in the examined behavioral dysfunctions. SE did not affect habituation to an open-field arena in juvenile (P25), adolescent (P32), or adult (P80) rats. SE rats spent less time in the central part of the arena. SE adolescent rats (P32) displayed a higher number of rearings with a shorter duration. SE rats displayed a markedly attenuated investigatory response to an indifferent stimulus object. SE rats in all age groups demonstrated pronounced deficits in sociability and the preference for social novelty. In addition, SE rats spent a reduced amount of time investigating a juvenile rat upon first exposure. After 30 min re-exposure together with an additional, novel juvenile, the SE rats spent equal time investigating both juveniles. In the MWM task, acquisition was unimpaired but there was a deficit in delayed memory retention after 10 days. SE did not affect cognitive flexibility expressed by reversal learning. Together, these findings suggest that early-life SE leads to alterations in emotional/anxiety-related behavior and affects sociability/preference for social novelty and social discrimination. Early-life SE did not alter acquisition of spatial learning, but it impaired delayed retention. Using Fluoro Jade B staining performed 24 h after SE revealed apparent neurodegeneration in the dorsal hippocampus, mediodorsal thalamic nucleus and medial amygdala, brain areas that are critically involved in network underlying emotional behavior and cognitive functions.
Collapse
|
33
|
Song TJ, Lan XY, Wei MP, Zhai FJ, Boeckers TM, Wang JN, Yuan S, Jin MY, Xie YF, Dang WW, Zhang C, Schön M, Song PW, Qiu MH, Song YY, Han SP, Han JS, Zhang R. Altered Behaviors and Impaired Synaptic Function in a Novel Rat Model With a Complete Shank3 Deletion. Front Cell Neurosci 2019; 13:111. [PMID: 30971895 PMCID: PMC6444209 DOI: 10.3389/fncel.2019.00111] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/06/2019] [Indexed: 11/24/2022] Open
Abstract
Mutations within the Shank3 gene, which encodes a key postsynaptic density (PSD) protein at glutamatergic synapses, contribute to the genetic etiology of defined autism spectrum disorders (ASDs), including Phelan-McDermid syndrome (PMS) and intellectual disabilities (ID). Although there are a series of genetic mouse models to study Shank3 gene in ASDs, there are few rat models with species-specific advantages. In this study, we established and characterized a novel rat model with a deletion spanning exons 11–21 of Shank3, leading to a complete loss of the major SHANK3 isoforms. Synaptic function and plasticity of Shank3-deficient rats were impaired detected by biochemical and electrophysiological analyses. Shank3-depleted rats showed impaired social memory but not impaired social interaction behaviors. In addition, impaired learning and memory, increased anxiety-like behavior, increased mechanical pain threshold and decreased thermal sensation were observed in Shank3-deficient rats. It is worth to note that Shank3-deficient rats had nearly normal levels of the endogenous social neurohormones oxytocin (OXT) and arginine-vasopressin (AVP). This new rat model will help to further investigate the etiology and assess potential therapeutic target and strategy for Shank3-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tian-Jia Song
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Xing-Yu Lan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Meng-Ping Wei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Department of Neurobiology, Capital Medical University, Beijing, China
| | - Fu-Jun Zhai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Jia-Nan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Shuo Yuan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Meng-Ying Jin
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Yu-Fei Xie
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Wan-Wen Dang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Department of Neurobiology, Capital Medical University, Beijing, China
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Pei-Wen Song
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mei-Hong Qiu
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ya-Yue Song
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Song-Ping Han
- Wuxi HANS Health Medical Technology Co., Ltd., Wuxi, China
| | - Ji-Sheng Han
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| |
Collapse
|
34
|
Kriengwatana BP. Learning strategies and the social brain: Missing elements in the link between developmental stress, song and cognition? Integr Zool 2019; 14:158-171. [PMID: 30688022 DOI: 10.1111/1749-4877.12379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bird songs may advertise aspects of cognition because song learning and learning speed in cognitive tasks are both affected by early-life environments. However, such relationships remain ambiguous in the literature. Here, I discuss 2 lines of research that may help to demystify links between song learning and cognition. First, learning strategies should be considered when assessing performance to ensure that individual differences in learning ability are not masked by individual differences in learning strategies. Second, song characteristics should be associated with social behavior because songs have a social purpose and, consequently, should be strongly related at functional and neural levels. Finally, if song learning and cognitive abilities are correlated because they develop concurrently and/or share or compete for the same resources, I discuss ways glucocorticoids may link early-life stress, song learning and cognitive ability, focusing particularly on oxidative stress as a potential mechanism.
Collapse
|
35
|
Lee NS, Beery AK. Neural Circuits Underlying Rodent Sociality: A Comparative Approach. Curr Top Behav Neurosci 2019; 43:211-238. [PMID: 30710222 DOI: 10.1007/7854_2018_77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual's life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA.
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA. .,Department of Psychology, Smith College, Northampton, MA, USA. .,Neuroscience Program, Smith College, Northampton, MA, USA.
| |
Collapse
|
36
|
Dai YC, Zhang HF, Schön M, Böckers TM, Han SP, Han JS, Zhang R. Neonatal Oxytocin Treatment Ameliorates Autistic-Like Behaviors and Oxytocin Deficiency in Valproic Acid-Induced Rat Model of Autism. Front Cell Neurosci 2018; 12:355. [PMID: 30356897 PMCID: PMC6190900 DOI: 10.3389/fncel.2018.00355] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social communication and repetitive/stereotyped behaviors. The neuropeptide oxytocin (OXT) plays a critical role in regulating social behaviors in the central nervous system, as indicated in both human and animal studies. We hypothesized that central OXT deficit is one of causes of etiology of ASD, which may be responsible for the social impairments. To test our hypothesis, central OXT system was examined in valproic acid (VPA)-induced rat model of autism (VPA rat). Our results showed that adolescent VPA rats exhibited a lower level of OXT mRNA and fewer OXT-ir cells in the hypothalamus than control rats. Additionally, OXT concentration in cerebrospinal fluid (CSF) was reduced. The number of OXT-ir cells in the supraoptic nucleus (SON) of neonatal VPA rats was also lower. Autistic-like behaviors were observed in these animals as well. We found that an acute intranasal administration of exogenous OXT restored the social preference of adolescent VPA rats. Additionally, early postnatal OXT treatment had long-term effects ameliorating the social impairments and repetitive behaviors of VPA rats until adolescence. This was accompanied by an increase in OXT-ir cells. Taken together, we demonstrated there was central OXT deficiency in the VPA-induced rat model of autism, and showed evidence that early postnatal OXT treatment had a long-term therapeutic effect on the autistic-like behaviors in VPA rats.
Collapse
Affiliation(s)
- Yu-Chuan Dai
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hong-Feng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, China
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias M Böckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Song-Ping Han
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Wuxi HANS Health Medical Technology Co., Ltd., Wuxi, China
| | - Ji-Sheng Han
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
37
|
Provensi G, Costa A, Izquierdo I, Blandina P, Passani MB. Brain histamine modulates recognition memory: possible implications in major cognitive disorders. Br J Pharmacol 2018; 177:539-556. [PMID: 30129226 DOI: 10.1111/bph.14478] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 12/24/2022] Open
Abstract
Several behavioural tests have been developed to study and measure emotionally charged or emotionally neutral memories and how these may be affected by pharmacological, dietary or environmental manipulations. In this review, we describe the experimental paradigms used in preclinical studies to unravel the brain circuits involved in the recognition and memorization of environmentally salient stimuli devoid of strong emotional value. In particular, we focus on the modulatory role of the brain histaminergic system in the elaboration of recognition memory that is based on the judgement of the prior occurrence of an event, and it is believed to be a critical component of human declarative memory. The review also addresses questions that may help improve the treatment of impaired declarative memory described in several affective and neuropsychiatric disorders such as ADHD, Alzheimer's disease and major neurocognitive disorder. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Costa
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrizio Blandina
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Beatrice Passani
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Rubio L, Téllez L, Regalado M, Torrero C, Salas M. Effects of perinatal undernutrition on social transmission of food preference in adult male Wistar rats. Int J Dev Neurosci 2018; 71:105-110. [PMID: 30149118 DOI: 10.1016/j.ijdevneu.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Nutrition plays a fundamental role in learning and memory, and early experimental undernutrition interferes with brain memory processes. Social transmission of food preference (STFP) is a natural olfactory paired-associate learning test that has not been used to assess the effects of early undernutrition on memory consolidation. Male Wistar rats were randomly divided into two groups: control and early undernourished. The underfed rats received different percentages of a balanced diet during gestation. After birth, pups were underfed by alternating every 12 h between two lactating dams, one with ligated nipples. Weaning occurred on PD 25 followed by an ad lib diet until PD 90. Demonstrator rats were given powdered food mixed with cinnamon, followed by a 30-min interaction with an underfed observer. Thereafter, the observer had two choices of food: cinnamon or cocoa. During the food preference test, control and underfed OBS rats preferred the food containing cinnamon. Through social interaction, the UG OBS rats showed latency for head contacts and oral-nasal investigation was higher in the underfed rats; only head contacts and oral-nasal investigation frequency was lower; with the duration lower, but oral-nasal investigation duration was higher (p < 0.05). In the preference phase, the OBS underfed rat latencies for both stimuli were prolonged, the frequency lower only for cocoa, and the duration lower for cinnamon but higher for cocoa (p < 0.05). Findings suggested that early undernutrition interfered with the attentive social transmission to take a decision during the preference phase, but not with the short-term memory consolidation of social food preference.
Collapse
Affiliation(s)
- Lorena Rubio
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Laura Téllez
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Mirelta Regalado
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Carmen Torrero
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Manuel Salas
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
39
|
Buccino AP, Lepperød ME, Dragly SA, Häfliger P, Fyhn M, Hafting T. Open source modules for tracking animal behavior and closed-loop stimulation based on Open Ephys and Bonsai. J Neural Eng 2018; 15:055002. [DOI: 10.1088/1741-2552/aacf45] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Ujjainwala AL, Courtney CD, Rhoads SG, Rhodes JS, Christian CA. Genetic loss of diazepam binding inhibitor in mice impairs social interest. GENES BRAIN AND BEHAVIOR 2017; 17:e12442. [PMID: 29193847 DOI: 10.1111/gbb.12442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 01/21/2023]
Abstract
Neuropsychiatric disorders in which reduced social interest is a common symptom, such as autism, depression, and anxiety, are frequently associated with genetic mutations affecting γ-aminobutyric acid (GABA)ergic transmission. Benzodiazepine treatment, acting via GABA type-A receptors, improves social interaction in male mouse models with autism-like features. The protein diazepam binding inhibitor (DBI) can act as an endogenous benzodiazepine, but a role for DBI in social behavior has not been described. Here, we investigated the role of DBI in the social interest and recognition behavior of mice. The responses of DBI wild-type and knockout male and female mice to ovariectomized female wild-type mice (a neutral social stimulus) were evaluated in a habituation/dishabituation task. Both male and female knockout mice exhibited reduced social interest, and DBI knockout mice lacked the sex difference in social interest levels observed in wild-type mice, in which males showed higher social interest levels than females. The ability to discriminate between familiar and novel stimulus mice (social recognition) was not impaired in DBI-deficient mice of either sex. DBI knockouts could learn a rotarod motor task, and could discriminate between social and nonsocial odors. Both sexes of DBI knockout mice showed increased repetitive grooming behavior, but not in a manner that would account for the decrease in social investigation time. Genetic loss of DBI did not alter seminal vesicle weight, indicating that the social interest phenotype of males lacking DBI is not due to reduced circulating testosterone. Together, these studies show a novel role of DBI in driving social interest and motivation.
Collapse
Affiliation(s)
- A L Ujjainwala
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - C D Courtney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - S G Rhoads
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - J S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - C A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
41
|
Lasting Adaptations in Social Behavior Produced by Social Disruption and Inhibition of Adult Neurogenesis. J Neurosci 2017; 36:7027-38. [PMID: 27358459 DOI: 10.1523/jneurosci.4435-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/16/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Research on social instability has focused on its detrimental consequences, but most people are resilient and respond by invoking various coping strategies. To investigate cellular processes underlying such strategies, a dominance hierarchy of rats was formed and then destabilized. Regardless of social position, rats from disrupted hierarchies had fewer new neurons in the hippocampus compared with rats from control cages and those from stable hierarchies. Social disruption produced a preference for familiar over novel conspecifics, a change that did not involve global memory impairments or increased anxiety. Using the neuropeptide oxytocin as a tool to increase neurogenesis in the hippocampus of disrupted rats restored preference for novel conspecifics to predisruption levels. Conversely, reducing the number of new neurons by limited inhibition of adult neurogenesis in naive transgenic GFAP-thymidine kinase rats resulted in social behavior similar to disrupted rats. Together, these results provide novel mechanistic evidence that social disruption shapes behavior in a potentially adaptive way, possibly by reducing adult neurogenesis in the hippocampus. SIGNIFICANCE STATEMENT To investigate cellular processes underlying adaptation to social instability, a dominance hierarchy of rats was formed and then destabilized. Regardless of social position, rats from disrupted hierarchies had fewer new neurons in the hippocampus compared with rats from control cages and those from stable hierarchies. Unexpectedly, these changes were accompanied by changes in social strategies without evidence of impairments in cognition or anxiety regulation. Restoring adult neurogenesis in disrupted rats using oxytocin and conditionally suppressing the production of new neurons in socially naive GFAP-thymidine kinase rats showed that loss of 6-week-old neurons may be responsible for adaptive changes in social behavior.
Collapse
|
42
|
Sawangjit A, Kelemen E, Born J, Inostroza M. Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context. Front Behav Neurosci 2017; 11:28. [PMID: 28270755 PMCID: PMC5319304 DOI: 10.3389/fnbeh.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered.
Collapse
Affiliation(s)
- Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Eduard Kelemen
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; National Institute of Mental HealthKlecany, Czechia
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM)Tübingen, Germany; Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; Departamento de Psicología, Universidad de ChileSantiago, Chile
| |
Collapse
|
43
|
Williamson CM, Franks B, Curley JP. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression. Front Behav Neurosci 2016; 10:152. [PMID: 27540359 PMCID: PMC4972826 DOI: 10.3389/fnbeh.2016.00152] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression.
Collapse
Affiliation(s)
| | - Becca Franks
- Department of Psychology, Columbia University, New York, NYUSA; Animal Welfare Program, Land and Food Systems, University of British Columbia, Vancouver, BCCanada
| | - James P Curley
- Department of Psychology, Columbia University, New York, NYUSA; Center for Integrative Animal Behavior, Columbia University, New York, NYUSA
| |
Collapse
|
44
|
Koss DJ, Robinson L, Drever BD, Plucińska K, Stoppelkamp S, Veselcic P, Riedel G, Platt B. Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol Dis 2016; 91:105-23. [PMID: 26949217 DOI: 10.1016/j.nbd.2016.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022] Open
Abstract
Models of Tau pathology related to frontotemporal dementia (FTD) are essential to determine underlying neurodegenerative pathologies and resulting tauopathy relevant behavioural changes. However, existing models are often limited in their translational value due to Tau overexpression, and the frequent occurrence of motor deficits which prevent comprehensive behavioural assessments. In order to address these limitations, a forebrain-specific (CaMKIIα promoter), human mutated Tau (hTauP301L+R406W) knock-in mouse was generated out of the previously characterised PLB1Triple mouse, and named PLB2Tau. After confirmation of an additional hTau species (~60kDa) in forebrain samples, we identified age-dependent progressive Tau phosphorylation which coincided with the emergence of FTD relevant behavioural traits. In line with the non-cognitive symptomatology of FTD, PLB2Tau mice demonstrated early emerging (~6months) phenotypes of heightened anxiety in the elevated plus maze, depressive/apathetic behaviour in a sucrose preference test and generally reduced exploratory activity in the absence of motor impairments. Investigations of cognitive performance indicated prominent dysfunctions in semantic memory, as assessed by social transmission of food preference, and in behavioural flexibility during spatial reversal learning in a home cage corner-learning task. Spatial learning was only mildly affected and task-specific, with impairments at 12months of age in the corner learning but not in the water maze task. Electroencephalographic (EEG) investigations indicated a vigilance-stage specific loss of alpha power during wakefulness at both parietal and prefrontal recording sites, and site-specific EEG changes during non-rapid eye movement sleep (prefrontal) and rapid eye movement sleep (parietal). Further investigation of hippocampal electrophysiology conducted in slice preparations indicated a modest reduction in efficacy of synaptic transmission in the absence of altered synaptic plasticity. Together, our data demonstrate that the transgenic PLB2Tau mouse model presents with a striking behavioural and physiological face validity relevant for FTD, driven by the low level expression of mutant FTD hTau.
Collapse
Affiliation(s)
- David J Koss
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Benjamin D Drever
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kaja Plucińska
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sandra Stoppelkamp
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter Veselcic
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Bettina Platt
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
45
|
de Bruin NMWJ, Schmitz K, Schiffmann S, Tafferner N, Schmidt M, Jordan H, Häußler A, Tegeder I, Geisslinger G, Parnham MJ. Multiple rodent models and behavioral measures reveal unexpected responses to FTY720 and DMF in experimental autoimmune encephalomyelitis. Behav Brain Res 2015; 300:160-74. [PMID: 26692368 DOI: 10.1016/j.bbr.2015.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a widely-used rodent model for multiple sclerosis (MS), but a single model can hardly capture all features of MS. We investigated whether behavioral parameters in addition to clinical motor function scores could be used to assess treatment efficacy during score-free intervals in the relapsing-remitting EAE model in SJL/J mice. We studied the effects of the clinical reference compounds FTY720 (fingolimod, 0.5mg/kg/day) and dimethyl fumarate (DMF, 20-30 mg/kg/day) on clinical scores in several rodent EAE models in order to generate efficacy profiles. SJL/J mice with relapsing-remitting EAE were studied using behavioral tests, including rotarod, gait analysis, locomotor activity and grip strength. SJL/J mice were also examined according to Crawley's sociability and preference for social novelty test. Prophylactic treatment with FTY720 prevented clinical scores in three of the four EAE rodent models: Dark Agouti (DA) and Lewis rats and C57BL/6J mice. Neither prophylactic nor late-therapeutic treatment with FTY720 reduced clinical scores or reversed deficits in the rotarod test in SJL/J mice, but we observed effects on motor functions and sociability in the absence of clinical scores. Prophylactic treatment with FTY720 improved the gait of SJL/J mice whereas late-therapeutic treatment improved manifestations of reduced social (re)cognition or preference for social novelty. DMF was tested in three EAE models and did not improve clinical scores at the dose used. These data indicate that improvements in behavioral deficits can occur in absence of clinical scores, which indicate subtle drug effects and may have translational value for human MS.
Collapse
Affiliation(s)
- N M W J de Bruin
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - K Schmitz
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - S Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - N Tafferner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - M Schmidt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - H Jordan
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - A Häußler
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - I Tegeder
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - G Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - M J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
46
|
Gilman TL, DaMert JP, Meduri JD, Jasnow AM. Grin1 deletion in CRF neurons sex-dependently enhances fear, sociability, and social stress responsivity. Psychoneuroendocrinology 2015; 58:33-45. [PMID: 25938741 DOI: 10.1016/j.psyneuen.2015.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
The corticotropin releasing factor (CRF) system plays a critical role in responses to stressful stimuli, and is expressed in many areas of the brain involved in processing fear, anxiety, and social behaviors. To better understand the mechanisms by which the CRF system modulates responses to stressful events and social stimuli, we employed a mouse model that selectively disrupts NMDA receptor function via NMDA receptor subunit NR1 (Grin1) knockout specifically in Cre-expressing CRF neurons. These animals (Cre+/(fGrin1+)) were compared with littermates lacking Cre expression (Cre-/(fGrin1+)). Following cue discrimination fear conditioning, male Cre+/(fGrin1+) mice showed increased fear expression to the tone paired with a foot shock (CS+) while still discriminating the CS+ from a tone never paired with a foot shock (CS-). In contrast to males, female mice learned and discriminated fear cues equivalently across the genotypes. Similarly, no genotype differences in sociability or social novelty were observed in female mice, but Cre+/(fGrin1+) males displayed greater naive sociability and preference for social novelty than Cre-/(fGrin1+) littermates. Furthermore, the level of social withdrawal exhibited by male Cre+/(fGrin1+) mice susceptible to social defeat stress relative to same genotype controls was significantly more pronounced than that displayed by susceptible Cre-/(fGrin1+) mice compared to control Cre-/(fGrin1+) mice. Together, these results demonstrate increased fear, social, and stress responsiveness specifically in male Cre+/(fGrin1+) mice. Our findings indicate that NMDA-mediated glutamatergic regulation of CRF neurons is important for appropriately regulating fear and social responses, likely functioning to promote survival under aversive circumstances.
Collapse
Affiliation(s)
- T Lee Gilman
- Department of Psychological Sciences, Kent State University, Kent, 44242, OH, USA.
| | - Jeffrey P DaMert
- Department of Psychological Sciences, Kent State University, Kent, 44242, OH, USA.
| | - Jeremy D Meduri
- Department of Psychological Sciences, Kent State University, Kent, 44242, OH, USA.
| | - Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, 44242, OH, USA.
| |
Collapse
|
47
|
Jacobs S, Wei W, Wang D, Tsien JZ. Importance of the GluN2B carboxy-terminal domain for enhancement of social memories. ACTA ACUST UNITED AC 2015; 22:401-10. [PMID: 26179233 PMCID: PMC4509920 DOI: 10.1101/lm.038521.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is known to be necessary for many forms of learning and memory, including social recognition memory. Additionally, the GluN2 subunits are known to modulate multiple forms of memory, with a high GluN2A:GluN2B ratio leading to impairments in long-term memory, while a low GluN2A:GluN2B ratio enhances some forms of long-term memory. Here, we investigate the molecular motif responsible for the differences in social recognition memory and olfactory memory in the forebrain-specific transgenic GluN2A overexpression mice and the forebrain-specific transgenic GluN2B overexpression mice by using two transgenic mouse lines that overexpress chimeric GluN2 subunits. The transgenic chimeric GluN2 subunit mice were tested for their ability to learn and remember fruit scents, male juveniles of the same strain, females of the same strain, male juveniles of another strain, and rodents of another species. The data presented here demonstrate that the GluN2B carboxy-terminal domain is necessary for enhanced social recognition memory in GluN2B transgenic overexpression mice. Furthermore, the GluN2A carboxy-terminal domain is responsible for the impaired long-term olfactory and social memory observed in the GluN2A overexpression mice.
Collapse
Affiliation(s)
- Stephanie Jacobs
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30907, USA
| | - Wei Wei
- Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province, 666100, China
| | - Deheng Wang
- Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province, 666100, China
| | - Joe Z Tsien
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30907, USA
| |
Collapse
|
48
|
Yoshimi N, Futamura T, Hashimoto K. Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin-dopamine activity modulator. Eur Neuropsychopharmacol 2015; 25:356-64. [PMID: 25600995 DOI: 10.1016/j.euroneuro.2014.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/30/2014] [Accepted: 12/24/2014] [Indexed: 12/11/2022]
Abstract
Cognitive impairment, including impaired social cognition, is largely responsible for the deterioration in social life suffered by patients with psychiatric disorders, such as schizophrenia and major depressive disorder (MDD). Brexpiprazole (7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one), a novel serotonin-dopamine activity modulator, was developed to offer efficacious and tolerable therapy for different psychiatric disorders, including schizophrenia and adjunctive treatment of MDD. In this study, we investigated whether brexpiprazole could improve social recognition deficits (one of social cognition deficits) in mice, after administration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine). Dosing with dizocilpine (0.1mg/kg) induced significant impairment of social recognition in mice. Brexpiprazole (0.01, 0.03, 0.1mg/kg, p.o.) significantly ameliorated dizocilpine-induced social recognition deficits, without sedation or a reduction of exploratory behavior. In addition, brexpiprazole alone had no effect on social recognition in untreated control mice. By contrast, neither risperidone (0.03mg/kg, p.o.) nor olanzapine (0.03mg/kg, p.o.) altered dizocilpine-induced social recognition deficits. Finally, the effect of brexpiprazole on dizocilpine-induced social recognition deficits was antagonized by WAY-100,635, a selective serotonin 5-HT1A antagonist. These results suggest that brexpiprazole could improve dizocilpine-induced social recognition deficits via 5-HT1A receptor activation in mice. Therefore, brexpiprazole may confer a beneficial effect on social cognition deficits in patients with psychiatric disorders.
Collapse
Affiliation(s)
- Noriko Yoshimi
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan; Qs׳ Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takashi Futamura
- Qs׳ Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
49
|
de Esch C, van den Berg W, Buijsen R, Jaafar I, Nieuwenhuizen-Bakker I, Gasparini F, Kushner S, Willemsen R. Fragile X mice have robust mGluR5-dependent alterations of social behaviour in the Automated Tube Test. Neurobiol Dis 2015; 75:31-9. [DOI: 10.1016/j.nbd.2014.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
|
50
|
Nosjean A, Cressant A, de Chaumont F, Olivo-Marin JC, Chauveau F, Granon S. Acute stress in adulthood impoverishes social choices and triggers aggressiveness in preclinical models. Front Behav Neurosci 2015; 8:447. [PMID: 25610381 PMCID: PMC4285129 DOI: 10.3389/fnbeh.2014.00447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/10/2014] [Indexed: 11/13/2022] Open
Abstract
Adult C57BL/6J mice are known to exhibit high level of social flexibility while mice lacking the β2 subunit of nicotinic receptors (β2(-/-) mice) present social rigidity. We asked ourselves what would be the consequences of a restraint acute stress (45 min) on social interactions in adult mice of both genotypes, hence the contribution of neuronal nicotinic receptors in this process. We therefore dissected social interaction complexity of stressed and not stressed dyads of mice in a social interaction task. We also measured plasma corticosterone levels in our experimental conditions. We showed that a single stress exposure occurring in adulthood reduced and disorganized social interaction complexity in both C57BL/6J and β2(-/-) mice. These stress-induced maladaptive social interactions involved alteration of distinct social categories and strategies in both genotypes, suggesting a dissociable impact of stress depending on the functioning of the cholinergic nicotinic system. In both genotypes, social behaviors under stress were coupled to aggressive reactions with no plasma corticosterone changes. Thus, aggressiveness appeared a general response independent of nicotinic function. We demonstrate here that a single stress exposure occurring in adulthood is sufficient to impoverish social interactions: stress impaired social flexibility in C57BL/6J mice whereas it reinforced β2(-/-) mice behavioral rigidity.
Collapse
Affiliation(s)
- Anne Nosjean
- Centre de Neuroscience Paris Sud, Université Paris Sud 11 and Centre National de la Recherche Scientifique UMR 8195 Orsay, France
| | - Arnaud Cressant
- Centre de Neuroscience Paris Sud, Université Paris Sud 11 and Centre National de la Recherche Scientifique UMR 8195 Orsay, France
| | - Fabrice de Chaumont
- Unité d'Analyse d'Images Quantitative, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582 Paris, France
| | - Jean-Christophe Olivo-Marin
- Unité d'Analyse d'Images Quantitative, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582 Paris, France
| | - Frédéric Chauveau
- Institut de Recherche Biomédicale des Armées, NCO, Unité NPS Brétigny-sur-Orge, France
| | - Sylvie Granon
- Centre de Neuroscience Paris Sud, Université Paris Sud 11 and Centre National de la Recherche Scientifique UMR 8195 Orsay, France
| |
Collapse
|