1
|
Pakula A, El Nagar S, Bayin NS, Christensen JB, Stephen DN, Reid AJ, Koche R, Joyner AL. An increase in reactive oxygen species underlies neonatal cerebellum repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618368. [PMID: 39464104 PMCID: PMC11507802 DOI: 10.1101/2024.10.14.618368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The neonatal mouse cerebellum shows remarkable regenerative potential upon injury at birth, wherein a subset of Nestin-expressing progenitors (NEPs) undergoes adaptive reprogramming to replenish granule cell progenitors that die. Here, we investigate how the microenvironment of the injured cerebellum changes upon injury and contributes to the regenerative potential of normally gliogenic-NEPs and their adaptive reprogramming. Single cell transcriptomic and bulk chromatin accessibility analyses of the NEPs from injured neonatal cerebella compared to controls show a temporary increase in cellular processes involved in responding to reactive oxygen species (ROS), a known damage-associated molecular pattern. Analysis of ROS levels in cerebellar tissue confirm a transient increased one day after injury at postanal day 1, overlapping with the peak cell death in the cerebellum. In a transgenic mouse line that ubiquitously overexpresses human mitochondrial catalase (mCAT), ROS is reduced 1 day after injury to the granule cell progenitors, and we demonstrate that several steps in the regenerative process of NEPs are curtailed leading to reduced cerebellar growth. We also provide evidence that microglia are involved in one step of adaptive reprogramming by regulating NEP replenishment of the granule cell precursors. Collectively, our results highlight that changes in the tissue microenvironment regulate multiple steps in adaptative reprogramming of NEPs upon death of cerebellar granule cell progenitors at birth, highlighting the instructive roles of microenvironmental signals during regeneration of the neonatal brain.
Collapse
|
2
|
Fabbri M, Pizzini B, Beracci A, Martoni M. Time consciousness: Silence, mindfulness, and subjective time perception. PROGRESS IN BRAIN RESEARCH 2024; 287:191-215. [PMID: 39097353 DOI: 10.1016/bs.pbr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Although recent theories of consciousness have emerged to define what consciousness is, an under-represented aspect within this field remains: time consciousness. However, the subjective passage of time is modulated by changing experiences within different situational contexts and by self-awareness. The experience of silence influences our awareness of self, space, and time, and it impacts on psychological well-being. The present review describes how self and time are influenced by different situations of silence (pure silence indoors and outdoors, the "just thinking" situation, and the combination of silence with deep relaxation). Also, the changes in time experience during a "forced" waiting situation due to the COVID-19 lockdown are presented in order to highlight the role of boredom in waiting situations and in situations in which we are alone with "our thoughts." Finally, in the context of the importance of creating silence through meditation practices, the alterations to one's sense of self and time during mindfulness meditation are reviewed. These studies are discussed within the framework of the cognitive models of prospective time perception, such as the attentional-gate model and the model of self-regulation and self-awareness.
Collapse
Affiliation(s)
- Marco Fabbri
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy.
| | | | - Alessia Beracci
- Department of Psychology Renzo Canestrari, University of Bologna, Bologna, Italy.
| | - Monica Martoni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Malatesta G, D'Anselmo A, Prete G, Lucafò C, Faieta L, Tommasi L. The Predictive Role of the Posterior Cerebellum in the Processing of Dynamic Emotions. CEREBELLUM (LONDON, ENGLAND) 2024; 23:545-553. [PMID: 37285048 PMCID: PMC10951036 DOI: 10.1007/s12311-023-01574-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Recent studies have bolstered the important role of the cerebellum in high-level socio-affective functions. In particular, neuroscientific evidence shows that the posterior cerebellum is involved in social cognition and emotion processing, presumably through its involvement in temporal processing and in predicting the outcomes of social sequences. We used cerebellar transcranial random noise stimulation (ctRNS) targeting the posterior cerebellum to affect the performance of 32 healthy participants during an emotion discrimination task, including both static and dynamic facial expressions (i.e., transitioning from a static neutral image to a happy/sad emotion). ctRNS, compared to the sham condition, significantly reduced the participants' accuracy to discriminate static sad facial expressions, but it increased participants' accuracy to discriminate dynamic sad facial expressions. No effects emerged with happy faces. These findings may suggest the existence of two different circuits in the posterior cerebellum for the processing of negative emotional stimuli: a first-time-independent mechanism which can be selectively disrupted by ctRNS, and a second time-dependent mechanism of predictive "sequence detection" which can be selectively enhanced by ctRNS. This latter mechanism might be included among the cerebellar operational models constantly engaged in the rapid adjustment of social predictions based on dynamic behavioral information inherent to others' actions. We speculate that it might be one of the basic principles underlying the understanding of other individuals' social and emotional behaviors during interactions.
Collapse
Affiliation(s)
- Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Anita D'Anselmo
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Chiara Lucafò
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Letizia Faieta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Huggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Dennis EL, Tate DF, Cifu DX, Walker WC, Wilde EA, Harding IH, Kerestes R, Thompson PM, Morey R. Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: a mega-analysis by the ENIGMA-PGC PTSD workgroup. Mol Psychiatry 2024; 29:611-623. [PMID: 38195980 PMCID: PMC11153161 DOI: 10.1038/s41380-023-02352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.
Collapse
Grants
- R01 MH105535 NIMH NIH HHS
- WA 1539/8-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- UL1TR000454 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- K01MH118467 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- IK2 RX000709 RRD VA
- R01MH106574 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002172 RRD VA
- K23MH090366 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH105535 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- P41 EB015922 NIBIB NIH HHS
- I01 RX002174 RRD VA
- W81XWH-10-1-0925 U.S. Department of Defense (United States Department of Defense)
- R56 MH071537 NIMH NIH HHS
- 20ZDA079 National Natural Science Foundation of China (National Science Foundation of China)
- P30 HD003352 NICHD NIH HHS
- K01 MH122774 NIMH NIH HHS
- I01 RX003444 RRD VA
- IK2 RX002922 RRD VA
- 31971020 National Natural Science Foundation of China (National Science Foundation of China)
- R21 MH098212 NIMH NIH HHS
- R01 MH113574 NIMH NIH HHS
- K12 HD085850 NICHD NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 1IK2CX001680 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R01 MH071537 NIMH NIH HHS
- R21 MH106998 NIMH NIH HHS
- I01 RX003442 RRD VA
- IK2 CX001680 CSRD VA
- R01 AG064955 NIA NIH HHS
- HD071982 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- MH098212 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 14848 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- I01 CX001135 CSRD VA
- 1IK2RX000709 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R21 MH112956 NIMH NIH HHS
- W81XWH-08-2-0038 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- K01 MH118428 NIMH NIH HHS
- HD085850 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01 MH105355 NIMH NIH HHS
- M01 RR000039 NCRR NIH HHS
- I01 RX003443 RRD VA
- R01 MH111671 NIMH NIH HHS
- R01 MH106574 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- 1K2RX002922 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- I01 RX001880 RRD VA
- K01MH122774 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX000622 RRD VA
- R01MH111671 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002171 RRD VA
- R21MH098198 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 HX003155 HSRD VA
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- I01 RX001774 RRD VA
- R01AG050595 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- I01 CX002097 CSRD VA
- I01 RX002076 RRD VA
- R01 MH119227 NIMH NIH HHS
- SFB/TRR 58: C06, C07 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R21MH106998 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U21A20364 National Natural Science Foundation of China (National Science Foundation of China)
- R01MH117601 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- BK20221554 Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
- UL1 TR000454 NCATS NIH HHS
- R01 MH107382 NIMH NIH HHS
- I01 CX001246 CSRD VA
- R01MH105355 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R56 AG058854 NIA NIH HHS
- R01MH107382 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R21MH112956 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 40-00812-98-10041 ZonMw (Netherlands Organisation for Health Research and Development)
- T32 MH018931 NIMH NIH HHS
- R01 AG076838 NIA NIH HHS
- K23 MH101380 NIMH NIH HHS
- R21 MH102634 NIMH NIH HHS
- K01MH118428 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01 MH043454 NIMH NIH HHS
- I01 RX002170 RRD VA
- MH071537 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01 HD071982 NICHD NIH HHS
- K23 MH090366 NIMH NIH HHS
- I01 RX002173 RRD VA
- R61 NS120249 NINDS NIH HHS
- R61NS120249 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- I01RX000622 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- 27040 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- W81XWH-12-2-0012 U.S. Department of Defense (United States Department of Defense)
- K01 MH118467 NIMH NIH HHS
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- P50 U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
- R01AG059874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- MH101380 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX001135 RRD VA
- DA 1222/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 MH096987 NIMH NIH HHS
- 1184403 Department of Health | National Health and Medical Research Council (NHMRC)
- R01MH110483 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH096987 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH119227 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R21MH102634 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01AG022381 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01 AG022381 NIA NIH HHS
- R01 AG050595 NIA NIH HHS
- R01 AG059874 NIA NIH HHS
- VA Mid-Atlantic MIRECC
- Michael J. Fox Foundation for Parkinson’s Research (Michael J. Fox Foundation)
- Amsterdam Academic Medical Center grant
- South African Medical Research Council (SAMRC)
- Ghent University Special Research Fund (BOF) 01J05415
- Julia Kasparian Fund for Neuroscience Research
- McLean Hospital Trauma Scholars Fund, Barlow Family Fund, Julia Kasparian Fund for Neuroscience Research
- Foundation for the Social Development Project of Jiangsu No. BE2022705
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor’s Research Center Grant
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor ’s Research Center Grant
- Fondation Pierre Deniker pour la Recherche et la Prévention en Santé Mentale (Fondation Pierre Deniker pour la Recherche & la Prévention en Santé Mentale)
- PHRC, SFR FED4226
- Dana Foundation (Charles A. Dana Foundation)
- UW | Institute for Clinical and Translational Research, University of Wisconsin, Madison (UW Institute for Clinical and Translational Research)
- National Science Foundation (NSF)
- US VA VISN17 Center of Excellence Pilot funding
- VA National Center for PTSD, Beth K and Stuart Yudofsky Chair in the Neuropsychiatry of Military Post Traumatic Stress Syndrome
- US VA National Center for PTSD, NCATS
- This work was supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense, through the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC) Award/W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095, and by the U.S. Department of Veterans Affairs Awards No. I01 CX002097, I01 CX002096, I01 CX001820, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170. The U.S. Army Medical Research Acquisition Activity, 839 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
- HFP90-020
- VA VISN6 MIRECC
Collapse
Affiliation(s)
- Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Melvin Briggs
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Sarah Laskowitz
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Ahmed Hussain
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Samar Fouda
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, Duke School of Medicine, Durham, NC, USA
| | - Courtney Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dick J Veltman
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jessie L Frijling
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda Olff
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawjin
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Global Health Equity, New York University Shanghai, Shanghai, China
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Amit Lazarov
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Isreal Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, Texas, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Disaster Mental Health Institute, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Wissam El-Hage
- UMR1253, Université de Tours, Inserm, Tours, France
- CIC1415, CHRU de Tours, Inserm, Tours, France
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | - Marisa Ross
- Northwestern Neighborhood and Network Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carissa W Tomas
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Epidemiology and Social Sciences, Institute of Health and Equity, Medical College of Wisconsin Milwaukee, Milwaukee, WI, USA
| | | | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine, Neuroscience and Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
- Departments of Psychiatry and of Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Veterans Affairs (VA) Richmond Health Care, Richmond, VA, USA
| | - Elizabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Vic, Australia
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| |
Collapse
|
5
|
He L, Guo QF, Hu Y, Tan HX, Chen Y, Wang CH, Zhou TY, Gao Q. Bibliometric and visualised analysis on non-invasive cerebellar stimulation from 1995 to 2021. Front Neurosci 2023; 17:1047238. [PMID: 37065918 PMCID: PMC10102618 DOI: 10.3389/fnins.2023.1047238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundThe non-invasive cerebellar stimulation (NICS) is a neural modulation technique, which shows the therapeutic and diagnostic potentials for rehabilitating brain functions in neurological or psychiatric diseases. There is a rapid growth in the clinical research related to NICS in recent years. Hence, we applied a bibliometric approach to analyze the current status, the hot spots, and the trends of NICS visually and systematically.MethodsWe searched the NICS publications from the Web of Science (Wos) between 1995 and 2021. Both VOSviewer (1.6.18) and Citespace (Version 6.1.2) software were used to generate the co-occurrence or co-cited network maps about the authors, institutions, countries, journals, and keywords.ResultsA total of 710 articles were identified in accordance with our inclusion criteria. The linear regression analysis shows a statistical increase in the number of publications per year on NICS research over time (p < 0.001). The Italy and University College London ranked the first in this field with 182 and 33 publications, respectively. Koch, Giacomo was the most prolific author (36 papers). The journal of Cerebellum, Brain stimulation and Clinical neurophysiology were the most three productive journals to publish NICS-related articles.ConclusionOur findings provide the useful information regarding to the global trends and frontiers in NICS field. Hot topic was focused on the interaction between the transcranial direct current stimulation and functional connectivity in the brain. It could guide the future research and clinical application of NICS.
Collapse
Affiliation(s)
- Lin He
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Fan Guo
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Hu
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hui-Xin Tan
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Chen
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-Han Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tian-Yu Zhou
- MSk Lab, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Qiang Gao
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiang Gao
| |
Collapse
|
6
|
Wessel MJ, Draaisma LR, Hummel FC. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:120-128. [PMID: 35060078 DOI: 10.1007/s12311-021-01362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland. .,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland. .,Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
7
|
Ponce GV, Klaus J, Schutter DJLG. A Brief History of Cerebellar Neurostimulation. CEREBELLUM (LONDON, ENGLAND) 2022; 21:715-730. [PMID: 34403075 PMCID: PMC9325826 DOI: 10.1007/s12311-021-01310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/28/2022]
Abstract
The first attempts at using electric stimulation to study human brain functions followed the experiments of Luigi Galvani and Giovanni Aldini on animal electricity during the eighteenth century. Since then, the cerebellum has been among the areas that have been studied by invasive and non-invasive forms of electrical and magnetic stimulation. During the nineteenth century, animal experiments were conducted to map the motor-related regions of cerebellar cortex by means of direct electric stimulation. As electric stimulation research on the cerebellum moved into the twentieth century, systematic research of electric cerebellar stimulation led to a better understanding of its effects and mechanism of action. In addition, the clinical potential of cerebellar stimulation in the treatment of motor diseases started to be explored. With the introduction of transcranial electric and magnetic stimulation, cerebellar research moved to non-invasive techniques. During the twenty-first century, following on groundbreaking research that linked the cerebellum to non-motor functions, non-invasive techniques have facilitated research into different aspects of cerebellar functioning. The present review provides a brief historical account of cerebellar neurostimulation and discusses current challenges and future direction in this field of research.
Collapse
Affiliation(s)
- Gustavo V Ponce
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Baumann O, Mattingley JB. Cerebellum and Emotion Processing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:25-39. [DOI: 10.1007/978-3-030-99550-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Cerebellum and Neurorehabilitation in Emotion with a Focus on Neuromodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:285-299. [DOI: 10.1007/978-3-030-99550-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Poh L, Razak SMBA, Lim HM, Lai MKP, Chen CLH, Lim LHK, Arumugam TV, Fann DY. AIM2 inflammasome mediates apoptotic and pyroptotic death in the cerebellum following chronic hypoperfusion. Exp Neurol 2021; 346:113856. [PMID: 34474007 DOI: 10.1016/j.expneurol.2021.113856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Vascular dementia (VaD) is the second most common form of dementia and is caused by vascular pathologies resulting in chronic cerebral hypoperfusion (CCH)- induced brain injury, and ultimately cognitive impairment and memory loss. Several lines of evidence have demonstrated chronic inflammation may be involved in VaD disease progression. It is now recognized that a major contributor to cerebral and systemic chronic inflammation involves the activation of innate immune molecular complexes termed inflammasomes. Whilst previous studies on animal models of VaD have focused on the cortex, hippocampus and striatum, few studies have investigated the effect of CCH on the cerebellum. Emerging studies have found new roles of the cerebellum in cognition, based on its structural interconnectivity with other brain regions and clinical relevance in neuropsychological deficits. In the present study, we conducted our investigation on the cerebellum using a CCH mouse model of VaD following bilateral common carotid artery stenosis (BCAS). This study is the first to characterize an increased expression of inflammasome receptors, adaptor and effector proteins, markers of inflammasome activation, proinflammatory cytokines, and apoptotic and pyroptotic cell death proteins in the cerebellum following CCH. Furthermore, in AIM2 knockout mice, we observed attenuated inflammasome-mediated production of proinflammatory cytokines, apoptosis, and pyroptosis in the cerebellum following CCH. Collectively, our findings provide novel evidence that AIM2 inflammasome activation promotes apoptosis and pyroptosis in the cerebellum following chronic hypoperfusion in a mouse model of VaD.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Hong Meng Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia.
| | - David Y Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
11
|
Gatti D, Rinaldi L, Cristea I, Vecchi T. Probing cerebellar involvement in cognition through a meta-analysis of TMS evidence. Sci Rep 2021; 11:14777. [PMID: 34285287 PMCID: PMC8292349 DOI: 10.1038/s41598-021-94051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Traditionally, the cerebellum has been linked to motor coordination, but growing evidence points to its involvement in a wide range of non-motor functions. Though the number of studies using transcranial magnetic stimulation (TMS) to investigate cerebellar involvement in cognitive processes is growing exponentially, these findings have not yet been synthesized in a meta-analysis. Here, we used meta-analysis to estimate the effects of cerebellar TMS on performance in cognitive tasks for healthy participants. Outcomes included participants' accuracy and response times (RTs) of several non-motor tasks performed either during or after the administration of TMS. We included overall 41 studies, of which 44 single experiments reported effects on accuracy and 41 on response times (RTs). The meta-analyses showed medium effect sizes (for accuracy: d = 0.61 [95% CI = 0.48, .073]; for RTs: d = 0.40 [95% CI = 0.30, 0.49]), with leave-one-out analyses indicating that cumulative effects were robust, and with moderate heterogeneity. For both accuracy and RTs, the effect of TMS was moderated by the stimulation paradigm adopted but not by the cognitive function investigated, while the timing of the stimulation moderated only the effects on RTs. Further analyses on lateralization revealed no moderation effects of the TMS site. Taken together, these findings indicate that TMS administered over the cerebellum is able to modulate cognitive performance, affecting accuracy or RTs, and suggest that the various stimulation paradigms play a key role in determining the efficacy of cerebellar TMS.
Collapse
Affiliation(s)
- Daniele Gatti
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Luca Rinaldi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ioana Cristea
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Tomaso Vecchi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
12
|
Intermittent fasting attenuates inflammasome-associated apoptotic and pyroptotic death in the brain following chronic hypoperfusion. Neurochem Int 2021; 148:105109. [PMID: 34174333 DOI: 10.1016/j.neuint.2021.105109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/20/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) has been shown to initiate several inflammatory pathways that can contribute to cognitive deficits and memory loss in vascular cognitive impairment (VCI). Multi-protein complexes termed inflammasomes that may be involved in the inflammatory response to CCH has already been shown to contribute to the inflammatory process and cell death following acute cerebral ischemia. Intermittent fasting (IF) has already been shown to decrease inflammasome activation and protect the brain from ischemic stroke; however, its effects during CCH remains unknown. The present study investigated the impact of IF (16 h of food deprivation daily) for four months on inflammasome-mediated cell death in the cerebellum following CCH in a mouse model of VCI using fourteen to sixteen-week-old male C57BL/6NTac mice. Here we demonstrated that IF decreased inflammasome activation, and initiation of apoptotic and pyroptotic cell death pathways as reflected by the reduction (20-30%) in the expression levels of key effector proteins and cell death markers in the cerebellum following CCH. In summary, our results indicate that IF can attenuate the inflammatory response and cell death pathways in the brain following chronic hypoperfusion in a mouse model of VCI.
Collapse
|
13
|
Grami F, de Marco G, Bodranghien F, Manto M, Habas C. Cerebellar transcranial direct current stimulation reconfigurates static and dynamic functional connectivity of the resting-state networks. CEREBELLUM & ATAXIAS 2021; 8:7. [PMID: 33627197 PMCID: PMC7905591 DOI: 10.1186/s40673-021-00132-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022]
Abstract
Background Transcranial direct current stimulation (tDCS) of the cerebellum dynamically modulates cerebello-thalamo-cortical excitability in a polarity-specific manner during motor, visuo- motor and cognitive tasks. It remains to be established whether tDCS of the cerebellum impact also on resting-state intrinsically connected networks (ICNs). Such impact would open novel research and therapeutical doors for the neuromodulation of ICNs in human. Method We combined tDCS applied over the right cerebellum and fMRI to investigate tDCS- induced resting-state intrinsic functional reconfiguration, using a randomized, sham-controlled design. fMRI data were recorded both before and after real anodal stimulation (2 mA, 20 min) or sham tDCS in 12 right-handed healthy volunteers. We resorted to a region-of-interest static correlational analysis and to a sliding window analysis to assess temporal variations in resting state FC between the cerebellar lobule VII and nodes of the main ICNs. Results After real tDCS and compared with sham tDCS, functional changes were observed between the cerebellum and ICNs. Static FC showed enhanced or decreased correlation between cerebellum and brain areas belonging to visual, default-mode (DMN), sensorimotor and salience networks (SN) (p-corrected < 0.05). The temporal variability (TV) of BOLD signal was significantly modified after tDCS displaying in particular a lesser TV between the whole lobule VII and DMN and central executive network and a greater TV between crus 2 and SN. Static and dynamic FC was also modified between cerebellar lobuli. Conclusion These results demonstrate short- and long-range static and majorly dynamic effects of tDCS stimulation of the cerebellum affecting distinct resting-state ICNs, as well as intracerebellar functional connectivity, so that tDCS of the cerebellum appears as a non-invasive tool reconfigurating the dynamics of ICNs.
Collapse
Affiliation(s)
- F Grami
- Laboratoire LINP2 « Laboratoire Interdisciplinaire de Neurosciences, Physiologie et Psychologie : Activité physique, Santé et Apprentissages», UPL, Université Paris Nanterre, Nanterre, France
| | - G de Marco
- Laboratoire LINP2 « Laboratoire Interdisciplinaire de Neurosciences, Physiologie et Psychologie : Activité physique, Santé et Apprentissages», UPL, Université Paris Nanterre, Nanterre, France
| | - F Bodranghien
- Unité d'Etude du Mouvement GRIM, FNRS, ULB-Erasme, Route de Lennik, Bruxelles, Belgium
| | - M Manto
- Services de Neurosciences, UMons, 7000, Mons, Belgium.,Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
| | - C Habas
- Service de Neuroimagerie, Centre Hospitalier National d'Ophtalmologie des 15-20, Quinze-Vingt, 28, rue de Charenton, 75012, Paris, France.
| |
Collapse
|
14
|
Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, Guell X, Heleven E, Lupo M, Ma Q, Michelutti M, Olivito G, Pu M, Rice LC, Schmahmann JD, Siciliano L, Sokolov AA, Stoodley CJ, van Dun K, Vandervert L, Leggio M. Consensus Paper: Cerebellum and Social Cognition. CEREBELLUM (LONDON, ENGLAND) 2020; 19:833-868. [PMID: 32632709 PMCID: PMC7588399 DOI: 10.1007/s12311-020-01155-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mario Manto
- Mediathèque Jean Jacquy, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, Mons, Belgium
| | - Zaira Cattaneo
- University of Milano-Bicocca, 20126 Milan, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Clausi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - Xavier Guell
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michela Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Qianying Ma
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marco Michelutti
- Service de Neurologie & Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Service de Neurologie Lausanne, Lausanne, Switzerland
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giusy Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Min Pu
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Laura C. Rice
- Department of Psychology and Department of Neuroscience, American University, Washington, DC USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Libera Siciliano
- Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Arseny A. Sokolov
- Service de Neurologie & Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Service de Neurologie Lausanne, Lausanne, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital Inselspital, University of Bern, Bern, Switzerland
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London (UCL), London, UK
- Neuroscape Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA USA
| | - Catherine J. Stoodley
- Department of Psychology and Department of Neuroscience, American University, Washington, DC USA
| | - Kim van Dun
- Neurologic Rehabilitation Research, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium
| | - Larry Vandervert
- American Nonlinear Systems, 1529 W. Courtland Avenue, Spokane, WA 99205-2608 USA
| | - Maria Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Du X, Rowland LM, Summerfelt A, Choa FS, Wittenberg GF, Wisner K, Wijtenburg A, Chiappelli J, Kochunov P, Hong LE. Cerebellar-Stimulation Evoked Prefrontal Electrical Synchrony Is Modulated by GABA. THE CEREBELLUM 2019; 17:550-563. [PMID: 29766458 DOI: 10.1007/s12311-018-0945-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebellar-prefrontal connectivity has been recognized as important for behaviors ranging from motor coordination to cognition. Many of these behaviors are known to involve excitatory or inhibitory modulations from the prefrontal cortex. We used cerebellar transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) to probe cerebellar-evoked electrical activity in prefrontal cortical areas and used magnetic resonance spectroscopy (MRS) measures of prefrontal GABA and glutamate levels to determine if they are correlated with those potentials. Cerebellar-evoked bilateral prefrontal synchrony in the theta to gamma frequency range showed patterns that reflect strong GABAergic inhibitory function (r = - 0.66, p = 0.002). Stimulation of prefrontal areas evoked bilateral prefrontal synchrony in the theta to low beta frequency range that reflected, conversely, glutamatergic excitatory function (r = 0.66, p = 0.002) and GABAergic inhibitory function (r = - 0.65, p = 0.002). Cerebellar-evoked prefrontal synchronization had opposite associations with cognition and motor coordination: it was positively associated with working memory performance (r = 0.57, p = 0.008) but negatively associated with coordinated motor function as measured by rapid finger tapping (r = - 0.59, p = 0.006). The results suggest a relationship between regional GABA levels and interregional effects on synchrony. Stronger cerebellar-evoked prefrontal synchrony was associated with better working memory but surprisingly worse motor coordination, which suggests competing effects for motor activity and cognition. The data supports the use of a TMS-EEG-MRS approach to study the neurochemical basis of large-scale oscillations modulated by the cerebellar-prefrontal connectivity.
Collapse
Affiliation(s)
- Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA.
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Fow-Sen Choa
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - George F Wittenberg
- Department of Neurology, Physical Therapy and Rehabilitation Science, Internal Medicine, Older Americans Independence Center, University of Maryland, Baltimore, MD, 21201, USA
- Department of Veterans Affairs (VA) Maryland Health Care System, Geriatrics Research, Education and Clinical Center, and Maryland Exercise & Robotics Center of Excellence, Baltimore, MD, 21201, USA
| | - Krista Wisner
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| |
Collapse
|
16
|
Wojcinski A, Morabito M, Lawton AK, Stephen DN, Joyner AL. Genetic deletion of genes in the cerebellar rhombic lip lineage can stimulate compensation through adaptive reprogramming of ventricular zone-derived progenitors. Neural Dev 2019; 14:4. [PMID: 30764875 PMCID: PMC6375182 DOI: 10.1186/s13064-019-0128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The cerebellum is a foliated posterior brain structure involved in coordination of motor movements and cognition. The cerebellum undergoes rapid growth postnataly due to Sonic Hedgehog (SHH) signaling-dependent proliferation of ATOH1+ granule cell precursors (GCPs) in the external granule cell layer (EGL), a key step for generating cerebellar foliation and the correct number of granule cells. Due to its late development, the cerebellum is particularly vulnerable to injury from preterm birth and stress around birth. We recently uncovered an intrinsic capacity of the developing cerebellum to replenish ablated GCPs via adaptive reprogramming of Nestin-expressing progenitors (NEPs). However, whether this compensation mechanism occurs in mouse mutants affecting the developing cerebellum and could lead to mis-interpretation of phenotypes was not known. METHODS We used two different approaches to remove the main SHH signaling activator GLI2 in GCPs: 1) Our mosaic mutant analysis with spatial and temporal control of recombination (MASTR) technique to delete Gli2 in a small subset of GCPs; 2) An Atoh1-Cre transgene to delete Gli2 in most of the EGL. Genetic Inducible Fate Mapping (GIFM) and live imaging were used to analyze the behavior of NEPs after Gli2 deletion. RESULTS Mosaic analysis demonstrated that SHH-GLI2 signaling is critical for generating the correct pool of granule cells by maintaining GCPs in an undifferentiated proliferative state and promoting their survival. Despite this, inactivation of GLI2 in a large proportion of GCPs in the embryo did not lead to the expected dramatic reduction in the size of the adult cerebellum. GIFM uncovered that NEPs do indeed replenish GCPs in Gli2 conditional mutants, and then expand and partially restore the production of granule cells. Furthermore, the SHH signaling-dependent NEP compensation requires Gli2, demonstrating that the activator side of the pathway is involved. CONCLUSION We demonstrate that a mouse conditional mutation that results in loss of SHH signaling in GCPs is not sufficient to induce long term severe cerebellum hypoplasia. The ability of the neonatal cerebellum to regenerate after loss of cells via a response by NEPs must therefore be considered when interpreting the phenotypes of Atoh1-Cre conditional mutants affecting GCPs.
Collapse
Affiliation(s)
- Alexandre Wojcinski
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Morgane Morabito
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Andrew K Lawton
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Daniel N Stephen
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA.
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Insights from perceptual, sensory, and motor functioning in autism and cerebellar primary disturbances: Are there reliable markers for these disorders? Neurosci Biobehav Rev 2018; 95:263-279. [PMID: 30268434 DOI: 10.1016/j.neubiorev.2018.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/09/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022]
Abstract
The contribution of cerebellar circuitry alterations in the pathophysiology of Autism Spectrum Disorder (ASD) has been widely investigated in the last decades. Yet, experimental studies on neurocognitive markers of ASD have not been attentively compared with similar studies in patients with cerebellar primary disturbances (e.g., malformations, agenesis, degeneration, etc). Addressing this neglected issue could be useful to underline unexpected areas of overlap and/or underestimated differences between these sets of conditions. In fact, ASD and cerebellar primary disturbances (notably, Cerebellar Cognitive Affective Syndrome, CCAS) can share atypical manifestations in perceptual, sensory, and motor functions, but neural subcircuits involved in these anomalies/difficulties could be distinct. Here, we specifically deal with this issue focusing on four paradigmatic neurocognitive functions: visual and biological motion perception, multisensory integration, and high stages of the motor hierarchy. From a research perspective, this represents an essential challenge to more deeply understand neurocognitive markers of ASD and of cerebellar primary disturbances/CCAS. Although we cannot assume definitive conclusions, and beyond phenotypical similarities between ASD and CCAS, clinical and experimental evidence described in this work argues that ASD and CCAS are distinct phenomena. ASD and CCAS seem to be characterized by different pathophysiological mechanisms and mediated by distinct neural nodes. In parallel, from a clinical perspective, this characterization may furnish insights to tackle the distinction between autistic functioning/autistic phenotype (in ASD) and dysmetria of thought/autistic-like phenotype (in CCAS).
Collapse
|
18
|
Distractor Inhibition in Autism Spectrum Disorder: Evidence of a Selective Impairment for Individuals with Co-occurring Motor Difficulties. J Autism Dev Disord 2018; 49:669-682. [DOI: 10.1007/s10803-018-3744-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Superior Visual Search and Crowding Abilities Are Not Characteristic of All Individuals on the Autism Spectrum. J Autism Dev Disord 2018; 48:3499-3512. [DOI: 10.1007/s10803-018-3601-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Abstract
Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.
Collapse
|
21
|
Abstract
In this review, we present the growing literature suggesting, from a variety of angles, that the cerebellum contributes to higher-order cognitive functions, rather than simply sensorimotor functions, and more specifically to language and its development. The cerebellum's association with language function is determined by the specific cortico-cerebellar connectivity to the right cerebellum from the left cortical hemisphere. The findings we review suggest that the cerebellum plays an important role as part of a broader language network, and also implies that the cerebellum may be a potential new therapeutic target to treat speech and language deficits, especially during development.
Collapse
Affiliation(s)
- Carolina Vias
- a Department of Psychology , Florida International University , Miami , Florida
| | - Anthony Steven Dick
- a Department of Psychology , Florida International University , Miami , Florida
| |
Collapse
|
22
|
Naro A, Bramanti A, Leo A, Manuli A, Sciarrone F, Russo M, Bramanti P, Calabrò RS. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct 2017; 222:2891-2906. [PMID: 28064346 DOI: 10.1007/s00429-016-1355-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p < 0.001) paralleled by a MEP amplitude increase (about +30%, p = 0.001) and a reduction of the time required to complete some motor task (about -20%, p = 0.01), lasting up to 30 min. The 300-Hz tACS induced a selective, specific tiCBI-300Hz and tiCBI-50Hz modulation in surrounding muscles (about -15%, p = 0.01) and MSI potentiation (about +40%, p < 0.001). The 10-Hz tACS and the sham-tACS were ineffective (p > 0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar-cerebral functions.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Antonino Leo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Alfredo Manuli
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Francesca Sciarrone
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Margherita Russo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy.
| |
Collapse
|
23
|
Seyed Majidi N, Verhage MC, Donchin O, Holland P, Frens MA, van der Geest JN. Cerebellar tDCS does not improve performance in probabilistic classification learning. Exp Brain Res 2016; 235:421-428. [PMID: 27766351 PMCID: PMC5272892 DOI: 10.1007/s00221-016-4800-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/11/2016] [Indexed: 11/20/2022]
Abstract
In this study, the role of the cerebellum in a cognitive learning task using transcranial direct current stimulation (tDCS) was investigated. Using a weather prediction task, subjects had to learn the probabilistic associations between a stimulus (a combination of cards) and an outcome (sun or rain). This task is a variant of a probabilistic classification learning task, for which it has been reported that prefrontal tDCS enhances performance. Using a between-subject design, all 30 subjects learned to improve their performance with increasing accuracies and shortened response times over a series of 500 trials. Subjects also became more confident in their prediction during the experiment. However, no differences in performance and learning were observed between subjects receiving sham stimulation (n = 10) or anodal stimulation (2 mA for 20 min) over either the right cerebellum (n = 10) or the left prefrontal cortex (n = 10). This suggests that stimulating the brain with cerebellar tDCS does not readily influence probabilistic classification performances, probably due to the rather complex nature of this cognitive task.
Collapse
Affiliation(s)
- N Seyed Majidi
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - M C Verhage
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - O Donchin
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - P Holland
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - M A Frens
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Erasmus University College, Rotterdam, The Netherlands
| | - J N van der Geest
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
The sound of emotions-Towards a unifying neural network perspective of affective sound processing. Neurosci Biobehav Rev 2016; 68:96-110. [PMID: 27189782 DOI: 10.1016/j.neubiorev.2016.05.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 12/15/2022]
Abstract
Affective sounds are an integral part of the natural and social environment that shape and influence behavior across a multitude of species. In human primates, these affective sounds span a repertoire of environmental and human sounds when we vocalize or produce music. In terms of neural processing, cortical and subcortical brain areas constitute a distributed network that supports our listening experience to these affective sounds. Taking an exhaustive cross-domain view, we accordingly suggest a common neural network that facilitates the decoding of the emotional meaning from a wide source of sounds rather than a traditional view that postulates distinct neural systems for specific affective sound types. This new integrative neural network view unifies the decoding of affective valence in sounds, and ascribes differential as well as complementary functional roles to specific nodes within a common neural network. It also highlights the importance of an extended brain network beyond the central limbic and auditory brain systems engaged in the processing of affective sounds.
Collapse
|
25
|
Moberget T, Ivry RB. Cerebellar contributions to motor control and language comprehension: searching for common computational principles. Ann N Y Acad Sci 2016; 1369:154-71. [PMID: 27206249 PMCID: PMC5260470 DOI: 10.1111/nyas.13094] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Richard B. Ivry
- Department of Psychology, and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| |
Collapse
|
26
|
Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: A marker of covert cognition? Clin Neurophysiol 2016; 127:1845-54. [PMID: 26754875 DOI: 10.1016/j.clinph.2015.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 11/20/2022]
|
27
|
Yamaguchi K, Sakurai Y. Inactivation of Cerebellar Cortical Crus II Disrupts Temporal Processing of Absolute Timing but not Relative Timing in Voluntary Movements. Front Syst Neurosci 2016; 10:16. [PMID: 26941621 PMCID: PMC4764692 DOI: 10.3389/fnsys.2016.00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
Several recent studies have demonstrated that the cerebellum plays an important role in temporal processing at the scale of milliseconds. However, it is not clear whether intrinsic cerebellar function involves the temporal processing of discrete or continuous events. Temporal processing during discrete events functions by counting absolute time like a stopwatch, while during continuous events it measures events at intervals. During the temporal processing of continuous events, animals might respond to rhythmic timing of sequential responses rather than to the absolute durations of intervals. Here, we tested the contribution of the cerebellar cortex to temporal processing of absolute and relative timings in voluntary movements. We injected muscimol and baclofen to a part of the cerebellar cortex of rats. We then tested the accuracy of their absolute or relative timing prediction using two timing tasks requiring almost identical reaching movements. Inactivation of the cerebellar cortex disrupted accurate temporal prediction in the absolute timing task. The rats formed two groups based on the changes to their timing accuracy following one of two distinct patterns which can be described as longer or shorter declines in the accuracy of learned intervals. However, a part of the cerebellar cortical inactivation did not affect the rats' performance of relative timing tasks. We concluded that a part of the cerebellar cortex, Crus II, contributes to the accurate temporal prediction of absolute timing and that the entire cerebellar cortex may be unnecessary in cases in which accurately knowing the absolute duration of an interval is not required for temporal prediction.
Collapse
Affiliation(s)
- Kenji Yamaguchi
- Department of Psychology, Graduate School of Letters, Kyoto UniversityKyoto, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University Kyotanabe, Japan
| |
Collapse
|
28
|
|
29
|
Tellmann S, Bludau S, Eickhoff S, Mohlberg H, Minnerop M, Amunts K. Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns. Front Neuroanat 2015; 9:54. [PMID: 26029057 PMCID: PMC4429588 DOI: 10.3389/fnana.2015.00054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/19/2015] [Indexed: 12/22/2022] Open
Abstract
The cerebellar nuclei are involved in several brain functions, including the modulation of motor and cognitive performance. To differentiate their participation in these functions, and to analyze their changes in neurodegenerative and other diseases as revealed by neuroimaging, stereotaxic maps are necessary. These maps reflect the complex spatial structure of cerebellar nuclei with adequate spatial resolution and detail. Here we report on the cytoarchitecture of the dentate, interposed (emboliform and globose) and fastigial nuclei, and introduce 3D probability maps in stereotaxic MNI-Colin27 space as a prerequisite for subsequent meta-analysis of their functional involvement. Histological sections of 10 human post mortem brains were therefore examined. Differences in cell density were measured and used to distinguish a dorsal from a ventral part of the dentate nucleus. Probabilistic maps were calculated, which indicate the position and extent of the nuclei in 3D-space, while considering their intersubject variability. The maps of the interposed and the dentate nuclei differed with respect to their interaction patterns and functions based on meta-analytic connectivity modeling and quantitative functional decoding, respectively. For the dentate nucleus, significant (p < 0.05) co-activations were observed with thalamus, supplementary motor area (SMA), putamen, BA 44 of Broca's region, areas of superior and inferior parietal cortex, and the superior frontal gyrus (SFG). In contrast, the interposed nucleus showed more limited co-activations with SMA, area 44, putamen, and SFG. Thus, the new stereotaxic maps contribute to analyze structure and function of the cerebellum. These maps can be used for anatomically reliable and precise identification of degenerative alteration in MRI-data of patients who suffer from various cerebellar diseases.
Collapse
Affiliation(s)
- Stefanie Tellmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University and JARA-BrainAachen, Germany
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
- Institute for Clinical Neuroscience and Medical Psychology, Heinrich Heine UniversityDüsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Heinrich Heine UniversityDüsseldorf, Germany
| |
Collapse
|
30
|
Manto M, Mariën P. Schmahmann's syndrome - identification of the third cornerstone of clinical ataxiology. CEREBELLUM & ATAXIAS 2015; 2:2. [PMID: 26331045 PMCID: PMC4552302 DOI: 10.1186/s40673-015-0023-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/17/2015] [Indexed: 12/02/2022]
Abstract
Schmahmann’s syndrome represents a novel clinical condition consisting of a constellation of cognitive and affective deficits following cerebellar disease. The complex was first described in 1998 as cerebellar cognitive affective syndrome (CCAS) on the basis of a careful neurological examination, detailed bedside mental state tests, neuropsychological investigations and anatomical neuroimaging of a group of 20 patients with focal cerebellar disorders. The syndrome was characterized by four clusters of symptoms including: (a) impairment of executive functions such as planning, set-shifting, verbal fluency, abstract reasoning and working memory, (b) impaired visuo-spatial cognition, (c) personality changes with blunting of affect or abnormal behaviour, and (d) language deficits including agrammatism, wordfinding disturbances, disruption of language dynamics and dysprosodia. This complex of neurocognitive and behavioural-affective symptoms was ascribed to a functional disruption of the reciprocal pathways that connect the cerebellum with the limbic circuitry and the prefrontal, temporal and parietal association cortices. With the introduction of Schmahmann’s syndrome, clinical ataxiology has found its third cornerstone, the two others being the cerebellar motor syndrome (CMS) mainly delineated by the pioneer French and English neurologists of the 19th and early 20th century, and the vestibulo-cerebellar syndrome (VCS) consisting of ocular instability, deficits of oculomotor movements and ocular misalignment.
Collapse
Affiliation(s)
- Mario Manto
- Unité d'Etude du Mouvement, FNRS-ULB Erasme, 808 Route de Lennik, 1070 Bruxelles, Belgium
| | - Peter Mariën
- Clinical and Experimental Neurolinguistics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ; Department of Neurology and Memory Clinic, ZNA General Hospital Middelheim, Lindendreef 1, 2020 Antwerp, Belgium
| |
Collapse
|
31
|
Abstract
There is increasing evidence for a cerebellar role in working memory. Clinical research has shown that working memory impairments after cerebellar damage and neuroimaging studies have revealed task-specific activation in the cerebellum during working memory processing. A lateralisation of cerebellar function within working memory has been proposed with the right hemisphere making the greater contribution to verbal processing and the left hemisphere for visuospatial tasks. We used continuous theta burst stimulation (cTBS) to examine whether differences in post-stimulation performance could be observed based on the cerebellar hemisphere stimulated and the type of data presented. We observed that participants were significantly less accurate on a verbal version of a Sternberg task after stimulation to the right cerebellar hemisphere when compared to left hemisphere stimulation. Performance on a visual Sternberg task was unaffected by stimulation of either hemisphere. We discuss our results in the context of prior studies that have used cerebellar stimulation to investigate working memory and highlight the cerebellar role in phonological encoding.
Collapse
|
32
|
|
33
|
|
34
|
Parker KL, Narayanan NS, Andreasen NC. The therapeutic potential of the cerebellum in schizophrenia. Front Syst Neurosci 2014; 8:163. [PMID: 25309350 PMCID: PMC4163988 DOI: 10.3389/fnsys.2014.00163] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
The cognitive role of the cerebellum is critically tied to its distributed connections throughout the brain. Accumulating evidence from anatomical, structural and functional imaging, and lesion studies advocate a cognitive network involving indirect connections between the cerebellum and non-motor areas in the prefrontal cortex. Cerebellar stimulation dynamically influences activity in several regions of the frontal cortex and effectively improves cognition in schizophrenia. In this manuscript, we summarize current literature on the cingulocerebellar circuit and we introduce a method to interrogate this circuit combining opotogenetics, neuropharmacology, and electrophysiology in awake-behaving animals while minimizing incidental stimulation of neighboring cerebellar nuclei. We propose the novel hypothesis that optogenetic cerebellar stimulation can restore aberrant frontal activity and rescue impaired cognition in schizophrenia. We focus on how a known cognitive region in the frontal cortex, the anterior cingulate, is influenced by the cerebellum. This circuit is of particular interest because it has been confirmed using tracing studies, neuroimaging reveals its role in cognitive tasks, it is conserved from rodents to humans, and diseases such as schizophrenia and autism appear in its aberrancy. Novel tract tracing results presented here provide support for how these two areas communicate. The primary pathway involves a disynaptic connection between the cerebellar dentate nuclei (DN) and the anterior cingulate cortex. Secondarily, the pathway from cerebellar fastigial nuclei (FN) to the ventral tegmental area, which supplies dopamine to the prefrontal cortex, may play a role as schizophrenia characteristically involves dopamine deficiencies. We hope that the hypothesis described here will inspire new therapeutic strategies targeting currently untreatable cognitive impairments in schizophrenia.
Collapse
|
35
|
Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol 2014; 592:3345-69. [PMID: 24907311 PMCID: PMC4229333 DOI: 10.1113/jphysiol.2013.270280] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/30/2014] [Indexed: 12/26/2022] Open
Abstract
Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists.
Collapse
Affiliation(s)
- Alberto Priori
- Centro Clinico per la Neurostimolazione, le Neurotecnologie e i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Milan, Italy Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Matteo Ciocca
- Centro Clinico per la Neurostimolazione, le Neurotecnologie e i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Milan, Italy Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Marta Parazzini
- Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Milan, Italy
| | - Maurizio Vergari
- Centro Clinico per la Neurostimolazione, le Neurotecnologie e i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Roberta Ferrucci
- Centro Clinico per la Neurostimolazione, le Neurotecnologie e i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Milan, Italy Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
36
|
Deer TR, Krames E, Mekhail N, Pope J, Leong M, Stanton-Hicks M, Golovac S, Kapural L, Alo K, Anderson J, Foreman RD, Caraway D, Narouze S, Linderoth B, Buvanendran A, Feler C, Poree L, Lynch P, McJunkin T, Swing T, Staats P, Liem L, Williams K. The Appropriate Use of Neurostimulation: New and Evolving Neurostimulation Therapies and Applicable Treatment for Chronic Pain and Selected Disease States. Neuromodulation 2014; 17:599-615; discussion 615. [DOI: 10.1111/ner.12204] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 02/07/2014] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Nagy Mekhail
- University of Kentucky-Lexington; Lexington KY USA
| | - Jason Pope
- Center for Pain Relief; Charleston WV USA
| | | | | | | | - Leo Kapural
- Carolinas Pain Institute at Brookstown; Wake Forest Baptist Health; Winston-Salem NC USA
| | - Ken Alo
- The Methodist Hospital Research Institute; Houston TX USA
- Monterey Technical Institute; Monterey Mexico
| | | | - Robert D. Foreman
- University of Oklahoma Health Sciences Center, College of Medicine; Oklahoma City OK USA
| | - David Caraway
- Center for Pain Relief, Tri-State, LLC; Huntington WV USA
| | - Samer Narouze
- Anesthesiology and Pain Medicine, Neurological Surgery; Summa Western Reserve Hospital; Cuyahoga Falls OH USA
| | - Bengt Linderoth
- Functional Neurosurgery and Applied Neuroscience Research Unit, Karolinska Institute; Karolinska University Hospital; Stockholm Sweden
| | | | - Claudio Feler
- University of Tennessee; Memphis TN USA
- Valley View Hospital; Glenwood Springs CO USA
| | - Lawrence Poree
- University of California at San Francisco; San Francisco CA USA
- Pain Clinic of Monterey Bay; Aptos CA
| | - Paul Lynch
- Arizona Pain Specialists; Scottsdale AZ USA
| | | | - Ted Swing
- Arizona Pain Specialists; Scottsdale AZ USA
| | - Peter Staats
- Premier Pain Management Centers; Shrewsbury NJ USA
- Johns Hopkins University; Baltimore MD USA
| | - Liong Liem
- St. Antonius Hospital; Nieuwegein The Netherlands
| | - Kayode Williams
- Johns Hopkins School of Medicine and Carey Business School; Baltimore MD USA
| |
Collapse
|
37
|
Tomlinson SP, Davis NJ, Morgan HM, Bracewell RM. Cerebellar contributions to spatial memory. Neurosci Lett 2014; 578:182-6. [PMID: 25004407 DOI: 10.1016/j.neulet.2014.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 11/26/2022]
Abstract
There is mounting evidence for a role for the cerebellum in working memory (WM). The majority of relevant studies has examined verbal WM and has suggested specialisation of the right cerebellar hemisphere for language processing. Our study used theta burst stimulation (TBS) to examine whether there is a converse cerebellar hemispheric specialisation for spatial WM. We conducted two experiments to examine spatial WM performance before and after TBS to mid-hemispheric and lateral locations in the posterior cerebellum. Participants were required to recall the order of presentation of targets on a screen or the targets' order of presentation and their locations. We observed impaired recollection of target order after TBS to the mid left cerebellar hemisphere and reduced response speed after TBS to the left lateral cerebellum. We suggest that these results give evidence of the contributions of the left cerebellar cortex to the encoding and retrieval of spatial information.
Collapse
Affiliation(s)
- Simon P Tomlinson
- School of Psychology, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd LL57 2AS, United Kingdom.
| | - Nick J Davis
- Department of Psychology, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Helen M Morgan
- School of Natural Sciences and Psychology, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - R Martyn Bracewell
- School of Psychology, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd LL57 2AS, United Kingdom; School of Medical Sciences, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd LL57 2AS, United Kingdom
| |
Collapse
|
38
|
Yamaguchi K, Sakurai Y. Spike-Coding Mechanisms of Cerebellar Temporal Processing in Classical Conditioning and Voluntary Movements. THE CEREBELLUM 2014; 13:651-8. [DOI: 10.1007/s12311-014-0580-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Grimaldi G, Oulad Ben Taib N, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci 2014; 8:9. [PMID: 24523678 PMCID: PMC3906576 DOI: 10.3389/fnsys.2014.00009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 11/13/2022] Open
Abstract
Cerebellar ataxias represent a very heterogeneous group of disabling disorders for which we lack effective symptomatic therapies in most cases. There is currently an intense interest in the use of non-invasive transcranial DC stimulation (tDCS) to modulate the activity of the cerebellum in ataxic disorders. We performed a detailed laboratory assessment of the effects of transcranial cerebello-cerebral DC stimulation (tCCDCS, including a sham procedure) on upper limb tremor and dysmetria in 2 patients presenting a dominant spinocerebellar ataxia (SCA) type 2, one of the most common SCAs encountered during practice. Both patients had a very similar triplet expansion size in the ATXN2 gene (respectively, 39 and 40 triplets). tCCDCS reduced both postural tremor and action tremor, as confirmed by spectral analysis. Quadratical PSD (power spectral density) of postural tremor dropped to 38.63 and 41.42% of baseline values in patient 1 and 2, respectively. The integral of the subband 4-20 Hz dropped to 46.9 and 62.3% of baseline values, respectively. Remarkably, tCCDCS canceled hypermetria and reduced dramatically the onset latency of the antagonist EMG activity associated with fast goal-directed movements toward 3 aimed targets (0.2, 0.3, and 0.4 rad). Following tCCDCS, the latency dropped from 108-98 to 63-57 ms in patient 1, and from 74-87 to 41-46 ms in patient 2 (mean control values ± SD: 36 ± 8 to 45 ± 11 ms), corresponding to a major drop of z scores for the 2 patients from 7.12 ± 0.69 to 1.28 ± 1.27 (sham procedure: 6.79 ± 0.71). This is the first demonstration that tCCDCS improves upper limb tremor and hypermetria in SCA type 2. In particular, this is the first report of a favorable effect on the onset latency of the antagonist EMG activity, a neurophysiological marker of the defect in programming of timing of motor commands. Our results indicate that tCCDCS should be considered in the symptomatic management of upper limb motor deficits in cerebellar ataxias. Future studies addressing a tDCS-based neuromodulation to improve motor control of upper limbs are required (a) in a large group of cerebellar disorders, and (b) in different subgroups of ataxic patients. The anatomical location of the cerebellum below the skull is particularly well suited for such studies.
Collapse
Affiliation(s)
| | - Nordeyn Oulad Ben Taib
- Unité d'Etude du Mouvement, ULB Neurologie Bruxelles, Belgium ; Service de Neurochirurgie, CHU Saint-Pierre Bruxelles, Belgium
| | - Mario Manto
- Unité d'Etude du Mouvement, ULB Neurologie Bruxelles, Belgium ; Fonds de la Recherche Scientifique-ULB Bruxelles, Belgium
| | | |
Collapse
|
40
|
Pope PA, Miall RC. Restoring cognitive functions using non-invasive brain stimulation techniques in patients with cerebellar disorders. Front Psychiatry 2014; 5:33. [PMID: 24765079 PMCID: PMC3980102 DOI: 10.3389/fpsyt.2014.00033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/17/2014] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have highlighted the possibility of modulating the excitability of cerebro-cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral-lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato-rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro-cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided toward neuro-enhancement in certain patient populations, using what is commonly termed "non-invasive brain stimulation" as a cognitive rehabilitation tool to modulate cerebro-cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo-cortical disturbances.
Collapse
Affiliation(s)
- Paul A Pope
- School of Psychology, University of Birmingham , Birmingham , UK
| | - R Chris Miall
- School of Psychology, University of Birmingham , Birmingham , UK
| |
Collapse
|
41
|
Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013; 80:807-15. [PMID: 24183029 DOI: 10.1016/j.neuron.2013.10.044] [Citation(s) in RCA: 739] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Twenty-five years ago the first human functional neuroimaging studies of cognition discovered a surprising response in the cerebellum that could not be attributed to motor demands. This controversial observation challenged the well-entrenched view that the cerebellum solely contributes to the planning and execution of movement. Recurring neuroimaging findings combined with key insights from anatomy and case studies of neurological patients motivated a reconsideration of the traditional model of cerebellar organization and function. The majority of the human cerebellum maps to cerebral association networks in an orderly manner that includes a mirroring of the prominent cerebral asymmetries for language and attention. These findings inspire exploration of the cerebellum's contributions to a diverse array of functional domains and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Randy L Buckner
- Harvard University Department of Psychology, Center for Brain Science, Cambridge, MA 02138, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
42
|
Berkovich-Ohana A, Dor-Ziderman Y, Glicksohn J, Goldstein A. Alterations in the sense of time, space, and body in the mindfulness-trained brain: a neurophenomenologically-guided MEG study. Front Psychol 2013; 4:912. [PMID: 24348455 PMCID: PMC3847819 DOI: 10.3389/fpsyg.2013.00912] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/16/2013] [Indexed: 12/20/2022] Open
Abstract
Meditation practice can lead to what have been referred to as “altered states of consciousness.”One of the phenomenological characteristics of these states is a joint alteration in the sense of time, space, and body. Here, we set out to study the unique experiences of alteration in the sense of time and space by collaborating with a select group of 12 long-term mindfulness meditation (MM) practitioners in a neurophenomenological setup, utilizing first-person data to guide the neural analyses. We hypothesized that the underlying neural activity accompanying alterations in the sense of time and space would be related to alterations in bodily processing. The participants were asked to volitionally bring about distinct states of “Timelessness” (outside time) and “Spacelessness” (outside space) while their brain activity was recorded by MEG. In order to rule out the involvement of attention, memory, or imagination, we used control states of “Then” (past) and “There” (another place). MEG sensors evidencing alterations in power values were identified, and the brain regions underlying these changes were estimated via spatial filtering (beamforming). Particularly, we searched for similar neural activity hypothesized to underlie both the state of “Timelessness” and “Spacelessness.” The results were mostly confined to the theta band, and showed that: (1) the “Then”/“There” overlap yielded activity in regions related to autobiographic memory and imagery (right posterior parietal lobule (PPL), right precentral/middle frontal gyrus (MFG), bilateral precuneus); (2) “Timelessness”/“Spacelessness” conditions overlapped in a different network, related to alterations in the sense of the body (posterior cingulate, right temporoparietal junction (TPJ), cerebellum); and (3) phenomenologically-guided neural analyses enabled us to dissociate different levels of alterations in the sense of the body. This study illustrates the utility of employing experienced contemplative practitioners within a neurophenomenological setup for scientifically characterizing a self-induced altered sense of time, space and body, as well as the importance of theta activity in relation with these altered states.
Collapse
Affiliation(s)
| | - Yair Dor-Ziderman
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat Gan, Israel
| | - Joseph Glicksohn
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat Gan, Israel ; Department of Criminology, Bar-Ilan University Ramat Gan, Israel
| | - Abraham Goldstein
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat Gan, Israel ; Department of Psychology, Bar-Ilan University Ramat Gan, Israel
| |
Collapse
|
43
|
Lee A, Chen ML, Abeshaus S, Poliakov A, Ojemann JG. Posterior fossa tumors and their impact on sleep and ventilatory control: A clinical perspective. Respir Physiol Neurobiol 2013; 189:261-71. [DOI: 10.1016/j.resp.2013.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/23/2013] [Accepted: 05/22/2013] [Indexed: 11/28/2022]
|