1
|
Aytemiz Danyer I, Diaz Vicuna E, Manfrè C, Contiero B, Forte C, Brscic M. State of the art of the cow-calf systems in beef and dairy cattle (Bos taurus) operations in EU, USA, and Brazil from 1998 to 2023. Res Vet Sci 2024; 179:105398. [PMID: 39216348 DOI: 10.1016/j.rvsc.2024.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Cow-calf systems represent a significant research area in animal husbandry, with differences depending on the final product (meat or milk). This study aimed to apply text mining and topic analysis on literature describing cow-calf systems in European, American, and Brazilian beef and dairy sectors between 1998 and 2023. Additionally, cow-calf contact (CCC) literature data was manually extracted. Our findings revealed the presence of 11 research areas among literature on cow-calf systems, with different priorities identified in the beef and dairy sectors. Beef industry mainly focused on animal proficiency and nutrition, while dairy on animal welfare and CCC, which showed a growing trend as emerging research topic, mostly in the EU. Current debates around calf welfare and EU's planned animal welfare legislation revision appeared to be driving the increasing interest in this topic. Studies in the beef sector were mainly localized in Brazil, showing that research in different contexts and species is important for CCC implementation. Manual data extraction showed considerable variation in the retained CCC documents regarding sample size, type of contact, methods and CCC duration. Learning about the varied CCC approaches used in beef and dairy farms in different locations, concentrating on their strengths and weaknesses, will help to develop novel solutions to global challenges. Adopting validated and robust indicators would help scientists and policymakers to monitor the system's quality. To improve CCC feasibility, match consumer demands, and move towards One Welfare and One Health, future research should focus on a variety of situations to overcome the current shortcomings.
Collapse
Affiliation(s)
- Isil Aytemiz Danyer
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, 35020 Padova, Italy
| | - Elena Diaz Vicuna
- Department of Veterinary Sciences, University of Torino, Grugliasco, 10095 Torino, Italy.
| | - Claudia Manfrè
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, 35020 Padova, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, 35020 Padova, Italy
| | - Claudio Forte
- Department of Veterinary Sciences, University of Torino, Grugliasco, 10095 Torino, Italy
| | - Marta Brscic
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, 35020 Padova, Italy
| |
Collapse
|
2
|
Li M. Is melanin-concentrating hormone in the medial preoptic area a signal for the decline of maternal care in late postpartum? Front Neuroendocrinol 2024; 75:101155. [PMID: 39222798 DOI: 10.1016/j.yfrne.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
This manuscript proposes that melanin-concentrating hormone (MCH) in the medial preoptic area (MPOA) is an neurochemical signal evolved to trigger the declining process of maternal care. MCH in the MPOA appears only after parturition and is progressively increased with the progression of lactation, while maternal behavior declines progressively. Intra-MPOA injection of MCH decreases active maternal responses. MCH is also highly responsive to infant characteristics and maternal condition. Behavioral changes induced by MCH in late postpartum period are conducive to the decline of infant-directed maternal behavior. The MPOA MCH system may mediate the maternal behavior decline by suppressing the maternal approach motivation and/or increasing maternal withdrawal via its inhibitory action onto the mesolimbic dopamine D1/D2 receptors and its stimulating action on serotonin 5-HT2C receptors in the ventral tegmental area. Research into the MCH maternal effects will enhance our understanding of the neurochemical mechanisms underlying the maternal behavior decline.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Witchey S, Haupt A, Caldwell HK. Oxytocin receptors in the nucleus accumbens shell are necessary for the onset of maternal behavior. Front Neurosci 2024; 18:1356448. [PMID: 39015375 PMCID: PMC11250266 DOI: 10.3389/fnins.2024.1356448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
In rodents, oxytocin (Oxt) contributes to the onset of maternal care by shifting the perception of pups from aversive to attractive. Both Oxt receptor knockout (Oxtr -/-) and forebrain-specific Oxtr knockout (FB/FB) dams abandon their first litters, likely due to a failure of the brain to 'switch' to a more maternal state. Whether this behavioral shift is neurochemically similar in virgin females, who can display maternal behaviors when repeatedly exposed to pups, or what neuroanatomical substrate is critical for the onset of maternal care remains unknown. To understand similarities and differences in Oxtr signaling in virgin pup-sensitized Oxtr FB/FB as opposed to post-parturient Oxtr -/- and Oxtr FB/FB dams, maternal behavior (pup-sensitized females only) and immediate early gene activation were assessed. Pup-sensitized Oxtr FB/FB females retrieved pups faster on day one of testing and had reduced c-Fos expression in the dorsal lateral septum as compared to virgin pup-sensitized Oxtr +/+ females. This differs from what was observed in post-parturient Oxtr -/- and Oxtr FB/FB dams, where increased c-Fos expression was observed in the nucleus accumbens (NAcc) shell. Based on these data, we then disrupted Oxtr signaling in the NAcc shell or the posterior paraventricular thalamus (pPVT) (control region) of female Oxtr floxed mice using a Cre recombinase expressing adeno-associated virus. Knockout of the Oxtr only in the NAcc shell prevented the onset of maternal care post-parturient females. Our data suggest that a pup-sensitized brain may differ from a post-parturient brain and that Oxtr signaling in the NAcc shell is critical to the onset of maternal behavior.
Collapse
Affiliation(s)
- Shannah Witchey
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Alexandra Haupt
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences and the Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Heather K. Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences and the Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
4
|
Puska G, Szendi V, Dobolyi A. Lateral septum as a possible regulatory center of maternal behaviors. Neurosci Biobehav Rev 2024; 161:105683. [PMID: 38649125 DOI: 10.1016/j.neubiorev.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.
Collapse
Affiliation(s)
- Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Forero SA, Liu S, Shetty N, Ophir AG. Re-wiring of the bonded brain: Gene expression among pair bonded female prairie voles changes as they transition to motherhood. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12906. [PMID: 38861664 PMCID: PMC11166254 DOI: 10.1111/gbb.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (oxtr), dopamine (d1r and d2r), mu-opioids (oprm1a), and kappa-opioids (oprk1a) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (oxtr, d2r, oprm1a, and oprk1a) and MPOA (oxtr, d1r, d2r, oprm1a, and oprk1a) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (oxtr and d1r) or maintaining long-term pair bonds (oprm1a) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.
Collapse
MESH Headings
- Animals
- Female
- Arvicolinae/genetics
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Pair Bond
- Maternal Behavior/physiology
- Nucleus Accumbens/metabolism
- Pregnancy
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Gyrus Cinguli/metabolism
- Preoptic Area/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
| | - Sydney Liu
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | - Netra Shetty
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | | |
Collapse
|
6
|
Peña F, Serantes D, Rivas M, Castro JP, Torterolo P, Rodríguez-Camejo C, Hernández A, Benedetto L. Acute and chronic sleep restriction differentially modify maternal behavior and milk macronutrient composition in the postpartum rat. Physiol Behav 2024; 278:114522. [PMID: 38492909 DOI: 10.1016/j.physbeh.2024.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUNDS Sleep restriction is considered a stressful condition itself, causing a wide variety of physiological alterations, from cognitive and hormonal to immunological status. In addition, it is established that stress in mother rats can modify milk ejection, milk composition, and maternal care of the pups. Also, sleep disturbances during the early stages of motherhood are a common feature of all studied species. In this context, while the impacts of sleep disruption in non-lactating animals were extensively investigated, its repercussions during the initial phases of motherhood have been poorly explored. Therefore, we wonder if maternal behavior, milk ejection and its macronutrient composition would be disrupted when mother rats are subjected to an additional acute or chronic sleep restriction to the already existing sleep disturbances. METHODS Lactating rats were implanted with unilateral electrodes for polysomnographic recordings and for deep brain electrical stimulation into mesopontine waking-promoting area (for sleep deprivation). During the early postpartum period (postpartum day 5-9), mother rats were randomly assigned into one of three groups: chronic sleep restriction group (CSR; 6 h of sleep deprivation/day for five consecutive days), acute sleep restriction group (ASR; 6 h of sleep deprivation only for one day), or undisturbed group (control group). Active maternal behaviors (retrievals of the pups into the nest, mouthing, lickings [corporal and anogenital] and sniffing the pups) and passive maternal behaviors (kyphotic and supine nursing postures) were evaluated during a 30 min period without sleep restriction immediately after the sleep restriction or control period. The litter weight gain was assessed every day, and on the last experimental session mothers were milked for posterior macronutrients analysis (protein, carbohydrates and fat). RESULTS When compared to control group, CSR decreased the amount of milk ejected in the middle days of the sleep restriction period, while ASR did not affect this parameter. Moreover, ASR reduced milk protein content compared to control and CSR groups. Finally, compared to the control group, CSR reduced active maternal behaviors towards the end of the treatment days. CONCLUSIONS We demonstrated that not only acute but also chronic sleep restriction impacts on the postpartum period, each one affecting different aspects of maternal behavior and lactation. Our results suggest the existence of a homeostatic recovery mechanism in breastfeeding during CSR, possibly ensuring the survival of the litter, while the decline in active maternal behaviors appears to be cumulative.
Collapse
Affiliation(s)
- Florencia Peña
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mayda Rivas
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Juan Pedro Castro
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudio Rodríguez-Camejo
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay; Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Montevideo, Uruguay
| | - Ana Hernández
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay; Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
7
|
Alsina-Llanes M, Olazábal DE. NMDA- and 6-OHDA-induced Lesions in the Nucleus Accumbens Differently Affect Maternal and Infanticidal Behavior in Pup-naïve Female and Male Mice. Neuroscience 2024; 539:35-50. [PMID: 38176609 DOI: 10.1016/j.neuroscience.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Virgin and pups-naïve female and male adult mice display two opposite responses when they are exposed to pups for the first time. While females generally take care of the pups, males attack them. Since the nucleus accumbens (NA), and its dopaminergic modulation, is critical in integrating information and processing reward and aversion, we investigated if NMDA- and 6-OHDA-induced lesions, damaging mostly NA output and dopaminergic inputs respectively, affected female maternal behavior (MB) or male infanticidal behavior (IB) in mice. Our results revealed minor or no effects of both smaller and larger NMDA-induced lesions in MB and IB. On the other hand, while 6-OHDA-induced lesions in females reduced the incidence of full MB (12.5% 6-OHDA vs. 85.7% SHAM) increasing the latency to retrieve the pups, those lesions did not affect IB in males. There were no differences in locomotor and exploratory activity between the lesioned- and SHAM- females. Despite those lesions did not induce any major effect on IB, NMDA-lesioned males spent less time in the central area of an open field, while dopaminergic-lesioned males showed reduced number of rearing and peripheral crosses. The current study shows that an intact NA is not necessary for the expression of MB and IB. However, dopaminergic inputs to NA play different role in MB and IB. While damaging dopaminergic terminals into the NA did not affect IB, it clearly delayed the more flexible and rewarding expression of parental behavior.
Collapse
Affiliation(s)
- M Alsina-Llanes
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| | - D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
8
|
Arquilla AM, Wilson KM, Razak KA, Saltzman W. Fatherhood increases attraction to sensory stimuli from unrelated pups in male California mice, Peromyscus californicus. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Csikós V, Oláh S, Dóra F, Arrasz N, Cservenák M, Dobolyi A. Microglia depletion prevents lactation by inhibition of prolactin secretion. iScience 2023; 26:106264. [PMID: 36936786 PMCID: PMC10014264 DOI: 10.1016/j.isci.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Microglial cells were eliminated from the brain with sustained 3-4 weeks long inhibition of colony stimulating factor 1 receptor by Pexidartinib 3397 (PLX3397). The prepartum treated mice mothers did not feed their pups after parturition. The pups of mothers treated orally only in the postpartum period starting immediately after parturition showed reduced body weight by 15.5 ± 0.22 postnatal days as the treatment progressed without the mothers showing altered caring behaviors. The apparent weight gain of foster pups during a suckling bout was reduced in mother mice fed by PLX3397-containing diet and also in rat dams following sustained intracerebroventricular infusion of PLX3397 in a separate experiment suggesting that lactation was affected by the reduced number of microglia. Prolactin secretion and signaling were markedly reduced in PLX3397-treated mothers. The results suggest that microglial cells are required for prolactin secretion and lactation whereas maternal motivation may not be directly affected by microglia.
Collapse
Affiliation(s)
- Vivien Csikós
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Nikolett Arrasz
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Melinda Cservenák
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Corresponding author
| |
Collapse
|
10
|
Rincón-Cortés M, Grace AA. Dopamine downregulation in novel rodent models useful for the study of postpartum depression. Front Behav Neurosci 2022; 16:1065558. [PMID: 36620861 PMCID: PMC9812956 DOI: 10.3389/fnbeh.2022.1065558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Postpartum depression (PPD) is the most common psychiatric disorder following childbirth and is characterized by maternal mood disturbances, impaired maternal responses, and disrupted caregiving- all of which negatively impact offspring development. Since PPD has detrimental consequences for both mother and child, clinical and preclinical research has focused on identifying brain changes associated with this disorder. In humans, PPD is linked to dysregulated mesolimbic dopamine (DA) system function and altered neural responses (i.e., decreased reward-related activity) to infant-related cues, which are considered hallmark features of PPD. In accordance, rodent models employing translational risk factors useful for the study of PPD have demonstrated alterations in mesolimbic DA system structure and function, and these changes are reviewed here. We also present two novel rodent models based on postpartum adversity exposure (i.e., pup removal, scarcity-adversity) which result in PPD-relevant behavioral changes (e.g., disrupted mother-infant interactions, deficits in maternal behavior, depressive-like phenotypes) and attenuated ventral tegmental area (VTA) DA neuron activity consistent with a hypodopaminergic state. Furthermore, we highlight open questions and future directions for these rodent models. In sum, human and rodent studies converge in showing blunted mesolimbic DA function (i.e., DA downregulation) in PPD. We propose that reduced activity of VTA DA neurons, resulting in downregulation of the mesolimbic DA system, interferes with reward-related processes necessary for maternal motivation and responsiveness. Thus, the mesolimbic DA system may constitute a therapeutic target for ameliorating reward-related deficits in PPD.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States,*Correspondence: Millie Rincón-Cortés
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Wilson KM, Arquilla AM, Rosales-Torres KM, Hussein M, Chan MG, Razak KA, Saltzman W. Neural responses to pup calls and pup odors in California mouse fathers and virgin males. Behav Brain Res 2022; 434:114024. [PMID: 35882277 DOI: 10.1016/j.bbr.2022.114024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
The onset of mammalian maternal care is associated with plasticity in neural processing of infant-related sensory stimuli; however, little is known about sensory plasticity associated with fatherhood. We quantified behavioral and neural responses of virgin males and new fathers to olfactory and auditory stimuli from young, unfamiliar pups in the biparental California mouse (Peromyscus californicus). Each male was exposed for 10minutes to one of four combinations of a chemosensory stimulus (pup-scented or unscented cotton [control]) and an auditory stimulus (pup vocalizations or white noise [control]). Behavior did not differ between fathers and virgins during exposure to sensory stimuli or during the following hour; however, males in both groups were more active both during and after exposure to pup-related stimuli compared to control stimuli. Fathers had lower expression of Fos in the main olfactory bulbs (MOB) but higher expression in the medial preoptic area (MPOA) and bed nucleus of the stria terminalis medial division, ventral part (STMV) compared to virgins. Lastly, males had higher Fos expression in MPOA when exposed to pup odor compared to control stimuli, and when exposed to pup odor and pup calls compared to pup calls only or control stimuli. These findings suggest that the onset of fatherhood alters activity of MOB, MPOA and STMV and that pup odors and vocalizations have additive or synergistic effects on males' behavior and MPOA activation.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA; Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA
| |
Collapse
|
12
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
13
|
Lee DS, Knittel T, Deschner T, Heistermann M, Higham JP. Testing the role of testosterone versus estrogens in mediating reproductive transitions in female rhesus macaques. Horm Behav 2022; 139:105123. [PMID: 35149292 DOI: 10.1016/j.yhbeh.2022.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
In male vertebrates, testosterone is generally known to coordinate reproductive trade-offs, in part by promoting the transition to the next reproduction at the expense of current parental care. The role of testosterone in reproductive transitions has been little tested in female vertebrates, especially in mammals. The present study sought to fill this gap, by first undertaking an experimental study, in which we identified DHT, androstenediol, and in particular etiocholanolone, as fecal androgen metabolites which reflect serum testosterone concentration in female rhesus macaques (Macaca mulatta). Using concentrations of fecal etiocholanolone as proxy for circulating testosterone, we then conducted a field study on 46 free-ranging rhesus macaques of Cayo Santiago, Puerto Rico, to test if testosterone mediates the trade-off between reproductive transition (a higher chance of reproducing in the next year) and current reproduction (providing more care to current offspring). While the evidence for testosterone was weak, the testing of fecal immunoreactive estrogen metabolites suggested a potential role of estrogen in reproductive trade-offs. We found large individual differences in fecal etiocholanolone concentrations during the early postpartum period that were unexplained even after accounting for sociodemographic factors such as age and dominance rank. Further investigation is needed to understand this variation. Our study suggests that the actions of testosterone in females may not have evolved to fulfil the same role in primate reproductive transitions as it does in males, and we encourage more studies to consider the function of testosterone in reproductive behaviors and life history transitions in females of mammalian taxa.
Collapse
Affiliation(s)
- D Susie Lee
- Department of Anthropology, New York University, 25 Waverly Place, New York 10003, NY, USA; New York Consortium in Evolutionary Primatology, New York 10024, NY, USA.
| | - Tina Knittel
- Max Planck Institute for Evolutionary Anthropology, Interim Group Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, Interim Group Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - James P Higham
- Department of Anthropology, New York University, 25 Waverly Place, New York 10003, NY, USA; New York Consortium in Evolutionary Primatology, New York 10024, NY, USA
| |
Collapse
|
14
|
González-Mariscal G, Hoy S, Hoffman KL. Rabbit Maternal Behavior: A Perspective from Behavioral Neuroendocrinology, Animal Production, and Psychobiology. ADVANCES IN NEUROBIOLOGY 2022; 27:131-176. [PMID: 36169815 DOI: 10.1007/978-3-030-97762-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rabbit maternal behavior (MB) impacts meat and fur production on the farm, survival of the species in the wild, and pet welfare. Specific characteristics of rabbit MB (i.e., three-step nest building process; single, brief, daily nursing bout) have been used as models for exploring particular themes in neuroscience, like obsessive-compulsive actions, circadian rhythms, and cognition. Particular hormonal combinations regulate nest building by acting on brain regions controlling MB in other mammals. Nonhormonal factors like type of lodging and the doe's social rank influence nursing and milk production. The concurrency of pregnancy and lactation, the display of nonselective nursing, and the rapid growth of altricial young - despite a minimal effort of maternal care - have prompted the study of mother-young affiliation, neurodevelopment, and weaning. Neurohormonal mechanisms, common to other mammals, plus additional strategies (perhaps unique to rabbits) allow the efficient, adaptive display of MB in multiple settings.
Collapse
Affiliation(s)
- Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| | - Steffen Hoy
- Department of Animal Breeding and Genetics Justus Liebig University Giessen, Giessen, Germany
| | - Kurt L Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
15
|
Reese SE, Conradt E, Riquino MR, Garland EL. An Integrated Mechanistic Model of Mindfulness-Oriented Recovery Enhancement for Opioid-Exposed Mother-Infant Dyads. Front Psychol 2021; 12:688359. [PMID: 34777086 PMCID: PMC8582323 DOI: 10.3389/fpsyg.2021.688359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/28/2021] [Indexed: 12/05/2022] Open
Abstract
A growing body of neurobiological and psychological research sheds light on the mechanisms underlying the development and maintenance of opioid use disorder and its relation to parenting behavior. Perinatal opioid use is associated with risks for women and children, including increased risk of child maltreatment. Drawing from extant data, here we provide an integrated mechanistic model of perinatal opioid use, parenting behavior, infant attachment, and child well-being to inform the development and adaptation of behavioral interventions for opioid-exposed mother-infant dyads. The model posits that recurrent perinatal opioid use may lead to increased stress sensitivity and reward dysregulation for some mothers, resulting in decreased perceived salience of infant cues, disengaged parenting behavior, disrupted infant attachment, and decreased child well-being. We conclude with a discussion of Mindfulness-Oriented Recovery Enhancement as a means of addressing mechanisms undergirding perinatal opioid use, parenting, and attachment, presenting evidence on the efficacy and therapeutic mechanisms of mindfulness. As perinatal opioid use increases in the United States, empirically informed models can be used to guide treatment development research and address this growing concern.
Collapse
Affiliation(s)
- Sarah E. Reese
- School of Social Work, College of Health, University of Montana, Missoula, MT, United States
| | - Elisabeth Conradt
- Child Adaptation and Neurodevelopment Lab, Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Michael R. Riquino
- School of Social Welfare, University of Kansas, Lawrence, KS, United States
| | - Eric L. Garland
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
16
|
Wenker ML, van Reenen CG, de Oliveira D, McCrea K, Verwer CM, Bokkers EA. Calf-directed affiliative behaviour of dairy cows in two types of cow-calf contact systems. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Horrell ND, Acosta MC, Saltzman W. Plasticity of the paternal brain: Effects of fatherhood on neural structure and function. Dev Psychobiol 2021; 63:1499-1520. [PMID: 33480062 PMCID: PMC8295408 DOI: 10.1002/dev.22097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Care of infants is a hallmark of mammals. Whereas parental care by mothers is obligatory for offspring survival in virtually all mammals, fathers provide care for their offspring in only an estimated 5%-10% of genera. In these species, the transition into fatherhood is often accompanied by pronounced changes in males' behavioral responses to young, including a reduction in aggression toward infants and an increase in nurturant behavior. The onset of fatherhood can also be associated with sensory, affective, and cognitive changes. The neuroplasticity that mediates these changes is not well understood; however, fatherhood can alter the production and survival of new neurons; function and structure of existing neurons; morphology of brain structures; and neuroendocrine signaling systems. Although these changes are thought to promote infant care by fathers, very little evidence exists to support this hypothesis; in most cases, neither the mechanisms underlying neuroplasticity in fathers nor its functional significance is known. In this paper, we review the available data on the neuroplasticity that occurs during the transition into fatherhood. We highlight gaps in our knowledge and future directions that will provide key insights into how and why fatherhood alters the structure and functioning of the male brain.
Collapse
Affiliation(s)
| | - Melina C. Acosta
- Graduate Program in Neuroscience and Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience and Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA USA
| |
Collapse
|
18
|
Salais-López H, Abellán-Álvaro M, Bellés M, Lanuza E, Agustin-Pavon C, Martínez-García F. Maternal Motivation: Exploring the Roles of Prolactin and Pup Stimuli. Neuroendocrinology 2021; 111:805-830. [PMID: 32645699 DOI: 10.1159/000510038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022]
Abstract
Motherhood entails increased motivation for pups, which become strong reinforcers and guide maternal behaviours. This depends on steroids and lactogens acting on the brain of females during pregnancy and postpartum. Since virgin female mice exposed to pups are nearly spontaneously maternal, the specific roles of endocrine and pup-derived signals in the induction of maternal motivation remain unclear. This work investigates maternal motivation in dams and virgin female mice, using a novel variant of the pup retrieval paradigm, the motivated pup retrieval test. We also analyse the role of prolactin (PRL) and of stimuli derived from a litter of pups and its mother, in the acquisition of maternal motivation. Experimental design included female mice in 3 conditions: lactating dams, comothers (virgins housed and sharing pup care with dams) and pup-naïve virgins. Females underwent 3 motivated-pup-retrieval trials, with pups displaced behind a 10-cm-high wire-mesh barrier. Dams retrieved with significantly lower latencies than comothers or virgins, indicating that full maternal motivation appears only after pregnancy. Although initially comothers and virgins showed no retrieval, comothers significantly improved throughout the experiment, suggesting an induced sensitization process. Lengthening exposure of comothers to the dyad pups-dam (from 2 to 5 days at the beginning of testing) had no strong effects on maternal sensitization. PRL responsiveness was analysed in these animals using immunohistochemical detection of phosphorylated signal transducer and activator of transcription 5 (pSTAT5, PRL-derived signalling marker). As expected, dams showed significantly higher pSTAT5 expression in most of the analysed nuclei. Moreover, comothers displayed significantly higher PRL responsiveness than pup-naïve virgins in the medial preoptic nucleus, even if they display similar circulating PRL levels, which are significantly lower than those of dams. Given the instrumental role of this nucleus in the relay and integration of pup-derived stimuli to facilitate proactive maternal responses, this increase in PRL responsiveness likely reflects the mechanism underlying the maternal sensitization process reported in this work. Since the analyses of maternal motivation and PRL signalling in the brain were performed in the same animals, we were able to explore correlation between both set of data. The results shed light on the neuroendocrine mechanisms underlying maternal motivation and other aspects of maternal behaviour.
Collapse
Affiliation(s)
- Hugo Salais-López
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
| | - María Abellán-Álvaro
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - María Bellés
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
| | - Enrique Lanuza
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - Carmen Agustin-Pavon
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - Fernando Martínez-García
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain,
| |
Collapse
|
19
|
Okino E, Morita S, Hoshikawa Y, Tsukahara S. The glutamatergic system in the preoptic area is involved in the retention of maternal behavior in maternally experienced female rats. Psychoneuroendocrinology 2020; 120:104792. [PMID: 32653768 DOI: 10.1016/j.psyneuen.2020.104792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
Maternally experienced female rats show high maternal behavior performance for a long time after acquisition of maternal experience, although the mechanisms responsible for the retention of maternal behavior are not well understood. The medial preoptic area (MPOA) plays an important role in the onset and maintenance of maternal behavior in female rats. We aimed to determine whether maternal experience affects the glutamatergic system in the MPOA for the retention of maternal behavior in female rats. First, to determine the effects of maternal experience in the postpartum period on dendritic spines, which are the postsynaptic component of excitatory glutamatergic neurotransmission, we examined the number of dendritic spines on MPOA neurons of primiparous mothers that had experienced mothering until weaning (sufficiently experienced mothers) and of primiparous mothers that were separated from their pups on the day of parturition (insufficiently experienced mothers). The number of mushroom spines, but not other types of spine, was significantly greater in the sufficiently experienced mothers compared with that in the insufficiently experienced mothers. Next, to determine the effects of maternal experience in the postpartum period on the expression of ionotropic glutamate receptors, we measured the mRNA levels of AMPA receptor subunits (GluA1-A4) and NMDA receptor subunits (GluN1, GluN2A-2D) in the MPOA of primiparous female rats that were kept with pups until brain sampling. As a result, we found that the mRNA levels of GluA3 and GluN2B were significantly higher in primiparous females on the day of weaning compared with those in primiparous females on the day of parturition. Additionally, we examined the effects of CNQX, an AMPA receptor antagonist, and MK-801, an NMDA receptor antagonist, injected into the MPOA on maternal behavior in maternally experienced primiparous female rats. Maternal behavioral activity was significantly reduced when CNQX or MK-801 was injected into the MPOA. These findings indicate that long-term maternal experience in the postpartum period up-regulates glutamatergic neurotransmission by increasing the number of mushroom spines and glutamate receptor expression, which may be involved in the retention of maternal behavior in maternally experienced female rats.
Collapse
Affiliation(s)
- Eri Okino
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Sayaka Morita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yumi Hoshikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
20
|
Wenker ML, Bokkers EAM, Lecorps B, von Keyserlingk MAG, van Reenen CG, Verwer CM, Weary DM. Effect of cow-calf contact on cow motivation to reunite with their calf. Sci Rep 2020; 10:14233. [PMID: 32859980 PMCID: PMC7455555 DOI: 10.1038/s41598-020-70927-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022] Open
Abstract
Early cow-calf separation prevents much of cows’ natural maternal behaviour. Early separation is thought to prevent the development of a cow-calf bond. To assess this bond, we measured motivation of dairy cows to reunite with their calf. To vary the degree of bonding, some cows were allowed continued contact with their calf and others were separated from their calf soon after birth, following standard practice on most farms. Among cows allowed continued contact, some were able to suckle their calf and others were prevented from suckling (by covering the cow’s udder with an udder net). Cows were habituated to the weighted-gate apparatus before calving by daily training with the (un-weighted) gate. After calving, cow willingness to use the gate was assessed by determining if she would push open the gate to access to her own calf. Testing occurred once daily, with weight on the gate gradually increased. After passing through the gate, the dam’s calf-directed behaviour was recorded. Suckled cows pushed a greater maximum weight (45.8 ± 7.8 kg) than separated cows (21.6 ± 6.7 kg) and non-suckled cows (24.3 ± 4.5 kg), with no differences between separated and non-suckled cows. Once reunited, latency to make nose contact and duration of licking did not differ between treatments. We conclude that motivation for calf contact is greater for cows that are suckled.
Collapse
Affiliation(s)
- Margret L Wenker
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z6, Canada.,Animal Production Systems Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Eddie A M Bokkers
- Animal Production Systems Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Benjamin Lecorps
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z6, Canada
| | - Marina A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z6, Canada
| | - Cornelis G van Reenen
- Animal Production Systems Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, The Netherlands.,Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Cynthia M Verwer
- Louis Bolk Institute, Kosterijland 3-5, 3981 AJ, Bunnik, The Netherlands
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z6, Canada.
| |
Collapse
|
21
|
Psychological and neurobiological mechanisms underlying the decline of maternal behavior. Neurosci Biobehav Rev 2020; 116:164-181. [PMID: 32569707 DOI: 10.1016/j.neubiorev.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022]
Abstract
The maternal behavior decline is important for the normal development of the young and the wellbeing of the mother. This paper reviews limited research on the factors and mechanisms involved in the rat maternal behavior decline and proposes a multi-level model. Framed in the parent-offspring conflict theory (an ultimate cause) and the approach-withdrawal model (a proximate cause), the maternal behavior decline is viewed as an active and effortful process, reflecting the dynamic interplay between the mother and her offspring. It is instigated by the waning of maternal motivation, coupled with the increased maternal aversion by the mother in responding to the changing sensory and motoric patterns of pup stimuli. In the decline phase, the neural circuit that mediates the inhibitory ("withdrawal") responses starts to increase activity and gain control of behavioral outputs, while the excitatory ("approach") maternal neural circuit is being inhibited or reorganized. Various hormones and certain monoamines may play a critical role in tipping the balance between the excitatory and inhibitory neural circuits to synchronize the mother-infant interaction.
Collapse
|
22
|
Westrick SE, Taylor RW, Boutin S, Lane JE, McAdam AG, Dantzer B. Attentive red squirrel mothers have faster growing pups and higher lifetime reproductive success. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02856-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Csikós V, Varró P, Bódi V, Oláh S, Világi I, Dobolyi A. The mycotoxin deoxynivalenol activates GABAergic neurons in the reward system and inhibits feeding and maternal behaviours. Arch Toxicol 2020; 94:3297-3313. [PMID: 32472169 PMCID: PMC7415754 DOI: 10.1007/s00204-020-02791-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
Deoxynivalenol (DON) or vomitoxin, is a trichothecene mycotoxin produced mainly by Fusarium graminearum and culmorum. Mycotoxins or secondary metabolic products of mold fungi are micro-pollutants, which may affect human and animal health. The neuronal and behavioural actions of DON were analysed in the present study. To address, which neurons can be affected by DON, the neuronal activation pattern following intraperitoneal injection of DON (1 mg/kg) was investigated in adult male rats and the results were confirmed in mice, too. DON-induced neuronal activation was assessed by c-Fos immunohistochemistry. DON injection resulted in profound c-Fos activation in only the elements of the reward system, such as the accumbens nucleus, the medial prefrontal cortex, and the ventral tegmental area. Further double labelling studies suggested that GABAergic neurons were activated by DON treatment. To study the behavioural relevance of this activation, we examined the effect of DON on feed intake as an example of reward-driven behaviours. Following DON injection, feed consumption was markedly reduced but returned to normal the following day suggesting an inhibitory action of DON on feed intake without forming taste-aversion. To further test how general the effect of DON on goal-directed behaviours is, its actions on maternal behaviour was also examined. Pup retrieval latencies were markedly increased by DON administration, and DON-treated mother rats spent less time with nursing suggesting reduced maternal motivation. In a supplementary control experiment, DON did not induce conditioned place preference arguing against its addictive or aversive actions. The results imply that acute uptake of the mycotoxin DON can influence the reward circuit of the brain and exert inhibitory actions on goal-directed, reward-driven behaviours. In addition, the results also suggest that DON exposure of mothers may have specific implications.
Collapse
Affiliation(s)
- Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Petra Varró
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Bódi
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Világi
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
24
|
Alsina-Llanes M, Olazábal DE. Prefrontal cortex is associated with the rapid onset of parental behavior in inexperienced adult mice (C57BL/6). Behav Brain Res 2020; 385:112556. [PMID: 32087184 DOI: 10.1016/j.bbr.2020.112556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/28/2022]
Abstract
There is significant variability in the immediate behavioral response displayed by inexperienced adult mice when exposed to pups for the first time. The aim of this study was to determine which brain regions were engaged (higher c-Fos-immunoreactivity, c-Fos-ir) when virgin females, that were exposed to pups for 15 or 60 min, displayed full parental behavior (FPB), partial parental behavior (PPB), or non-parental behavior (NPB), or virgin males displayed PPB or infanticidal behavior (IB). The number of c-Fos-ir neurons in the prelimbic cortex (PL) was higher in parental females than in the NPB group (after a 15-min exposure), and the group not exposed to pups (NE). C-Fos expression in the nucleus accumbens (NA) was increased in most groups of females exposed to pups compared to NE. Higher c-Fos-ir was also found in the shell subregion of the NA in infanticidal males, compared to males NE. The cortical (CoA) and medial (MA) amygdala also showed higher c-Fos-ir in parental females compared to NE animals. However, PPB and IB male groups also exhibited higher c-Fos-ir in the CoA and MA compared to the NE group. The expression of c-Fos in the different subregions of medial preoptic area and the ventromedial nucleus of the hypothalamus was not specifically associated with either parental or infanticidal behavior. No brain activation in males was specifically associated with infanticidal behavior. Our results suggest that 15 min of exposure to pups is enough to detect brain regions associated with parental behavior (PL) or pups processing (NA, MA, CoA) in mice. The PL might participate in the immediate onset of parental behavior in virgin females, coordinating and planning its rapid execution.
Collapse
Affiliation(s)
- M Alsina-Llanes
- Departamento de Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| | - D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| |
Collapse
|
25
|
Almanza-Sepulveda ML, Fleming AS, Jonas W. Mothering revisited: A role for cortisol? Horm Behav 2020; 121:104679. [PMID: 31927022 DOI: 10.1016/j.yhbeh.2020.104679] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
This selective review first describes the involvement of the maternal hypothalamic-pituitary-adrenal (HPA) axis during pregnancy and the postpartum period, and the relation between peripartum HPA axis function and maternal behavior, stress reactivity and emotional dysregulation in human mothers. To provide experimental background to this correlational work, where helpful, animal studies are also described. It then explores the association between HPA axis function in mothers and their infants, under ongoing non-stressful conditions and during stressful challenges, the moderating role of mothers' sensitivity and behavior in the mother-child co-regulation and the effects of more traumatic risk factors on these relations. The overarching theme being explored is that the HPA axis - albeit a system designed to function during periods of high stress and challenge - also functions to promote adaptation to more normative processes, shown in the new mother who experiences both high cortisol and enhanced attraction and attention to and recognition of, their infants and their cues. Hence the same HPA system shows positive relations with behavior at some time points and inverse ones at others. However, the literature is not uniform and results vary widely depending on the number, timing, place, and type of samplings and assessments, and, of course, the population being studied and, in the present context, the state, the stage, and the stress levels of mother and infant.
Collapse
Affiliation(s)
- Mayra L Almanza-Sepulveda
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Alison S Fleming
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| | - Wibke Jonas
- Department of Women's and Children's Health, Karolinska Institutet, Widerströmska Huset, Tomtebodavägen 18a, 171 77 Stockholm, Sweden.
| |
Collapse
|
26
|
Dulor Finkler A, Espinoza Pardo GV, Bolten Lucion A. Repeated cross‐fostering affects maternal behavior and olfactory preferences in rat pups. Dev Psychobiol 2020; 62:283-296. [DOI: 10.1002/dev.21907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea Dulor Finkler
- Graduate Program in Neuroscience Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Department of Physiology Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Universidade Luterana do Brasil Canoas Brazil
| | - Grace Violeta Espinoza Pardo
- Department of Physiology Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Centre for Interdisciplinary Science and Society Studies Universidad de Ciencias y Humanidades Lima Peru
| | - Aldo Bolten Lucion
- Graduate Program in Neuroscience Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Department of Physiology Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| |
Collapse
|
27
|
Hagiwara A, Sugiyama N, Ohtsuka T. Impaired experience-dependent maternal care in presynaptic active zone protein CAST-deficient dams. Sci Rep 2020; 10:5238. [PMID: 32251313 PMCID: PMC7090055 DOI: 10.1038/s41598-020-62072-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Although sociological studies affirm the importance of parental care in the survival of offspring, maltreatment—including child neglect—remains prevalent in many countries. While child neglect is well known to affect child development, the causes of maternal neglect are poorly understood. Here, we found that female mice with a deletion mutation of CAST (a presynaptic release-machinery protein) showed significantly reduced weaning rate when primiparous and a recovered rate when multiparous. Indeed, when nurturing, primiparous and nulliparous CAST knock out (KO) mice exhibited less crouching time than control mice and moved greater distances. Contrary to expectations, plasma oxytocin (OXT) was not significantly reduced in CAST KO mice even though terminals of magnocellular neurons in the posterior pituitary expressed CAST. We further found that compared with control mice, CAST KO mice drank significantly less water when nurturing and had a greater preference for sucrose during pregnancy. We suggest that deficiency in presynaptic release-machinery protein impairs the facilitation of some maternal behaviours, which can be compensated for by experience and learning.
Collapse
Affiliation(s)
- Akari Hagiwara
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Naoko Sugiyama
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
28
|
Mendes-Lima T, Kirsten TB, Rodrigues PS, Sampaio ACS, Felício LF, Rocha PRDA, Reis-Silva TM, Bondan EF, Martins MFM, Queiroz-Hazarbassanov N, Bernardi MM. Prenatal LPS induces sickness behaviour and decreases maternal and predatory behaviours after an LPS challenge. Int J Neurosci 2020; 130:804-816. [PMID: 31916878 DOI: 10.1080/00207454.2019.1706505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose: The influence of a challenge dose of lipopolysaccharide (LPS) on the behavioural selection between maternal (MB) and predatory behaviours (PB) of female rats prenatally treated with the same endotoxin or saline solution (F1 generation) were studied.Material and methods: Thus, in adult age, these female rats were mated and, at lactation days 5 or 6, the following groups were formed: (1) LPS + LPS group-female rats prenatally treated with LPS and received an LPS challenge dose; (2) S + LPS group-female rats prenatally treated with saline solution and received a challenge LPS dose (3) S + S group-females rats prenatally treated with saline which received a saline injection. MB, PB to cockroaches, exploratory behaviour, periaqueductal grey (PAG) expression of the astrocytic biomarker glial fibrillary acidic protein (GFAP), and corticosterone and TNF-alpha serum levels were evaluated.Results: Showed that: (1) relative to the S + S group, the LPS + S group showed decreased MB and slightly increased PB, without inducing sickness behaviour; (2) the LPS + LPS group showed decreased MB but few effects on PB; (3) there was increased sickness behaviour associated with increased TNF-alpha serum levels in the LPS + LPS group; (4) a significant increase in GFAP expression was observed in both LPS groups, which was greater in the LPS + LPS group and (5) no differences in the corticosterone of all groups.Conclusions: Prenatal LPS impaired the switch from MB to PB in female rats of the LPS + LPS group by increased sickness behaviour as well as an increase in plasmatic TNF-alpha levels inducing PAG astrogliosis.
Collapse
Affiliation(s)
- T Mendes-Lima
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - T B Kirsten
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - P S Rodrigues
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - A C S Sampaio
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - L F Felício
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP CEP, Brazil
| | - P R D A Rocha
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - T M Reis-Silva
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - E F Bondan
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - M F M Martins
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - N Queiroz-Hazarbassanov
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP CEP, Brazil
| | - M M Bernardi
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Gao J, Nie L, Li Y, Li M. Serotonin 5-HT2A and 5-HT2C receptors regulate rat maternal behavior through distinct behavioral and neural mechanisms. Neuropharmacology 2020; 162:107848. [DOI: 10.1016/j.neuropharm.2019.107848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/18/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023]
|
30
|
Caba M, Melo AI, Fleming A, Meza E. Maternal care activates the ventral tegmental area but not dopaminergic cells in the rat. J Neuroendocrinol 2019; 31:e12713. [PMID: 30912179 DOI: 10.1111/jne.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
The ventral tegmental area (VTA), together with the preoptic area, is part of a neural circuit necessary for the expression of maternal behaviour (MB); destruction of either area disrupts MB in postpartum rats. Central to the proposal of VTA activation are dopaminergic cells, for which the cell bodies lie in the VTA and project to forebrain structures. This mesolimbic system is a motivational circuit involved in rewarding behaviours such as sex and MB. Despite their recognised importance, surprisingly, unlike the preoptic area, there are no anatomical descriptions of the pattern of VTA activation or of the dopaminergic cell activation, specifically in relation to MB in the rat. In the present study, we explore the possible activation (as indicated by Fos protein via immunohistochemistry) of the anterior and medial portions of the VTA and in the dopaminergic cells in these regions, as well as in the medial preoptic area, in lactating rats, at postpartum day 7 (after a 12-hour mother/pups separation), and in dioestrous females. After 12 hours, mothers were perfused at that moment or after a 90 minutes of interaction, or not, with their pups. We found a strong significant Fos induction in both the preoptic area and in the anterior portion of VTA in dams that interacted with their pups. The number of dopaminergic cells that coexpressed Fos did not differ across groups. Additionally, we determined Fos and GABA colocalisation in the anterior part of the VTA and found dense GABAergic processes, possibly varicosities, in the area of increased Fos expression. The results of the present study support a proposed GABAergic pathway from medial preoptic area to VTA cells, critical for the expression of MB. Future experiments are warranted to explore the neurochemical identity of the Fos and no-Fos expressing cells that are recipients of GABAergic processes in the VTA, aiming to better understand the neural circuitry of the VTA in relation to MB.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, México
| | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Enrique Meza
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, México
| |
Collapse
|
31
|
Sexual behaviour of the female rat during late adolescence: effect of chronic cocaine treatment. Behav Pharmacol 2019; 30:396-404. [DOI: 10.1097/fbp.0000000000000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Lezama-García K, Mariti C, Mota-Rojas D, Martínez-Burnes J, Barrios-García H, Gazzano A. Maternal behaviour in domestic dogs. Int J Vet Sci Med 2019; 7:20-30. [PMID: 31620484 PMCID: PMC6776987 DOI: 10.1080/23144599.2019.1641899] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
Mammalian parental care, in most of the cases, is given by the female, who provides food, warmth, and protection. In domestic dogs, maternal behaviour shown by the dam mainly consists of contact, nursing, grooming/licking, play, punishment, thermoregulation, and motion. Peer-reviewed literature published between 1952 and 2018 was retrieved from CAB Abstracts, PubMed, ISI Web of Knowledge, Scopus and book chapters. Keywords for this search included the following terms: behaviour, bonding, altricial, precocial, offspring, maternal, whelping, nursing, domestic dogs, female dog, aggression, puppies, anogenital licking. In this review, we reported and discussed scientific information about maternal behaviour in domestic bitches, comparing altricial vs precocial species; the importance of the bonding, grooming/licking and nursing, and their impacts on puppies' behaviour; altered maternal behaviours such as aggression, cannibalism, rejection, and also the relation between hormones and maternal care behaviours. We concluded that the level of interactions between the dam and the puppies influences the physiological, cognitive and behavioural development of the litter, and the main hormones in the bitch for inducing maternal care behaviours are estradiol, oxytocin, prolactin and progesterone.
Collapse
Affiliation(s)
- Karina Lezama-García
- Neurophysiology, Behavior and Assessment of Welfare in Domestic Animals, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Chiara Mariti
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Assessment of Welfare in Domestic Animals, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria, Mexico
| | - Hugo Barrios-García
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria, Mexico
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Pawluski JL, Li M, Lonstein JS. Serotonin and motherhood: From molecules to mood. Front Neuroendocrinol 2019; 53:100742. [PMID: 30878665 PMCID: PMC6541513 DOI: 10.1016/j.yfrne.2019.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Emerging research points to a valuable role of the monoamine neurotransmitter, serotonin, in the display of maternal behaviors and reproduction-associated plasticity in the maternal brain. Serotonin is also implicated in the pathophysiology of numerous affective disorders and likely plays an important role in the pathophysiology of maternal mental illness. Therefore, the main goals of this review are to detail: (1) how the serotonin system of the female brain changes across pregnancy and postpartum; (2) the role of the central serotonergic system in maternal caregiving and maternal aggression; and (3) how the serotonin system and selective serotonin reuptake inhibitor medications (SSRIs) are involved in the treatment of maternal mental illness. Although there is much work to be done, studying the central serotonin system's multifaceted role in the maternal brain is vital to our understanding of the processes governing matrescence and the maintenance of motherhood.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
34
|
Gao J, Chen L, Li M. 5-HT 2A receptors modulate dopamine D 2-mediated maternal effects. Pharmacol Biochem Behav 2019; 180:32-43. [PMID: 30904543 DOI: 10.1016/j.pbb.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/10/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
Serotonin 5-HT2A receptors are expressed throughout the mesolimbic and mesocortical dopamine pathways, and manipulation of this receptor system has a profound impact on dopamine functions and dopamine-mediated behaviors. It is highly likely that 5-HT2A receptors may also modulate the D2-mediated maternal effects. The present study investigated this issue and also explored the possible behavioral mechanisms. We tested the effects of two D2 drugs (an agonist quinpirole: 0.5, 1.0 mg/kg, and a potent D2 antagonist haloperidol: 0.05, 0.10 mg/kg, sc) and their combinations with two 5-HT2A drugs (a selective 5-HT2A agonist TCB-2: 2.5 mg/kg, and 5-HT2A antagonist MDL100907, 1.0 mg/kg, sc) on maternal behavior in Sprague-Dawley postpartum females. Individually, TCB-2 (2.5 mg/kg, sc) and quinpirole (0.5 and 1.0 mg/kg, sc) reduced pup preference and disrupted home-cage maternal behavior. In contrast, haloperidol (0.10 mg/kg, sc) only disrupted home-cage maternal behavior, but did not suppress pup preference. MDL100907 (1.0 mg/kg, sc) by itself had no effect on either pup preference or maternal behavior. When administered in combination, pretreatment of TCB-2 did not alter quinpirole's disruption of pup preference and home-cage maternal behavior (possibly due to the floor effect), however, it did enhance haloperidol's disruption of pup retrieval in the home cage. MDL100907 had no effect both quinpirole's and haloperidol's disruption of pup preference and home-cage maternal behavior. Interestingly, haloperidol attenuated TCB-2's disruptive effect on pup preference. These findings suggest that activation of 5-HT2A receptors tends to enhance D2-mediated maternal disruption, whereas blockade of 5-HT2A receptors is less effective. They also suggest that 5-HT2A receptors may have a direct effect on maternal behavior independent of their interaction with D2 receptors. The possible behavioral and neural mechanisms by which 5-HT2A- and D2-mediated maternal effects and their interaction are discussed.
Collapse
Affiliation(s)
- Jun Gao
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.
| | - Leilei Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| | - Ming Li
- Faculty of Psychology, Southwest University, Chongqing, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.
| |
Collapse
|
35
|
Abstract
The tremendous diversity of animal behaviors has inspired generations of scientists from an array of biological disciplines. To complement investigations of ecological and evolutionary factors contributing to behavioral evolution, modern sequencing, gene editing, computational and neuroscience tools now provide a means to discover the proximate mechanisms upon which natural selection acts to generate behavioral diversity. Social behaviors are motivated behaviors that can differ tremendously between closely related species, suggesting phylogenetic plasticity in their underlying biological mechanisms. In addition, convergent evolution has repeatedly given rise to similar forms of social behavior and mating systems in distantly related species. Social behavioral divergence and convergence provides an entry point for understanding the neurogenetic mechanisms contributing to behavioral diversity. We argue that the greatest strides in discovering mechanisms contributing to social behavioral diversity will be achieved through integration of interdisciplinary comparative approaches with modern tools in diverse species systems. We review recent advances and future potential for discovering mechanisms underlying social behavioral variation; highlighting patterns of social behavioral evolution, oxytocin and vasopressin neuropeptide systems, genetic/transcriptional "toolkits," modern experimental tools, and alternative species systems, with particular emphasis on Microtine rodents and Lake Malawi cichlid fishes.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Aguilar-Roblero R, González-Mariscal G. Behavioral, neuroendocrine and physiological indicators of the circadian biology of male and female rabbits. Eur J Neurosci 2018; 51:429-453. [PMID: 30408249 DOI: 10.1111/ejn.14265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Adult rabbits show robust circadian rhythms of: nursing, food and water intake, hard faeces excretion, locomotion, body temperature, blood and intraocular pressure, corticosteroid secretion, and sleep. Control of several circadian rhythms involves a light-entrained circadian clock and a food-entrained oscillator. Nursing periodicity, however, relies on a suckling stimulation threshold. Brain structures regulating this activity include the paraventricular nucleus and preoptic area, as determined by lesions and quantification of cFOS- and PER1 clock gene-immunoreactive proteins. Melatonin synthesis in the rabbit pineal gland shows a diurnal rhythm, with highest values at night and lowest ones during the day. In kits the main zeitgeber is milk intake, which synchronizes locomotor activity, body temperature, and corticosterone secretion. Brain regions involved in these effects include the median preoptic nucleus and several olfactory structures. As models for particular human illnesses rabbits have been valuable for studying glaucoma and cardiovascular disease. Circadian variations in intraocular pressure (main risk factor for glaucoma) have been found, with highest values at night, which depend on sympathetic innervation. Rabbits fed a high fat diet develop cholesterol plaques and high blood pressure, as do humans, and such increased fat intake directly modulates cardiovascular homeostasis and circadian patterns, independently of white adipose tissue accumulation. Rabbits have also been useful to investigate the characteristics of sleep across the day and its modulation by infections, cytokines and other endogenous humoral factors. Rabbit circadian biology warrants deeper investigation of the role of the suprachiasmatic nucleus in regulating most behavioral and physiological rhythms described above.
Collapse
Affiliation(s)
- Raúl Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
37
|
Bayerl DS, Bosch OJ. Brain vasopressin signaling modulates aspects of maternal behavior in lactating rats. GENES BRAIN AND BEHAVIOR 2018; 18:e12517. [DOI: 10.1111/gbb.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Doris S. Bayerl
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| |
Collapse
|
38
|
Olazábal DE. Role of oxytocin in parental behaviour. J Neuroendocrinol 2018; 30:e12594. [PMID: 29603440 DOI: 10.1111/jne.12594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Abstract
Both animal and human studies have provided conclusive evidence that oxytocin (OXT) acts in the brain (eg, medial preoptic area, ventral tegmental area, nucleus accumbens) to promote parental behaviour under different reproductive and physiological conditions. OXT appears to accelerate and strengthen the neural process that makes newborns attractive or rewarding. Furthermore, OXT reduces stress/anxiety and might improve mood and well being, resulting in indirect benefits for parents. However, OXT also plays a role in the development of species reproductive and social strategies, making some species or individuals more prone to display caring activities in nonreproductive contexts. There are important differences in the development of the OXT system and its regulation by gonadal hormones that can make individuals or species very different. Those intra- and interspecific differences in the OXT system have been associated with differences in parental behaviour. For example, differences in OXT levels in body fluids and genetic variants for the OXT and OXT receptor genes have been associated with variability in parental mood and behaviour in humans. Thus, OXT has received much attention as a potential therapeutic agent for affective, emotional and behavioural problems. Despite many preliminary studies indicating promising findings, several unknown aspects of the OXT system remain to be addressed before we can achieve a complete understanding of its function in the brain. The enormous interest that this area of study has attracted in the last decade will likely continually contribute to advancing our understanding of the role of OXT in parental behaviour and other behavioural and physiological functions.
Collapse
Affiliation(s)
- D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República Oriental del Uruguay (UdelaR), Montevideo, Uruguay
| |
Collapse
|
39
|
Ferreño M, Uriarte N, Zuluaga MJ, Ferreira A, Agrati D. Dopaminergic activity mediates pups' over male preference of postpartum estrous rats. Physiol Behav 2018; 188:134-139. [PMID: 29408305 DOI: 10.1016/j.physbeh.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/30/2022]
Abstract
Pups have greater incentive value than males for rats during the postpartum estrus (PPE); a period when females are both maternally and sexually motivated. Mesolimbic dopaminergic system has been proposed as a general motivational circuit; however in the literature it has been more related to the control of the motivational aspects of maternal than sexual motivation of females. Therefore, we aimed to assess the effect of antagonizing dopaminergic neurotransmission of PPE females on their preference for pups over a male. To achieve this objective we tested PPE rats in a Y-maze with three-choice chambers (one containing eight pups, the other a male and the last one no stimulus) after the systemic administration of the dopaminergic antagonist haloperidol (0.0; 0.025 or 0.05 mg/kg). Furthermore, to determine if this dopaminergic antagonist differentially affects maternal and sexual motivations when pups and male are not competing, we evaluated the effect of haloperidol in the preference of females for pups vs. a non-receptive female and for a male vs. a non-receptive female. In the preference test for pups vs. male, both doses of haloperidol decreased the time that females spent in pups' chamber while increased the time that they spent in male's chamber, resulting in a lack of preference between both incentives. Besides, haloperidol reduced the effort -attempts to get access to the stimuli- made by the females to obtain the pups. Conversely, 0.05 mg/kg of haloperidol did not affect the preference for both incentives when they were confronted to a non-receptive female. Together, these results indicate that the dopaminergic activity mediates pups' preference over male during the PPE and point toward a more relevant role of this system in females' behavioral output when incentives are competing.
Collapse
Affiliation(s)
- Marcela Ferreño
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María José Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniella Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
40
|
Catanese MC, Vandenberg LN. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control. Horm Behav 2018; 101:113-124. [PMID: 29107581 PMCID: PMC5938171 DOI: 10.1016/j.yhbeh.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022]
Abstract
Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development.
Collapse
Affiliation(s)
- Mary C Catanese
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA
| | - Laura N Vandenberg
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
41
|
Behavioral mechanisms underlying the maternal disruptive effect of serotonin 5-HT 2A receptor activation in Sprague-Dawley rats. J Neural Transm (Vienna) 2018; 125:1065-1075. [PMID: 29616335 DOI: 10.1007/s00702-018-1878-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Recent evidence indicates that acute activation of 5-HT2A receptors causes a disruption of maternal behavior in rats. However, the behavioral mechanisms underlying such a disruption are not known. We addressed this issue using two behavioral approaches targeting the maternal motivational and emotional processing systems. First, we used the pup-separation technique to increase maternal motivation to see whether pup separation is capable of reducing the maternal disruptive effect of TCB-2 (a high-affinity 5-HT2A agonist) treatment. On postpartum days 4 and 6, different groups of Sprague-Dawley dams were treated with the TCB-2 (5.0 mg/kg, sc) or vehicle and their maternal behaviors were tested after either a 4-h pup-separation or no-pup-separation condition. Although acute TCB-2 injection disrupted maternal behavior, this disruption was not attenuated by pup separation, even after we optimized the timing of separation to maximize its increase on maternal motivation. Acute TCB-2 also impaired the retrieval of food pellets, suggesting a general effect on motivated behaviors. Next, we used a pup preference test and found that dams treated with TCB-2 exhibited an even stronger preference to pups over a male conspecific than vehicle-treated dams, indicating an enhanced motivational and emotional processing of the rewarding property of pups. These findings suggest that TCB-2 has a disruptive effect on rat maternal behavior, and this disruption is not likely due to the drug's effect on mothers' motivational and emotional processing of the incentive salience of pups, although this motivational suppression account cannot be completely ruled out. Future work could explore other possible behavioral mechanisms, such as the drug's effect on executive function.
Collapse
|
42
|
Sun M, Huang P, Wang Y, Chen W. Anticonvulsants lamotrigine and riluzole disrupt maternal behavior in postpartum female rats. Pharmacol Biochem Behav 2018; 168:43-50. [PMID: 29572014 DOI: 10.1016/j.pbb.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022]
Abstract
Maternal behavior is a highly motivated and well-organized social behavior. Previous studies have reported that anticonvulsants are frequently used in postpartum bipolar disorder. However, the maternal disruptive effect of the anticonvulsants has not been explored. The purpose of the present study was to examine the effect of anticonvulsants lamotrigine and riluzole on maternal behavior in postpartum female rats. On postpartum Day 3, Sprague-Dawley mother rats were given a single intraperitoneal injection of vehicle, lamotrigine (15, 25, 35 mg/kg), or riluzole (2, 4, 8 mg/kg). Maternal behavior was tested 30 min before and after injection. Animals treated with lamotrigine or riluzole had a longer pup retrieval latency, retrieved fewer pups into the nest, spent less time on nursing pups, as well as on building the disturbed nest, and animals treated with riluzole spent less time on pup licking. Whereas, the drugs in the tested doses did not shorten the total duration of behavior unrelated to maternal behavior. Overall, these data indicate that lamotrigine and riluzole disrupt major components of maternal behavior in postpartum female rats, but do not inhibit the behaviors unrelated to maternal behavior, which indicates that the maternal disruptive effect is not due to nonspecific sedative effect.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Pan Huang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
43
|
Decreased environmental complexity during development impairs habituation of reinforcer effectiveness of sensory stimuli. Behav Brain Res 2017; 337:53-60. [PMID: 28943426 DOI: 10.1016/j.bbr.2017.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 02/03/2023]
Abstract
Previous research has shown that rats reared in simple/impoverished environments demonstrate greater repetitive responding for sensory reinforcers (e.g., light onset). Moreover, the brains of these rats are abnormally developed, compared to brains of rats reared in more complex/enriched environments. Repetitive behaviors are commonly observed in individuals with developmental disorders. Some of these repetitive behaviors could be maintained by the reinforcing effects of the sensory stimulation that they produce. Therefore, rearing rats in impoverished conditions may provide an animal model for certain repetitive behaviors associated with developmental disorders. We hypothesize that in rats reared in simple/impoverished environments, the normal habituation process to sensory reinforcers is impaired, resulting in high levels of repetitive behaviors. We tested the hypothesis using an operant sensory reinforcement paradigm in rats reared in simple/impoverished (IC), standard laboratory (SC), and complex/enrichened conditions (EC, treatments including postnatal handling and environmental enrichment). Results show that the within-session habituation of the reinforcer effectiveness of light onset was slower in the IC and SC rats than in the EC rats. A dishabituation challenge indicated that within-session decline of responses was due to habituation and not motor fatigue or sensory adaptation. In conclusion, rearing rats in simple/impoverished environments, and comparing them to rats reared in more complex/enriched environments, may constitute a useful approach for studying certain repetitive behaviors associated with developmental disorders.
Collapse
|
44
|
Conflict or consensus? Synchronous change in mother–young vocal communication across weaning in the cat. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Teodoro LC, Cabral LDM, Vilela FC, Giusti-Paiva A. P2 purinergic receptor antagonists disrupt maternal behavior in lactating rats. Pharmacol Biochem Behav 2017; 158:1-6. [PMID: 28522214 DOI: 10.1016/j.pbb.2017.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
The involvement of purinergic signaling in several brain functions has been recognized, but the modulation on maternal behavior by the purinergic system is not established, even though there are functional interactions between the purinergic and oxytocinergic systems. Therefore, the aim of our study was to investigate whether central administration of P2 receptor antagonists affected the maternal behavior of lactating rats and c-Fos immunoreactivity in the forebrain. On day 7 of lactation, female rats were treated with vehicle (5μL; i.c.v.), suramin (9.4-75.0μg/5μL; i.c.v.) or PPADS (9.4-75.0μg/5μL; i.c.v.) 30min before the experiment began. The maternal behavior was evaluated during the 30min following suramin or PPADS administration. In addition, c-Fos-positive nuclei were counted in the medial preoptic area (MPOA) and in the bed nucleus of the stria terminalis (BNST), and neurons that were double-labeled for c-Fos/OT were counted in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus of lactating rats. The results show that P2 receptor antagonists decreased maternal care and decreased neuronal activation in the MPOA and BNST and activation of oxytocinergic neurons in hypothalamic nuclei. Our results indicate that the purinergic system modulates maternal behavior and neuronal activation induced by suckling during lactation.
Collapse
Affiliation(s)
- Luciana C Teodoro
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas-MG, Alfenas, Brazil
| | - Layla D M Cabral
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas-MG, Alfenas, Brazil
| | - Fabiana C Vilela
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas-MG, Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas-MG, Alfenas, Brazil.
| |
Collapse
|
46
|
Aguirre J, Meza E, Caba M. Dopaminergic activation anticipates daily nursing in the rabbit. Eur J Neurosci 2017; 45:1396-1409. [DOI: 10.1111/ejn.13571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Affiliation(s)
- J. Aguirre
- Doctorado en Ciencias Biomédicas; CIB; Universidad Veracruzana; Xalapa Veracruz México
| | - E. Meza
- Centro de Investigaciones Biomédicas; Universidad Veracruzana; Av. Luis Castelazo s/n, Col. Industrial Animas C.P. 91190 Xalapa Veracruz México
| | - M. Caba
- Centro de Investigaciones Biomédicas; Universidad Veracruzana; Av. Luis Castelazo s/n, Col. Industrial Animas C.P. 91190 Xalapa Veracruz México
| |
Collapse
|
47
|
Kenkel WM, Perkeybile AM, Carter CS. The neurobiological causes and effects of alloparenting. Dev Neurobiol 2017; 77:214-232. [PMID: 27804277 PMCID: PMC5768312 DOI: 10.1002/dneu.22465] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/26/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Alloparenting, defined as care provided by individuals other than parents, is a universal behavior among humans that has shaped our evolutionary history and remains important in contemporary society. Dysfunctions in alloparenting can have serious and sometimes fatal consequences for vulnerable infants and children. In spite of the importance of alloparenting, they still have much to learn regarding the underlying neurobiological systems governing its expression. Here, they review how a lack of alloparental behavior among traditional laboratory species has led to a blind spot in our understanding of this critical facet of human social behavior and the relevant neurobiology. Based on what is known, they draw from model systems ranging from voles to meerkats to primates to describe a conserved set of neuroendocrine mechanisms supporting the expression of alloparental care. In this review we describe the neurobiological and behavioral prerequisites, ontogeny, and consequences of alloparental care. Lastly, they identified several outstanding topics in the area of alloparental care that deserve further research efforts to better advance human health and wellbeing. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 214-232, 2017.
Collapse
Affiliation(s)
| | | | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, Indiana
| |
Collapse
|
48
|
De Moura AC, Brito VB, Porawski M, Saffi J, Giovenardi M. Low maternal care is associated with increased oxidative stress in the brain of lactating rats. Brain Res 2017; 1655:17-22. [PMID: 27840190 DOI: 10.1016/j.brainres.2016.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 01/24/2023]
Abstract
Maternal care is crucial for offspring development and licking/grooming patterns can be induced by sensorial, neuroendocrine, and metabolic variations in the CNS. Important brain functions, such as learning and memory, can be influenced by oxidative stress, which can also modulate pathophysiological processes (e.g., depression, anxiety, and other psychiatric disorders). This study evaluated oxidative stress in the hippocampus (HP), olfactory bulb (OB), and plasma in Low-Licking (LL) and High-Licking (HL) lactating rats through superoxide dismutase (SOD) and catalase (CAT) activities, DNA damage (comet assay), and dihydrodichlorofluorescein (DCF) oxidation assay. Results demonstrate that in the HP of LL, the activities of SOD and CAT were increased compared to HL. In the OB, the activities of SOD and CAT were also increased in LL. The comet assay in the HP showed that LL had higher levels of basal damage and increased levels of DNA breaks than HL. In the OB, LL also had higher levels of DNA damage. In the plasma, no difference was observed in either SOD or CAT activities, but the DCF oxidation assay revealed that LL had higher levels of ROS production than HL. In conclusion, we observed that LL mothers showed evidence of increased oxidative stress when compared to HL, suggesting that variations in maternal behavior might be related to these biochemical parameters.
Collapse
Affiliation(s)
- Ana Carolina De Moura
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Verônica Bidinotto Brito
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Marilene Porawski
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Jenifer Saffi
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
49
|
Agrati D, Ferreño M, Marin G, Uriarte N, Zuluaga MJ, Fernández-Guasti A, Ferreira A. Previous and recent maternal experiences modulate pups' incentive value relative to a male without affecting maternal behavior in postpartum estrous rats. ACTA ACUST UNITED AC 2016; 110:140-148. [PMID: 27847258 DOI: 10.1016/j.jphysparis.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/24/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
This study extends the behavioral analysis of the postpartum estrus (PPE) which represents a unique period in the female rat's lifetime when maternal and sexual motivations co-exist. The aim of this study was to explore how previous and recent maternal experiences influence the maternal responses to pups when confronted with a male in a preference test or when they are presented independently in the home cage. To achieve this objective, we firstly compared the maternal behavior in the home cage and the preference for pups or a male in a Y-maze of primiparous and multiparous females approximately twelve hours after delivery. No differences were observed in the active and passive components of the maternal behavior of primiparous and multiparous rats; however second-time mothers made more efforts to gain access to the pups and tended to spend more time with them in the Y-maze than maternally inexperienced dams. In a second experiment, we assessed the influence of recent maternal experience with pups on PPE females' behavior by comparing pups vs. male preference and maternal behavior of females that had experienced continuous or limited (approximately two hours) interaction with their litters after parturition was completed. PPE rats subjected to reduced interaction with their pups preferred the male, while females continuously exposed to pups chose them over the male. This change in females' preference was not accompanied by significant alterations of maternal performance in the home cage, although anogenital licking tended to decrease in females with limited mother-litter interaction. Together, the results of these experiments indicate that previous and recent maternal experiences influence the motivational responses of PPE females, and that these effects are more evident when both motivations compete.
Collapse
Affiliation(s)
- Daniella Agrati
- Seccion Fisiologia y Nutricion, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.
| | - Marcela Ferreño
- Seccion Fisiologia y Nutricion, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Gabriella Marin
- Seccion Fisiologia y Nutricion, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - María José Zuluaga
- Seccion Fisiologia y Nutricion, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | | | - Annabel Ferreira
- Seccion Fisiologia y Nutricion, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
50
|
Gammie SC, Driessen TM, Zhao C, Saul MC, Eisinger BE. Genetic and neuroendocrine regulation of the postpartum brain. Front Neuroendocrinol 2016; 42:1-17. [PMID: 27184829 PMCID: PMC5030130 DOI: 10.1016/j.yfrne.2016.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/11/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Changes in expression of hundreds of genes occur during the production and function of the maternal brain that support a wide range of processes. In this review, we synthesize findings from four microarray studies of different maternal brain regions and identify a core group of 700 maternal genes that show significant expression changes across multiple regions. With those maternal genes, we provide new insights into reward-related pathways (maternal bonding), postpartum depression, social behaviors, mental health disorders, and nervous system plasticity/developmental events. We also integrate the new genes into well-studied maternal signaling pathways, including those for prolactin, oxytocin/vasopressin, endogenous opioids, and steroid receptors (estradiol, progesterone, cortisol). A newer transcriptional regulation model for the maternal brain is provided that incorporates recent work on maternal microRNAs. We also compare the top 700 genes with other maternal gene expression studies. Together, we highlight new genes and new directions for studies on the postpartum brain.
Collapse
Affiliation(s)
- Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Terri M Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael C Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian E Eisinger
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|