1
|
Fujikawa R, Ramsaran AI, Guskjolen A, de la Parra J, Zou Y, Mocle AJ, Josselyn SA, Frankland PW. Neurogenesis-dependent remodeling of hippocampal circuits reduces PTSD-like behaviors in adult mice. Mol Psychiatry 2024; 29:3316-3329. [PMID: 38719894 DOI: 10.1038/s41380-024-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 11/08/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a hypermnesic condition that develops in a subset of individuals following exposure to severe trauma. PTSD symptoms are debilitating, and include increased anxiety, abnormal threat generalization, and impaired extinction. In developing treatment strategies for PTSD, preclinical studies in rodents have largely focused on interventions that target post-encoding memory processes such as reconsolidation and extinction. Instead, here we focus on forgetting, another post-encoding process that regulates memory expression. Using a double trauma murine model for PTSD, we asked whether promoting neurogenesis-mediated forgetting can weaken trauma memories and associated PTSD-relevant behavioral phenotypes. In the double trauma paradigm, consecutive aversive experiences lead to a constellation of behavioral phenotypes associated with PTSD including increases in anxiety-like behavior, abnormal threat generalization, and deficient extinction. We found that post-training interventions that elevate hippocampal neurogenesis weakened the original trauma memory and decreased these PTSD-relevant phenotypes. These effects were observed using multiple methods to manipulate hippocampal neurogenesis, including interventions restricted to neural progenitor cells that selectively promoted integration of adult-generated granule cells into hippocampal circuits. The same interventions also weakened cocaine place preference memories, suggesting that promoting hippocampal neurogenesis may represent a broadly useful approach in hypermnesic conditions such as PTSD and substance abuse disorders.
Collapse
Affiliation(s)
- Risako Fujikawa
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Adam I Ramsaran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Axel Guskjolen
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Juan de la Parra
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Yi Zou
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Andrew J Mocle
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5G 1X8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
2
|
Liu L, Wang C, Wang H, Miao L, Xie T, Tian Y, Li X, Huang Y, Zeng X, Zhu B. Identification of the circRNA-miRNA-mRNA network for treating methamphetamine-induced relapse and behavioral sensitization with cannabidiol. CNS Neurosci Ther 2024; 30:e14737. [PMID: 38702929 PMCID: PMC11069028 DOI: 10.1111/cns.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS This study aims to investigate the pharmacological effects and the underlying mechanism of cannabidiol (CBD) on methamphetamine (METH)-induced relapse and behavioral sensitization in male mice. METHODS The conditioned place preference (CPP) test with a biased paradigm and open-field test were used to assess the effects of CBD on METH-induced relapse and behavioral sensitization in male mice. RNA sequencing and bioinformatics analysis was employed to identify differential expressed (DE) circRNAs, miRNAs, and mRNAs in the nucleus accumbens (NAc) of mice, and the interaction among them was predicted using competing endogenous RNAs (ceRNAs) network analysis. RESULTS Chronic administration of CBD (40 mg/kg) during the METH withdrawal phase alleviated METH (2 mg/kg)-induced CPP reinstatement and behavioral sensitization in mice, as well as mood and cognitive impairments following behavioral sensitization. Furthermore, 42 DEcircRNAs, 11 DEmiRNAs, and 40 DEmRNAs were identified in the NAc of mice. The circMeis2-miR-183-5p-Kcnj5 network in the NAc of mice is involved in the effects of CBD on METH-induced CPP reinstatement and behavioral sensitization. CONCLUSIONS This study constructed the ceRNAs network for the first time, revealing the potential mechanism of CBD in treating METH-induced CPP reinstatement and behavioral sensitization, thus advancing the application of CBD in METH use disorders.
Collapse
Affiliation(s)
- Liu Liu
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Tong Xie
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiaodong Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yizhen Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Xu J, Zhu Z, Jin Y, Wei C, Wang Y, Li X. Effect of aerobic exercise on brain metabolite profiles in the mouse models of methamphetamine addiction: LC-MS-based metabolomics study. BMC Psychiatry 2023; 23:852. [PMID: 37978352 PMCID: PMC10655403 DOI: 10.1186/s12888-023-05351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Methamphetamine (MA) abuse is recognized as a brain disorder, and physical activity has clear benefits for MA use disorders. The specific mechanisms by which physical activity alleviates MA use disorders are currently not fully understood. Based on this, the present study used untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) to analyze the metabolic changes induced by MA in the brains of mice by exercise intervention. It was found that after 2 weeks of treadmill training, aerobic exercise modulated MA-induced brain metabolic disorders, in which 129 metabolites existed that were significantly differentiated in response to MA induction, and 32 metabolites were significantly affected by exercise. These differential metabolites were mainly enriched in glycerophospholipid metabolism, steroid hormone biosynthesis and degradation, and renin-angiotensin system pathways. To our knowledge, this study is the first to use LC-MS to investigate the effects of aerobic exercise on MA-induced brain metabolic profiling. The findings of this study provide new insights into exercise therapy using MA.
Collapse
Affiliation(s)
- Jisheng Xu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China
| | - Zhicheng Zhu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China
| | - Changling Wei
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China.
| |
Collapse
|
4
|
Krishnan S, Bevins RA, de Wit H. Place conditioning in humans: opportunities for translational research. Psychopharmacology (Berl) 2023; 240:2221-2230. [PMID: 36656336 PMCID: PMC10949408 DOI: 10.1007/s00213-023-06316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
RATIONALE Translational research, especially research that bridges studies with humans and nonhuman species, is critical to advancing our understanding of human disorders such as addiction. This advancement requires reliable and rigorous models to study the underlying constructs contributing to the maladaptive behavior. OBJECTIVE In this commentary, we address some of the challenges of conducting translational research by examining a single procedure, place conditioning. Place conditioning is commonly used with laboratory animals to study the conditioned rewarding effects of drugs, and recent studies indicate that a similar procedure can be used in humans. RESULTS We discuss the opportunities and challenges of making the procedure comparable across species, as well as discuss the benefits of more systematically applying the procedure to humans. CONCLUSION We argue that the capacity of humans to report verbally on their internal experiences (perceptions, affective states, likes and dislikes) add an important dimension to the understanding of the procedures used in laboratory animals.
Collapse
Affiliation(s)
- Seetha Krishnan
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Rick A Bevins
- Department of Psychology, University of Nebraska - Lincoln, Lincoln, NE, 68588-0308, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Medrano MC, Darlot F, Cador M, Caille S. Poor inhibitory control predicts sex-specific vulnerability to nicotine rewarding properties in mice. Psychopharmacology (Berl) 2023; 240:1973-1986. [PMID: 37439799 DOI: 10.1007/s00213-023-06418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
RATIONALE The risk of becoming addicted to tobacco varies greatly from individual to individual, raising the possibility of behavioural biomarkers capable of predicting sensitivity to nicotine reward, a crucial step in the development of nicotine addiction. Amongst all of nicotine's pharmacological properties, one of central importance is the enhancement of cognitive performances, which depend on the balance between attentional processes and inhibitory control. However, whether the cognitive enhancement effects of nicotine are predictive of sensitivity to its rewarding properties is still unknown. OBJECTIVE Using male and female mice, we investigated whether the effects of nicotine on cognitive performances are predictive of sensitivity to the rewarding properties of nicotine and, if so, whether this relationship is sex dependent. METHODS Naïve male and female mice were first assessed for their performances in both baseline conditions and following nicotine injection (0.15 and 0.30 mg/kg) in a cued-Fixed Consecutive Number task (FCNcue) measuring both optimal (attention) and premature (inhibitory control) responding. Next, all mice underwent nicotine-induced conditioned place preference (CPP) in order to evaluate inter-individual differences in response to nicotine reward (0.30 mg/kg). RESULTS Results showed that males and females benefited from the effect of nicotine as a cognitive enhancer in the FCNcue task. However, only those males displaying poor inhibitory control, namely high-impulsive animals, subsequently displayed sensitivity to nicotine reward. In females, sensitivity to nicotine reward was independent of FCNcue performances, in both basal and nicotine conditions. CONCLUSION Thus, our study suggests that poor inhibitory control and its modulation by nicotine may be a behavioural biomarker for sensitivity to nicotine reward and consequent vulnerability to nicotine addiction in males but not females.
Collapse
Affiliation(s)
| | - Florence Darlot
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Martine Cador
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Stephanie Caille
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| |
Collapse
|
6
|
Liu S, Crawford J, Tao F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sci 2023; 13:390. [PMID: 36979200 PMCID: PMC10046781 DOI: 10.3390/brainsci13030390] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Orofacial pain refers to pain occurring in the head and face, which is highly prevalent and represents a challenge to clinicians, but its underlying mechanisms are not fully understood, and more studies using animal models are urgently needed. Currently, there are different assessment methods for analyzing orofacial pain behaviors in animal models. In order to minimize the number of animals used and maximize animal welfare, selecting appropriate assessment methods can avoid repeated testing and improve the reliability and accuracy of research data. Here, we summarize different methods for assessing spontaneous pain, evoked pain, and relevant accompanying dysfunction, and discuss their advantages and disadvantages. While the behaviors of orofacial pain in rodents are not exactly equivalent to the symptoms displayed in patients with orofacial pain, animal models and pain behavioral assessments have advanced our understanding of the pathogenesis of such pain.
Collapse
Affiliation(s)
| | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
7
|
Andreatta M, Winkler MH, Collins P, Gromer D, Gall D, Pauli P, Gamer M. VR for Studying the Neuroscience of Emotional Responses. Curr Top Behav Neurosci 2023; 65:161-187. [PMID: 36592276 DOI: 10.1007/7854_2022_405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Emotions are frequently considered as the driving force of behavior, and psychopathology is often characterized by aberrant emotional responding. Emotional states are reflected on a cognitive-verbal, physiological-humoral, and motor-behavioral level but to date, human research lacks an experimental protocol for a comprehensive and ecologically valid characterization of such emotional states. Virtual reality (VR) might help to overcome this situation by allowing researchers to study mental processes and behavior in highly controlled but reality-like laboratory settings. In this chapter, we first elucidate the role of presence and immersion as requirements for eliciting emotional states in a virtual environment and discuss different VR methods for emotion induction. We then consider the organization of emotional states on a valence continuum (i.e., from negative to positive) and on this basis discuss the use of VR to study threat processing and avoidance as well as reward processing and approach behavior. Although the potential of VR has not been fully realized in laboratory and clinical settings yet, this technological tool can open up new avenues to better understand the neurobiological mechanisms of emotional responding in healthy and pathological conditions.
Collapse
Affiliation(s)
- Marta Andreatta
- Department of Psychology, Educational Sciences, and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Markus H Winkler
- Department of Psychology, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Collins
- Department of Psychology, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel Gromer
- Department of Psychology, University of Wuerzburg, Wuerzburg, Germany
| | - Dominik Gall
- Department of Psychology, University of Wuerzburg, Wuerzburg, Germany
| | - Paul Pauli
- Department of Psychology, University of Wuerzburg, Wuerzburg, Germany
| | - Matthias Gamer
- Department of Psychology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
8
|
Expression of stable and reliable preference and aversion phenotypes following place conditioning with psychostimulants. Psychopharmacology (Berl) 2022; 239:2593-2603. [PMID: 35482071 DOI: 10.1007/s00213-022-06130-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE AND OBJECTIVES Drug-seeking behavior occurs more readily in some individuals than others. This phenomenon is considered in studies of drug self-administration in which high drug-seeking/taking individuals can be identified. In contrast, studies of conditioned place preference (CPP) often involve a random sample of drug-naïve rodents that includes phenotypes not considered relevant to addiction. The main objective of the current studies was to determine if a priori identification of different conditioning phenotypes could improve the validity and sensitivity of CPP expression as a preclinical test for vulnerability to addiction. METHODS AND RESULTS Analysis of cocaine place conditioning data from 443 Swiss-Webster mice revealed a trimodal distribution with peaks corresponding to means of k = 3 clusters. The cluster means occurred at high, low, or negative preference scores, the latter suggesting a phenotype acquiring conditioned place aversion (CPA). The same clusters were identified in mice conditioned with methamphetamine, MDPV, or amphetamine, and these clusters remained stable and reliable during three additional expression tests spaced at 24 h. A meta-analysis of effect sizes obtained from CPP literature revealed a positively skewed distribution affected by sample size, consistent with the existence of a CPA phenotype within the populations tested. A dopamine receptor antagonist, flupentixol, blocked cocaine CPP expression in a group containing all phenotypes, but sensitivity improved markedly when CPA phenotypes were excluded from the dataset. CONCLUSIONS These studies suggest that taking phenotype into consideration when designing place conditioning studies will improve their application as a preclinical tool in addiction biology and drug discovery.
Collapse
|
9
|
Rossato DR, Rosa HZ, Rosa JLO, Milanesi LH, Metz VG, D'Àvila LF, Burger ME. Tactile Stimulation in Adult Rats Modulates Dopaminergic Molecular Parameters in the Nucleus accumbens Preventing Amphetamine Relapse. Mol Neurobiol 2022; 59:5564-5573. [PMID: 35732868 PMCID: PMC9217176 DOI: 10.1007/s12035-022-02927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Amphetamine (AMPH) is a psychostimulant drug frequently related to addiction, which is characterized by functional and molecular changes in the brain reward system, favoring relapse development, and pharmacotherapies have shown low effectiveness. Considering the beneficial influences of tactile stimulation (TS) in different diseases that affect the central nervous system (CNS), here we evaluated if TS applied in adult rats could prevent or minimize the AMPH-relapse behavior also accessing molecular neuroadaptations in the nucleus accumbens (NAc). Following AMPH conditioning in the conditioned place preference (CPP) paradigm, male rats were submitted to TS (15-min session, 3 times a day, for 8 days) during the drug abstinence period, which were re-exposed to the drug in the CPP paradigm for additional 3 days for relapse observation and molecular assessment. Our findings showed that besides AMPH relapse, TS prevented the dopamine transporter (DAT), dopamine 1 receptor (D1R), tyrosine hydroxylase (TH), mu opioid receptor (MOR) increase, and AMPH-induced delta FosB (ΔFosB). Based on these outcomes, we propose TS as a useful tool to treat psychostimulant addiction, which is subsequent to clinical studies; it could be included in detoxification programs together with pharmacotherapies and psychological treatments already conventionally established.
Collapse
Affiliation(s)
- D R Rossato
- Graduation Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - H Z Rosa
- Graduation Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - J L O Rosa
- Graduation Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - L H Milanesi
- Department of Physiology and Pharmacology (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - V G Metz
- Graduation Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - L F D'Àvila
- Graduation Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - M E Burger
- Graduation Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil. .,Department of Physiology and Pharmacology (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Sagarkar S, Bhat N, Sapre M, Dudhabhate B, Kokare DM, Subhedar NK, Sakharkar AJ. TET1-induced DNA demethylation in dentate gyrus is important for reward conditioning and reinforcement. Mol Neurobiol 2022; 59:5426-5442. [PMID: 35705787 DOI: 10.1007/s12035-022-02917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Neuroadaptations in neurocircuitry of reward memories govern the persistent and compulsive behaviors. The study of the role of hippocampus in processing of reward memory and its retrieval is critical to our understanding of addiction and relapse. The aim of this study is to probe the epigenetic mechanisms underlying reward memory in the frame of dentate gyrus (DG). To that end, the rats conditioned to the food baited arm of a Y-maze and subjected to memory probe trial. The hippocampus of conditioned rats displayed higher mRNA levels of Ten-eleven translocase 1 (Tet1) and brain-derived neurotrophic factor (Bdnf) after memory probe trial. The DNA hydroxymethylation and TET1 occupancy at the Bdnf promoters showed concomitant increase. Stereotactic administration of Tet1 siRNA in the DG before and after conditioning inhibited reward memory formation and recall, respectively. Administration of Tet1 siRNA impaired the reward memory recall that was reinstated following administration of exogenous BDNF peptide or after wash-off period of 8 days. Infusion of a MEK/ERK inhibitor, U0126 in the DG inhibited reward memory retrieval. The TET1-induced DNA demethylation at the Bdnf promoters raised BDNF levels in the hippocampus, thereby setting the stage for reward memory retrieval. The study underscores the causative role of TET1 in the DG for reward memory formation and recall.
Collapse
Affiliation(s)
- Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India.
| | - Nagashree Bhat
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Madhura Sapre
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Biru Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Pune, 411 008, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
11
|
Su H, Bai J, Fan Y, Sun T, Du Y, Li Y, Wei Z, Chen T, Guo X, Yun K. The distinct roles of various neurotransmitters in modulating methamphetamine-induced conditioned place preference in relevant brain regions in mice. Neuroreport 2022; 33:101-108. [PMID: 34966126 PMCID: PMC8812429 DOI: 10.1097/wnr.0000000000001760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Previous studies have shown that methamphetamine (METH) can induce complex adaptive changes in the reward system in the brain, including the changes in the content of neurotransmitters in the signal transduction pathway. However, how the changes of various neurotransmitters in relevant brain reward circuits contribute to METH-induced conditioned place preference (CPP) remains unclear. METHODS In this study, first, we designed an animal model of METH-induced CPP. Then we used liquid chromatography-mass spectrometry (LC-MS) to simultaneously determine the contents of various neurotransmitters - dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT), 5-hydroxyindole acetic acid (5-HIAA), glutamic acid (Glu) and glutamine (Gln) - in different brain regions of the prefrontal cortex (PFc), nucleus accumbens (NAc), caudate-putamen (CPu) and hippocampus (Hip), which are believed to be relevant to the drug's reward effect. RESULTS The results of the behavioral experiment suggested that 1.0 mg/kg METH could induce obvious CPP in mice. The results about various neurotransmitters showed that: DA significantly increased in NAc in the METH group; Glu increased significantly in the METH group in PFc and NAc and Gln increased significantly in the METH group in PFc. CONCLUSIONS These results suggested that the neurotransmitters of DA, Glu and Gln may work together and play important roles in METH-induced CPP in relevant brain reward circuits, especially in PFc and NAc. These findings therefore could help to advance the comprehensive understanding of the neurochemic and psychopharmacologic properties of METH in reward effect, which is important for future improvements in the treatment of drug addiction.
Collapse
Affiliation(s)
- Hongliang Su
- Department of School of Forensic Medicine, Shanxi Medical University, Taiyuan
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing
| | - Junmei Bai
- Department of School of Forensic Medicine, Shanxi Medical University, Taiyuan
| | - Yao Fan
- Department of School of Forensic Medicine, Shanxi Medical University, Taiyuan
| | - Tingting Sun
- Department of School of Forensic Medicine, Shanxi Medical University, Taiyuan
| | - Yan Du
- Department of Pharmaceutical Science, Shanxi Medical University
| | - Yanhua Li
- Department of Foreign Languages, Taiyuan
| | - Zhiwen Wei
- Department of School of Forensic Medicine, Shanxi Medical University, Taiyuan
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing
| | - Teng Chen
- Department of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Xiangjie Guo
- Department of School of Forensic Medicine, Shanxi Medical University, Taiyuan
| | - Keming Yun
- Department of School of Forensic Medicine, Shanxi Medical University, Taiyuan
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing
| |
Collapse
|
12
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
13
|
Gaulden AD, Burson N, Sadik N, Ghosh I, Khan S, Brummelte S, Kallakuri S, Perrine SA. Effects of fentanyl on acute locomotor activity, behavioral sensitization, and contextual reward in female and male rats. Drug Alcohol Depend 2021; 229:109101. [PMID: 34628096 PMCID: PMC8671359 DOI: 10.1016/j.drugalcdep.2021.109101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/05/2021] [Accepted: 09/20/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Although fentanyl has gained widespread prominence, there remains a lack of knowledge on this opioid synthetic agonist, particularly related to sex effects. Therefore, we conducted behavioral tests in female and male rats to measure drug abuse-related responses to fentanyl hypothesizing sex-specific responses. METHODS Using female and male rats, we measured the effects of acute or repeated administration of fentanyl (20 μg/kg) on locomotor activity (LMA) and behavioral sensitization in an open field test. We further measured contextual-reward and associated locomotor activity during training in a conditioned place preference (CPP) paradigm using a low (4 μg/kg) or high (16 μg/kg) dose of fentanyl. Vaginal lavage samples were collected from female rats in the CPP study, and the estrous phase was determined based on the cytological characterization. RESULTS Female, but not male, rats showed elevated LMA in response to acute fentanyl and behavioral sensitization to repeated administration of fentanyl. Fentanyl produced significant CPP in both sexes, but it was more potent in males. Finally, our secondary investigation of the estrous cycle on fentanyl-CPP suggests that non-estrus phases, likely reflecting high estradiol, may predict the degree of fentanyl preference in females. CONCLUSIONS Fentanyl was more potent and/or effective to produce LMA and LMA sensitization in females but more potent to produce CPP in males. Furthermore, the role of sex in fentanyl responses varied across endpoints, and sex differences in LMA were not predictive of sex differences in CPP.
Collapse
Affiliation(s)
- Andrew D. Gaulden
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI.,Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI
| | - Nicole Burson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI.,Research Services, John D. Dingell VA Medical Center, Detroit, MI
| | - Ishita Ghosh
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI
| | - Sabrina Khan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI
| | - Susanne Brummelte
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI.,Department of Psychology, Wayne State University, Detroit, MI
| | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI.,Research Services, John D. Dingell VA Medical Center, Detroit, MI
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI.,Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI.,Research Services, John D. Dingell VA Medical Center, Detroit, MI
| |
Collapse
|
14
|
Yunusoğlu O. Linalool attenuates acquisition and reinstatement and accelerates the extinction of nicotine-induced conditioned place preference in male mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:422-432. [PMID: 33852814 DOI: 10.1080/00952990.2021.1898627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Nicotine is the addictive agent in tobacco products. The monoterpene linalool is the main ingredient in the essential oils of various aromatic plants. It has previously been demonstrated that linalool has beneficial effects on some mechanisms that are important in drug addiction.Objectives: The goal of the current study was to investigate the effect of linalool on nicotine-induced conditioned place preference (CPP) in male mice.Methods: CPP was induced by administering intraperitoneal (i.p.) injection of nicotine (0.5 mg/kg) during the conditioning phase. The effects of nicotinic acetylcholine receptor partial agonist varenicline and linalool on the rewarding characteristics of nicotine were tested in mice with administration of linalool (12.5, 25, and 50 mg/kg, i.p.), varenicline (2 mg/kg, i.p.) or saline 30 minutes before nicotine injection. CPP was extinguished by repeated testing, during which conditioned mice were administered varenicline and linalool every day. One day after the last extinction trial, mice that received linalool, varenicline or saline 30 minutes before a priming injection of nicotine (0.1 mg/kg, i.p.) were immediately tested for reinstatement of CPP.Results: Linalool attenuated nicotine acquisition (50 mg/kg, p < .01) and reinstatement (25 and 50 mg/kg, respectively p < .05, p < .01) and accelerated the extinction of nicotine-induced CPP (50 mg/kg, p < .05). Linalool exhibited similar effects on the reference drug varenicline in the CPP phases.Conclusion: These results suggest that linalool may be helpful as an adjuvant for the treatment of nicotine use disorder.
Collapse
Affiliation(s)
- Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
15
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
16
|
López‐Gambero AJ, Rodríguez de Fonseca F, Suárez J. Energy sensors in drug addiction: A potential therapeutic target. Addict Biol 2021; 26:e12936. [PMID: 32638485 DOI: 10.1111/adb.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.
Collapse
Affiliation(s)
- Antonio Jesús López‐Gambero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
17
|
Rohan ML, Lowen SB, Rock A, Andersen SL. Novelty preferences and cocaine-associated cues influence regions associated with the salience network in juvenile female rats. Pharmacol Biochem Behav 2021; 203:173117. [PMID: 33561479 DOI: 10.1016/j.pbb.2021.173117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Preferences for novel environments (novelty-seeking) is a risk factor for addiction, with little known about its underlying circuitry. Exposure to drug cues facilitates addiction maintenance, leading us to hypothesize that exposure to a novel environment activates a shared neural circuitry. Stimulation of the D1 receptor in the prelimbic cortex increases responsivity to drug-associated environments. Here, we use D1 receptor overexpression in the prelimbic cortex to probe brain responses to novelty-preferences (in a free-choice paradigm) and cocaine-associated odors following place conditioning. These same cocaine-conditioned odors were used to study neural circuitry with Blood Oxygen Level Dependent (BOLD) activity. D1 overexpressing females had deactivated BOLD signals related to novelty-preferences within the insula cortex and amygdala and activation in the frontal cortex and dopamine cell bodies. BOLD responses to cocaine cues were also sensitive to D1. Control females demonstrated a place preference for cocaine environments with no significant BOLD response, while D1 overexpressing females demonstrated a place aversion and weak BOLD responses to cocaine-conditioned odor cues within the insula cortex. For comparison, we provide data from an earlier study with juvenile males overexpressing D1 that show a strong preference for cocaine and elevated BOLD responses. The results support the use of a pharmacological manipulation (e.g., D1 overexpression) to probe the neural circuitry downstream from the prelimbic cortex.
Collapse
Affiliation(s)
- Michael L Rohan
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America
| | - Steven B Lowen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America
| | - Anna Rock
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America
| | - Susan L Andersen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America.
| |
Collapse
|
18
|
Japarin RA, Yusoff NH, Hassan Z, Müller CP, Harun N. Cross-reinstatement of mitragynine and morphine place preference in rats. Behav Brain Res 2020; 399:113021. [PMID: 33227244 DOI: 10.1016/j.bbr.2020.113021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
Kratom is a medicinal plant that exhibits promising results as an opiate substitute. However, there is little information regarding the abuse profile of its main psychoactive constituent, mitragynine (MG), particularly in relapse to drug abuse. Using the place conditioning procedure as a model of relapse, this study aims to evaluate the ability of MG to induce conditioned place preference (CPP) reinstatement in rats. To evaluate the cross-reinstatement effects, MG and morphine were injected to rats that previously extinguished a morphine- or MG-induced CPP. Following a CPP acquisition induced by either MG (10 and 30 mg/kg, i.p.) or morphine (10 mg/kg, i.p.), rats were subjected to repeated CPP extinction sessions. A low dose priming injection of MG or morphine produced a reinstatement of the previously extinguished CPP. In the second experiment of this study, a priming injection of morphine (1, 3 and 10 mg/kg, i.p.) dose-dependently reinstated an MG-induced CPP. Likewise, a priming injection of MG (3, 10 and 30 mg/kg, i.p.) was able to dose-dependently reinstate a morphine-induced CPP. The present study demonstrates a cross-reinstatement effect between MG and morphine, thereby suggesting a similar interaction in their rewarding motivational properties. The findings from this study also suggesting that a priming exposure to kratom and an opioid may cause relapse for a previously abused drug.
Collapse
Affiliation(s)
- Rima Atria Japarin
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Nurul Hasnida Yusoff
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
19
|
Andersen JM, Opdal SH, Müller CP, Boix F. CaMKII is activated in opioid induced conditioned place preference, but αCaMKII Thr286 autophosphorylation is not necessary for its establishment. Behav Brain Res 2020; 390:112676. [DOI: 10.1016/j.bbr.2020.112676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
|
20
|
Effects of the Positive Allosteric Modulator of Metabotropic Glutamate Receptor 5, VU-29, on Maintenance Association between Environmental Cues and Rewarding Properties of Ethanol in Rats. Biomolecules 2020; 10:biom10050793. [PMID: 32443872 PMCID: PMC7277181 DOI: 10.3390/biom10050793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022] Open
Abstract
: Metabotropic glutamate subtype 5 (mGlu5) receptors are implicated in various forms of synaptic plasticity, including drugs of abuse. In drug-addicted individuals, associative memories can drive relapse to drug use. The present study investigated the potential of the mGlu5 receptor positive allosteric modulator (PAM), VU-29 (30 mg/kg, i.p.), to inhibit the maintenance of a learned association between ethanol and environmental context by using conditioned place preference (CPP) in rats. The ethanol-CPP was established by the administration of ethanol (1.0 g/kg, i.p. × 10 days) using an unbiased procedure. Following ethanol conditioning, VU-29 was administered at various post-conditioning times (ethanol free state at the home cage) to ascertain if there was a temporal window during which VU-29 would be effective. Our experiments indicated that VU-29 did not affect the expression of ethanol-induced CPP when it was given over two post-conditioning days. However, the expression of ethanol-CPP was inhibited by 10-day home cage administration of VU-29, but not by first 2-day or last 2-day injection of VU-29 during the 10-day period. These findings reveal that VU-29 can inhibit the maintenance of ethanol-induced CPP, and that treatment duration contributes to this effect of VU-29. Furthermore, VU-29 effect was reversed by pretreatment with either MTEP (the mGlu5 receptor antagonist), or MK-801 (the N-methyl-D-aspartate-NMDA receptor antagonist). Thus, the inhibitory effect of VU-29 is dependent on the functional interaction between mGlu5 and NMDA receptors. Because a reduction in ethanol-associated cues can reduce relapse, mGlu5 receptor PAM would be useful for therapy of alcoholism. Future research is required to confirm the current findings.
Collapse
|
21
|
Townsend EA, Banks ML. Preclinical Evaluation of Vaccines to Treat Opioid Use Disorders: How Close are We to a Clinically Viable Therapeutic? CNS Drugs 2020; 34:449-461. [PMID: 32248427 PMCID: PMC7223115 DOI: 10.1007/s40263-020-00722-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ongoing opioid crisis, now into its second decade, represents a global public health challenge. Moreover, the opioid crisis has manifested despite clinical access to three approved opioid use disorder medications: the full opioid agonist methadone, the partial opioid agonist buprenorphine, and the opioid antagonist naltrexone. Although current opioid use disorder medications are underutilized, the ongoing opioid crisis has also identified the need for basic research to develop both safer and more effective opioid use disorder medications. Emerging preclinical evidence suggests that opioid-targeted vaccines or immunopharmacotherapies may be promising opioid use disorder therapeutics. One premise for this article is to critically examine whether vaccine effectiveness evaluated using preclinical antinociceptive endpoints is predictive of vaccine effectiveness on abuse-related endpoints such as drug self-administration, drug discrimination, and conditioned place preference. A second premise is to apply decades of knowledge in the preclinical evaluation of candidate small-molecule therapeutics for opioid use disorder to the preclinical evaluation of candidate opioid use disorder immunopharmacotherapies. We conclude with preclinical experimental design attributes to enhance preclinical-to-clinical translatability and potential future directions for immunopharmacotherapies to address the dynamic illicit opioid environment.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th St, Box 980613, Richmond, VA, 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th St, Box 980613, Richmond, VA, 23298, USA.
| |
Collapse
|
22
|
Witkin JM, Kranzler J, Kaniecki K, Popik P, Smith JL, Hashimoto K, Sporn J. R-(-)-ketamine modifies behavioral effects of morphine predicting efficacy as a novel therapy for opioid use disorder 1. Pharmacol Biochem Behav 2020; 194:172927. [PMID: 32333922 DOI: 10.1016/j.pbb.2020.172927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/27/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
Substance abuse disorder continues to have devastating consequences for individuals and society and current therapies are not sufficient to provide the magnitude of medical impact required. Although some evidence suggests the use of ketamine in treating various substance use related- symptoms, its adverse event profile including dissociation, dysphoria, and abuse liability limit its potential as a therapy. Here, we outline experiments to test our hypothesis that (R)-ketamine can both alleviate withdrawal symptoms and produce effects that help sustain abstinence. In morphine-dependent rats, (R)-ketamine alleviated naloxone-precipitated withdrawal signs. (R)-ketamine also blocked morphine-induced place preference in mice without inducing place preference on its own. We also evaluated whether (R)-ketamine would induce anhedonia, a counter-indicated effect for a drug abuse treatment agent. S-(+)- but not R-(-)-ketamine produced anhedonia-like responses in rats that electrically self-stimulated the medial forebrain bundle (ICSS). However, time-course studies of ICSS are needed to fully appreciate these differences. These data begin to support the claim that (R)-ketamine will dampen withdrawal symptoms and drug liking, factors known to contribute to the cycle of drug addiction. In addition, these data suggest that (R)-ketamine would not produce negative mood or anhedonia that could interfere with treatment. It is suggested that continued investigation of (R)-ketamine as a novel therapeutic for substance abuse disorder be given consideration by the preclinical and clinical research communities. This suggestion is further encouraged by a recent report on the efficacy of (R)-ketamine in treatment-resistant depressed patients at a dose with little measurable dissociative side-effects.
Collapse
Affiliation(s)
- J M Witkin
- Perception Neuroscience Holdings, New York, NY, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent Indianapolis, IN, USA.
| | - J Kranzler
- Perception Neuroscience Holdings, New York, NY, USA
| | - K Kaniecki
- Perception Neuroscience Holdings, New York, NY, USA
| | - P Popik
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences Kraków, Poland
| | - J L Smith
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent Indianapolis, IN, USA
| | | | - J Sporn
- Perception Neuroscience Holdings, New York, NY, USA
| |
Collapse
|
23
|
Nonhuman animal models of substance use disorders: Translational value and utility to basic science. Drug Alcohol Depend 2020; 206:107733. [PMID: 31790978 PMCID: PMC6980671 DOI: 10.1016/j.drugalcdep.2019.107733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The National Institute on Drug Abuse (NIDA) recently released a Request for Information (RFI) soliciting comments on nonhuman animal models of substance use disorders (SUD). METHODS A literature review was performed to address the four topics outlined in the RFI and one topic inspired by the RFI: (1) animal models that best recapitulate SUD, (2) animal models that best balance the trade-offs between resources and ecological validity, (3) animal models whose translational value are frequently misrepresented or overrepresented by the scientific community, (4) aspects of SUD that are not currently being modeled in animals, and (5) animal models that are optimal for examining the basic mechanisms by which drugs produce their abuse-related effects. RESULTS Models that employ response-contingent drug administration, use complex schedules of reinforcement, measure behaviors that mimic the distinguishing features of SUD, and use animals that are phylogenetically similar to humans have the greatest translational value. Models that produce stable and reproducible baselines of behavior, lessen the number of uncontrolled variables, and minimize the influence of extraneous factors are best at examining basic mechanisms contributing to drug reward and reinforcement. CONCLUSIONS Nonhuman animal models of SUD have undergone significant refinements to increase their utility for basic science and translational value for SUD. The existing literature describes numerous examples of how these models may best be utilized to answer mechanistic questions of drug reward and identify potential therapeutic interventions for SUD. Progress in the field could be accelerated by further collaborations between researchers using animals versus humans.
Collapse
|
24
|
Timing of Morphine Administration Differentially Alters Paraventricular Thalamic Neuron Activity. eNeuro 2019; 6:ENEURO.0377-19.2019. [PMID: 31801741 PMCID: PMC6920517 DOI: 10.1523/eneuro.0377-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a brain region involved in regulating arousal, goal-oriented behaviors, and drug seeking, all key factors playing a role in substance use disorder. Given this, we investigated the temporal effects of administering morphine, an opioid with strongly addictive properties, on PVT neuronal function in mice using acute brain slices. Here, we show that morphine administration and electrophysiological recordings that occur during periods of animal inactivity (light cycle) elicit increases in PVT neuronal function during a 24-h abstinence time point. Furthermore, we show that morphine-induced increases in PVT neuronal activity at 24-h abstinence are occluded when morphine administration and recordings are performed during an animals' active state (dark cycle). Based on our electrophysiological results combined with previous findings demonstrating that PVT neuronal activity regulates drug-seeking behaviors, we investigated whether timing morphine administration with periods of vigilance (dark cycle) would decrease drug-seeking behaviors in an animal model of substance use disorder. We found that context-induced morphine-seeking behaviors were intact regardless of the time morphine was administered (e.g., light cycle or dark cycle). Our electrophysiological results suggest that timing morphine with various states of arousal may impact the firing of PVT neurons during abstinence. Although, this may not impact context-induced drug-seeking behaviors.
Collapse
|
25
|
Kaski SW, White AN, Gross JD, Trexler KR, Wix K, Harland AA, Prisinzano TE, Aubé J, Kinsey SG, Kenakin T, Siderovski DP, Setola V. Preclinical Testing of Nalfurafine as an Opioid-sparing Adjuvant that Potentiates Analgesia by the Mu Opioid Receptor-targeting Agonist Morphine. J Pharmacol Exp Ther 2019; 371:487-499. [PMID: 31492823 DOI: 10.1124/jpet.118.255661] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria). Recent data suggest that some functionally selective, or biased, KOR-targeting agonists might retain the therapeutic effects of KOR activation without inducing undesirable side effects. Nalfurafine, used safely in Japan since 2009 for uremic pruritus, is one such functionally selective KOR-targeting agonist. Here, we quantify the bias of nalfurafine and several other KOR agonists relative to an unbiased reference standard (U50,488) and show that nalfurafine and EOM-salvinorin-B demonstrate marked G protein-signaling bias. While nalfurafine (0.015 mg/kg) and EOM-salvinorin-B (1 mg/kg) produced spinal antinociception equivalent to 5 mg/kg U50,488, only nalfurafine significantly enhanced the supraspinal analgesic effect of 5 mg/kg morphine. In addition, 0.015 mg/kg nalfurafine did not produce significant conditioned place aversion, yet retained the ability to reduce morphine-induced conditioned place preference in C57BL/6J mice. Nalfurafine and EOM-salvinorin-B each produced robust inhibition of both spontaneous and morphine-stimulated locomotor behavior, suggesting a persistence of sedative effects when coadministered with morphine. Taken together, these findings suggest that nalfurafine produces analgesic augmentation, while also reducing opioid-induced reward with less risk of dysphoria. Thus, adjuvant administration of G protein-biased KOR agonists like nalfurafine may be beneficial in enhancing the therapeutic potential of MOR-targeting analgesics, such as morphine.
Collapse
Affiliation(s)
- Shane W Kaski
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Allison N White
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Joshua D Gross
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Kristen R Trexler
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Kim Wix
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Aubrie A Harland
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Thomas E Prisinzano
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Jeffrey Aubé
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Steven G Kinsey
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - David P Siderovski
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Vincent Setola
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
26
|
Ben Hamida S, Laguesse S, Morisot N, Park JH, Phuamluong K, Berger AL, Park KD, Ron D. Mammalian target of rapamycin complex 1 and its downstream effector collapsin response mediator protein-2 drive reinstatement of alcohol reward seeking. Addict Biol 2019; 24:908-920. [PMID: 30022576 DOI: 10.1111/adb.12653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023]
Abstract
Alcohol use disorder is a chronic relapsing disease. Maintaining abstinence represents a major challenge for alcohol-dependent patients. Yet the molecular underpinnings of alcohol relapse remain poorly understood. In the present study, we investigated the potential role of the mammalian target of rapamycin complex 1 (mTORC1) in relapse to alcohol-seeking behavior by using the reinstatement of a previously extinguished alcohol conditioned place preference (CPP) response as a surrogate relapse paradigm. We found that mTORC1 is activated in the nucleus accumbens shell following alcohol priming-induced reinstatement of alcohol place preference. We further report that the selective mTORC1 inhibitor, rapamycin, abolishes reinstatement of alcohol place preference. Activation of mTORC1 initiates the translation of synaptic proteins, and we observed that reinstatement of alcohol CPP is associated with increased protein levels of one of mTORC1's downstream targets, collapsin response mediator protein-2 (CRMP2), in the nucleus accumbens. Importantly, the level of mTORC1 activation and CRMP2 expression positively correlate with the CPP score during reinstatement. Finally, we found that systemic administration of the CRMP2 inhibitor, lacosamide, attenuates alcohol priming-induced reinstatement of CPP. Together, our results reveal that mTORC1 and its downstream target, CRMP2, contribute to mechanisms underlying reinstatement of alcohol reward seeking. Our results could have important implications for the treatment of relapse to alcohol use and position the Food and Drug Administration approved drugs, rapamycin and lacosamide, for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Sami Ben Hamida
- Department of Neurology; University of California; San Francisco CA USA
| | - Sophie Laguesse
- Department of Neurology; University of California; San Francisco CA USA
| | - Nadege Morisot
- Department of Neurology; University of California; San Francisco CA USA
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia; Korea Institute of Science and Technology (KIST); Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School; Korea University of Science and Technology; Republic of Korea
| | | | - Anthony L. Berger
- Department of Neurology; University of California; San Francisco CA USA
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia; Korea Institute of Science and Technology (KIST); Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School; Korea University of Science and Technology; Republic of Korea
| | - Dorit Ron
- Department of Neurology; University of California; San Francisco CA USA
| |
Collapse
|
27
|
Shi Z, Xie Y, Ren H, He B, Wang M, Wan J, Yuan T, Yao X, Su H. Fish oil treatment reduces chronic alcohol exposure induced synaptic changes. Addict Biol 2019; 24:577-589. [PMID: 29569345 DOI: 10.1111/adb.12623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/22/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Alcohol addiction is a chronic neuropsychiatric disorder that represents one of the most serious global public health problems. Yet, currently there still lacks an effective pharmacotherapy. Omega-3 polyunsaturated fatty acids (N-3 PUFAs) have exhibited beneficial effects in a variety of neurological disorders, particularly in reversing behavioral deficits and neurotoxicity induced by prenatal alcohol exposure and binge drinking. In the present study, we investigated if fish oil, which is rich in N-3 PUFAs, had beneficial effects on preventing relapse and alleviating withdrawal symptoms after chronic alcohol exposure. Our results demonstrated that fish oil significantly reduced the chronic alcohol exposure-induced aberrant dendritic morphologic changes of the medium-sized spiny neurons in the core and the shell of nucleus accumbens. This inhibited the expression of AMPAR2-lacking AMPARs and their accumulation on the post synaptic membranes of medium-sized spiny neurons and eventually alleviated withdrawal symptoms and alcohol dependence. Our study therefore suggests that N-3 PUFAs are promising for treating withdrawal symptoms and alcohol dependence.
Collapse
Affiliation(s)
- Zhe Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| | - Youna Xie
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated HospitalSun Yat‐Sen University China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| | - Baixuan He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated HospitalSun Yat‐Sen University China
| | - Meng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| | - Ti‐Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of Medicine China
- Co‐innovation Center of NeuroregenerationNantong University China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated HospitalSun Yat‐Sen University China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| |
Collapse
|
28
|
Wright VL, Georgiou P, Bailey A, Heal DJ, Bailey CP, Wonnacott S. Inhibition of alpha7 nicotinic receptors in the ventral hippocampus selectively attenuates reinstatement of morphine-conditioned place preference and associated changes in AMPA receptor binding. Addict Biol 2019; 24:590-603. [PMID: 29667304 PMCID: PMC6563460 DOI: 10.1111/adb.12624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/31/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Recurrent relapse is a major problem in treating opiate addiction. Pavlovian conditioning plays a role in recurrent relapse whereby exposure to cues learned during drug intake can precipitate relapse to drug taking. α7 nicotinic acetylcholine receptors (nAChRs) have been implicated in attentional aspects of cognition and mechanisms of learning and memory. In this study we have investigated the role of α7 nAChRs in morphine-conditioned place preference (morphine-CPP). CPP provides a model of associative learning that is pertinent to associative aspects of drug dependence. The α7 nAChR antagonist methyllycaconitine (MLA; 4 mg/kg s.c.) had no effect on the acquisition, maintenance, reconsolidation or extinction of morphine-CPP but selectively attenuated morphine-primed reinstatement of CPP, in both mice and rats. Reinstatement of morphine-CPP in mice was accompanied by a selective increase in [3 H]-AMPA binding (but not in [3 H]-MK801 binding) in the ventral hippocampus that was prevented by prior treatment with MLA. Administration of MLA (6.7 μg) directly into the ventral hippocampus of rats prior to a systemic priming dose of morphine abolished reinstatement of morphine-CPP, whereas MLA delivered into the dorsal hippocampus or prefrontal cortex was without effect. These results suggest that α7 nAChRs in the ventral hippocampus play a specific role in the retrieval of associative drug memories following a period of extinction, making them potential targets for the prevention of relapse.
Collapse
Affiliation(s)
| | - Polymnia Georgiou
- Faculty of Health and Medical SciencesUniversity of SurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Alexis Bailey
- Faculty of Health and Medical SciencesUniversity of SurreyUK
- Institute of Medical and Biomedical EducationSt George's University of LondonUK
| | | | | | | |
Collapse
|
29
|
The influence of a new derivate of kisspeptin-10 - Kissorphin (KSO) on the rewarding effects of morphine in the conditioned place preference (CPP) test in male rats. Behav Brain Res 2019; 372:112043. [PMID: 31226311 DOI: 10.1016/j.bbr.2019.112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/17/2019] [Accepted: 06/16/2019] [Indexed: 12/29/2022]
Abstract
Kissorphin (KSO) is a new peptide derived from kisspeptin-10. Previous study has indicated that this peptide displays neuropeptide FF (NPFF)-like anti-opioid activity. Herein, we examined the influence of KSO (1; 3, and 10 nmol, intravenously [i.v.]), on the rewarding action of morphine (5 mg/kg, intraperitoneally [i.p.]), using the unbiased design of the conditioned place preference (CPP) paradigm in rats. To test the effect of KSO on the acquisition of morphine-induced CPP, KSO and morphine were co-injected during conditioning with no drugs treatment on the test day. To investigate the effect of KSO on the expression of morphine-induced CPP, morphine alone was given during the conditioning phase (1 × 3 days) and KSO was administered 5 min prior to the placement in the CPP apparatus on the test day. To estimate the influence of KSO on the reinstatement of morphine-induced CPP, KSO was given 5 min before a priming dose of morphine (5 mg/kg, i.p.) on the reinstatement test day. The results show that KSO inhibited the acquisition, expression and reinstatement of morphine-induced CPP. The strongest effect of KSO was observed at the dose of 10 nmol (acquisition and reinstatement) or 1 nmol (expression). KSO given alone, neither induced place preference, nor aversion. Furthermore, the morphine-modulating effects of KSO were markedly antagonized by pretreatment with RF9 (10 nmol, i.v.), the NPFF receptors selective antagonist. Thus, KSO inhibited the morphine-induced CPP mainly by involving specific activation of NPFF receptors. Overall, these data further support the anti-opioid character of KSO.
Collapse
|
30
|
Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019; 69:409-419. [PMID: 30680641 PMCID: PMC10717877 DOI: 10.1007/s12576-019-00660-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH) is a psychostimulant. The precise mechanisms of its effects remain unknown and current relapse treatments have low efficacy. However, brain-derived neurotrophic factor (BDNF) and neuronal plasticity are essential contributors, despite paradoxical reports and a lack of comprehensive studies. Therefore, we investigated the effects of different doses of METH on long-term potentiation (LTP), BDNF expression and neuronal apoptosis in the hippocampus of reinstated rats. Rats were injected intraperitoneally with METH (1, 5, or 10 mg/kg) or saline, and trained in a conditioned place preference paradigm. Following implementation of the reinstatement model, electrophysiology, western blotting and TUNEL assay were performed to assess behavior, LTP components, BDNF expression, and neuronal apoptosis, respectively. The results demonstrated that the preference scores, population spike amplitude and BDNF expression markedly decreased in the METH (10 mg/kg) group compared with the other groups. In contrast, METH (5 mg/kg) significantly increased these factors more than the control group. There was no change in variables between METH (1 mg/kg) and the control group. Also, apoptosis of the hippocampus was increased in the METH (10 mg/kg) group compared with the METH (5 mg/kg) group. These results suggest that alterations in synaptic plasticity, expression of BDNF and neuronal apoptosis in the hippocampus has a vital role in the context-induced reinstatement of METH seeking.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
31
|
Drug-taking in a socio-sexual context enhances vulnerability for addiction in male rats. Neuropsychopharmacology 2019; 44:503-513. [PMID: 30337639 PMCID: PMC6333843 DOI: 10.1038/s41386-018-0235-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/12/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023]
Abstract
Vulnerability to develop addiction is influenced by numerous factors, including social behavior. Specifically, in human users, drug taking in a socio-sexual context appears to enhance further drug-seeking behavior. Users report heightened sexual pleasure as a motivation for further drug use and display risk behaviors even when tested in drug-free state. Here, using a preclinical model of limited voluntary drug use in rats, the hypothesis was tested that methamphetamine (Meth)-taking concurrently with socio-sexual experience increases vulnerability to addiction. Male Sprague Dawley rats were socially housed and underwent limited-access Meth self-administration (maximum 1 mg/kg/session). Meth-taking was either concurrent or non-concurrent with sexual behavior: concurrent animals were mated with a receptive female immediately after each session, while non-concurrent animals gained equivalent sexual experience the week prior. Next, drug-seeking behaviors were measured during cue reactivity, extinction, and reinstatement sessions using different extinction and reinstatement protocols in 4 separate studies. Both groups equally acquired Meth self-administration and did not differ in total Meth intake. However, drug-seeking behavior was significantly higher in concurrent animals during cue reactivity tasks, extinction sessions, and cue- or Meth-induced reinstatement tests. In addition, sexual behavior in the absence of Meth triggered reinstatement of drug-seeking in concurrent animals. These results indicate that Meth-taking in a socio-sexual context significantly enhances vulnerability for drug addiction in male rats. This preclinical paradigm of drug self-administration concurrent with socio-sexual behavior provides a useful model for studying the underlying neurobiology of socially driven vulnerability to drug addiction.
Collapse
|
32
|
Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, Collins C, Amstislavskaya TG, Demin KA, Kalueff AV. Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience 2019; 404:218-232. [PMID: 30710667 DOI: 10.1016/j.neuroscience.2019.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology. Here, we discuss the zebrafish opioid system with specific focus on opioid gene expression, existing genetic models, as well as its pharmacological and developmental regulation. As many human brain diseases involve pain and aberrant reward, we also summarize zebrafish models relevant to opioid regulation of pain and addiction, including evidence of functional interplay between the opioid system and central dopaminergic and other neurotransmitter mechanisms. Additionally, we critically evaluate the limitations of zebrafish models for translational opioid research and emphasize their developing utility for improving our understanding of evolutionarily conserved mechanisms of pain-related, addictive, affective and other behaviors, as well as for fostering opioid-related drug discovery.
Collapse
Affiliation(s)
- Wandong Bao
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Andrey D Volgin
- Military Medical Academy, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Erik T Alpyshov
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tatyana V Strekalova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Christopher Collins
- ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA.
| |
Collapse
|
33
|
Sambo DO, Lebowitz JJ, Khoshbouei H. The sigma-1 receptor as a regulator of dopamine neurotransmission: A potential therapeutic target for methamphetamine addiction. Pharmacol Ther 2018; 186:152-167. [PMID: 29360540 PMCID: PMC5962385 DOI: 10.1016/j.pharmthera.2018.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH) abuse is a major public health issue around the world, yet there are currently no effective pharmacotherapies for the treatment of METH addiction. METH is a potent psychostimulant that increases extracellular dopamine levels by targeting the dopamine transporter (DAT) and alters neuronal activity in the reward centers of the brain. One promising therapeutic target for the treatment of METH addiction is the sigma-1 receptor (σ1R). The σ1R is an endoplasmic reticulum-localized chaperone protein that is activated by cellular stress, and, unique to this chaperone, its function can also be induced or inhibited by different ligands. Upon activation of this unique "chaperone receptor", the σ1R regulates a variety of cellular functions and possesses neuroprotective activity in the brain. Interestingly, a variety of σ1R ligands modulate dopamine neurotransmission and reduce the behavioral effects of METH in animal models of addictive behavior, suggesting that the σ1R may be a viable therapeutic target for the treatment of METH addiction. In this review, we provide background on METH and the σ1R as well as a literature review regarding the role of σ1Rs in modulating both dopamine neurotransmission and the effects of METH. We aim to highlight the complexities of σ1R pharmacology and function as well as the therapeutic potential of the σ1R as a target for the treatment of METH addiction.
Collapse
Affiliation(s)
- Danielle O Sambo
- University of Florida, College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Joseph J Lebowitz
- University of Florida, College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Habibeh Khoshbouei
- University of Florida, College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States.
| |
Collapse
|
34
|
Goltseker K, Barak S. Flood-conditioned place aversion as a novel non-pharmacological aversive learning procedure in mice. Sci Rep 2018; 8:7280. [PMID: 29740070 PMCID: PMC5940895 DOI: 10.1038/s41598-018-25568-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 11/28/2022] Open
Abstract
The place conditioning paradigm is an efficient, widely-used method to study mechanisms that underlie appetitive or aversive learning and memory processes. However, pharmacological agents used to induce conditioned place preference (CPP) or aversion (CPA) can per se interfere with learning and memory processing, hence confounding the results. Therefore, non-pharmacological place conditioning procedures are of high importance. Here, we introduce a novel procedure for induction of CPA in mice, by water flooding. We found that pairing a context with immersion in moderately cold shallow water resulted in aversion and avoidance of that context during a place preference test. Importantly, place aversion emerged only when mice experienced the onset of flood during conditioning training, but not when mice were placed in a compartment pre-filled with water. We also found that warm water was not sufficiently aversive to induce CPA. Moreover, CPA was observed after two or three context-flood pairings but not after one or four pairings, suggesting that moderate conditioning intensity produces optimal CPA expression. Thus, flood-induced CPA is a simple, cheap, and efficient procedure to form and measure place aversion memories in mice, using an ethologically-relevant threat.
Collapse
Affiliation(s)
- Koral Goltseker
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Xia L, Nygard SK, Sobczak GG, Hourguettes NJ, Bruchas MR. Dorsal-CA1 Hippocampal Neuronal Ensembles Encode Nicotine-Reward Contextual Associations. Cell Rep 2018; 19:2143-2156. [PMID: 28591584 DOI: 10.1016/j.celrep.2017.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/20/2016] [Accepted: 05/14/2017] [Indexed: 11/15/2022] Open
Abstract
Natural and drug rewards increase the motivational valence of stimuli in the environment that, through Pavlovian learning mechanisms, become conditioned stimuli that directly motivate behavior in the absence of the original unconditioned stimulus. While the hippocampus has received extensive attention for its role in learning and memory processes, less is known regarding its role in drug-reward associations. We used in vivo Ca2+ imaging in freely moving mice during the formation of nicotine preference behavior to examine the role of the dorsal-CA1 region of the hippocampus in encoding contextual reward-seeking behavior. We show the development of specific neuronal ensembles whose activity encodes nicotine-reward contextual memories and that are necessary for the expression of place preference. Our findings increase our understanding of CA1 hippocampal function in general and as it relates to reward processing by identifying a critical role for CA1 neuronal ensembles in nicotine place preference.
Collapse
Affiliation(s)
- Li Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Stephanie K Nygard
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gabe G Sobczak
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas J Hourguettes
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Stern CA, de Carvalho CR, Bertoglio LJ, Takahashi RN. Effects of Cannabinoid Drugs on Aversive or Rewarding Drug-Associated Memory Extinction and Reconsolidation. Neuroscience 2018; 370:62-80. [DOI: 10.1016/j.neuroscience.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/23/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022]
|
37
|
Beloate LN, Coolen LM. Effects of Sexual Experience on Psychostimulant- and Opiate-Induced Behavior and Neural Plasticity in the Mesocorticolimbic Pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:249-270. [DOI: 10.1016/bs.irn.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
39
|
Pedersen CA. Oxytocin, Tolerance, and the Dark Side of Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:239-274. [PMID: 29056153 DOI: 10.1016/bs.irn.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substance use disorders blight the lives of millions of people and inflict a heavy financial burden on society. There is a compelling need for new pharmacological treatments as current drugs have limited efficacy and other major drawbacks. A substantial number of animal and recent clinical studies indicate that the neuropeptide, oxytocin, is a particularly promising therapeutic agent for human addictions, especially alcohol use disorders. In preliminary trials, we found that oxytocin administered by the intranasal route, which produces some neuropeptide penetration into the CNS, potently blocked withdrawal and reduced alcohol consumption in heavy drinkers. A considerable body of earlier animal studies demonstrated that oxytocin inhibits tolerance to alcohol, opioids, and stimulants as well as withdrawal from alcohol and opioids. Based on these preclinical findings and our clinical results, we hypothesize that oxytocin may exert therapeutic effects in substance dependence by the novel mechanism of diminishing established tolerance. A newer wave of studies has almost unanimously found that oxytocin decreases self-administration of a number of addictive substances in several animal models of addiction. Reduction of established tolerance should be included among the potential explanations of oxytocin effects in these studies and changes in tolerance should be examined in future studies in relationship to oxytocin influences on acquisition and reinstatement of self-administration as well as extinction of drug seeking. Oxytocin efficacy in reducing anxiety and stress responses as well as established tolerance suggests it may be uniquely effective in reducing negative reinforcement (Koob's "dark side" of addiction) that maintains chronic substance use.
Collapse
Affiliation(s)
- Cort A Pedersen
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
40
|
Stress-Induced Reinstatement of Nicotine Preference Requires Dynorphin/Kappa Opioid Activity in the Basolateral Amygdala. J Neurosci 2017; 36:9937-48. [PMID: 27656031 DOI: 10.1523/jneurosci.0953-16.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/05/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The dynorphin (DYN)/kappa-opioid receptor (KOR) system plays a conserved role in stress-induced reinstatement of drug seeking for prototypical substances of abuse. Due to nicotine's high propensity for stress-induced relapse, we hypothesized that stress would induce reinstatement of nicotine seeking-like behavior in a KOR-dependent manner. Using a conditioned place preference (CPP) reinstatement procedure in mice, we show that both foot-shock stress and the pharmacological stressor yohimbine (2 mg/kg, i.p.) induce reinstatement of nicotine CPP in a norbinaltorphimine (norBNI, a KOR antagonist)-sensitive manner, indicating that KOR activity is necessary for stress-induced nicotine CPP reinstatement. After reinstatement testing, we visualized robust c-fos expression in the basolateral amygdala (BLA), which was reduced in mice pretreated with norBNI. We then used several distinct but complementary approaches of locally disrupting BLA KOR activity to assess the role of KORs and KOR-coupled intracellular signaling cascades on reinstatement of nicotine CPP. norBNI injected locally into the BLA prevented yohimbine-induced nicotine CPP reinstatement without affecting CPP acquisition. Similarly, selective deletion of BLA KORs in KOR conditional knock-out mice prevented foot-shock-induced CPP reinstatement. Together, these findings strongly implicate BLA KORs in stress-induced nicotine seeking-like behavior. In addition, we found that chemogenetic activation of Gαi signaling within CaMKIIα BLA neurons was sufficient to induce nicotine CPP reinstatement, identifying an anatomically specific intracellular mechanism by which stress leads to reinstatement. Considered together, our findings suggest that activation of the DYN/KOR system and Gαi signaling within the BLA is both necessary and sufficient to produce reinstatement of nicotine preference. SIGNIFICANCE STATEMENT Considering the major impact of nicotine use on human health, understanding the mechanisms by which stress triggers reinstatement of drug-seeking behaviors is particularly pertinent to nicotine. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in stress-induced reinstatement of drug seeking for other commonly abused drugs. However, the specific role, brain region, and mechanisms that this system plays in reinstatement of nicotine seeking has not been characterized. Here, we report region-specific engagement of the DYN/KOR system and subsequent activation of inhibitory (Gi-linked) intracellular signaling pathways within the basolateral amygdala during stress-induced reinstatement of nicotine preference. We show that the DYN/KOR system is necessary to produce this behavioral state. This work may provide novel insight for the development of therapeutic approaches to prevent stress-related nicotine relapse.
Collapse
|
41
|
The α3β4 nAChR partial agonist AT-1001 attenuates stress-induced reinstatement of nicotine seeking in a rat model of relapse and induces minimal withdrawal in dependent rats. Behav Brain Res 2017; 333:251-257. [PMID: 28693859 DOI: 10.1016/j.bbr.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022]
Abstract
The strong reinforcing effects of nicotine and the negative symptoms such as anxiety experienced during a quit attempt often lead to relapse and low success rates for smoking cessation. Treatments that not only block the reinforcing effects of nicotine but also attenuate the motivation to relapse are needed to improve cessation rates. Recent genetic and preclinical studies have highlighted the involvement of the α3, β4, and α5 nicotinic acetylcholine receptor (nAChR) subunits and the α3β4 nAChR subtype in nicotine dependence and withdrawal. However, the involvement of these nAChR in relapse is not fully understood. We previously reported that the α3β4 nAChR partial agonist AT-1001 selectively decreases nicotine self-administration in rats without affecting food responding. In the present experiments, we examined the efficacy of AT-1001 in attenuating reinstatement of nicotine-seeking behavior in a model of stress-induced relapse. Rats extinguished from nicotine self-administration were treated with the pharmacological stressor yohimbine prior to AT-1001 treatment and reinstatement testing. We also examined whether AT-1001 produced any withdrawal-related effects when administered to nicotine-dependent rats. We found that AT-1001 dose-dependently reduced yohimbine stress-induced reinstatement of nicotine seeking. When administered to nicotine-dependent rats at the dose that significantly blocked nicotine reinstatement, AT-1001 elicited minimal somatic withdrawal signs in comparison to the nicotinic antagonist mecamylamine, which is known to produce robust withdrawal. Our data suggest that α3β4 nAChR-targeted compounds may be a promising approach for nicotine addiction treatment because they can not only block nicotine's reinforcing effects, but also decrease motivation to relapse without producing significant withdrawal effects.
Collapse
|
42
|
Strong CE, Schoepfer KJ, Dossat AM, Saland SK, Wright KN, Kabbaj M. Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats. Neuropharmacology 2017; 121:195-203. [PMID: 28479397 DOI: 10.1016/j.neuropharm.2017.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
Clinical evidence suggests superior antidepressant response over time with a repeated, intermittent ketamine treatment regimen as compared to a single infusion. However, the club drug ketamine is commonly abused. Therefore, the abuse potential of repeated ketamine injections at low doses needs to be investigated. In this study, we investigated the abuse potential of repeated exposure to either 0, 2.5, or 5 mg/kg ketamine administered once weekly for seven weeks. Locomotor activity and conditioned place preference (CPP) were assayed to evaluate behavioral sensitization to the locomotor activating effects of ketamine and its rewarding properties, respectively. Our results show that while neither males nor females developed CPP, males treated with 5 mg/kg and females treated with either 2.5 or 5 mg/kg ketamine behaviorally sensitized. Furthermore, dendritic spine density was increased in the NAc of both males and females administered 5 mg/kg ketamine, an effect specific to the NAc shell (NAcSh) in males but to both the NAc core (NAcC) and NAcSh in females. Additionally, males administered 5 mg/kg ketamine displayed increased protein expression of ΔfosB, calcium calmodulin kinase II alpha (CaMKIIα), and brain-derived neurotrophic factor (BDNF), an effect not observed in females administered either dose of ketamine. However, males and females administered 5 mg/kg ketamine displayed increased protein expression of AMPA receptors (GluA1). Taken together, low-dose ketamine, when administered intermittently, induces behavioral sensitization at a lower dose in females than males, accompanied by an increase in spine density in the NAc and protein expression changes in pathways commonly implicated in addiction.
Collapse
Affiliation(s)
- C E Strong
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - K J Schoepfer
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - A M Dossat
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - S K Saland
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - K N Wright
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - M Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
43
|
Morley KC, Cornish JL, Faingold A, Wood K, Haber PS. Pharmacotherapeutic agents in the treatment of methamphetamine dependence. Expert Opin Investig Drugs 2017; 26:563-578. [PMID: 28351169 DOI: 10.1080/13543784.2017.1313229] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Methamphetamine use is a serious public health concern in many countries and is second to cannabis as the most widely abused illicit drug in the world. Effective management for methamphetamine dependence remains elusive and the large majority of methamphetamine users relapse following treatment. Areas covered: Progression in the understanding of the pharmacological basis of methamphetamine use has provided us with innovative opportunities to develop agents to treat dependence. The current review summarizes relevant literature on the neurobiological and clinical correlates associated with methamphetamine use. We then outline agents that have been explored for potential treatments in preclinical studies, human laboratory phase I and phase II trials over the last ten years. Expert opinion: No agent has demonstrated a broad and strong effect in achieving MA abstinence in Phase II trials. Agents with novel therapeutic targets appear promising. Advancement in MA treatment, including translation into practice, faces several clinical challenges.
Collapse
Affiliation(s)
- Kirsten C Morley
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia
| | - Jennifer L Cornish
- b Department of Psychology , Centre for Emotional Health, Macquarie University , Sydney , Australia
| | - Alon Faingold
- c Drug Health Services , Royal Prince Alfred Hospital , Camperdown , Australia
| | - Katie Wood
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia
| | - Paul S Haber
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia.,c Drug Health Services , Royal Prince Alfred Hospital , Camperdown , Australia
| |
Collapse
|
44
|
Bahi A. Decreased anxiety, voluntary ethanol intake and ethanol-induced CPP acquisition following activation of the metabotropic glutamate receptor 8 “mGluR8”. Pharmacol Biochem Behav 2017; 155:32-42. [DOI: 10.1016/j.pbb.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
|
45
|
The impact of a junk-food diet during development on ‘wanting’ and ‘liking’. Behav Brain Res 2017; 317:163-178. [DOI: 10.1016/j.bbr.2016.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
|
46
|
Fakira AK, Massaly N, Cohensedgh O, Berman A, Morón JA. Morphine-Associated Contextual Cues Induce Structural Plasticity in Hippocampal CA1 Pyramidal Neurons. Neuropsychopharmacology 2016; 41:2668-78. [PMID: 27170097 PMCID: PMC5026734 DOI: 10.1038/npp.2016.69] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 01/08/2023]
Abstract
In people with a prior history of opioid misuse, cues associated with previous drug intake can trigger relapse even after years of abstinence. Examining the processes that lead to the formation and maintenance of the memories between cues/context and the opioid may help to discover new therapeutic candidates to treat drug-seeking behavior. The hippocampus is a brain region essential for learning and memory, which has been involved in the mechanisms underlying opioid cravings. The formation of memories and associations are thought to be dependent on synaptic strengthening associated with structural plasticity of dendritic spines. Here, we assess how dendritic spines in the CA1 region of the hippocampus are affected by morphine-conditioning training. Our results show that morphine pairing with environmental cues (ie, the conditioned place preference (CPP) apparatus) triggers a significant decrease in the number of thin dendritic spines in the hippocampus. Interestingly, this effect was observed regardless of the expression of a conditioned response when mice were trained using an unpaired morphine CPP design and was absent when morphine was administered in the home cage. To investigate the mechanism underlying this structural plasticity, we examined the role of Rho GTPase in dendritic spine remodeling. We found that synaptic expression of RhoA increased with morphine conditioning and blocking RhoA signaling prevented the expression of morphine-induced CPP. Our findings uncover novel mechanisms in response to morphine-associated environmental cues and the underlying alterations in spine plasticity.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Nicolas Massaly
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Omid Cohensedgh
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Alexandra Berman
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jose A Morón
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA,Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St Louis, MO 63110, USA, Tel: +1 314 362 0078 or +1 314 362 8565, E-mail:
| |
Collapse
|
47
|
Hippocampal and Insular Response to Smoking-Related Environments: Neuroimaging Evidence for Drug-Context Effects in Nicotine Dependence. Neuropsychopharmacology 2016; 41:877-85. [PMID: 26179147 PMCID: PMC4707833 DOI: 10.1038/npp.2015.214] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/12/2015] [Accepted: 07/01/2015] [Indexed: 02/05/2023]
Abstract
Environments associated with prior drug use provoke craving and drug taking, and set the stage for lapse/relapse. Although the neurobehavioral bases of environment-induced drug taking have been investigated with animal models, the influence of drug-environments on brain function and behavior in clinical populations of substance users is largely unexplored. Adult smokers (n=40) photographed locations personally associated with smoking (personal smoking environments; PSEs) or personal nonsmoking environment (PNEs). Following 24-h abstinence, participants underwent fMRI scanning while viewing PSEs, PNEs, standard smoking and nonsmoking environments, as well as proximal smoking (eg, lit cigarette) and nonsmoking (eg, pencil) cues. Finally, in two separate sessions following 6-h abstinence they viewed either PSEs or PNEs while cue-induced self-reported craving and smoking behavior were assessed. Viewing PSEs increased blood oxygen level-dependent signal in right posterior hippocampus (pHPC; F(2,685)=3.74, p<0.024) and bilateral insula (left: F(2,685)=6.87, p=0.0011; right: F(2,685)=5.34, p=0.005). In the laboratory, viewing PSEs, compared with PNEs, was associated with higher craving levels (F(2,180)=18.32, p<0.0001) and greater ad lib smoking (F(1,36)=5.01, p=0.032). The effect of PSEs (minus PNEs) on brain activation in right insula was positively correlated with the effect of PSEs (minus PNEs) on number of puffs taken from a cigarette (r=0.6, p=0.001). Our data, for the first time in humans, elucidates the neural mechanisms that mediate the effects of real-world drug-associated environments on drug taking behavior under conditions of drug abstinence. These findings establish targets for the development and evaluation of treatments seeking to reduce environment provoked relapse.
Collapse
|
48
|
Sex differences in drug addiction and response to exercise intervention: From human to animal studies. Front Neuroendocrinol 2016; 40:24-41. [PMID: 26182835 PMCID: PMC4712120 DOI: 10.1016/j.yfrne.2015.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023]
Abstract
Accumulated research supports the idea that exercise could be an option of potential prevention and treatment for drug addiction. During the past few years, there has been increased interest in investigating of sex differences in exercise and drug addiction. This demonstrates that sex-specific exercise intervention strategies may be important for preventing and treating drug addiction in men and women. However, little is known about how and why sex differences are found when doing exercise-induced interventions for drug addiction. In this review, we included both animal and human that pulled subjects from a varied age demographic, as well as neurobiological mechanisms that may highlight the sex-related differences in these potential to assess the impact of sex-specific roles in drug addiction and exercise therapies.
Collapse
|
49
|
Jaboinski J, Cabral JCC, Campos R, Barros DM. Exposure to methylphenidate during infancy and adolescence in non-human animals and sensitization to abuse of psychostimulants later in life: a systematic review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2015; 37:107-17. [PMID: 26630401 DOI: 10.1590/2237-6089-2014-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/25/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Attention deficit hyperactivity disorder (ADHD) is a neuropsychiatric pathology that has an important prevalence among young people and is difficult to diagnose. It is usually treated with methylphenidate, a psychostimulant with a mechanism of action similar to that of cocaine. Previous studies show that repeated use of psychostimulants during childhood or adolescence may sensitize subjects, making them more prone to later abuse of psychostimulant drugs such as cocaine and methamphetamine. OBJECTIVE To review experimental studies in non-human models (rodents and monkeys) treated with methylphenidate during infancy or adolescence and tested for reinforcing effects on psychostimulant drugs in adulthood. METHOD Systematic collection of data was performed on four databases (Web of Knowledge, PsycARTICLE, PubMed and SciELO). The initial search identified 202 articles published from 2009 to 2014, which were screened for eligibility. Seven articles met the inclusion criteria and were reviewed in this study. RESULTS The findings indicate that early exposure to methylphenidate has an effect on an ADHD animal model, specifically, on spontaneously hypertensive strain rats, especially those tested using the self-administration paradigm. CONCLUSION Future studies should prioritize the spontaneously hypertensive rat strain - an animal model of ADHD. Experimental designs comparing different behavioral paradigms and modes of administration using this strain could lead to improved understanding of the effects of exposure to methylphenidate during childhood and adolescence.
Collapse
Affiliation(s)
- Juliana Jaboinski
- Institute of Psychology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Renan Campos
- Institute of Biological Sciences, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Daniela Marti Barros
- Institute of Biological Sciences, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
50
|
Jing L, Li JX. Trace amine-associated receptor 1: A promising target for the treatment of psychostimulant addiction. Eur J Pharmacol 2015; 761:345-52. [PMID: 26092759 DOI: 10.1016/j.ejphar.2015.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/14/2015] [Accepted: 06/12/2015] [Indexed: 11/28/2022]
Abstract
Abuse of and addiction to psychostimulants remains a challenging clinical issue; yet no effective pharmacotherapy is available. Trace amine associated receptor 1 (TAAR 1) is increasingly recognized as a novel drug target that participates in the modulation of drug abuse. This review analyzed existing preclinical evidence from electrophysiological, biochemical to behavioral aspects regarding the functional interactions between TAAR 1 and dopaminergic system. TAAR 1 knockout mice demonstrate increased sensitivity to dopaminergic activation while TAAR 1 agonists reduce the neurochemical effects of cocaine and amphetamines, attenuate abuse- and addiction-related behavioral effects of cocaine and methamphetamine. It is concluded that TAAR 1 activation functionally modulates the dopaminergic activity and TAAR 1 agonists appear to be promising pharmacotherapies against psychostimulant addiction.
Collapse
Affiliation(s)
- Li Jing
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA; Department of Physiology and Pathophysiology, Tianjin Me dical University, Tianjin, China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|