1
|
Liberona A, Jones N, Zúñiga K, Garrido V, Zelada MI, Silva H, Nieto RR. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Schizophrenia and Bipolar Disorder: A Systematic Review. Int J Mol Sci 2024; 25:11204. [PMID: 39456983 PMCID: PMC11508575 DOI: 10.3390/ijms252011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a potential biomarker of response to treatment in psychiatric disorders. As it plays a role in the pathophysiological development of schizophrenia and bipolar disorder, it is of interest to study its role in predicting therapeutic responses in both conditions. We carried out a systematic review of the literature, looking for differences in baseline BDNF levels and the Val66Met BDNF polymorphism in these disorders between responders and non-responders, and found information showing that the Val/Val genotype and higher baseline BDNF levels may be present in patients that respond successfully to pharmacological and non-pharmacological treatments. However, there is still limited evidence to support the role of the Val66Met polymorphism and baseline BDNF levels as predictors of treatment response.
Collapse
Affiliation(s)
- Andrés Liberona
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Natalia Jones
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Karen Zúñiga
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Verónica Garrido
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Mario Ignacio Zelada
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Hernán Silva
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo R. Nieto
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
2
|
Treble-Barna A, Wade SL, Pilipenko V, Martin LJ, Yeates KO, Taylor HG, Kurowski BG. Brain-derived neurotrophic factor Val66Met and neuropsychological functioning after early childhood traumatic brain injury. J Int Neuropsychol Soc 2023; 29:246-256. [PMID: 35465864 PMCID: PMC9592678 DOI: 10.1017/s1355617722000194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The present study examined the differential effect of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on neuropsychological functioning in children with traumatic brain injury (TBI) relative to orthopedic injury (OI). METHODS Participants were drawn from a prospective, longitudinal study of children who sustained a TBI (n = 69) or OI (n = 72) between 3 and 7 years of age. Children completed a battery of neuropsychological measures targeting attention, memory, and executive functions at four timepoints spanning the immediate post-acute period to 18 months post-injury. Children also completed a comparable age-appropriate battery of measures approximately 7 years post-injury. Parents rated children's dysexecutive behaviors at all timepoints. RESULTS Longitudinal mixed models revealed a significant allele status × injury group interaction with a medium effect size for verbal fluency. Cross-sectional models at 7 years post-injury revealed non-significant but medium effect sizes for the allele status x injury group interaction for fluid reasoning and immediate and delayed verbal memory. Post hoc stratified analyses revealed a consistent pattern of poorer neuropsychological functioning in Met carriers relative to Val/Val homozygotes in the TBI group, with small effect sizes; the opposite trend or no appreciable effect was observed in the OI group. CONCLUSIONS The results suggest a differential effect of the BDNF Val66Met polymorphism on verbal fluency, and possibly fluid reasoning and immediate and delayed verbal memory, in children with early TBI relative to OI. The Met allele-associated with reduced activity-dependent secretion of BDNF-may confer risk for poorer neuropsychological functioning in children with TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Assistant Professor, Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, KAU-910, Pittsburgh, PA 15213
| | - Shari L. Wade
- Professor, Division of Physical Medicine & Rehabilitation, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Valentina Pilipenko
- Biostatistician, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Lisa J. Martin
- Professor, Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati School of Medicine. 3333 Burnett Av, MLC 4012, Cincinnati OH 45229
| | - Keith Owen Yeates
- Professor, Department of Psychology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N1N4 Canada
| | - H. Gerry Taylor
- Professor, Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Columbus, OH, 43205
| | - Brad G. Kurowski
- Associate Professor, Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Departments of Pediatrics and Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 3333 Burnett Av, MLC 4009, Cincinnati OH 45229
| |
Collapse
|
3
|
Abstract
OBJECTIVE A better understanding of the genetic, molecular and cellular mechanisms of brain-derived neurotrophic factor (BDNF) and its association with neuroplasticity could play a pivotal role in finding future therapeutic targets for novel drugs in major depressive disorder (MDD). Because there are conflicting results regarding the exact role of BDNF polymorphisms in MDD still, we set out to systematically review the current evidence regarding BDNF-related mutations in MDD. METHODS We conducted a keyword-guided search of the PubMed and Embase databases, using 'BDNF' or 'brain-derived neurotrophic factor' and 'major depressive disorder' and 'single-nucleotide polymorphism'. We included all publications in line with our exclusion and inclusion criteria that focused on BDNF-related mutations in the context of MDD. RESULTS Our search yielded 427 records in total. After screening and application of our eligibility criteria, 71 studies were included in final analysis. According to present overall scientific data, there is a possibly major pathophysiological role for BDNF neurotrophic systems to play in MDD. However, on the one hand, the synthesis of evidence makes clear that likely no overall association of BDNF-related mutations with MDD exists. On the other hand, it can be appreciated that solidifying evidence emerged on specific significant sub-conditions and stratifications based on various demographic, clinico-phenotypical and neuromorphological variables. CONCLUSIONS Further research should elucidate specific BDNF-MDD associations based on demographic, clinico-phenotypical and neuromorphological variables. Furthermore, biomarker approaches, specifically combinatory ones, involving BDNF should be further investigated.
Collapse
|
4
|
Scotti-Muzzi E, Chile T, Vallada H, Otaduy MCG, Soeiro-de-Souza MG. BDNF rs6265 differentially influences neurometabolites in the anterior cingulate of healthy and bipolar disorder subjects. Brain Imaging Behav 2023; 17:282-293. [PMID: 36630045 DOI: 10.1007/s11682-023-00757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant brain neurotrophin and plays a critical role in neuronal growth, survival and plasticity, implicated in the pathophysiology of Bipolar Disorders (BD). The single-nucleotide polymorphism in the BDNF gene (BDNF rs6265) has been associated with decreased hippocampal BDNF secretion and volume in met carriers in different populations, although the val allele has been reported to be more frequent in BD patients. The anterior cingulate cortex (ACC) is a key center integrating cognitive and affective neuronal connections, where consistent alterations in brain metabolites such as Glx (Glutamate + Glutamine) and N-acetylaspartate (NAA) have been consistently reported in BD. However, little is known about the influence of BDNF rs6265 on neurochemical profile in the ACC of Healthy Controls (HC) and BD subjects. The aim of this study was to assess the influence of BDNF rs6265 on ACC neurometabolites (Glx, NAA and total creatine- Cr) in 124 euthymic BD type I patients and 76 HC, who were genotyped for BDNF rs6265 and underwent a 3-Tesla proton magnetic resonance imaging and spectroscopy scan (1 H-MRS) using a PRESS ACC single-voxel (8cm3) sequence. BDNF rs6265 polymorphism showed a significant two-way interaction (diagnosis × genotype) in relation to NAA/Cr and total Cr. While met carriers presented increased NAA/Cr in HC, BD-I subjects with the val allele revealed higher total Cr, denoting an enhanced ACC metabolism likely associated with increased glutamatergic metabolites observed in BD-I val carriers. However, these results were replicated only in men. Therefore, our results support evidences that the BDNF rs6265 polymorphism exerts a complex pleiotropic effect on ACC metabolites influenced by the diagnosis and sex.
Collapse
Affiliation(s)
- Estêvão Scotti-Muzzi
- Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil.
| | - Thais Chile
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Homero Vallada
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Maria Concepción Garcia Otaduy
- Laboratory of Magnetic Resonance in Neuroradiology LIM44, Department and Institute of Radiology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | | |
Collapse
|
5
|
Deciphering the Effect of Different Genetic Variants on Hippocampal Subfield Volumes in the General Population. Int J Mol Sci 2023; 24:ijms24021120. [PMID: 36674637 PMCID: PMC9861136 DOI: 10.3390/ijms24021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to disentangle the effects of various genetic factors on hippocampal subfield volumes using three different approaches: a biologically driven candidate gene approach, a hypothesis-free GWAS approach, and a polygenic approach, where AD risk alleles are combined with a polygenic risk score (PRS). The impact of these genetic factors was investigated in a large dementia-free general population cohort from the Study of Health in Pomerania (SHIP, n = 1806). Analyses were performed using linear regression models adjusted for biological and environmental risk factors. Hippocampus subfield volume alterations were found for APOE ε4, BDNF Val, and 5-HTTLPR L allele carriers. In addition, we were able to replicate GWAS findings, especially for rs17178139 (MSRB3), rs1861979 (DPP4), rs7873551 (ASTN2), and rs572246240 (MAST4). Interaction analyses between the significant SNPs as well as the PRS for AD revealed no significant results. Our results confirm that hippocampal volume reductions are influenced by genetic variation, and that different variants reveal different association patterns that can be linked to biological processes in neurodegeneration. Thus, this study underlines the importance of specific genetic analyses in the quest for acquiring deeper insights into the biology of hippocampal volume loss, memory impairment, depression, and neurodegenerative diseases.
Collapse
|
6
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
7
|
Ahmed AO, Kramer S, Hofman N, Flynn J, Hansen M, Martin V, Pillai A, Buckley PF. A Meta-Analysis of Brain-Derived Neurotrophic Factor Effects on Brain Volume in Schizophrenia: Genotype and Serum Levels. Neuropsychobiology 2021; 80:411-424. [PMID: 33706323 PMCID: PMC8619762 DOI: 10.1159/000514126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022]
Abstract
AIM The Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene has established pleiotropic effects on schizophrenia incidence and morphologic alterations in the illness. The effects of brain-derived neurotrophic factor (BDNF) on brain volume measurements are however mixed seeming to be less established for most brain regions. The current meta-analytic review examined (1) the association of the Val66Met SNP and brain volume alterations in schizophrenia by comparing Met allele carriers to Val/Val homozygotes and (2) the association of serum BDNF with brain volume measurements. METHOD Studies included in the meta-analyses were identified through an electronic search of PubMed and PsycInfo (via EBSCO) for English language publications from January 2000 through December 2017. Included studies had conducted a genotyping procedure of Val66Met or obtained assays of serum BDNF and obtained brain volume data in patients with psychotic disorders. Nonhuman studies were excluded. RESULTS Study 1 which included 52 comparisons of Met carriers and Val/Val homozygotes found evidence of lower right and left hippocampal volumes among Met allele carriers with schizophrenia. Frontal measurements, while also lower among Met carriers, did not achieve statistical significance. Study 2 which included 7 examinations of the correlation between serum BDNF and brain volume found significant associations between serum BDNF levels and right and left hippocampal volume with lower BDNF corresponding to lower volumes. DISCUSSION The meta-analyses provided evidence of associations between brain volume alterations in schizophrenia and variations on the Val66Met SNP and serum BDNF. Given the limited number of studies, it remains unclear if BDNF effects are global or regionally specific.
Collapse
Affiliation(s)
- Anthony O. Ahmed
- Department of Psychiatry, Weill Cornell Medicine, White Plains, New York, USA,*Anthony O. Ahmed, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY 10605 (USA),
| | - Samantha Kramer
- Department of Psychology, Long Island University Post, New York, New York, USA
| | - Naama Hofman
- Department of Psychology, St. John's University, New York, New York, USA
| | - John Flynn
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Marie Hansen
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Victoria Martin
- Department of Psychology, City University of New York, New York, New York, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, Georgia, USA
| | - Peter F. Buckley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
8
|
Effect of the interaction between BDNF Val66Met polymorphism and daily physical activity on mean diffusivity. Brain Imaging Behav 2021; 14:806-820. [PMID: 30617785 DOI: 10.1007/s11682-018-0025-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Numerous studies have reported that the Met allele of the brain-derived neurotrophic factor (BDNF) gene polymorphism reduces neural plasticity. A reduction in mean diffusivity (MD) in diffusion tensor imaging (DTI) characteristically reflects the neural plasticity that involves increased tissue components. In this study, we revealed that the number of Met-BDNF alleles was negatively associated with MD throughout the whole-brain gray and white matter areas of 743 subjects using DTI and whole-brain multiple regression analyses. Within the same sample, the region of interest analysis revealed that the number of Met-BDNF alleles significantly and positively correlated with the mean FA value in the body of the corpus callosum. In addition, we observed interaction effects between BDNF Val66Met polymorphism and daily physical activity levels on MD, but not FA, in significant clusters of the bilateral hemisphere (n = 577 subjects). Post-hoc multiple regression analyses revealed that after correcting for confounding variables, there was a significant negative correlation between the physical activity level and mean MD of the whole brain in the Val/Val group [standardized partial regression coefficient (β) = -0.196, P = 0.005, t = -2.825], but not in the Val/Met (β = 0.050, P = 0.412, t = 0.822) and Met/Met groups (β = 0.092, P = 0.382, t = 0.878). These results underscore the importance of the interaction between physical activity and the BDNF Val66Met polymorphism, which affects the plasticity of neural mechanisms.
Collapse
|
9
|
Höflich A, Kraus C, Pfeiffer RM, Seiger R, Rujescu D, Zarate CA, Kasper S, Winkler D, Lanzenberger R. Translating the immediate effects of S-Ketamine using hippocampal subfield analysis in healthy subjects-results of a randomized controlled trial. Transl Psychiatry 2021; 11:200. [PMID: 33795646 PMCID: PMC8016970 DOI: 10.1038/s41398-021-01318-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Antidepressant doses of ketamine rapidly facilitate synaptic plasticity and modify neuronal function within prefrontal and hippocampal circuits. However, most studies have demonstrated these effects in animal models and translational studies in humans are scarce. A recent animal study showed that ketamine restored dendritic spines in the hippocampal CA1 region within 1 h of administration. To translate these results to humans, this randomized, double-blind, placebo-controlled, crossover magnetic resonance imaging (MRI) study assessed ketamine's rapid neuroplastic effects on hippocampal subfield measurements in healthy volunteers. S-Ketamine vs. placebo data were analyzed, and data were also grouped by brain-derived neurotrophic factor (BDNF) genotype. Linear mixed models showed that overall hippocampal subfield volumes were significantly larger (p = 0.009) post ketamine than post placebo (LS means difference=0.008, standard error=0.003). Post-hoc tests did not attribute effects to specific subfields (all p > 0.05). Trend-wise volumetric increases were observed within the left hippocampal CA1 region (p = 0.076), and trend-wise volumetric reductions were obtained in the right hippocampal-amygdaloid transition region (HATA) (p = 0.067). Neither genotype nor a genotype-drug interaction significantly affected the results (all p > 0.7). The study provides evidence that ketamine has short-term effects on hippocampal subfield volumes in humans. The results translate previous findings from animal models of depression showing that ketamine has pro-neuroplastic effects on hippocampal structures and underscore the importance of the hippocampus as a key region in ketamine's mechanism of action.
Collapse
Affiliation(s)
- Anna Höflich
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christoph Kraus
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,grid.94365.3d0000 0001 2297 5165Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Ruth M. Pfeiffer
- grid.94365.3d0000 0001 2297 5165Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Rene Seiger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Carlos A. Zarate
- grid.94365.3d0000 0001 2297 5165Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Siegfried Kasper
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Kawasaki Y, Oishi K, Hernandez A, Ernst T, Wu D, Otsuka Y, Ceritoglu C, Chang L. Brain-derived neurotrophic factor Val66Met variant on brain volumes in infants. Brain Struct Funct 2021; 226:919-925. [PMID: 33474578 DOI: 10.1007/s00429-020-02207-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) has many important roles in neurogenesis and neuronal health. BDNF is also involved in learning and memory. Individuals with BDNF-Val66Met variant (Met +) are at higher risk for neuropsychiatric disorders and have smaller hippocampi and amgydalae compared to those without this variant (Met -). Whether these smaller brain volumes are already present at birth is unknown and were evaluated. 66 newborn infants were genotyped for BDNF-rs6265 and had brain MRI scans. The T1-weighted images were automatically parcellated for hippocampus and amygdala, as well as the intracranial volume (ICV), total brain volume, total gray and white matter, using a multi-atlas label fusion method implemented in the MRICloud ( https://braingps.anatomyworks.org ). The segmented brain volumes were normalized to the ICV for group comparisons. The two infant groups were not different in their demographics and birth characteristics. However, compared to Met - infants, the Met + infants had smaller hippocampi (p = 0.013), smaller amygdalae (p = 0.041), and less steep age-related declines in total brain volume and % white matter volume. The smaller relative hippocampal and amygdala volumes in Met + infants suggest that the Met + genotype affected prenatal developmental processes. In addition, the slower age-dependent declines in the relative total brain and white matter volumes of the Met + group in this cross-sectional dataset suggest the BDNF-Val66Met variant might have an ongoing negative influence on the postnatal developmental processes.
Collapse
Affiliation(s)
- Yukako Kawasaki
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neonatology, Maternal and Perinatal Center, Toyama University Hospital, Toyama, Japan
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antonette Hernandez
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Thomas Ernst
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Departments of Diagnostic Radiology and Nuclear Medicine, and Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University of School of Medicine, Baltimore, MD, USA
| | - Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yoshihisa Otsuka
- Department of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Can Ceritoglu
- Center for Imaging Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
- Departments of Diagnostic Radiology and Nuclear Medicine, and Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University of School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Jung M, Apostolova LG, Gao S, Burney HN, Lai D, Foroud T, Saykin AJ, Pressler SJ. Testing influences of APOE and BDNF genes and heart failure on cognitive function. Heart Lung 2021; 50:51-58. [PMID: 32703621 PMCID: PMC8809626 DOI: 10.1016/j.hrtlng.2020.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Apolipoprotein E (APOE) ε2, ε4 and brain-derived neurotrophic factor (BDNF) Val66Met alleles have been associated with cognition. Associations of these alleles with cognition in heart failure (HF) and influences of HF across the cognitive spectrum (i.e., cognitively normal to Alzheimer's dementia [AD]) remain unexplored. OBJECTIVES To investigate influences of APOE ε2, ε4, BDNF Met and HF on cognition among participants across the cognitive spectrum. METHODS Genetic association study using national databases (N = 7,166). RESULTS APOE ε2 frequencies were similar across the cognitive spectrum among participants with HF. APOE ε4 frequency was lower among participants with HF and AD than non-HF participants with AD. BDNF Met frequencies did not differ across the spectrum. HF was associated with worse attention and language. In the HF subsample, ε4 was associated with worse memory. CONCLUSION Associations between APOE and cognition may differ in HF but need to be tested in a larger sample.
Collapse
Affiliation(s)
- Miyeon Jung
- Assistant Professor, Indiana University School of Nursing, 600 Barnhill Drive, Indianapolis, IN 46202, USA.
| | - Liana G Apostolova
- Professor, Indiana University School of Medicine, Neurology, Radiology, Medical and Molecular Genetics, 355 West 16th Street, Indianapolis, IN 46202, USA.
| | - Sujuan Gao
- Professor, Indiana University School of Medicine, Department of Biostatistics, 410 West 10th Street, Indianapolis, IN 46202, USA.
| | - Heather N Burney
- Biostatistician, Indiana University School of Medicine, Department of Biostatistics, 410 West 10th Street, Indianapolis, IN 46202, USA.
| | - Dongbing Lai
- Assistant Research Professor, Indiana University School of Medicine, Medical and Molecular Genetics, 410 West 10th Street, Indianapolis, IN 46202, USA.
| | - Tatiana Foroud
- Professor, Indiana University School of Medicine, Medical and Molecular Genetics, 410 West 10th Street, Indianapolis, IN 46202, USA.
| | - Andrew J Saykin
- Professor, Indiana University School of Medicine, Department of Radiology and Imaging Sciences, 355 West 16th street, Indianapolis, IN 46202, USA.
| | - Susan J Pressler
- Professor, Indiana University School of Nursing, 600 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
12
|
Franzmeier N, Ren J, Damm A, Monté-Rubio G, Boada M, Ruiz A, Ramirez A, Jessen F, Düzel E, Rodríguez Gómez O, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Buerger K, Levin J, Duering M, Dichgans M, Suárez-Calvet M, Haass C, Gordon BA, Lim YY, Masters CL, Janowitz D, Catak C, Wolfsgruber S, Wagner M, Milz E, Moreno-Grau S, Teipel S, Grothe MJ, Kilimann I, Rossor M, Fox N, Laske C, Chhatwal J, Falkai P, Perneczky R, Lee JH, Spottke A, Boecker H, Brosseron F, Fliessbach K, Heneka MT, Nestor P, Peters O, Fuentes M, Menne F, Priller J, Spruth EJ, Franke C, Schneider A, Westerteicher C, Speck O, Wiltfang J, Bartels C, Araque Caballero MÁ, Metzger C, Bittner D, Salloway S, Danek A, Hassenstab J, Yakushev I, Schofield PR, Morris JC, Bateman RJ, Ewers M. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Mol Psychiatry 2021; 26:614-628. [PMID: 30899092 PMCID: PMC6754794 DOI: 10.1038/s41380-019-0404-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 01/29/2023]
Abstract
In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aβ) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aβ, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aβ-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Jinyi Ren
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Alexander Damm
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Gemma Monté-Rubio
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain
| | - Mercè Boada
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Agustín Ruiz
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Alfredo Ramirez
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Frank Jessen
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Octavio Rodríguez Gómez
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Tammie Benzinger
- grid.4367.60000 0001 2355 7002Department of Radiology, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA
| | - Alison Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Celeste M. Karch
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA
| | - Anne M. Fagan
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Eric McDade
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Katharina Buerger
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Martin Dichgans
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Suárez-Calvet
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.430077.7Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia Spain ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brian A. Gordon
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychological and Brain Sciences, Washington University, St. Louis, MO USA
| | - Yen Ying Lim
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Colin L. Masters
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Daniel Janowitz
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Cihan Catak
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Steffen Wolfsgruber
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wagner
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Esther Milz
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sonia Moreno-Grau
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, University Hospital Rostock, Rostock, Germany
| | - Michel J Grothe
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Martin Rossor
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick Fox
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Christoph Laske
- grid.428620.aHertie Institute for Clinical Brain Research, Tübingen, Germany ,grid.424247.30000 0004 0438 0426Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer Chhatwal
- grid.38142.3c000000041936754XMassachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Peter Falkai
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.7445.20000 0001 2113 8111Neuroepidemiology and Ageing Research Unit, School of Public Health, The Imperial College of Science, Technology and Medicine, London, UK
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Bonn, Germany
| | - Henning Boecker
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Radiology, University of Bonn, Bonn, Germany
| | - Frederic Brosseron
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Fliessbach
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T. Heneka
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Peter Nestor
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Manuel Fuentes
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Felix Menne
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Christiana Franke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Anja Schneider
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christine Westerteicher
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Speck
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany ,grid.452320.20000 0004 0404 7236Center for Behavioral Brain Sciences, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department for Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany ,grid.7311.40000000123236065iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Miguel Ángel Araque Caballero
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Coraline Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stephen Salloway
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jason Hassenstab
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Igor Yakushev
- grid.6936.a0000000123222966Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Peter R. Schofield
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Barker Street Randwick, Sydney, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - John C. Morris
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Randall J. Bateman
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
| |
Collapse
|
13
|
Boroujeni NB, Ashkezari MD, Seifati SM. The rs6265 polymorphism might not affect the secretion of BDNF protein directedly. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
Vilor-Tejedor N, Operto G, Evans TE, Falcon C, Crous-Bou M, Minguillón C, Cacciaglia R, Milà-Alomà M, Grau-Rivera O, Suárez-Calvet M, Garrido-Martín D, Morán S, Esteller M, Adams HH, Molinuevo JL, Guigó R, Gispert JD. Effect of BDNF Val66Met on hippocampal subfields volumes and compensatory interaction with APOE-ε4 in middle-age cognitively unimpaired individuals from the ALFA study. Brain Struct Funct 2020; 225:2331-2345. [PMID: 32804326 PMCID: PMC7544723 DOI: 10.1007/s00429-020-02125-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/30/2020] [Indexed: 11/08/2022]
Abstract
Background Current evidence supports the involvement of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and the ε4 allele of APOE gene in hippocampal-dependent functions. Previous studies on the association of Val66Met with whole hippocampal volume included patients of a variety of disorders. However, it remains to be elucidated whether there is an impact of BDNF Val66Met polymorphism on the volumes of the hippocampal subfield volumes (HSv) in cognitively unimpaired (CU) individuals, and the interactive effect with the APOE-ε4 status. Methods BDNF Val66Met and APOE genotypes were determined in a sample of 430 CU late/middle-aged participants from the ALFA study (ALzheimer and FAmilies). Participants underwent a brain 3D-T1-weighted MRI scan, and volumes of the HSv were determined using Freesurfer (v6.0). The effects of the BDNF Val66Met genotype on the HSv were assessed using general linear models corrected by age, gender, education, number of APOE-ε4 alleles and total intracranial volume. We also investigated whether the association between APOE-ε4 allele and HSv were modified by BDNF Val66Met genotypes. Results BDNF Val66Met carriers showed larger bilateral volumes of the subiculum subfield. In addition, HSv reductions associated with APOE-ε4 allele were significantly moderated by BDNF Val66Met status. BDNF Met carriers who were also APOE-ε4 homozygous showed patterns of higher HSv than BDNF Val carriers. Conclusion To our knowledge, the present study is the first to show that carrying the BDNF Val66Met polymorphisms partially compensates the decreased on HSv associated with APOE-ε4 in middle-age cognitively unimpaired individuals. Electronic supplementary material The online version of this article (10.1007/s00429-020-02125-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Vilor-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C. Doctor Aiguader 88, Edif. PRBB, 08003, Barcelona, Spain. .,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain. .,Erasmus MC University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Tavia E Evans
- Erasmus MC University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Marta Crous-Bou
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Diego Garrido-Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C. Doctor Aiguader 88, Edif. PRBB, 08003, Barcelona, Spain
| | - Sebastián Morán
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Hieab H Adams
- Erasmus MC University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands.,Erasmus MC University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands.,Erasmus MC University Medical Center Rotterdam, Department of Radiology, Rotterdam, The Netherlands
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C. Doctor Aiguader 88, Edif. PRBB, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | | |
Collapse
|
15
|
Bird CW, Barber MJ, Martin J, Mayfield JJ, Valenzuela CF. The mouse-equivalent of the human BDNF VAL66MET polymorphism increases dorsal hippocampal volume and does not interact with developmental ethanol exposure. Alcohol 2020; 86:17-24. [PMID: 32224221 DOI: 10.1016/j.alcohol.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
A relatively common polymorphism in the human brain-derived neurotrophic factor (BDNF) gene (Val66Met, which corresponds to Val68Met in mice) has been shown to modulate cognitive function and vulnerability to mental health disorders. This substitution impairs trafficking and activity-dependent release of BDNF. A number of studies with both humans and transgenic mice suggest that carriers of the Met allele have deficits in the structure and/or function of the hippocampal formation. Using a relatively new transgenic mouse model of this polymorphism, we recently demonstrated that it modulates the effects of developmental ethanol exposure in the hippocampus. Here, we further characterized the effect of this polymorphism on hippocampal morphology and its interaction with ethanol vapor exposure during the 2nd and 3rd trimester equivalents of human pregnancy. We found that BDNFmet/met mice have slightly larger hippocampal volumes than BDNFval/val mice. Ethanol vapor exposure during the 2nd and 3rd trimester equivalents of human pregnancy increased hippocampal volume in a single hippocampal subregion, the CA1 stratum radiatum. Ethanol exposure did not interact with BDNF genotype to affect volume in any hippocampal subregion. These results suggest that the Val66Met polymorphism does not reduce hippocampal size (i.e., it rather increases it slightly) or increase susceptibility to prenatal ethanol exposure-induced structural hippocampal damage during adulthood.
Collapse
|
16
|
The impact of BDNF Val66Met on cognitive skills in veterans with posttraumatic stress disorder. Neurosci Lett 2020; 735:135235. [PMID: 32629065 DOI: 10.1016/j.neulet.2020.135235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-induced disorder characterized with impaired cognitive function. BDNF modulates cognition and is involved in neuroprotection and neurocognitive processing. The BDNF Val66Met polymorphism was found to influence cognitive functions. In PTSD, carriers of the BDNF GG genotype had better spatial processing of navigation performance, and lower hyperarousal and startle reaction than A allele carriers. The hypothesis was that veterans with PTSD, carriers of the BDNF Val66Met A allele, will show reduced cognitive skills. The study included 315 male Caucasian combat veterans, with (N = 199) or without (N = 116) current and chronic PTSD. Cognition was assessed using the Rey-Osterrieth Complex Figure (ROCF) test that determines visual-spatial perception and short and long-term visual memory function. The results revealed that cognitive decline measured with ROCF test was associated with PTSD. Presence of the BDNF Val66Met GG genotype in veterans with PTSD, but not in veterans without PTSD, showed protective association with visual short-term memory and visual object manipulation after few seconds (executive function), assessed with the ROCF immediate recall test, compared to the A carriers with PTSD. In conclusion, this was the first study to confirm the association between BDNF Val66Met and memory and attention performed with ROCF in male veterans with PTSD. The results corroborated that the BDNF Val66Met A allele, compared to GG genotype, is associated with poorer short-term visual memory and attention linked with executive functions, in veterans with PTSD.
Collapse
|
17
|
Malykhin NV, Travis S, Fujiwara E, Huang Y, Camicioli R, Olsen F. The associations of the
BDNF
and
APOE
polymorphisms, hippocampal subfield volumes, and episodic memory performance across the lifespan. Hippocampus 2020; 30:1081-1097. [DOI: 10.1002/hipo.23217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Nikolai V. Malykhin
- Neuroscience and Mental Health Institute University of Alberta Edmonton Alberta Canada
- Department of Biomedical Engineering University of Alberta Edmonton Alberta Canada
- Department of Psychiatry University of Alberta Edmonton Alberta Canada
| | - Scott Travis
- Neuroscience and Mental Health Institute University of Alberta Edmonton Alberta Canada
| | - Esther Fujiwara
- Neuroscience and Mental Health Institute University of Alberta Edmonton Alberta Canada
- Department of Psychiatry University of Alberta Edmonton Alberta Canada
| | - Yushan Huang
- Department of Biomedical Engineering University of Alberta Edmonton Alberta Canada
| | | | - Fraser Olsen
- Department of Biomedical Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
18
|
Rodrigue AL, Alexander-Bloch AF, Knowles EEM, Mathias SR, Mollon J, Koenis MMG, Perrone-Bizzozero NI, Almasy L, Turner JA, Calhoun VD, Glahn DC. Genetic Contributions to Multivariate Data-Driven Brain Networks Constructed via Source-Based Morphometry. Cereb Cortex 2020; 30:4899-4913. [PMID: 32318716 DOI: 10.1093/cercor/bhaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical SBM networks constructed on ~ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a disorder commonly associated with neuroanatomic alterations.
Collapse
Affiliation(s)
- Amanda L Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marinka M G Koenis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, and the Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Turner
- Psychology Department, Neurosciences Institute, Georgia State University, Atlanta, GA 30303, USA.,The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Vince D Calhoun
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.,Psychology Department, Neurosciences Institute, Georgia State University, Atlanta, GA 30303, USA.,The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.,Mind Research Network, Department of Psychiatry and Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| |
Collapse
|
19
|
The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review. Brain Sci 2020; 10:brainsci10040195. [PMID: 32218234 PMCID: PMC7226504 DOI: 10.3390/brainsci10040195] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer’s disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual’s susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual’s response to interventions targeted at building cognitive resilience to conditions that cause dementia.
Collapse
|
20
|
Bawari S, Tewari D, Argüelles S, Sah AN, Nabavi SF, Xu S, Vacca RA, Nabavi SM, Shirooie S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148:104458. [DOI: 10.1016/j.phrs.2019.104458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
21
|
Finan JD, Udani SV, Patel V, Bailes JE. The Influence of the Val66Met Polymorphism of Brain-Derived Neurotrophic Factor on Neurological Function after Traumatic Brain Injury. J Alzheimers Dis 2019; 65:1055-1064. [PMID: 30149456 DOI: 10.3233/jad-180585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional outcomes after traumatic brain injury (TBI) vary widely across patients with apparently similar injuries. This variability hinders prognosis, therapy, and clinical innovation. Recently, single nucleotide polymorphism (SNPs) that influence outcome after TBI have been identified. These discoveries create opportunities to personalize therapy and stratify clinical trials. Both of these changes would propel clinical innovation in the field. This review focuses on one of most well-characterized of these SNPs, the Val66Met SNP in the brain-derived neurotrophic factor (BDNF) gene. This SNP influences neurological function in healthy subjects as well as TBI patients and patients with similar acute insults to the central nervous system. A host of other patient-specific factors including ethnicity, age, gender, injury severity, and post-injury time point modulate this influence. These interactions confound efforts to define a simple relationship between this SNP and TBI outcomes. The opportunities and challenges associated with personalizing TBI therapy around this SNP and other similar SNPs are discussed in light of these results.
Collapse
Affiliation(s)
- John D Finan
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Shreya V Udani
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Vimal Patel
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| |
Collapse
|
22
|
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [PMID: 31440144 PMCID: PMC6692714 DOI: 10.3389/fncel.2019.00363] [Citation(s) in RCA: 738] [Impact Index Per Article: 147.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic changes related to learning and memory. The expression of BDNF is highly regulated, and can lead to great variability in BDNF levels in healthy subjects. Changes in BDNF expression are associated with both normal and pathological aging and also psychiatric disease, in particular in structures important for memory processes such as the hippocampus and parahippocampal areas. Some interventions like exercise or antidepressant administration enhance the expression of BDNF in normal and pathological conditions. In this review, we will describe studies from rodents and humans to bring together research on how BDNF expression is regulated, how this expression changes in the pathological brain and also exciting work on how interventions known to enhance this neurotrophin could have clinical relevance. We propose that, although BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases because of its disregulation common to many pathological conditions, it could be thought of as a marker that specifically relates to the occurrence and/or progression of the mnemonic symptoms that are common to many pathological conditions.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Zanoni
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
23
|
McKay NS, Moreau D, Henare DT, Kirk IJ. The brain-derived neurotrophic factor Val66Met genotype does not influence the grey or white matter structures underlying recognition memory. Neuroimage 2019; 197:1-12. [PMID: 30954706 DOI: 10.1016/j.neuroimage.2019.03.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/01/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022] Open
Abstract
A single nucleotide polymorphism (SNP) in the gene coding for brain-derived neurotrophic factor (BDNF) has previously been associated with a reduction in recognition memory performance. While previous findings have highlighted that this SNP contributes to recognition memory, little is known about its influence on subprocesses of recognition, familiarity and recollection. Previous research has reported reduced hippocampal volume and decreased fractional anisotropy in carriers of the Met allele across a range of white matter tracts, including those networks that may support recognition memory. Here, in a sample of 61 healthy young adults, we used a source memory task to measure accuracy on each recognition subprocess, in order to determine whether the Val66Met SNP (rs6265) influences these equally. Additionally, we compared grey matter volume between these groups for structures that underpin familiarity and recollection separately. Finally, we used probabilistic tractography to reconstruct tracts that subserve each of these two recognition systems. Behaviourally, we found group differences on the familiarity measure, but not on recollection. However, we did not find any group difference on grey- or white-matter structures. Together, these results suggest a functional influence of the Val66Met SNP that is independent of coarse structural changes, and nuance previous research highlighting the relationship between BDNF, brain structure, and behaviour.
Collapse
Affiliation(s)
- Nicole S McKay
- School of Psychology, University of Auckland, New Zealand.
| | - David Moreau
- School of Psychology, University of Auckland, New Zealand
| | - Dion T Henare
- School of Psychology, University of Auckland, New Zealand
| | - Ian J Kirk
- School of Psychology, University of Auckland, New Zealand; Brain Research New Zealand, New Zealand
| |
Collapse
|
24
|
Harrington MO, Klaus K, Vaht M, Harro J, Pennington K, Durrant SJ. Overnight retention of emotional memories is influenced by BDNF Val66Met but not 5-HTTLPR. Behav Brain Res 2019; 359:17-27. [DOI: 10.1016/j.bbr.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
|
25
|
Hill T, Polk JD. BDNF, endurance activity, and mechanisms underlying the evolution of hominin brains. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:47-62. [PMID: 30575024 DOI: 10.1002/ajpa.23762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/21/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES As a complex, polygenic trait, brain size has likely been influenced by a range of direct and indirect selection pressures for both cognitive and non-cognitive functions and capabilities. It has been hypothesized that hominin brain expansion was, in part, a correlated response to selection acting on aerobic capacity (Raichlen & Polk, 2013). According to this hypothesis, selection for aerobic capacity increased the activity of various signaling molecules, including those involved in brain growth. One key molecule is brain-derived neurotrophic factor (BDNF), a protein that regulates neuronal development, survival, and plasticity in mammals. This review updates, partially tests, and expands Raichlen and Polk's (2013) hypothesis by evaluating evidence for BDNF as a mediator of brain size. DISCUSSION We contend that selection for endurance capabilities in a hot climate favored changes to muscle composition, mitochondrial dynamics and increased energy budget through pathways involving regulation of PGC-1α and MEF2 genes, both of which promote BDNF activity. In addition, the evolution of hairlessness and the skin's thermoregulatory response provide other molecular pathways that promote both BDNF activity and neurotransmitter synthesis. We discuss how these pathways contributed to the evolution of brain size and function in human evolution and propose avenues for future research. Our results support Raichlen and Polk's contention that selection for non-cognitive functions has direct mechanistic linkages to the evolution of brain size in hominins.
Collapse
Affiliation(s)
- Tyler Hill
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - John D Polk
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, Illinois
| |
Collapse
|
26
|
Low I, Kuo PC, Tsai CL, Liu YH, Lin MW, Chao HT, Chen YS, Hsieh JC, Chen LF. Interactions of BDNF Val66Met Polymorphism and Menstrual Pain on Brain Complexity. Front Neurosci 2018; 12:826. [PMID: 30524221 PMCID: PMC6256283 DOI: 10.3389/fnins.2018.00826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022] Open
Abstract
The irregularity and uncertainty of neurophysiologic signals across different time scales can be regarded as neural complexity, which is related to the adaptability of the nervous system and the information processing between neurons. We recently reported general loss of brain complexity, as measured by multiscale sample entropy (MSE), at pain-related regions in females with primary dysmenorrhea (PDM). However, it is unclear whether this loss of brain complexity is associated with inter-subject genetic variations. Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin in the brain and is crucial to neural plasticity. The BDNF Val66Met single-nucleotide polymorphism (SNP) is associated with mood, stress, and pain conditions. Therefore, we aimed to examine the interactions of BDNF Val66Met polymorphism and long-term menstrual pain experience on brain complexity. We genotyped BDNF Val66Met SNP in 80 PDM females (20 Val/Val, 31 Val/Met, 29 Met/Met) and 76 healthy female controls (25 Val/Val, 36 Val/Met, 15 Met/Met). MSE analysis was applied to neural source activity estimated from resting-state magnetoencephalography (MEG) signals during pain-free state. We found that brain complexity alterations were associated with the interactions of BDNF Val66Met polymorphism and menstrual pain experience. In healthy female controls, Met carriers (Val/Met and Met/Met) demonstrated lower brain complexity than Val/Val homozygotes in extensive brain regions, suggesting a possible protective role of Val/Val homozygosity in brain complexity. However, after experiencing long-term menstrual pain, the complexity differences between different genotypes in healthy controls were greatly diminished in PDM females, especially in the limbic system, including the hippocampus and amygdala. Our results suggest that pain experience preponderantly affects the effect of BDNF Val66Met polymorphism on brain complexity. The results of the present study also highlight the potential utilization of resting-state brain complexity for the development of new therapeutic strategies in patients with chronic pain.
Collapse
Affiliation(s)
- Intan Low
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Chih Kuo
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Cheng-Lin Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Hsiang Liu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Wei Lin
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yong-Sheng Chen
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Jen-Chuen Hsieh
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
27
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
28
|
Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci 2018; 19:ijms19113650. [PMID: 30463271 PMCID: PMC6274766 DOI: 10.3390/ijms19113650] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
It is well known that brain-derived neurotrophic factor, BDNF, has an important role in a variety of neuronal aspects, such as differentiation, maturation, and synaptic function in the central nervous system (CNS). BDNF stimulates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide-3kinase (PI3K), and phospholipase C (PLC)-gamma pathways via activation of tropomyosin receptor kinase B (TrkB), a high affinity receptor for BDNF. Evidence has shown significant contributions of these signaling pathways in neurogenesis and synaptic plasticity in in vivo and in vitro experiments. Importantly, it has been demonstrated that dysfunction of the BDNF/TrkB system is involved in the onset of brain diseases, including neurodegenerative and psychiatric disorders. In this review, we discuss actions of BDNF and related signaling molecules on CNS neurons, and their contributions to the pathophysiology of brain diseases.
Collapse
|
29
|
Toh YL, Ng T, Tan M, Tan A, Chan A. Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: A systematic review. Brain Behav 2018; 8:e01009. [PMID: 29858545 PMCID: PMC6043712 DOI: 10.1002/brb3.1009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/08/2018] [Accepted: 04/15/2018] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) has an important role in the neurogenesis and neuroplasticity of the brain. This systematic review was designed to examine the association between BDNF Val66Met (rs6265) polymorphism and four cognitive domains-attention and concentration, executive function, verbal fluency, and memory, respectively. METHODOLOGY Primary literature search was performed using search engines such as PubMed and Scopus. Observational studies that evaluated the neurocognitive performances in relation to BDNF polymorphism within human subjects were included in this review, while animal studies, overlapping studies, and meta-analysis were excluded. RESULTS Forty of 82 reviewed studies (48.8%) reported an association between Val66Met polymorphism and neurocognitive domains. The proportion of the studies showing positive findings in cognitive performances between Val/Val homozygotes and Met carriers was comparable, at 30.5% and 18.3%, respectively. The highest percentage of positive association between Val66Met polymorphism and neurocognition was reported under the memory domain, with 26 of 63 studies (41.3%), followed by 18 of 47 studies (38.3%) under the executive function domain and four of 23 studies (17.4%) under the attention and concentration domain. There were no studies showing an association between Val66Met polymorphism and verbal fluency. In particular, Val/Val homozygotes performed better in tasks related to the memory domain, while Met carriers performed better in terms of executive function, in both healthy individuals and clinical populations. CONCLUSION While numerous studies report an association between Val66Met polymorphism and neurocognitive changes in executive function and memory domains, the effect of Met allele has not been clearly established.
Collapse
Affiliation(s)
- Yi Long Toh
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Terence Ng
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Megan Tan
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Azrina Tan
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Alexandre Chan
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
- Department of PharmacyNational Cancer Centre SingaporeSingaporeSingapore
| |
Collapse
|
30
|
Tsai SJ. Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:156. [PMID: 29867348 PMCID: PMC5962780 DOI: 10.3389/fnmol.2018.00156] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins have been implicated in the pathophysiology of many neuropsychiatric diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant and widely distributed neurotrophin in the brain. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functional single-nucleotide polymorphism (SNP) affecting the activity-dependent release of BDNF. BDNF Val66Met transgenic mice have been generated, which may provide further insight into the functional impact of this polymorphism in the brain. Considering the important role of BDNF in brain function, more than 1,100 genetic studies have investigated this polymorphism in the past 15 years. Although these studies have reported some encouraging positive findings initially, most of the findings cannot be replicated in following studies. These inconsistencies in BDNF Val66Met genetic studies may be attributed to many factors such as age, sex, environmental factors, ethnicity, genetic model used for analysis, and gene–gene interaction, which are discussed in this review. We also discuss the results of recent studies that have reported the novel functions of this polymorphism. Because many BDNF polymorphisms and non-genetic factors have been implicated in the complex traits of neuropsychiatric diseases, the conventional genetic association-based method is limited to address these complex interactions. Future studies should apply data mining and machine learning techniques to determine the genetic role of BDNF in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
31
|
Madan CR, Kensinger EA. Predicting age from cortical structure across the lifespan. Eur J Neurosci 2018; 47:399-416. [PMID: 29359873 PMCID: PMC5835209 DOI: 10.1111/ejn.13835] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/22/2023]
Abstract
Despite interindividual differences in cortical structure, cross-sectional and longitudinal studies have demonstrated a large degree of population-level consistency in age-related differences in brain morphology. This study assessed how accurately an individual's age could be predicted by estimates of cortical morphology, comparing a variety of structural measures, including thickness, gyrification and fractal dimensionality. Structural measures were calculated across up to seven different parcellation approaches, ranging from one region to 1000 regions. The age prediction framework was trained using morphological measures obtained from T1-weighted MRI volumes collected from multiple sites, yielding a training dataset of 1056 healthy adults, aged 18-97. Age predictions were calculated using a machine-learning approach that incorporated nonlinear differences over the lifespan. In two independent, held-out test samples, age predictions had a median error of 6-7 years. Age predictions were best when using a combination of cortical metrics, both thickness and fractal dimensionality. Overall, the results reveal that age-related differences in brain structure are systematic enough to enable reliable age prediction based on metrics of cortical morphology.
Collapse
Affiliation(s)
- Christopher R. Madan
- School of Psychology, University of Nottingham, Nottingham, UK
- Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
32
|
Stoyanov D, Kandilarova S, Borgwardt S. Translational Functional Neuroimaging in the Explanation of Depression. Balkan Med J 2017; 34:493-503. [PMID: 29019461 PMCID: PMC5785653 DOI: 10.4274/balkanmedj.2017.1160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Translation as a notion and procedure is deeply embodied in medical science and education. Translation includes the possibility to translate data across disciplines to improve diagnosis and treatment procedures. The evidence accumulated using translation serves as a vehicle for reification of medical diagnoses. There are promising, established post hoc correlations between the different types of clinical tools (interviews and inventories) and neuroscience. The various measures represent statistical correlations that must now be integrated into diagnostic standards and procedures but this, as a whole, is a step forward towards a better understanding of the mechanisms underlying psychopathology in general and depression in particular. Here, we focus on functional magnetic resonance imaging studies using a trans-disciplinary approach and attempt to establish bridges between the different fields. We will selectively highlight research areas such as imaging genetics, imaging immunology and multimodal imaging, as related to the diagnosis and management of depression.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Complex for Translational Neuroscience, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Complex for Translational Neuroscience, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Hayes JP, Reagan A, Logue MW, Hayes SM, Sadeh N, Miller DR, Verfaellie M, Wolf EJ, McGlinchey RE, Milberg WP, Stone A, Schichman SA, Miller MW. BDNF genotype is associated with hippocampal volume in mild traumatic brain injury. GENES BRAIN AND BEHAVIOR 2017; 17:107-117. [PMID: 28755387 DOI: 10.1111/gbb.12403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/01/2017] [Accepted: 07/23/2017] [Indexed: 12/14/2022]
Abstract
The negative long-term effects of mild traumatic brain injury (mTBI) have been a growing concern in recent years, with accumulating evidence suggesting that mTBI combined with additional vulnerability factors may induce neurodegenerative-type changes in the brain. However, the factors instantiating risk for neurodegenerative disease following mTBI are unknown. This study examined the link between mTBI and brain-derived neurotrophic factor (BDNF) genotype, which has previously been shown to regulate processes involved in neurodegeneration including synaptic plasticity and facilitation of neural survival through its expression. Specifically, we examined nine BDNF single-nucleotide polymorphisms (SNPs; rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850, rs11030107, rs7127507 and rs12273363) previously associated with brain atrophy or memory deficits in mTBI. Participants were 165 white, non-Hispanic Iraq and Afghanistan war veterans between the ages of 19 and 58, 110 of whom had at least one mTBI in their lifetime. Results showed that the BDNF SNP rs1157659 interacted with mTBI to predict hippocampal volume. Furthermore, exploratory analysis of functional resting state data showed that rs1157659 minor allele homozygotes with a history of mTBI had reduced functional connectivity in the default mode network compared to major allele homozygotes and heterozygotes. Apolipoprotein E (APOE) was not a significant predictor of hippocampal volume or functional connectivity. These results suggest that rs1157659 minor allele homozygotes may be at greater risk for neurodegeneration after exposure to mTBI and provide further evidence for a potential role for BDNF in regulating neural processes following mTBI.
Collapse
Affiliation(s)
- J P Hayes
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | - A Reagan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - M W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - S M Hayes
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA.,Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | - N Sadeh
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychological and Brain Studies, University of Delaware, Newark, DE, USA
| | - D R Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - M Verfaellie
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | - E J Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - R E McGlinchey
- Geriatric Research, Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - W P Milberg
- Geriatric Research, Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - A Stone
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - S A Schichman
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - M W Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Coynel D, Gschwind L, Fastenrath M, Freytag V, Milnik A, Spalek K, Papassotiropoulos A, de Quervain DJF. Picture free recall performance linked to the brain's structural connectome. Brain Behav 2017; 7:e00721. [PMID: 28729929 PMCID: PMC5516597 DOI: 10.1002/brb3.721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Memory functions are highly variable between healthy humans. The neural correlates of this variability remain largely unknown. METHODS Here, we investigated how differences in free recall performance are associated with DTI-based properties of the brain's structural connectome and with grey matter volumes in 664 healthy young individuals tested in the same MR scanner. RESULTS Global structural connectivity, but not overall or regional grey matter volumes, positively correlated with recall performance. Moreover, a set of 22 inter-regional connections, including some with no previously reported relation to human memory, such as the connection between the temporal pole and the nucleus accumbens, explained 7.8% of phenotypic variance. CONCLUSIONS In conclusion, this large-scale study indicates that individual memory performance is associated with the level of structural brain connectivity.
Collapse
Affiliation(s)
- David Coynel
- Division of Cognitive Neuroscience Department of Psychology University of Basel Basel Switzerland.,Transfaculty Research Platform University of Basel Basel Switzerland
| | - Leo Gschwind
- Division of Cognitive Neuroscience Department of Psychology University of Basel Basel Switzerland.,Transfaculty Research Platform University of Basel Basel Switzerland.,Division of Molecular Neuroscience Department of Psychology University of Basel Basel Switzerland
| | - Matthias Fastenrath
- Division of Cognitive Neuroscience Department of Psychology University of Basel Basel Switzerland.,Transfaculty Research Platform University of Basel Basel Switzerland
| | - Virginie Freytag
- Transfaculty Research Platform University of Basel Basel Switzerland.,Division of Molecular Neuroscience Department of Psychology University of Basel Basel Switzerland
| | - Annette Milnik
- Transfaculty Research Platform University of Basel Basel Switzerland.,Division of Molecular Neuroscience Department of Psychology University of Basel Basel Switzerland.,Psychiatric University Clinics University of Basel Basel Switzerland
| | - Klara Spalek
- Division of Cognitive Neuroscience Department of Psychology University of Basel Basel Switzerland.,Transfaculty Research Platform University of Basel Basel Switzerland
| | - Andreas Papassotiropoulos
- Transfaculty Research Platform University of Basel Basel Switzerland.,Division of Molecular Neuroscience Department of Psychology University of Basel Basel Switzerland.,Psychiatric University Clinics University of Basel Basel Switzerland.,Department Biozentrum Life Sciences Training Facility University of Basel Basel Switzerland
| | - Dominique J-F de Quervain
- Division of Cognitive Neuroscience Department of Psychology University of Basel Basel Switzerland.,Transfaculty Research Platform University of Basel Basel Switzerland.,Psychiatric University Clinics University of Basel Basel Switzerland
| |
Collapse
|
35
|
Jasińska KK, Molfese PJ, Kornilov SA, Mencl WE, Frost SJ, Lee M, Pugh KR, Grigorenko EL, Landi N. The BDNF Val 66Met polymorphism is associated with structural neuroanatomical differences in young children. Behav Brain Res 2017; 328:48-56. [PMID: 28359883 DOI: 10.1016/j.bbr.2017.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/05/2017] [Accepted: 03/07/2017] [Indexed: 01/31/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met single nucleotide polymorphism (SNP) has been associated with individual differences in brain structure and function, and cognition. Research on BDNF's influence on brain and cognition has largely been limited to adults, and little is known about the association of this gene, and specifically the Val66Met polymorphism, with developing brain structure and emerging cognitive functions in children. We performed a targeted genetic association analysis on cortical thickness, surface area, and subcortical volume in 78 children (ages 6-10) who were Val homozygotes (homozygous Val/Val carriers) or Met carriers (Val/Met, Met/Met) for the Val66Met locus using Atlas-based brain segmentation. We observed greater cortical thickness for Val homozygotes in regions supporting declarative memory systems (anterior temporal pole/entorhinal cortex), consistent with adult findings. Met carriers had greater surface area in the prefrontal and parietal cortices and greater cortical thickness in lateral occipital/parietal cortex in contrast to prior adult findings that may relate to performance on cognitive tasks supported by these regions in Met carriers. Finally, we found larger right hippocampal volume in Met carriers, although inconsistent with adult findings (generally reports larger volumes for Val homozygotes), is consistent with a recent finding in children. Gene expression levels vary across different brain regions and across development and our findings highlight the need to consider this developmental change in explorations of BDNF-brain relationships. The impact of the BDNF Val66Met polymorphism on the structure of the developing brain therefore reflects regionally-specific developmental changes in BDNF expression and cortical maturation trajectories.
Collapse
Affiliation(s)
- Kaja K Jasińska
- University of Delaware, Newark, DE, USA; Haskins Laboratories, New Haven, CT, USA.
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, USA; University of Connecticut, Storrs, CT, USA
| | - Sergey A Kornilov
- Haskins Laboratories, New Haven, CT, USA; University of Houston, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA; Moscow State University, Moscow, Russian Federation; Saint-Petersburg State University, Saint-Petersburg, Russian Federation
| | - W Einar Mencl
- Haskins Laboratories, New Haven, CT, USA; Yale University, New Haven, CT, USA
| | | | | | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; University of Connecticut, Storrs, CT, USA; Yale University, New Haven, CT, USA
| | - Elena L Grigorenko
- Haskins Laboratories, New Haven, CT, USA; Yale University, New Haven, CT, USA; University of Houston, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA; Moscow State University, Moscow, Russian Federation; Saint-Petersburg State University, Saint-Petersburg, Russian Federation; Moscow State University for Psychology and Education, Moscow, Russian Federation
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, USA; University of Connecticut, Storrs, CT, USA; Yale University, New Haven, CT, USA
| |
Collapse
|
36
|
BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort. Int J Mol Sci 2017; 18:ijms18030655. [PMID: 28304362 PMCID: PMC5372667 DOI: 10.3390/ijms18030655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.
Collapse
|
37
|
van Velzen LS, Schmaal L, Jansen R, Milaneschi Y, Opmeer EM, Elzinga BM, van der Wee NJA, Veltman DJ, Penninx BWJH. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology. Soc Cogn Affect Neurosci 2016; 11:1841-1852. [PMID: 27405617 PMCID: PMC5091678 DOI: 10.1093/scan/nsw086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023] Open
Abstract
Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF.
Collapse
Affiliation(s)
- Laura S van Velzen
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Rick Jansen
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Esther M Opmeer
- Department of Neuroscience, University of Groningen, NeuroImaging Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernet M Elzinga
- Institute of Psychology and Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, the Netherlands
| | - Nic J A van der Wee
- Institute of Psychiatry and Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, the Netherlands
| | - Dick J Veltman
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
- Department of Psychiatry and the EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Zhang L, Li XX, Hu XZ. Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met. World J Psychiatry 2016; 6:1-6. [PMID: 27014593 PMCID: PMC4804258 DOI: 10.5498/wjp.v6.i1.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/23/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), which regulates neuronal survival, growth differentiation, and synapse formation, is known to be associated with depression and post-traumatic stress disorder (PTSD). However, the molecular mechanism for those mental disorders remains unknown. Studies have shown that BDNF is associated with PTSD risk and exaggerated startle reaction (a major arousal manifestation of PTSD) in United States military service members who were deployed during the wars in Iraq and Afghanistan. The frequency of the Met/Met in BDNF gene was greater among those with PTSD than those without PTSD. Among individuals who experienced fewer lifetime stressful events, the Met carriers have significantly higher total and startle scores on the PTSD Checklist than the Val/Val carriers. In addition, subjects with PTSD showed higher levels of BDNF in their peripheral blood plasma than the non-probable-PTSD controls. Increased BDNF levels and startle response were observed in both blood plasma and brain hippocampus by inescapable tail shock in rats. In this paper, we reviewed these data to discuss BDNF as a potential biomarker for PTSD risk and its possible roles in the onset of PTSD.
Collapse
|
39
|
Jaworska N, MacMaster FP, Foster J, Ramasubbu R. The influence of 5-HTTLPR and Val66Met polymorphisms on cortical thickness and volume in limbic and paralimbic regions in depression: a preliminary study. BMC Psychiatry 2016; 16:61. [PMID: 26976307 PMCID: PMC4791880 DOI: 10.1186/s12888-016-0777-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/09/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Structural brain abnormalities have been investigated in multi-genetic and complex disorders such as major depressive disorder (MDD). Among the various candidate genes implicated in MDD, the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and 5-HT transporter gene linked polymorphism (5-HTTLPR) have garnered the most attention due to their putative roles in neural plasticity and antidepressant response. However, relatively few studies have assessed the influence of these polymorphysims on cortical thickness or brain volume in para-limbic and limbic regions in MDD, which was the aim of this study. METHODS Forty-three adults with MDD and 15 healthy controls (HC) underwent structural magnetic resonance imaging (MRI). Cortical thickness was assessed in frontal, cingulate and temporal regions. Volumetric measures were carried out in the thalamus, caudate, putamen, pallidum, hippocampus and amygdala. Participants were genotyped to determine their 5-HTTLPR (tri-allelic) and Val66Met polymorphisms. RESULTS In the combined sample (MDD + HC), smaller right pallidum volumes were found in LA/S (LA/S & LA/LG) heterozygotes compared to S/S (S/S, LG/S & LG/LG) homozygotes, though the effect was modest. In the MDD group, larger left thalamus and putamen volumes were observed in LA/LA homozygotes. No Val66Met or 5-HTTLPR genotype effects existed on cortical thickness and no main effects of the Val66Met polymorphism were observed. CONCLUSION Our preliminary results suggest that the 5-HTTLPR polymorphism is associated with morphometric changes in regions known to play an important role in emotional and reward processing in depression. A larger sample size is required to replicate these findings and to potentially reveal subtle morphometric changes.
Collapse
Affiliation(s)
- Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, PQ Canada ,Department of Psychiatry, Mathison Centre for Mental Health Research & Education, University of Calgary, #4D64 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N4Z6 Canada
| | - Frank P. MacMaster
- Department of Psychiatry, Mathison Centre for Mental Health Research & Education, University of Calgary, #4D64 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N4Z6 Canada ,Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada ,Child & Adolescent Imaging Research (CAIR) Program, Alberta Children’s Hospital Research Institute for Child & Maternal Health, Calgary, AB Canada
| | - Jane Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON Canada
| | - Rajamannar Ramasubbu
- Department of Psychiatry, Mathison Centre for Mental Health Research & Education, University of Calgary, #4D64 TRW Building, 3280 Hospital Drive NW, Calgary, AB, T2N4Z6, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
40
|
Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: a cross sectional study. Eur Rev Aging Phys Act 2015; 12:15. [PMID: 26865879 PMCID: PMC4748321 DOI: 10.1186/s11556-015-0159-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/21/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) concentration is highest in the hippocampus compared with that in other brain structures and affects episodic memory, a cognitive function that is impaired in older adults. According to the neurotrophic hypothesis, BDNF released during physical activity enhances brain plasticity and consequently brain health. However, even if the physical activity level is involved in the secretion of neurotrophin, this protein is also under the control of a specific gene. The aim of the present study was to examine the effect of the interaction between physical activity and BDNF Val66Met (rs6265), a genetic polymorphism, on episodic memory. METHODS Two hundred and five volunteers aged 55 and older with a Mini Mental State Examination score ≥ 24 participated in this study. Four groups of participants were established according to their physical activity level and polymorphism BDNF profile (Active Val homozygous, Inactive Val homozygous, Active Met carriers, Inactive Met carriers). Episodic memory was evaluated based on the delayed recall of the Logical Memory test of the MEM III battery. RESULTS As expected, the physical activity level interacted with BDNF polymorphism to affect episodic memory performance (p < .05). The active Val homozygous participants significantly outperformed the active Met carriers and inactive Val homozygous participants. CONCLUSION This study clearly demonstrates an interaction between physical activity and BDNF Val66Met polymorphism that affects episodic memory in the elderly and confirms that physical activity contributes to the neurotrophic mechanism implicated in cognitive health. The interaction shows that only participants with Val/Val polymorphism benefited from physical activity.
Collapse
|
41
|
BDNF Val66Met polymorphism and plasma levels in Chinese Han population with obsessive-compulsive disorder and generalized anxiety disorder. J Affect Disord 2015. [PMID: 26209750 DOI: 10.1016/j.jad.2015.07.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Anxiety disorders are a category of mental disorders characterized by feelings of anxiety and fear, which include generalized anxiety disorder (GAD). Obsessive-Compulsive Disorder (OCD) used to be categorized as anxiety disorder in DSM-IV. However OCD was no longer included in anxiety disorders and came into its own category titled as Obsessive-Compulsive and Related Disorders (OCRD) in DSM-5. It will be interesting to explore is there any different biological characteristics between OCD and anxiety disorders. Brain-derived neurotrophic factor (BDNF) was a potential candidate gene in both OCD and GAD. The results of genetic association studies between BDNF and OCD have been inconsistent. BDNF plasma/serum levels in OCD have been found lower than those in healthy controls. However the heritable reason of the lowered BDNF levels was not well elucidated. The amount of studies about BDNF and GAD were relatively small. The aims of this study were to determine whether single nucleotide polymorphism Val66Met of BDNF was associated with OCD and GAD, to examine BDNF plasma levels in OCD and GAD, and to explore whether Val66Met variation influences BDNF plasma levels. METHODS We genotyped Val66Met variation in 148 OCD patients, 108 GAD patients and 99 healthy controls. Within the same sample, BDNF plasma levels were determined in 113 OCD patients, 102 GAD patients and 63 healthy controls. RESULTS Val66Met variation was not associated with OCD or GAD. BDNF plasma levels in OCD and GAD patients were significant lower than those in healthy controls. Val66Met variation had no influence on BDNF plasma levels. No difference was found between OCD and GAD. Results do not change no matter taking OCD and GAD as one group or separated two. LIMITATIONS First, the sample size for genotyping was relatively small, which leaded to a low statistical power of the genetic part in this study. Second, we genotyped just one SNP in BDNF gene. Third, parts of the participants did not be assayed for BDNF plasma levels. CONCLUSIONS Our findings support the hypothesis that BDNF is involved in the pathophysiology of mental disorders, not only OCD but also GAD. OCD and GAD patients both show lower BDNF plasma levels compared to healthy controls. The BDNF plasma levels are not associated with Val66Met variation.
Collapse
|
42
|
Lamb YN, Thompson CS, McKay NS, Waldie KE, Kirk IJ. The brain-derived neurotrophic factor (BDNF) val66met polymorphism differentially affects performance on subscales of the Wechsler Memory Scale - Third Edition (WMS-III). Front Psychol 2015; 6:1212. [PMID: 26347681 PMCID: PMC4538220 DOI: 10.3389/fpsyg.2015.01212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/30/2015] [Indexed: 01/02/2023] Open
Abstract
Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and the catechol-O-methyltransferase (COMT) gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC), respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val66met or COMT val158met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale – Third Edition (WMS-III). COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e., met carriers relative to val homozygotes) was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.
Collapse
Affiliation(s)
- Yvette N Lamb
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Christopher S Thompson
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Nicole S McKay
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Karen E Waldie
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Ian J Kirk
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| |
Collapse
|
43
|
Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K, Grabe HJ, Lang UE, Fusar-Poli P, Borgwardt S. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2015; 55:107-18. [PMID: 25956254 DOI: 10.1016/j.neubiorev.2015.04.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/15/2015] [Accepted: 04/25/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in neurogenesis and synaptic plasticity in the central nervous system, especially in the hippocampus, and has been implicated in the pathophysiology of several neuropsychiatric disorders. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a functionally relevant single nucleotide polymorphism affecting the secretion of BDNF and is implicated in differences in hippocampal volumes. METHODS This is a systematic meta-analytical review of findings from imaging genetic studies on the impact of the rs6265 SNP on hippocampal volumes in neuropsychiatric patients with major depressive disorder, anxiety, bipolar disorder or schizophrenia. RESULTS The overall sample size of 18 independent clinical cohorts comprised 1695 patients. Our results indicated no significant association of left (Hedge's g=0.08, p=0.12), right (g=0.07, p=0.22) or bilateral (g=0.07, p=0.16) hippocampal volumes with BDNF rs6265 in neuropsychiatric patients. There was no evidence for a publication bias or any demographic, clinical, or methodological moderating effects. Both Val/Val homozygotes (g=0.32, p=0.004) and Met-carriers (g=0.20, p=0.004) from the patient sample had significantly smaller hippocampal volumes than the healthy control sample with the same allele. The magnitude of these effects did not differ between the two genotypes. CONCLUSION This meta-analysis suggests that there is no association between this BDNF polymorphism and hippocampal volumes. For each BDNF genotype, the hippocampal volumes were significantly lower in neuropsychiatric patients than in healthy controls.
Collapse
Affiliation(s)
- F Harrisberger
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - R Smieskova
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - A Schmidt
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - C Lenz
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - A Walter
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - K Wittfeld
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - H J Grabe
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Helios Hospital Stralsund, Stralsund, Germany
| | - U E Lang
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - P Fusar-Poli
- King's College London, Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, De Crespigny Park 16, SE58AF London, UK; OASIS Prodromal Team SLaM NHS Foundation Trust, London, UK
| | - S Borgwardt
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland; King's College London, Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, De Crespigny Park 16, SE58AF London, UK.
| |
Collapse
|
44
|
Strike LT, Couvy-Duchesne B, Hansell NK, Cuellar-Partida G, Medland SE, Wright MJ. Genetics and Brain Morphology. Neuropsychol Rev 2015; 25:63-96. [DOI: 10.1007/s11065-015-9281-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/08/2015] [Indexed: 12/17/2022]
|
45
|
Janke KL, Cominski TP, Kuzhikandathil EV, Servatius RJ, Pang KCH. Investigating the Role of Hippocampal BDNF in Anxiety Vulnerability Using Classical Eyeblink Conditioning. Front Psychiatry 2015; 6:106. [PMID: 26257661 PMCID: PMC4513557 DOI: 10.3389/fpsyt.2015.00106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/10/2015] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of brain-derived neurotrophic factor (BDNF), behavioral inhibition temperament (BI), and small hippocampal volume have been linked to anxiety disorders. Individuals with BI show facilitated acquisition of the classically conditioned eyeblink response (CCER) as compared to non-BI individuals, and a similar pattern is seen in an animal model of BI, the Wistar-Kyoto (WKY) rat. The present study examined the role of hippocampal BDNF in the facilitated delay CCER of WKY rats. Consistent with earlier work, acquisition was facilitated in WKY rats compared to the Sprague Dawley (SD) rats. Facilitated acquisition was associated with increased BDNF, TrkB, and Arc mRNA in the dentate gyrus of SD rats, but learning-induced increases in BDNF and Arc mRNA were significantly smaller in WKY rats. To determine whether reduced hippocampal BDNF in WKY rats was a contributing factor for their facilitated CCER, BDNF or saline infusions were given bilaterally into the dentate gyrus region 1 h prior to training. BDNF infusion did not alter the acquisition of SD rats, but significantly dampened the acquisition of CCER in the WKY rats, such that acquisition was similar to SD rats. Together, these results suggest that inherent differences in the BDNF system play a critical role in the facilitated associative learning exhibited by WKY rats, and potentially individuals with BI. Facilitated associative learning may represent a vulnerability factor in the development of anxiety disorders.
Collapse
Affiliation(s)
- Kellie L Janke
- Research Service, Neurobehavioral Research Laboratory, VA New Jersey Heath Care System , East Orange, NJ , USA ; Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers Biomedical and Health Sciences , Newark, NJ , USA
| | - Tara P Cominski
- Research Service, Neurobehavioral Research Laboratory, VA New Jersey Heath Care System , East Orange, NJ , USA ; Veterans Biomedical Research Institute , East Orange, NJ , USA
| | - Eldo V Kuzhikandathil
- Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers Biomedical and Health Sciences , Newark, NJ , USA ; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences , Newark, NJ , USA
| | - Richard J Servatius
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences , Newark, NJ , USA ; Syracuse VA Medical Center , Syracuse, NY , USA
| | - Kevin C H Pang
- Research Service, Neurobehavioral Research Laboratory, VA New Jersey Heath Care System , East Orange, NJ , USA ; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences , Newark, NJ , USA
| |
Collapse
|
46
|
Dalvie S, Stein DJ, Koenen K, Cardenas V, Cuzen NL, Ramesar R, Fein G, Brooks SJ. The BDNF p.Val66Met polymorphism, childhood trauma, and brain volumes in adolescents with alcohol abuse. BMC Psychiatry 2014; 14:328. [PMID: 25510982 PMCID: PMC4295262 DOI: 10.1186/s12888-014-0328-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have indicated that early life adversity, genetic factors and alcohol dependence are associated with reduced brain volume in adolescents. However, data on the interactive effects of early life adversity, genetic factors (e.g. p.Met66 allele of BDNF), and alcohol dependence, on brain structure in adolescents is limited. We examined whether the BDNF p.Val66Met polymorphism interacts with childhood trauma to predict alterations in brain volume in adolescents with alcohol use disorders (AUDs). METHODS We examined 160 participants (80 adolescents with DSM-IV AUD and 80 age- and gender-matched controls) who were assessed for trauma using the Childhood Trauma Questionnaire (CTQ). Magnetic resonance images were acquired for a subset of the cohort (58 AUD and 58 controls) and volumes of global and regional structures were estimated using voxel-based morphometry (VBM). Samples were genotyped for the p.Val66Met polymorphism using the TaqMan® Assay. Analysis of covariance (ANCOVA) and post-hoc t-tests were conducted using SPM8 VBM. RESULTS No significant associations, corrected for multiple comparisons, were found between the BDNF p.Val66Met polymorphism, brain volumes and AUD in adolescents with childhood trauma. CONCLUSIONS These preliminary findings suggest that the BDNF p.Met66 allele and childhood trauma may not be associated with reduced structural volumes in AUD. Other genetic contributors should be investigated in future studies.
Collapse
Affiliation(s)
- Shareefa Dalvie
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa.
| | - Karestan Koenen
- Mailman School of Public Health, Columbia University, New York, NY, USA.
| | | | - Natalie L Cuzen
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa.
| | - Raj Ramesar
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | - George Fein
- Neurobehavioral Research Inc, Honolulu, HI, USA.
| | - Samantha J Brooks
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
47
|
Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. J Psychiatr Res 2014; 59:14-21. [PMID: 25246365 DOI: 10.1016/j.jpsychires.2014.08.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Here we investigated a two hit gene environment model in relation to functional genomic factors (BDNF mRNA), and volume of hippocampal subfields in schizophrenia spectrum and bipolar disorders, focusing on both an environmental (childhood trauma) and genetic risk factor (BDNF val66met). METHOD A total of 323 patients with a broad DSM-IV schizophrenia spectrum disorder or bipolar disorder were consecutively recruited. A history of childhood trauma was obtained using the Childhood Trauma Questionnaire. BDNF DNA and RNA were analyzed using standardized procedures. A subsample of n = 108 underwent MRI scanning, and the FreeSurfer was used to obtain measures of hippocampal subfield. All MRI data were corrected for age and gender, with post-hoc analysis correcting for ICV. RESULTS A history of childhood trauma or being a met carrier of the BDNF val66met was associated with significantly reduced BDNF mRNA level. Additive effects were observed between a history of childhood trauma and BDNF val66met, in the direction of met carriers with high levels of childhood trauma having the lowest BDNF mRNA levels. Lastly, met carriers reporting high levels of childhood trauma (specifically sexual or physical abuse) had significantly reduced hippocampal subfield volumes CA2/3 and CA4 dentate gyrus. CONCLUSION The current findings demonstrate that the reduced BDNF mRNA levels found in psychosis may be associated with both a history of childhood trauma and BDNF val66met variants. Further, our study supports a two hit model including a history of childhood trauma as well as genetic vulnerability (met carriers of the BDNF val66met) behind reduced volume of hippocampal subfields in psychosis. This was specifically found for areas important for neurogenesis, the CA2/3 and the CA4 DG.
Collapse
|
48
|
Ward DD, Summers MJ, Saunders NL, Janssen P, Stuart KE, Vickers JC. APOE and BDNF Val66Met polymorphisms combine to influence episodic memory function in older adults. Behav Brain Res 2014; 271:309-15. [PMID: 24946073 DOI: 10.1016/j.bbr.2014.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/09/2023]
Abstract
Genetic polymorphisms of apolipoprotein E (APOE) and brain-derived neurotrophic factor (BDNF) have shown inconsistent associations with healthy adult cognitive functions. Recent investigations have suggested that APOE polymorphisms do not contribute to non-pathological cognitive function and that any effect is likely due to prodromal Alzheimer's disease (AD). Similarly, although BDNF Val66Met polymorphisms affect hippocampal morphology and function, associations with learning and/or memory have not always been found. This study sought to determine whether APOE and BDNF polymorphisms were associated, either independently or in combination, with adult cognition. Comprehensive neuropsychological assessments were conducted on 433 older adults, aged 50-79 years (M=62.16, SD=6.81), which yielded measures of episodic memory, working memory, executive function, and language processing. Participants underwent comprehensive neuropsychological assessment to ensure that only cognitively intact individuals comprised the sample. APOE and BDNF polymorphic data were used as predictors in general linear models that assessed composite cognitive domain variables, while covarying for education and age. Although no main effects for APOE or BDNF were found, the analysis identified a significant APOE×BDNF interaction that predicted episodic memory performance (p=.02, η(2)=.02). Post-hoc analyses demonstrated that in BDNF Val homozygotes, the cognitive consequences of APOE polymorphisms were minimal. However, in BDNF Met carriers, the hypothesized beneficial/detrimental effects of APOE polymorphisms were found. Our data show that concurrent consideration of both APOE and BDNF polymorphisms are required in order to witness a cognitive effect in healthy older adults.
Collapse
Affiliation(s)
- David D Ward
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| | - Mathew J Summers
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research & Education Centre, University of Tasmania, Australia.
| | - Nichole L Saunders
- Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| | - Pierce Janssen
- Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| | - Kimberley E Stuart
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| | - James C Vickers
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| |
Collapse
|