1
|
Giatti S, Cioffi L, Diviccaro S, Piazza R, Melcangi RC. Analysis of the finasteride treatment and its withdrawal in the rat hypothalamus and hippocampus at whole-transcriptome level. J Endocrinol Invest 2024; 47:2565-2574. [PMID: 38493246 PMCID: PMC11393021 DOI: 10.1007/s40618-024-02345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE As reported in patients treated for androgenetic alopecia with finasteride (i.e., a blocker of the enzyme 5 alpha-reductase) and in an animal model, side effects affecting sexual, psychiatric, neurological, and physical domains, may occur during the treatment and persist with drug suspension. The etiopathogenesis of these side effects has been poorly explored. Therefore, we performed a genome-wide analysis of finasteride effects in the brain of adult male rat. METHODS Animals were treated (i.e., for 20 days) with finasteride (1mg/rat/day). 24 h after the last treatment and 1 month after drug suspension, RNA sequencing analysis was performed in hypothalamus and hippocampus. Data were analyzed by differential expression analysis and Gene-Set Enrichment Analyses (GSEA). RESULTS Data obtained after finasteride treatment showed that 186 genes (i.e., 171 up- and 15 downregulated) and 19 (i.e., 17 up- and 2 downregulated) were differentially expressed in the hypothalamus and hippocampus, respectively. Differential expression analysis at the drug withdrawal failed to identify dysregulated genes. Several gene-sets were enriched in these brain areas at both time points. CONCLUSION Some of the genes reported to be differentially expressed (i.e., TTR, DIO2, CLDN1, CLDN2, SLC4A5, KCNE2, CROT, HCRT, MARCKSL1, VGF, IRF2BPL) and GSEA, suggest a potential link with specific side effects previously observed in patients and in the animal model, such as depression, anxiety, disturbance in memory and attention, and sleep disturbance. These data may provide an important background for future experiments aimed at confirming the pathological role of these genes.
Collapse
Affiliation(s)
- S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - L Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - R Piazza
- Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Milan, Italy
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
2
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Guimarães RP, de Resende MCS, Tavares MM, Belardinelli de Azevedo C, Ruiz MCM, Mortari MR. Construct, Face, and Predictive Validity of Parkinson's Disease Rodent Models. Int J Mol Sci 2024; 25:8971. [PMID: 39201659 PMCID: PMC11354451 DOI: 10.3390/ijms25168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Current drugs only alleviate symptoms without halting disease progression, making rodent models essential for researching new therapies and understanding the disease better. However, selecting the right model is challenging due to the numerous models and protocols available. Key factors in model selection include construct, face, and predictive validity. Construct validity ensures the model replicates pathological changes seen in human PD, focusing on dopaminergic neurodegeneration and a-synuclein aggregation. Face validity ensures the model's symptoms mirror those in humans, primarily reproducing motor and non-motor symptoms. Predictive validity assesses if treatment responses in animals will reflect those in humans, typically involving classical pharmacotherapies and surgical procedures. This review highlights the primary characteristics of PD and how these characteristics are validated experimentally according to the three criteria. Additionally, it serves as a valuable tool for researchers in selecting the most appropriate animal model based on established validation criteria.
Collapse
Affiliation(s)
- Rayanne Poletti Guimarães
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Maria Clara Souza de Resende
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Mesquita Tavares
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Caio Belardinelli de Azevedo
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Cesar Merino Ruiz
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
- Neurological Rehabilitation Unit, Sarah Network of Rehabilitation Hospitals, Brasília 70335-901, Brazil
| | - Márcia Renata Mortari
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| |
Collapse
|
4
|
Melcangi RC. Role of Neuroactive Steroids in Health and Disease. Biomolecules 2024; 14:941. [PMID: 39199329 PMCID: PMC11352212 DOI: 10.3390/biom14080941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Steroidogenesis occurs not only in endocrine peripheral glands (i [...].
Collapse
Affiliation(s)
- Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Cioffi L, Grassi D, Diviccaro S, Caruso D, Pinto-Benito D, Arevalo MA, Garcia-Segura LM, Melcangi RC, Giatti S. Sex chromosome complement interacts with gonadal hormones in determining regional-specific neuroactive steroid levels in plasma, hippocampus, and hypothalamus. A study using the four core genotype mouse model. J Steroid Biochem Mol Biol 2024; 241:106514. [PMID: 38554982 DOI: 10.1016/j.jsbmb.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
An important aspect of the neuromodulatory and neuroprotective actions exerted by neuroactive steroids is that they are sex-specific, as determined by the sexually dimorphic levels of these molecules in plasma and the nervous tissue. Thus, the identification of the factors that generate the sex-dimorphic levels of neuroactive steroids may be crucial from a neuroprotectant perspective. The main driver for sex determination in mammals is the SRY gene and the subsequent presence of a specific gonad: testes for males and ovaries for females, thus producing hormonal compounds, primarily androgens and estrogens, respectively. Nowadays, it is well established that despite the relevance of gonads, other factors control sexual features, and, among them, sex chromosome complement is highly relevant. In this study, neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in the hypothalamus, the hippocampus, and plasma of the four core genotype mouse model, to determine the relative contribution of sex chromosome complement and gonads in determining their sex dimorphic levels. The data obtained reveal that although gonads are the main contributing factor for sex differences in neuroactive steroid levels, the levels of some neuroactive steroids, including testosterone, are also influenced in brain and plasma by tissue-specific actions of sex chromosomes. The data presented here adds a new piece to the puzzle of steroid level regulation, which may be useful in designing sex-specific neuroprotective approaches to pathological conditions affecting the nervous system.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| |
Collapse
|
6
|
Kaleta M, Oklestkova J, Klíčová K, Kvasnica M, Koníčková D, Menšíková K, Strnad M, Novák O. Simultaneous Determination of Selected Steroids with Neuroactive Effects in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. ACS Chem Neurosci 2024; 15:1990-2005. [PMID: 38655788 PMCID: PMC11099924 DOI: 10.1021/acschemneuro.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 μL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 μmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.
Collapse
Affiliation(s)
- Michal Kaleta
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Jana Oklestkova
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Kateřina Klíčová
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Kvasnica
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dorota Koníčková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Kateřina Menšíková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Strnad
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ondřej Novák
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
7
|
Hasnain N, Arif TB, Shafaut R, Zakaria F, Fatima SZ, Haque IU. Association between sex and Huntington's disease: an updated review on symptomatology and prognosis of neurodegenerative disorders. Wien Med Wochenschr 2024; 174:87-94. [PMID: 35723821 DOI: 10.1007/s10354-022-00941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Huntington's disease is a rare autosomal dominant disorder presenting with chorea, rigidity, hypo-/akinesia, cognitive decline, and psychiatric disturbances. Numerous risk factors have been defined in the onset of this disease. However, the number of CAG repeats in the genes are the most crucial factor rendering patients susceptible to the disease. Studies have shown significant differences in onset and disease presentation among the sexes, which prompts analysis of the impact of different sexes on disease etiology and progression. This article therefore discusses the evidence-based role of sex in aspects of symptomatology, pathogenesis, biomarkers, progression, and prognosis of Huntington's disease, with a secondary review of sex-linked differences in Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Nimra Hasnain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan
| | - Taha Bin Arif
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan.
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan.
| | - Roha Shafaut
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Faiza Zakaria
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Ibtehaj Ul Haque
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan
| |
Collapse
|
8
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
9
|
Verdoorn TA, Parry TJ, Pinna G, Lifshitz J. Neurosteroid Receptor Modulators for Treating Traumatic Brain Injury. Neurotherapeutics 2023; 20:1603-1615. [PMID: 37653253 PMCID: PMC10684848 DOI: 10.1007/s13311-023-01428-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Traumatic brain injury (TBI) triggers wide-ranging pathology that impacts multiple biochemical and physiological systems, both inside and outside the brain. Functional recovery in patients is impeded by early onset brain edema, acute and chronic inflammation, delayed cell death, and neurovascular disruption. Drug treatments that target these deficits are under active development, but it seems likely that fully effective therapy may require interruption of the multiplicity of TBI-induced pathological processes either by a cocktail of drug treatments or a single pleiotropic drug. The complex and highly interconnected biochemical network embodied by the neurosteroid system offers multiple options for the research and development of pleiotropic drug treatments that may provide benefit for those who have suffered a TBI. This narrative review examines the neurosteroids and their signaling systems and proposes directions for their utility in the next stage of TBI drug research and development.
Collapse
Affiliation(s)
- Todd A Verdoorn
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA.
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA
| | - Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago College of Medicine, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, 475 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
10
|
Choi SR, Lee J, Moon JY, Baek SJ, Lee JH. NAG-1/GDF-15 Transgenic Female Mouse Shows Delayed Peak Period of the Second Phase Nociception in Formalin-induced Inflammatory Pain. Exp Neurobiol 2023; 32:247-258. [PMID: 37749926 PMCID: PMC10569140 DOI: 10.5607/en23019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1), also known as growth differentiation factor-15 (GDF-15), is associated with cancer, diabetes, and inflammation, while there is limited understanding of the role of NAG-1 in nociception. Here, we examined the nociceptive behaviors of NAG-1 transgenic (TG) mice and wild-type (WT) littermates. Mechanical sensitivity was evaluated by using the von Frey filament test, and thermal sensitivity was assessed by the hot-plate, Hargreaves, and acetone tests. c-Fos, glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule-1 (Iba-1) immunoreactivity was examined in the spinal cord following observation of the formalin-induced nociceptive behaviors. There was no difference in mechanical or thermal sensitivity for NAG-1 TG and WT mice. Intraplantar formalin injection induced nociceptive behaviors in both male and female NAG-1 TG and WT mice. The peak period in the second phase was delayed in NAG-1 TG female mice compared with that of WT female mice, while there was no difference in the cumulative time of nociceptive behaviors between the two groups of mice. Formalin increased spinal c-Fos immunoreactivity in both TG and WT female mice. Neither GFAP nor Iba-1 immunoreactivity was increased in the spinal cord of TG and WT female mice. These findings indicate that NAG-1 TG mice have comparable baseline sensitivity to mechanical and thermal stimulation as WT mice and that NAG-1 in female mice may have an inhibitory effect on the second phase of inflammatory pain. Therefore, it could be a novel target to inhibit central nervous system response in pain.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Jaehak Lee
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Ji-Young Moon
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Mokhtari S, Sistani Karampour N, Shams MH, Dehpour AR, Hasanvand A. Protective assessment of progesterone and its receptor on experimental diabetic neuropathy: Antioxidant and anti-inflammatory effects. Fundam Clin Pharmacol 2023; 37:287-295. [PMID: 36205489 DOI: 10.1111/fcp.12839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 02/25/2023]
Abstract
Diabetes induces a disorder in mitochondrial activity, which causes damage to the nuclear and mitochondrial DNA and ultimately increases the release of inflammatory cytokines and damages the sciatic nerve and dorsal root ganglion and induces neuropathy. It has been shown that progesterone has anti-inflammatory and antioxidative effects and prevents nerve cell damage. Therefore, the aim of this experiment was to investigate the effect of progesterone receptor neuroprotection on diabetic neuropathy. Forty male Sprague-Dawley rats were divided into four groups, including control group, diabetic control group, diabetic control group + progesterone (30 mg/kg), and diabetic control group + combination of progesterone (30 mg/kg) and RU486 (10 mg/kg). After the induction of diabetes, blood glucose level, body weight, behavioral tests, electrophysiological tests, oxidative and inflammatory factors, and histological parameters were measured. Progesterone treatment significantly reduced the level of sensitivity to hot plate without significant effect on glucose level, and significant changes were also observed in the results of tail flick test. In addition, the results showed that the administration of progesterone can improve MNCV and significantly reduce the serum levels of oxidative stress and inflammatory factors, as well as inflammation and edema around the sciatic nerve. However, RU486 inverted the beneficial effects of progesterone. Progesterone can be considered as a protective agent in reducing DN because of its ability to reduce inflammation and nerve damage. In addition, RU486, a progesterone receptor blocker, inhibits the beneficial effects of progesterone on the DN; thus, progesterone receptors play an important role in the neuroprotective effect of progesterone.
Collapse
Affiliation(s)
- Sanaz Mokhtari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Neda Sistani Karampour
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Hossein Shams
- Department of Medical Immunology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hasanvand
- Department of Physiology and Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
12
|
Diabetic Encephalopathy in a Preclinical Experimental Model of Type 1 Diabetes Mellitus: Observations in Adult Female Rat. Int J Mol Sci 2023; 24:ijms24021196. [PMID: 36674713 PMCID: PMC9860834 DOI: 10.3390/ijms24021196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Patients affected by diabetes mellitus (DM) show diabetic encephalopathy with an increased risk of cognitive deficits, dementia and Alzheimer's disease, but the mechanisms are not fully explored. In the male animal models of DM, the development of cognitive impairment seems to be the result of the concomitance of different processes such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and aberrant synaptogenesis. However, even if diabetic encephalopathy shows some sex-dimorphic features, no observations in female rats have been so far reported on these aspects. Therefore, in an experimental model of type 1 DM (T1DM), we explored the impact of one month of pathology on memory abilities by the novel object recognition test and on neuroinflammation, synaptogenesis and mitochondrial functionality. Moreover, given that steroids are involved in memory and learning, we also analysed their levels and receptors. We reported that memory dysfunction can be associated with different features in the female hippocampus and cerebral cortex. Indeed, in the hippocampus, we observed aberrant synaptogenesis and neuroinflammation but not mitochondrial dysfunction and oxidative stress, possibly due to the results of locally increased levels of progesterone metabolites (i.e., dihydroprogesterone and allopregnanolone). These observations suggest specific brain-area effects of T1DM since different alterations are observed in the cerebral cortex.
Collapse
|
13
|
Chen XJ, Wang XF, Pan ZC, Zhang D, Zhu KC, Jiang T, Kong XK, Xie R, Sun LH, Tao B, Liu JM, Zhao HY. Nerve conduction velocity is independently associated with bone mineral density in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1109322. [PMID: 36891057 PMCID: PMC9987338 DOI: 10.3389/fendo.2023.1109322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
AIM This study investigated the association between nerve conduction velocity (NCV) and bone mineral density (BMD) in patients with type 2 diabetes mellitus (T2DM). METHODS This study retrospectively collected medical data of T2DM patients who underwent dual-energy X-ray absorptiometry and nerve conduction study at the Shanghai Ruijin Hospital, Shanghai, China. The primary outcome was the total hip BMD T-score. The main independent variables were motor nerve conduction velocities (MCVs), sensory nerve conduction velocities (SCVs), and composite Z-scores of MCV and SCV. T2DM patients were divided into total hip BMD T-scores < -1 and total hip BMD T-scores ≥ -1 groups. The association between the primary outcome and main independent variables was evaluated by Pearson bivariate correlation and multivariate linear regression. RESULTS 195 female and 415 male patients with T2DM were identified. In male patients with T2DM, bilateral ulnar, median, and tibial MCVs and bilateral sural SCVs were lower in the total hip BMD T-score < -1 group than T-score ≥ -1 group (P < 0.05). Bilateral ulnar, median, and tibial MCVs, and bilateral sural SCVs showed positive correlations with total hip BMD T-score in male patients with T2DM (P < 0.05). Bilateral ulnar and tibial MCVs, bilateral sural SCVs, and composite MCV SCV and MSCV Z-scores were independently and positively associated with total hip BMD T-score in male patients with T2DM, respectively (P < 0.05). NCV did not show significant correlation with the total hip BMD T-score in female patients with T2DM. CONCLUSION NCV showed positive association with total hip BMD in male patients with T2DM. A decline in NCV indicates an elevated risk of low BMD (osteopenia/osteoporosis) in male patients with T2DM.
Collapse
Affiliation(s)
- Xiao-jing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-feng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-can Pan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke-cheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-ke Kong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Xie
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-hao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hong-yan Zhao, ; Jian-min Liu,
| | - Hong-yan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hong-yan Zhao, ; Jian-min Liu,
| |
Collapse
|
14
|
Why Does Psychotherapy Work and for Whom? Hormonal Answers. Biomedicines 2022; 10:biomedicines10061361. [PMID: 35740383 PMCID: PMC9220228 DOI: 10.3390/biomedicines10061361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
The questions of for whom and why psychotherapy is effective have been the focus of five decades of research. Most of this knowledge is based on self-report measures. Following the biopsychosocial model of mental disorders, this article explores the potential of hormones in answering these questions. The literature on cortisol, oxytocin, and oestradiol in psychotherapy was systematically searched, focusing on (a) baseline hormonal predictors of who may benefit from psychotherapy and (b) hormonal changes as indicators of therapeutic change. The search was limited to depression and anxiety disorders. In sum, the findings show that, of all three hormones, the role of cortisol is most established and that both cortisol and oxytocin are implicated in psychotherapy, although a causal role is still waiting to be demonstrated. Moreover, there is a differential role of hormones in the psychotherapy of depression versus anxiety. The directions of research mapped in this article may elucidate how psychotherapy can be selected to match patients’ endocrine states and how hormonal levels can be manipulated to improve outcomes.
Collapse
|
15
|
Diviccaro S, FitzGerald JA, Cioffi L, Falvo E, Crispie F, Cotter PD, O’Mahony SM, Giatti S, Caruso D, Melcangi RC. Gut Steroids and Microbiota: Effect of Gonadectomy and Sex. Biomolecules 2022; 12:biom12060767. [PMID: 35740892 PMCID: PMC9220917 DOI: 10.3390/biom12060767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 01/02/2023] Open
Abstract
Sex steroids, derived mainly from gonads, can shape microbiota composition; however, the impact of gonadectomy and sex on steroid production in the gut (i.e., gut steroids), and its interaction with microbiota composition, needs to be clarified. In this study, steroid environment and gut steroidogenesis were analysed by liquid chromatography tandem mass spectrometry and expression analyses. Gut microbiota composition as branched- and short-chain fatty acids were determined by 16S rRNA gene sequence analysis and gas chromatography flame ionisation detection, respectively. Here, we first demonstrated that levels of pregnenolone (PREG), progesterone (PROG), and isoallopregnanolone (ISOALLO) were higher in the female rat colon, whereas the level of testosterone (T) was higher in males. Sexual dimorphism on gut steroidogenesis is also reported after gonadectomy. Sex, and more significantly, gonadectomy, affects microbiota composition. We noted that a number of taxa and inferred metabolic pathways were associated with gut steroids, such as positive associations between Blautia with T, dihydroprogesterone (DHP), and allopregnanolone (ALLO), whereas negative associations were noted between Roseburia and T, ALLO, PREG, ISOALLO, DHP, and PROG. In conclusion, this study highlights the novel sex-specific association between microbiota and gut steroids with possible relevance for the gut-brain axis.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Jamie A. FitzGerald
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; (J.A.F.); (F.C.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland;
| | - Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Eva Falvo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; (J.A.F.); (F.C.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland;
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; (J.A.F.); (F.C.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland;
| | - Siobhain M. O’Mahony
- APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland;
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
- Correspondence:
| |
Collapse
|
16
|
Yadav A, Dabur R. Rapid Identification of 44 Steroids in Human Urine Samples using HPLCESI-
QTOF-MS. CURR PHARM ANAL 2022. [DOI: 10.2174/1573412917666210309145639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
Detailed analysis of un-processed and un-derivatized free and conjugated
urinary steroids is useful to avoid miscalculations and to diagnose sports doping and adrenal
problems, including abnormal steroidogenesis, congenital deficiency of related enzymes, cancer,
and other disease conditions. Hence, the present study was conducted to develop a soft ionization
method to identify the maximum number of urinary steroids using ultra-performance liquid
chromatography coupled with quadrupole time of flight mass spectrometer (HPLC–Q-TOF-MS).
Material and Methods:
HPLC–Q-TOF-MS was carried out for the qualitative detection of steroids
and their conjugates in urine samples. The method provides high sensitivity and fast analysis
of steroids and their glucuronides without hydrolysis or sample preparation or extraction of steroids.
Results:
Using the method, 44 steroids belonging to C-18, C-19, and C-21 classes and their conjugates
were resolved and identified using positive and negative modes of ionizations by their
characteristic ionization and collision energy induced dissociation behaviors.
Conclusion:
The method is time-saving and good to compare samples from different peoples
with control or healthy ones as it does not require any kind of pre-treatment or sample processing.
It provides a complete picture of steroids metabolism and catabolism. It can be good for doping
control or to explore the effects of other drugs. However, in qualitative analysis, one may miss
the significant information unless direct methods of steroids analysis to be employed.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Research Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001,
Haryana, India
| | - Rajesh Dabur
- Clinical Research Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001,
Haryana, India
| |
Collapse
|
17
|
Vitku J, Hill M, Kolatorova L, Kubala Havrdova E, Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:839887. [PMID: 35281259 PMCID: PMC8904904 DOI: 10.3389/fmolb.2022.839887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Steroid sulfation and desulfation participates in the regulation of steroid bioactivity, metabolism and transport. The authors focused on sulfation and desulfation balance in three neurodegenerative diseases: Alzheimer´s disease (AD), Parkinson´s disease (PD), and multiple sclerosis (MS). Circulating steroid conjugates dominate their unconjugated counterparts, but unconjugated steroids outweigh their conjugated counterparts in the brain. Apart from the neurosteroid synthesis in the central nervous system (CNS), most brain steroids cross the blood-brain barrier (BBB) from the periphery and then may be further metabolized. Therefore, steroid levels in the periphery partly reflect the situation in the brain. The CNS steroids subsequently influence the neuronal excitability and have neuroprotective, neuroexcitatory, antidepressant and memory enhancing effects. They also exert anti-inflammatory and immunoprotective actions. Like the unconjugated steroids, the sulfated ones modulate various ligand-gated ion channels. Conjugation by sulfotransferases increases steroid water solubility and facilitates steroid transport. Steroid sulfates, having greater half-lives than their unconjugated counterparts, also serve as a steroid stock pool. Sulfotransferases are ubiquitous enzymes providing massive steroid sulfation in adrenal zona reticularis and zona fasciculata.. Steroid sulfatase hydrolyzing the steroid conjugates is exceedingly expressed in placenta but is ubiquitous in low amounts including brain capillaries of BBB which can rapidly hydrolyze the steroid sulfates coming across the BBB from the periphery. Lower dehydroepiandrosterone sulfate (DHEAS) plasma levels and reduced sulfotransferase activity are considered as risk factors in AD patients. The shifted balance towards unconjugated steroids can participate in the pathophysiology of PD and anti-inflammatory effects of DHEAS may counteract the MS.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
- *Correspondence: Jana Vitku,
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radmila Kancheva
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| |
Collapse
|
18
|
Cáceres ARR, Campo Verde Arboccó F, Cardone DA, Sanhueza MDLÁ, Casais M, Vega Orozco AS, Laconi MR. Superior mesenteric ganglion neural modulation of ovarian angiogenesis, apoptosis and proliferation by the neuroactive steroid allopregnanolone. J Neuroendocrinol 2022; 34:e13056. [PMID: 34739183 DOI: 10.1111/jne.13056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022]
Abstract
Allopregnanolone (ALLO), a potent neuroactive steroid, is synthesized and active in the peripheral nervous system. Previous studies have shown that ALLO participates in the central regulation of reproduction with effects on ovarian physiology, although there is little evidence for its ability to modulate peripheral tissues. The present study aimed to determine whether ALLO, administered to an ex vivo system that comprises the superior mesenteric ganglion (SMG), the ovarian nervous plexus (ONP) and the ovary (O), or to the denervated ovary (DO), was able to modify ovarian apoptosis, proliferation and angiogenesis. For this purpose, the SMG-ONP-O system and DO were incubated during 120 min at 37°C, in the presence of two ALLO doses (0.06 µm and 6 µm). The intrinsic and extrinsic pathways of apoptosis were analyzed. Incubation of the SMG-ONP-O system with ALLO 0.06 µm led to an increase in the BAX/BCL-2 ratio and a reduction of FAS-L mRNA levels. ALLO 6 µm induced a decrease of FAS-L levels. Incubation of DO with ALLO 0.06 µm reduced FAS-L, whereas ALLO 6 µm significantly increased it. Cyclin D1 mRNA was measured to evaluate proliferation. Treatment with ALLO 6 µm increased proliferation in both SMG-ONP-O and DO. ALLO 0.06 µm produced an increase of Cyclin D1 in DO only. Administration of either ALLO dose led to a higher ovarian expression of vascular endothelial growth factor in the SMG-ONP-O system, but a lower one in the DO system. ALLO 6 µm induced ovarian sensitization to GABA by increasing GABAA receptor expression. In conclusion, ALLO participates in the peripheral neural modulation of ovarian physiology. It can also interact directly with the ovarian tissue, modulating key mechanisms involved in normal and pathological processes in a dose-dependent manner.
Collapse
Affiliation(s)
- Antonella Rosario Ramona Cáceres
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - Fiorella Campo Verde Arboccó
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
| | - Daniela Alejandra Cardone
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
| | - María de Los Ángeles Sanhueza
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Adriana Soledad Vega Orozco
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Myriam Raquel Laconi
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| |
Collapse
|
19
|
Perez-Rando M, Guirado R, Tellez-Merlo G, Carceller H, Nacher J. Estradiol Regulates Polysialylated Form of the Neural Cell Adhesion Molecule Expression and Connectivity of O-LM Interneurons in the Hippocampus of Adult Female Mice. Neuroendocrinology 2022; 112:51-67. [PMID: 33550289 DOI: 10.1159/000515052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022]
Abstract
The estrous cycle is caused by the changing concentration of ovarian hormones, particularly 17β-estradiol, a hormone whose effect on excitatory circuits has been extensively reported. However, fewer studies have tried to elucidate how this cycle, or this hormone, affects the plasticity of inhibitory networks and the structure of interneurons. Among these cells, somatostatin-expressing O-LM neurons of the hippocampus are especially interesting. They have a role in the modulation of theta oscillations, and they receive direct input from the entorhinal cortex, which place them in the center of hippocampal function. In this study, we report that the expression of polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus, a molecule involved in the plasticity of somatostatin-expressing interneurons in the adult brain, fluctuated through the different stages of the estrous cycle. Likewise, these stages and the expression of PSA-NCAM affected the density of dendritic spines of O-LM cells. We also describe that 17β-estradiol replacement of adult ovariectomized female mice caused an increase in the perisomatic inhibitory puncta in O-LM interneurons as well as an increase in their axonal bouton density. Interestingly, this treatment also induced a decrease in their dendritic spine density, specifically in O-LM interneurons lacking PSA-NCAM expression. Finally, using an ex vivo real-time assay with entorhinal-hippocampal organotypic cultures, we show that this hormone decreased the dynamics in spinogenesis, altogether highlighting the modulatory effect that 17β-estradiol has on inhibitory circuits.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Ramon Guirado
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- Dirección General de Universidades, Gobierno de Aragón, Zaragoza, Spain
| | - Guillermina Tellez-Merlo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Hector Carceller
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain
| |
Collapse
|
20
|
Gowda P, Reddy PH, Kumar S. Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria. Ageing Res Rev 2022; 73:101529. [PMID: 34813976 PMCID: PMC8692431 DOI: 10.1016/j.arr.2021.101529] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is currently one of the biggest public health concerns in the world. Mitochondrial dysfunction in neurons is one of the major hallmarks of AD. Emerging evidence suggests that mitochondrial miRNAs potentially play important roles in the mitochondrial dysfunctions, focusing on synapse in AD progression. In this meta-analysis paper, a comprehensive literature review was conducted to identify and discuss the (1) role of mitochondrial miRNAs that regulate mitochondrial and synaptic functions; (2) the role of various factors such as mitochondrial dynamics, biogenesis, calcium signaling, biological sex, and aging on synapse and mitochondrial function; (3) how synapse damage and mitochondrial dysfunctions contribute to AD; (4) the structure and function of synapse and mitochondria in the disease process; (5) latest research developments in synapse and mitochondria in healthy and disease states; and (6) therapeutic strategies that improve synaptic and mitochondrial functions in AD. Specifically, we discussed how differences in the expression of mitochondrial miRNAs affect ATP production, oxidative stress, mitophagy, bioenergetics, mitochondrial dynamics, synaptic activity, synaptic plasticity, neurotransmission, and synaptotoxicity in neurons observed during AD. However, more research is needed to confirm the locations and roles of individual mitochondrial miRNAs in the development of AD.
Collapse
Affiliation(s)
- Prashanth Gowda
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
21
|
Zubiaurre-Elorza L, Cerdán S, Uribe C, Pérez-Laso C, Marcos A, Rodríguez del Cerro MC, Fernandez R, Pásaro E, Guillamon A. The Effects of Testosterone on the Brain of Transgender Men. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:252-260. [PMID: 35024694 PMCID: PMC8744429 DOI: 10.1089/andro.2021.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/28/2023]
Abstract
Transgender men (TM) experience an incongruence between the female sex assigned when they were born and their self-perceived male identity. Some TM seek for a gender affirming hormone treatment (GAHT) to induce a somatic transition from female to male through continuous administration of testosterone. GAHT seems to be relatively safe. However, testosterone produces structural changes in the brain as detected by quantitative magnetic resonance imaging. Mainly, it induces an increase in cortical volume and thickness and subcortical structural volume probably due to the anabolic effects. Animal models, specifically developed to test the anabolic hypothesis, suggest that testosterone and estradiol, its aromatized metabolite, participate in the control of astrocyte water trafficking, thereby controlling brain volume.
Collapse
Affiliation(s)
- Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Sebastian Cerdán
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carme Uribe
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Carmen Pérez-Laso
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Alberto Marcos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | | | - Rosa Fernandez
- Departamento de Psicología, Facultade de Ciencias da Educación, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Pásaro
- Departamento de Psicología, Facultade de Ciencias da Educación, Universidade da Coruña, A Coruña, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| |
Collapse
|
22
|
Diviccaro S, Caputi V, Cioffi L, Giatti S, Lyte JM, Caruso D, O’Mahony SM, Melcangi RC. Exploring the Impact of the Microbiome on Neuroactive Steroid Levels in Germ-Free Animals. Int J Mol Sci 2021; 22:ijms222212551. [PMID: 34830433 PMCID: PMC8622241 DOI: 10.3390/ijms222212551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid hormones are essential biomolecules for human physiology as they modulate the endocrine system, nervous function and behaviour. Recent studies have shown that the gut microbiota is directly involved in the production and metabolism of steroid hormones in the periphery. However, the influence of the gut microbiota on levels of steroids acting and present in the brain (i.e., neuroactive steroids) is not fully understood. Therefore, using liquid chromatography–tandem mass spectrometry, we assessed the levels of several neuroactive steroids in various brain areas and the plasma of germ-free (GF) male mice and conventionally colonized controls. The data obtained indicate an increase in allopregnanolone levels associated with a decrease in those of 5α-androstane-3α, 17β-diol (3α-diol) in the plasma of GF mice. Moreover, an increase of dihydroprogesterone and isoallopregnanolone in the hippocampus, cerebellum, and cerebral cortex was also reported. Changes in dihydrotestosterone and 3α-diol levels were also observed in the hippocampus of GF mice. In addition, an increase in dehydroepiandrosterone was associated with a decrease in testosterone levels in the hypothalamus of GF mice. Our findings suggest that the absence of microbes affects the neuroactive steroids in the periphery and the brain, supporting the evidence of a microbiota-mediated modulation of neuroendocrine pathways involved in preserving host brain functioning.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Fayetteville, AR 72701, USA
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Siobhain M. O’Mahony
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
- Department of Anatomy and Neuroscience, University College Cork, T12 ND89 Cork, Ireland
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
- Correspondence: ; Tel.: +39-02-50318238; Fax: +39-02-50318202
| |
Collapse
|
23
|
Giatti S, Diviccaro S, Cioffi L, Falvo E, Caruso D, Melcangi RC. Effects of paroxetine treatment and its withdrawal on neurosteroidogenesis. Psychoneuroendocrinology 2021; 132:105364. [PMID: 34325207 DOI: 10.1016/j.psyneuen.2021.105364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRI) show high efficacy in treating depression, however during treatment side effects, like for instance sexual dysfunction, may appear, decreasing compliance. In some cases, this condition will last after drug discontinuation, leading to the so-called post-SSRI sexual dysfunction (PSSD). The etiology of PSSD is still unknown, however a role for neuroactive steroids may be hypothesized. Indeed, these molecules are key physiological regulators of the nervous system, and their alteration has been associated with several neuropathological conditions, including depression. Additionally, neuroactive steroids are also involved in the control of sexual function. Interestingly, sexual dysfunction induced by SSRI treatment has been also observed in animal models. On this basis, we have here evaluated whether a subchronic treatment with paroxetine for two weeks and/or its withdrawal (i.e., a month) may affect the levels of neuroactive steroids in brain areas (i.e., hippocampus, hypothalamus, and cerebral cortex) and/or in plasma and cerebrospinal fluid of male rats. Data obtained indicate that the SSRI treatment alters neuroactive steroid levels and the expression of key enzymes of the steroidogenesis in a brain tissue- and time-dependent manner. Indeed, these observations with the finding that plasma levels of neuroactive steroids are not affected suggest that the effect of paroxetine treatment is directly on neurosteroidogenesis. In particular, a negative impact on the expression of steroidogenic enzymes was observed at the withdrawal. Therefore, it is possible to hypothesize that altered neurosteroidogenesis may also occur in PSSD and consequently it may represent a possible pharmacological target for this disorder.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
24
|
Brandt N, Vierk R, Fester L, Anstötz M, Zhou L, Heilmann LF, Kind S, Steffen P, Rune GM. Sex-specific Difference of Hippocampal Synaptic Plasticity in Response to Sex Neurosteroids. Cereb Cortex 2021; 30:2627-2641. [PMID: 31800024 DOI: 10.1093/cercor/bhz265] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Numerous studies provide increasing evidence, which supports the ideas that every cell in the brain of males may differ from those in females due to differences in sex chromosome complement as well as in response to hormonal effects. In this study, we address the question as to whether actions of neurosteroids, thus steroids, which are synthesized and function within the brain, contribute to sex-specific hippocampal synaptic plasticity. We have previously shown that predominantly in the female hippocampus, does inhibition of the conversion of testosterone to estradiol affect synaptic transmission. In this study, we show that testosterone and its metabolite dihydrotestosterone are essential for hippocampal synaptic transmission specifically in males. This also holds true for the density of mushroom spines and of spine synapses. We obtained similar sex-dependent results using primary hippocampal cultures of male and female animals. Since these cultures originated from perinatal animals, our findings argue for sex-dependent differentiation of hippocampal neurons regarding their responsiveness to sex neurosteroids up to birth, which persist during adulthood. Hence, our in vitro findings may point to a developmental effect either directly induced by sex chromosomes or indirectly by fetal testosterone secretion during the perinatal critical period, when developmental sexual priming takes place.
Collapse
Affiliation(s)
- Nicola Brandt
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ricardo Vierk
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lars Fester
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lepu Zhou
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lukas F Heilmann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simon Kind
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Paul Steffen
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Borgo F, Macandog AD, Diviccaro S, Falvo E, Giatti S, Cavaletti G, Melcangi RC. Alterations of gut microbiota composition in post-finasteride patients: a pilot study. J Endocrinol Invest 2021; 44:1263-1273. [PMID: 32951160 PMCID: PMC8124058 DOI: 10.1007/s40618-020-01424-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Post-finasteride syndrome (PFS) has been reported in a subset of patients treated with finasteride (an inhibitor of the enzyme 5alpha-reductase) for androgenetic alopecia. These patients showed, despite the suspension of the treatment, a variety of persistent symptoms, like sexual dysfunction and cognitive and psychological disorders, including depression. A growing body of literature highlights the relevance of the gut microbiota-brain axis in human health and disease. For instance, alterations in gut microbiota composition have been reported in patients with major depressive disorder. Therefore, we have here analyzed the gut microbiota composition in PFS patients in comparison with a healthy cohort. METHODS Fecal microbiota of 23 PFS patients was analyzed by 16S rRNA gene sequencing and compared with that reported in ten healthy male subjects. RESULTS Sexual dysfunction, psychological and cognitive complaints, muscular problems, and physical alterations symptoms were reported in more than half of the PFS patients at the moment of sample collection. The quality sequence check revealed a low library depth for two fecal samples. Therefore, the gut microbiota analyses were conducted on 21 patients. The α-diversity was significantly lower in PFS group, showing a reduction of richness and diversity of gut microbiota structure. Moreover, when visualizing β-diversity, a clustering effect was found in the gut microbiota of a subset of PFS subjects, which was also characterized by a reduction in Faecalibacterium spp. and Ruminococcaceae UCG-005, while Alloprevotella and Odoribacter spp were increased compared to healthy control. CONCLUSION Gut microbiota population is altered in PFS patients, suggesting that it might represent a diagnostic marker and a possible therapeutic target for this syndrome.
Collapse
Affiliation(s)
- F Borgo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - A D Macandog
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - E Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - G Cavaletti
- Experimental Neurology Unit, Università di Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience, Università di Milano-Bicocca, Monza, Italy
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
26
|
Kaleta M, Oklestkova J, Novák O, Strnad M. Analytical Methods for the Determination of Neuroactive Steroids. Biomolecules 2021; 11:553. [PMID: 33918915 PMCID: PMC8068886 DOI: 10.3390/biom11040553] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
Neuroactive steroids are a family of all steroid-based compounds, of both natural and synthetic origin, which can affect the nervous system functions. Their biosynthesis occurs directly in the nervous system (so-called neurosteroids) or in peripheral endocrine tissues (hormonal steroids). Steroid hormone levels may fluctuate due to physiological changes during life and various pathological conditions affecting individuals. A deeper understanding of neuroactive steroids' production, in addition to reliable monitoring of their levels in various biological matrices, may be useful in the prevention, diagnosis, monitoring, and treatment of some neurodegenerative and psychiatric diseases. The aim of this review is to highlight the most relevant methods currently available for analysis of neuroactive steroids, with an emphasis on immunoanalytical methods and gas, or liquid chromatography combined with mass spectrometry.
Collapse
Affiliation(s)
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (M.K.); (O.N.); (M.S.)
| | | | | |
Collapse
|
27
|
Chowen JA, Garcia-Segura LM. Role of glial cells in the generation of sex differences in neurodegenerative diseases and brain aging. Mech Ageing Dev 2021; 196:111473. [PMID: 33766745 DOI: 10.1016/j.mad.2021.111473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Diseases and aging-associated alterations of the nervous system often show sex-specific characteristics. Glial cells play a major role in the endogenous homeostatic response of neural tissue, and sex differences in the glial transcriptome and function have been described. Therefore, the possible role of these cells in the generation of sex differences in pathological alterations of the nervous system is reviewed here. Studies have shown that glia react to pathological insults with sex-specific neuroprotective and regenerative effects. At least three factors determine this sex-specific response of glia: sex chromosome genes, gonadal hormones and neuroactive steroid hormone metabolites. The sex chromosome complement determines differences in the transcriptional responses in glia after brain injury, while gonadal hormones and their metabolites activate sex-specific neuroprotective mechanisms in these cells. Since the sex-specific neuroprotective and regenerative activity of glial cells causes sex differences in the pathological alterations of the nervous system, glia may represent a relevant target for sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, and IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain.
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
He RH, Wang HJ, Zhou Z, Fan JZ, Zhang SQ, Zhong YH. The influence of high-frequency repetitive transcranial magnetic stimulation on endogenous estrogen in patients with disorders of consciousness. Brain Stimul 2021; 14:461-466. [PMID: 33677157 DOI: 10.1016/j.brs.2021.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a promising therapeutic intervention for neurological disorders. However, the precise mechanisms of rTMS in neural excitability remains poorly understood. Estradiol is known to have strong influence on cortical excitability. This study aimed to determine whether high-frequency (HF) rTMS influences endogenous estradiol in male patients with disorders of consciousness (DOC). METHODS A randomized controlled trial was conducted with a total of 57 male patients with DOC. Eventually, 50 patients completed the study. Twenty-five patients underwent real rTMS, and 25 patients underwent sham rTMS, which were delivered over the dorsolateral prefrontal cortex. The primary outcome measure was the change in serum estradiol from baseline to after 10 sessions of HF-rTMS. The improvement in the total score of the JFK Coma Recovery Scale-Revised (CRS-R) was also assessed. RESULTS Changes in estradiol levels and CRS-R scores from pre-to post-treatment were significantly different between the active rTMS and sham stimulation conditions. A significant enhancement of CRS-R scores in the patients receiving rTMS stimulation was observed compared to the sham group. Serum estradiol levels in patients following HF-rTMS were significantly higher than their baseline levels, whereas no significant changes were found in the sham group from pre-to post-stimulation. The rise in estradiol levels was greater in responders than in non-responders. The changes in estradiol levels were significantly positively correlated with the improvement in CRS-R scores. CONCLUSION These preliminary findings indicate that serum estradiol levels are affected by HF-rTMS and positively related to clinical responses in male patients with DOC. The elevation of estradiol levels may lay a physiological foundation for successful rTMS treatment for DOC patients by increasing cortical excitability.
Collapse
Affiliation(s)
- Ren Hong He
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, P.R. China
| | - Hui Juan Wang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, P.R. China
| | - Zhou Zhou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, P.R. China
| | - Jian Zhong Fan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, P.R. China
| | - Sheng Quan Zhang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, P.R. China
| | - Yu Hua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, P.R. China.
| |
Collapse
|
29
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
30
|
Physiopathological Role of Neuroactive Steroids in the Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21239000. [PMID: 33256238 PMCID: PMC7731236 DOI: 10.3390/ijms21239000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral neuropathy (PN) refers to many conditions involving damage to the peripheral nervous system (PNS). Usually, PN causes weakness, numbness and pain and is the result of traumatic injuries, infections, metabolic problems, inherited causes, or exposure to chemicals. Despite the high prevalence of PN, available treatments are still unsatisfactory. Neuroactive steroids (i.e., steroid hormones synthesized by peripheral glands as well as steroids directly synthesized in the nervous system) represent important physiological regulators of PNS functionality. Data obtained so far and here discussed, indeed show that in several experimental models of PN the levels of neuroactive steroids are affected by the pathology and that treatment with these molecules is able to exert protective effects on several PN features, including neuropathic pain. Of note, the observations that neuroactive steroid levels are sexually dimorphic not only in physiological status but also in PN, associated with the finding that PN show sex dimorphic manifestations, may suggest the possibility of a sex specific therapy based on neuroactive steroids.
Collapse
|
31
|
Witzig M, Grimm A, Schmitt K, Lejri I, Frank S, Brown SA, Eckert A. Clock-Controlled Mitochondrial Dynamics Correlates with Cyclic Pregnenolone Synthesis. Cells 2020; 9:cells9102323. [PMID: 33086741 PMCID: PMC7589815 DOI: 10.3390/cells9102323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurosteroids are steroids synthetized in the nervous system, with the first step of steroidogenesis taking place within mitochondria with the synthesis of pregnenolone. They exert important brain-specific functions by playing a role in neurotransmission, learning and memory processes, and neuroprotection. Here, we show for the first time that mitochondrial neurosteroidogenesis follows a circadian rhythm and correlates with the rhythmic changes in mitochondrial morphology. We used synchronized human A172 glioma cells, which are steroidogenic cells with a functional core molecular clock, to show that pregnenolone levels and translocator protein (TSPO) are controlled by the clock, probably via circadian regulation of mitochondrial fusion/fission. Key findings were recapitulated in mouse brains. We also showed that genetic or pharmacological abrogation of fusion/fission activity, as well as disturbing the core molecular clock, abolished circadian rhythms of pregnenolone and TSPO. Our findings provide new insights into the crosstalk between mitochondrial function (here, neurosteroidogenesis) and circadian cycles.
Collapse
Affiliation(s)
- Melissa Witzig
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
- Division of Molecular Psychology, Live Sciences Training Facility, University of Basel, 4055 Basel, Switzerland
| | - Karen Schmitt
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
| | - Imane Lejri
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland;
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-325-5487; Fax: +41-06-1325-5577
| |
Collapse
|
32
|
Diviccaro S, Giatti S, Borgo F, Falvo E, Caruso D, Garcia-Segura LM, Melcangi RC. Steroidogenic machinery in the adult rat colon. J Steroid Biochem Mol Biol 2020; 203:105732. [PMID: 32777355 DOI: 10.1016/j.jsbmb.2020.105732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Gastrointestinal function is known to be regulated by steroid molecules produced by the gonads, the adrenal glands and the gut microbiota. However, we have a limited knowledge on the functional significance of local steroid production by gastrointestinal tract tissue. On this basis, we have here evaluated, as a first methodological approach, the expression of steroidogenic molecules and the local levels of key steroids in the male rat colon. Our findings indicate that the colon tissue expresses molecules involved in the early steps of steroidogenesis and in the consecutive synthesis and metabolism of steroid hormones, such as progesterone, testosterone and 17β-estradiol. In addition, the levels of the steroid hormone precursor pregnenolone and the levels of active metabolites of progesterone and testosterone, such as dihydroprogesterone, tetrahydroprogesterone, dihydrotestosterone and 17β-estradiol, were higher in colon than in plasma. Higher levels of the androgen metabolite 3α-diol were detected in the colon in comparison with another non-classical steroidogenic tissue, such as the cerebral cortex. These findings suggest the existence of local steroid synthesis and metabolism in the colon, with the production of active steroid metabolites that may impact on the activity of the enteric nervous system and on the composition of the gut microbiota.
Collapse
Affiliation(s)
- S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F Borgo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - E Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - D Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy,.
| |
Collapse
|
33
|
Rodríguez-Lozano DC, Velázquez-Vázquez DE, Del Moral-Morales A, Camacho-Arroyo I. Dihydrotestosterone Induces Proliferation, Migration, and Invasion of Human Glioblastoma Cell Lines. Onco Targets Ther 2020; 13:8813-8823. [PMID: 32982278 PMCID: PMC7490433 DOI: 10.2147/ott.s262359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Glioblastomas (GBM) are the most frequent and aggressive human brain tumors due to their high capacity to migrate, invade healthy brain tissue, and resist anticancer therapies. It has been reported that testosterone (T) levels are higher in patients with GBM than in healthy controls. It has also been dem{}onstrated that T induces proliferation, migration, and invasion of human GBM cell lines. T is mainly metabolized to 5α-dihydrotestosterone (DHT) by the enzyme 5α-reductase (5αR), but the role of this metabolite in GBM cells is unknown. Methods The expression of 5αR isoenzymes and AR in biopsies of GBMs was determined by the analysis of TCGA. U87 and U251 GBM cell lines were grown in supplemented DMEM. For evaluating the expression of AR in U251 and U87 cells, a RT-qPCR was performed. The cells were treated with T, DHT, finasteride (FIN), dutasteride (D), and the combined treatments, FIN+T and D+T or vehicle. After treatments, the viability was quantified by the trypan blue exclusion assay, the proliferation was evaluated by BrdU incorporation, and migration and invasion were analyzed by the scratch-wound and the transwell assays, respectively. Results In a set of glioma biopsies from TCGA, we observed that SRD5A2 (5αR2) expression was higher in GBM and in low-grade gliomas than in normal brain tissue. We observed that DHT and T increased proliferation, migration, and invasion of human GBM cell lines: U87 and U251. F and D, drugs that inhibit 5αR activity, blocked the effects of T on GBM cells. Discussion These data suggest that T induces human GBM progression through its conversion into DHT. These results can be related to the chemical structure of DHT, which increases its affinity for AR and decreases five times the rate of dissociation compared to T. Also, it is possible that DHT mediates the effects of T on cell human GBM cells motility by changing the expression of genes involved in tumor infiltration.
Collapse
Affiliation(s)
- Dulce Carolina Rodríguez-Lozano
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Diana Elisa Velázquez-Vázquez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Aylin Del Moral-Morales
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
34
|
Colciago A, Bonalume V, Melfi V, Magnaghi V. Genomic and Non-genomic Action of Neurosteroids in the Peripheral Nervous System. Front Neurosci 2020; 14:796. [PMID: 32848567 PMCID: PMC7403499 DOI: 10.3389/fnins.2020.00796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 01/12/2023] Open
Abstract
Since the former evidence of biologic actions of neurosteroids in the central nervous system, also the peripheral nervous system (PNS) was reported as a structure affected by these substances. Indeed, neurosteroids are synthesized and active in the PNS, exerting many important actions on the different cell types of this system. PNS is a target for neurosteroids, in their native form or as metabolites. In particular, old and recent evidence indicates that the progesterone metabolite allopregnanolone possesses important functions in the PNS, thus contributing to its physiologic processes. In this review, we will survey the more recent findings on the genomic and non-genomic actions of neurosteroids in nerves, ganglia, and cells forming the PNS, focusing on the mechanisms regulating the peripheral neuron-glial crosstalk. Then, we will refer to the physiopathological significance of the neurosteroid signaling disturbances in the PNS, in to identify new molecular targets for promising pharmacotherapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
35
|
Steroids and Alzheimer's Disease: Changes Associated with Pathology and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21134812. [PMID: 32646017 PMCID: PMC7370115 DOI: 10.3390/ijms21134812] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial age-related neurodegenerative disease that today has no effective treatment to prevent or slow its progression. Neuroactive steroids, including neurosteroids and sex steroids, have attracted attention as potential suitable candidates to alleviate AD pathology. Accumulating evidence shows that they exhibit pleiotropic neuroprotective properties that are relevant for AD. This review focuses on the relationship between selected neuroactive steroids and the main aspects of AD disease, pointing out contributions and gaps with reference to sex differences. We take into account the regulation of brain steroid concentrations associated with human AD pathology. Consideration is given to preclinical studies in AD models providing current knowledge on the neuroprotection offered by neuroactive (neuro)steroids on major AD pathogenic factors, such as amyloid-β (Aβ) and tau pathology, mitochondrial impairment, neuroinflammation, neurogenesis and memory loss. Stimulating endogenous steroid production opens a new steroid-based strategy to potentially overcome AD pathology. This article is part of a Special Issue entitled Steroids and the Nervous System.
Collapse
|
36
|
Brandt N, Fester L, Rune GM. Neural sex steroids and hippocampal synaptic plasticity. VITAMINS AND HORMONES 2020; 114:125-143. [PMID: 32723541 DOI: 10.1016/bs.vh.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It was a widely held belief that sex steroids, namely testosterone and 17β-estradiol (E2) of gonadal origin, control synaptic plasticity in the hippocampus. A new paradigm emerged when it was shown that these sex steroids are synthesized in the hippocampus. The inhibition of sex steroids in the hippocampus impairs synaptic plasticity sex-dependently in this region of the brain. In gonadectomized animals and in hippocampal cultures, inhibition of estradiol synthesis in female animals and in cultures from female animals, and inhibition of dihydrotestosterone synthesis in male animals and in cultures of male animals, cause synapse loss and impair LTP in the hippocampus, but not vice versa. Since the hippocampal cultures originated from perinatal animals, and due to the similarity of in vivo and in vitro findings, it appears that hippocampal neurons are differentiated in a sex-specific manner during the perinatal period when sexual imprinting takes place.
Collapse
Affiliation(s)
- N Brandt
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Fester
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G M Rune
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
37
|
Diviccaro S, Melcangi RC, Giatti S. Post-finasteride syndrome: An emerging clinical problem. Neurobiol Stress 2019; 12:100209. [PMID: 32435662 PMCID: PMC7231981 DOI: 10.1016/j.ynstr.2019.100209] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of side effects during pharmacological treatment is unfortunately a quite common problem. In this review, we focused our attention on adverse events related to 5 alpha-reductase (5α-R) inhibitors (i.e., finasteride and dutasteride), approved for the treatment of benign prostatic hyperplasia and androgenetic alopecia (AGA). Although these drugs are generally well tolerated, many reports described adverse effects in men during treatment, such as sexual dysfunction and mood alteration. In addition, it has been also reported that persistent side effects may occur in some AGA patients. This condition, termed post-finasteride syndrome (PFS) is characterized by sexual side effects (i.e., low libido, erectile dysfunction, decreased arousal and difficulty in achieving orgasm), depression, anxiety and cognitive complaints that are still present despite drug withdrawal. Indeed, some national agencies (e.g., Swedish Medical Products Agency, the Medicines and Healthcare Products Regulatory Agency of UK and the U.S. Food and Drug Administration) required to include multiple persistent side effects within the finasteride labels. As here reported, these observations are mainly based on self-reporting of the symptomatology by the patients and few clinical studies have been performed so far. In addition, molecular mechanisms and/or genetic determinants behind such adverse effects have been poorly explored both in patients and animal models. Therefore, results here discussed indicate that PFS is an emerging clinical problem that needs to be further elucidated.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
38
|
Perez-Laso C, Cerdan S, Junque C, Gómez Á, Ortega E, Mora M, Avendaño C, Gómez-Gil E, Del Cerro MCR, Guillamon A. Effects of Adult Female Rat Androgenization on Brain Morphology and Metabolomic Profile. Cereb Cortex 2019; 28:2846-2853. [PMID: 29106544 DOI: 10.1093/cercor/bhx163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 11/14/2022] Open
Abstract
Androgenization in adult natal women, as in transsexual men (TM), affects brain cortical thickness and the volume of subcortical structures. In order to understand the mechanism underlying these changes we have developed an adult female rat model of androgenization. Magnetic resonance imaging and spectroscopy were used to monitor brain volume changes, white matter microstructure and ex vivo metabolic profiles over 32 days in androgenized and control subjects. Supraphysiological doses of testosterone prevents aging decrease of fractional anisotropy values, decreased general cortical volume and the relative concentrations of glutamine (Gln) and myo-Inositol (mI). An increase in the N-acetylaspartate (NAA)/mI ratio was detected d. Since mI and Gln are astrocyte markers and osmolytes, we suspect that the anabolic effects of testosterone change astrocyte osmolarity so as to extrude Mi and Gln from these cells in order to maintain osmotic homeostasis. This mechanism could explain the brain changes observed in TM and other individuals receiving androgenic anabolic steroids.
Collapse
Affiliation(s)
- Carmen Perez-Laso
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Sebastián Cerdan
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carme Junque
- Departamento de Medicina, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - Ángel Gómez
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Esperanza Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Mireia Mora
- Departamento de Endocrinología, Hospital Clínic, Barcelona, Spain
| | - Carlos Avendaño
- Departamento de Anatomía y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Gómez-Gil
- Unidad de Identidad de Género, Departamento de Psiquiatría, Hospital Clìnic, Barcelona, Spain
| | | | - Antonio Guillamon
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| |
Collapse
|
39
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
40
|
Wu PY, Chuang PY, Chang GD, Chan YY, Tsai TC, Wang BJ, Lin KH, Hsu WM, Liao YF, Lee H. Novel Endogenous Ligands of Aryl Hydrocarbon Receptor Mediate Neural Development and Differentiation of Neuroblastoma. ACS Chem Neurosci 2019; 10:4031-4042. [PMID: 31404492 DOI: 10.1021/acschemneuro.9b00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) signaling has been suggested to play roles in various physiological functions independent of its xenobiotic activity, including cell cycle regulation, immune response, and embryonic development. Several endogenous ligands were also identified by high-throughput screening techniques. However, the mechanism by which these molecules mediate AHR signaling in certain functions is still elusive. In this study, we investigated the possible pathway through which AHR and its endogenous ligands regulate neural development. We first identified two neuroactive steroids, 3α,5α-tetrahydrocorticosterone and 3α,5β-tetrahydrocorticosterone (5α- and 5β-THB), as novel AHR endogenous ligands through the use of an ultrasensitive dioxin-like compound bioassay and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS). We then treated zebrafish embryos with 5α- and 5β-THB, which enhance the expression of neurogenesis marker HuC. Furthermore, 5α- and 5β-THB both enhanced the expression of myelinating glial cell markers, sex determining region Y-box 10 (Sox10), and myelin-associated proteins myelin basic protein (Mbp) and improved the mobility of zebrafish larvae via the Ahr2 pathway. These results indicated that AHR mediates zebrafish neurogenesis and gliogenesis, especially the differentiation of oligodendrocyte or Schwann cells. Additionally, we showed that these molecules may induce neuroblastoma (NB) cell differentiation suggesting therapeutic potential of 5α- and 5β-THB in NB treatment. In summary, our results reveal that 5α- and 5β-THB are endogenous ligands of AHR and have therapeutic potential for NB treatment. By the interaction with THB, AHR signaling regulates various aspects of neural development.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Yun Chuang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Science, National Taiwan University, Taipei 106, Taiwan
| | - Ya-Yun Chan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Ching Tsai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Jeng Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
41
|
Abstract
Hormones impact on cognition, emotions, and behaviour. Given that mental disorders are defined by abnormalities in these very same domains, clinical psychologists may benefit from learning more about alterations in endocrine systems, how they can contribute to symptoms commonly experienced by patients, and how such knowledge may be put to use in clinical practice.
The aim of the present scientific update was to provide a brief overview of endocrine research relevant to the aetiology, diagnostics, and treatment of mental disorders, including some of the latest studies in this area.
Hormones appear to be intrinsic to the development and maintenance of mental disorders. Oxytocin is involved in social cognition and behaviour and as such may be relevant to mental disorders characterised by social deficits (e.g., autism spectrum disorder and schizophrenia). Stress and sex steroids exert demonstrable effects on mood and cognition. In patients with depression and anxiety disorders, initial attempts to lower/enhance such hormones have thus been undertaken within conventional therapies in order to improve outcomes. Finally, hunger and satiety hormones may be involved in the vicious circle of dysfunctional eating behaviours and weight loss/gain in anorexia or bulimia nervosa.
Three conclusions can be drawn from this review: First, endocrine research should be considered when patients and clinicians are developing multidimensional illness models together. Second, endocrine markers can complement conventional assessments to provide a more comprehensive account of a patient’s current state. Third, endocrine testing may guide treatment choices and inform the development of novel treatments.
Hormones are intrinsic to the development and maintenance of mental disorders
Endocrine research should be incorporated into multidimensional illness models
Endocrine markers can complement conventional diagnostic assessments
Endocrine testing may guide treatment choices and inform the development of new treatments
Hormones are intrinsic to the development and maintenance of mental disorders
Endocrine research should be incorporated into multidimensional illness models
Endocrine markers can complement conventional diagnostic assessments
Endocrine testing may guide treatment choices and inform the development of new treatments
Collapse
|
42
|
Giatti S, Diviccaro S, Garcia-Segura LM, Melcangi RC. Sex differences in the brain expression of steroidogenic molecules under basal conditions and after gonadectomy. J Neuroendocrinol 2019; 31:e12736. [PMID: 31102564 DOI: 10.1111/jne.12736] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 01/19/2023]
Abstract
The brain is a steroidogenic tissue. It expresses key molecules involved in the synthesis and metabolism of neuroactive steroids, such as steroidogenic acute regulatory protein (StAR), translocator protein 18 kDa (TSPO), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenases (3β-HSD), 5α-reductases (5α-R) and 3α-hydroxysteroid oxidoreductases (3α-HSOR). Previous studies have shown that the levels of brain steroids are different in male and female rats under basal conditions and after gonadectomy. In the present study, we assessed gene expression of key neurosteroidogenic molecules in the cerebral cortex and cerebellum of gonadally intact and gonadectomised adult male and female rats. In the cerebellum, the basal mRNA levels of StAR and 3α-HSOR were significantly higher in females than in males. By contrast, the mRNA levels of TSPO and 5α-R were significantly higher in males. In the cerebral cortex, all neurosteroidogenic molecules analysed showed similar mRNA levels in males and females. Gonadectomy increased the expression of 5α-R in the brain of both sexes, although it affected the brain expression of StAR, TSPO, P450scc and 3α-HSOR in females only and with regional differences. Although protein levels were not investigated in the present study, our findings indicate that mRNA expression of steroidogenic molecules in the adult rat brain is sexually dimorphic and presents regional specificity, both under basal conditions and after gonadectomy. Thus, local steroidogenesis may contribute to the reported sex and regional differences in the levels of brain neuroactive steroids and may be involved in the generation of sex differences in the adult brain function.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
43
|
Giatti S, Diviccaro S, Melcangi RC. Neuroactive Steroids and Sex-Dimorphic Nervous Damage Induced by Diabetes Mellitus. Cell Mol Neurobiol 2019; 39:493-502. [PMID: 30109515 DOI: 10.1007/s10571-018-0613-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disease where improper glycaemic control may induce severe complications in different organs. In this review, we will discuss alterations occurring in peripheral and central nervous system of patients with type 1 (i.e., insulin dependent diabetes mellitus,) or type 2 diabetes (i.e., non-insulin dependent diabetes mellitus), as well as related experimental models. A particular focus will be on the role exerted by neuroactive steroids (i.e., important regulators of nervous functions) in the nervous damage induced by diabetes. Indeed, the nervous levels of these molecules are affected by the pathology and, in agreement, their neuroprotective effects have been reported. Interestingly, the sex is another important variable. As discussed, nervous diabetic complications show sex dimorphic features in term of incidence, functional outcomes and neuroactive steroid levels. Therefore, these features represent an interesting background for possible sex-oriented therapies with neuroactive steroids aimed to counteract nervous damage observed in diabetic pathology.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
44
|
Sex differences in the progressive model of parkinsonism induced by reserpine in rats. Behav Brain Res 2019; 363:23-29. [DOI: 10.1016/j.bbr.2019.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/05/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023]
|
45
|
Fortress AM, Avcu P, Wagner AK, Dixon CE, Pang KCH. Experimental traumatic brain injury results in estrous cycle disruption, neurobehavioral deficits, and impaired GSK3β/β-catenin signaling in female rats. Exp Neurol 2019; 315:42-51. [PMID: 30710530 DOI: 10.1016/j.expneurol.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
An estimated 2.8 million traumatic brain injuries (TBI) occur within the United States each year. Approximately 40% of new TBI cases are female, however few studies have investigated the effects of TBI on female subjects. In addition to typical neurobehavioral sequelae observed after TBI, such as poor cognition, impaired behavior, and somatic symptoms, women with TBI report amenorrhea or irregular menstrual cycles suggestive of disruptions in the hypothalamic-pituitary-gonadal (HPG) axis. HPG dysfunction following TBI has been linked to poor functional outcome in men and women, but the mechanisms by which this may occur or relate to behavior has not been fully developed or ascertained. The present study determined if TBI resulted in HPG axis perturbations in young adult female Sprague Dawley rats, and whether TBI was associated with cognitive and sensorimotor deficits. Following lateral fluid percussion injury, injured females spent significantly more time in diestrus compared to sham females, consistent with a persistent low sex-steroid hormone state. Injured females displayed significantly reduced 17β-estradiol (E2) and luteinizing hormone levels. Concomitantly, injured females were impaired in spatial working memory compared to shams. Impaired GSK3β/β-catenin signaling related to synaptic changes was evident one-week post-injury in the hippocampus among injured females compared to sham females, and this impairment paralleled the deficits in spatial working memory. Sensorimotor function, as evidenced by suppression of the acoustic startle response, was chronically impaired even after normal estrous cycling resumed. These data demonstrate that TBI results in estrous cycle impairments, memory dysfunction, and perturbations in GSK3β/β-catenin signaling, suggesting a potential mechanism for HPG-mediated cognitive impairment following TBI.
Collapse
Affiliation(s)
- Ashley M Fortress
- NeuroBehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA; VA Pittsburgh Healthcare System, Mailstop 151, University Drive C, Pittsburgh, PA 15240, USA.
| | - Pelin Avcu
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, 65 Bergen Street, Newark, NJ 07103, USA
| | - Amy K Wagner
- Safar Center for Resuscitation Research, Center for Neuroscience, 3471 Fifth Avenue Suite 202, Kaufman BuildingUniversity of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - C Edward Dixon
- VA Pittsburgh Healthcare System, Mailstop 151, University Drive C, Pittsburgh, PA 15240, USA; Safar Center for Resuscitation Research, Center for Neuroscience, 3471 Fifth Avenue Suite 202, Kaufman BuildingUniversity of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kevin C H Pang
- NeuroBehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, 65 Bergen Street, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Science, Newark, NJ, USA.
| |
Collapse
|
46
|
Diviccaro S, Giatti S, Borgo F, Barcella M, Borghi E, Trejo JL, Garcia-Segura LM, Melcangi RC. Treatment of male rats with finasteride, an inhibitor of 5alpha-reductase enzyme, induces long-lasting effects on depressive-like behavior, hippocampal neurogenesis, neuroinflammation and gut microbiota composition. Psychoneuroendocrinology 2019; 99:206-215. [PMID: 30265917 DOI: 10.1016/j.psyneuen.2018.09.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 02/08/2023]
Abstract
Persistent alteration of plasma neuroactive steroid levels associated with major depression has been recently reported in men after the suspension of the treatment for androgenetic alopecia with finasteride, an inhibitor of the enzyme 5alpha-reductase. Observations in male rats confirmed persistent alterations in neuroactive steroid levels also in the brain. In the present study, we have ascertained possible effects on depressive-like behavior, neurogenesis, gliosis, neuroinflammation and gut microbiota in male rats after subchronic treatment for 20 days with finasteride and after one month of its withdrawal. At the end of treatment there was an increase in the number of pH3 immunoreactive cells in the subgranular zone of the dentate gyrus together with an increase in the mRNA levels of TNF-α in the hippocampus. By one month after the end of finasteride treatment, rats showed depressive-like behavior coupled with a decrease in the number of pH3 immunoreactive cells in the subgranular zone of the dentate gyrus, a decrease in granule cell density in the granule cell layer and an increase in the number of GFAP immunoreactive astrocytes in the dentate gyrus. Finally, alteration of gut microbiota (i.e., an increase in Bacteroidetes phylum and in Prevotellaceae family at the end of the treatment and a decrease in Ruminococcaceae family, Oscillospira and Lachnospira genus at the end of the withdrawal period) was detected. In conclusion, finasteride treatment in male rats has long term effects on depressive-like behavior, hippocampal neurogenesis and neuroinflammation and gut microbiota composition.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesca Borgo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Matteo Barcella
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Elisa Borghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - José Luis Trejo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
47
|
Salais-López H, Agustín-Pavón C, Lanuza E, Martínez-García F. The maternal hormone in the male brain: Sexually dimorphic distribution of prolactin signalling in the mouse brain. PLoS One 2018; 13:e0208960. [PMID: 30571750 PMCID: PMC6301622 DOI: 10.1371/journal.pone.0208960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/27/2018] [Indexed: 01/10/2023] Open
Abstract
Research of the central actions of prolactin is highly focused on females, but this hormone has also documented roles in male physiology and behaviour. Here, we provide the first description of the pattern of prolactin-derived signalling in the male mouse brain, employing the immunostaining of phosphorylated signal transducer and activator of transcription 5 (pSTAT5) after exogenous prolactin administration. Next, we explore possible sexually dimorphic differences by comparing pSTAT5 immunoreactivity in prolactin-supplemented males and females. We also assess the role of testosterone in the regulation of central prolactin signalling in males by comparing intact with castrated prolactin-supplemented males. Prolactin-supplemented males displayed a widespread pattern of pSTAT5 immunoreactivity, restricted to brain centres showing expression of the prolactin receptor. Immunoreactivity for pSTAT5 was present in several nuclei of the preoptic, anterior and tuberal hypothalamus, as well as in the septofimbrial nucleus or posterodorsal medial amygdala of the telencephalon. Conversely, non-supplemented control males were virtually devoid of pSTAT5-immunoreactivity, suggesting that central prolactin actions in males are limited to situations concurrent with substantial hypophyseal prolactin release (e.g. stress or mating). Furthermore, comparison of prolactin-supplemented males and females revealed a significant, female-biased sexual dimorphism, supporting the view that prolactin has a preeminent role in female physiology and behaviour. Finally, in males, castration significantly reduced pSTAT5 immunoreactivity in some structures, including the paraventricular and ventromedial hypothalamic nuclei and the septofimbrial region, thus indicating a region-specific regulatory role of testosterone over central prolactin signalling.
Collapse
Affiliation(s)
- Hugo Salais-López
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
- Departament de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Fernando Martínez-García
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
48
|
Shay DA, Vieira-Potter VJ, Rosenfeld CS. Sexually Dimorphic Effects of Aromatase on Neurobehavioral Responses. Front Mol Neurosci 2018; 11:374. [PMID: 30374289 PMCID: PMC6196265 DOI: 10.3389/fnmol.2018.00374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/21/2018] [Indexed: 01/16/2023] Open
Abstract
Aromatase is the enzyme responsible for converting testosterone to estradiol. In mammals, aromatase is expressed in the testes, ovaries, brain, and other tissues. While estrogen is traditionally associated with reproduction and sexual behavior in females, our current understanding broadens this perspective to include such biological functions as metabolism and cognition. It is now well-recognized that aromatase plays a vital lifetime role in brain development and neurobehavioral function in both sexes. Thus, ongoing investigations seek to highlight potentially vital sex differences in the role of aromatase, particularly regarding its centrally mediated effects. To characterize the role of aromatase in mediating such functions, effects of aromatase inhibitor (AI) treatments on humans and animal models have been determined. Aromatase knockout (ArKO) mice that systemically lack the enzyme have also been employed. Humans possessing mutations in the gene encoding aromatase, CYP19, have also provided critical insight into how aromatase affects brain function in a possible sex-dependent manner. A better understanding of how AIs, used to treat breast cancer and other clinical conditions, may detrimentally affect neurobehavioral responses will likely promote development of future therapies to combat these effects. Herein, we will provide a critical review of the current knowledge of sex differences in aromatase regulation of various neurobehavioral functions. Although many species have been used to better understand the functions of aromatase, this review focuses on rodent models and humans. Critical gaps in our present understanding of this area will be considered, and important future research directions will be discussed.
Collapse
Affiliation(s)
- Dusti A Shay
- Nutrition and Exercise Physiology, University of Missouri Columbia, MO, United States
| | | | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri Columbia, MO, United States.,Department of Biomedical Sciences, University of Missouri Columbia, MO, United States
| |
Collapse
|
49
|
Giatti S, Diviccaro S, Panzica G, Melcangi RC. Post-finasteride syndrome and post-SSRI sexual dysfunction: two sides of the same coin? Endocrine 2018; 61:180-193. [PMID: 29675596 DOI: 10.1007/s12020-018-1593-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Sexual dysfunction is a clinical condition due to different causes including the iatrogenic origin. For instance, it is well known that sexual dysfunction may occur in patients treated with antidepressants like selective serotonin reuptake inhibitors (SSRI). A similar side effect has been also reported during treatment with finasteride, an inhibitor of the enzyme 5alpha-reductase, for androgenetic alopecia. Interestingly, sexual dysfunction persists in both cases after drug discontinuation. These conditions have been named post-SSRI sexual dysfunction (PSSD) and post-finasteride syndrome (PFS). In particular, feeling of a lack of connection between the brain and penis, loss of libido and sex drive, difficulty in achieving an erection and genital paresthesia have been reported by patients of both conditions. It is interesting to note that the incidence of these diseases is probably so far underestimated and their etiopathogenesis is not sufficiently explored. To this aim, the present review will report the state of art of these two different pathologies and discuss, on the basis of the role exerted by three different neuromodulators such as dopamine, serotonin and neuroactive steroids, whether the persistent sexual dysfunction observed could be determined by common mechanisms.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Giancarlo Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Università degli studi di Torino, Neuroscience Institute Cavallieri Ottolenghi (NICO), Orbassano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
50
|
Traish AM. The Post-finasteride Syndrome: Clinical Manifestation of Drug-Induced Epigenetics Due to Endocrine Disruption. CURRENT SEXUAL HEALTH REPORTS 2018. [DOI: 10.1007/s11930-018-0161-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|