1
|
Quinton JC, Gautheron F, Smeding A. Embodied sequential sampling models and dynamic neural fields for decision-making: Why hesitate between two when a continuum is the answer. Neural Netw 2024; 179:106526. [PMID: 39053301 DOI: 10.1016/j.neunet.2024.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/02/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
As two alternative options in a forced choice task are separated by design, two classes of computational models of decision-making have thrived independently in the literature for nearly five decades. While sequential sampling models (SSM) focus on response times and keypresses in binary decisions in experimental paradigms, dynamic neural fields (DNF) focus on continuous sensorimotor dimensions and tasks found in perception and robotics. Recent attempts have been made to address limitations in their application to other domains, but strong similarities and compatibility between prominent models from both classes were hardly considered. This article is an attempt at bridging the gap between these classes of models, and simultaneously between disciplines and paradigms relying on binary or continuous responses. A unifying formulation of representative SSM and DNF equations is proposed, varying the number of units which interact and compete to reach a decision. The embodiment of decisions is also considered by coupling cognitive and sensorimotor processes, enabling the model to generate decision trajectories at trial level. The resulting mechanistic model is therefore able to target different paradigms (forced choices or continuous response scales) and measures (final responses or dynamics). The validity of the model is assessed statistically by fitting empirical distributions obtained from human participants in moral decision-making mouse-tracking tasks, for which both dichotomous and nuanced responses are meaningful. Comparing equations at the theoretical level, and model parametrizations at the empirical level, the implications for psychological decision-making processes, as well as the fundamental assumptions and limitations of models and paradigms are discussed.
Collapse
Affiliation(s)
| | - Flora Gautheron
- Univ. Grenoble Alpes, CNRS, Grenoble INP,(1) LJK, 38000 Grenoble, France; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, LIP/PC2S, 38000 Grenoble, France.
| | - Annique Smeding
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, LIP/PC2S, 73000 Chambéry, France.
| |
Collapse
|
2
|
Ringer RV, Leonard CJ. Early visual modulation and selection predict saccadic timing during visual search: An ERP study. Psychophysiology 2024:e14715. [PMID: 39460548 DOI: 10.1111/psyp.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Saccadic eye movements, a critical aspect of real-world visual behavior, are preceded by an initial accumulation of visual information followed by the selection of a single location to move one's eyes. However, it is currently unclear how each of these stages uniquely affects saccadic timing. In this study, participants searched for a contour integration target while EEG was used to measure posterior cortical activity between search display onset and first saccade initiation. The goal was to determine whether saccade timing could be attributed to differences in early ERP amplitudes, with the P1 reflecting the magnitude of early perceptual information accumulation and the N1 reflecting the strength of selection leading to the saccadic decision. EOG was used to measure saccade timing, and trials were divided into fast, middle, and slow bins. The N1 response was smallest in the slow saccade tertile, relative to both the fast and middle tertiles, suggesting weak selection. In contrast, the P1 response was largest for this same slow saccadic tertile relative to the middle saccadic tertile, suggesting vigorous information accumulation. Therefore, delays in saccadic behavior may occur when the visual system is overwhelmed with visual input, thus increasing the time to reach a saccadic decision. These findings reconcile models of eye movement behavior which often prioritize either the impact of information accrual or selection, rather than regarding both as an integrated whole.
Collapse
Affiliation(s)
- Ryan V Ringer
- Department of Psychology, University of Colorado Denver, Denver, Colorado, USA
| | - Carly J Leonard
- Department of Psychology, University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
3
|
Nouraeinejad A. The effect of amblyopia on saccadic eye movements. Int J Neurosci 2024; 134:310-311. [PMID: 35815630 DOI: 10.1080/00207454.2022.2100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
The effect of amblyopia on several sensory and perceptual functions has been widely studied. However, relatively fewer studies have evaluated the influence of amblyopia on visuomotor aspects. This concise but comprehensive collection of materials is to show how saccadic eye movements are severely affected by amblyopia and therefore spatiotemporal coordination between the visual and motor systems is distorted. The author hopes that recognition of these saccade deficits in amblyopia can help all eye professionals and neurologists to consider validated clinical tests related to saccadic eye movements in patients with amblyopia as these tests are not presently performed in routine clinical eye examinations.
Collapse
Affiliation(s)
- Ali Nouraeinejad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London (UCL), London, UK
| |
Collapse
|
4
|
Caziot B, Cooper B, Harwood MR, McPeek RM. Physiological correlates of a simple saccadic-decision task to extended objects in superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584223. [PMID: 38559019 PMCID: PMC10979857 DOI: 10.1101/2024.03.09.584223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Our vision is best only in the center of our gaze, and we use saccadic eye movements to direct gaze to objects and features of interest. We make more than 180,000 saccades per day, and accurate and efficient saccades are crucial for most visuo-motor tasks. Saccades are typically studied using small point stimuli, despite the fact that most real-world visual scenes are composed of extended objects. Recent studies in humans have shown that the initiation latency of saccades is strongly dependent on the size of the target (the "size-latency effect"), perhaps reflecting a tradeoff between the cost of making a saccade to a target and the expected information gain that would result. Here, we investigate the neuronal correlates of the size-latency effect in the macaque superior colliculus. We analyzed the latency variations of saccades to different size targets within a stochastic accumulator model framework. The model predicted a steeper increase in activity for smaller targets compared to larger ones. Surprisingly, the model also predicted an increase in saccade initiation threshold for larger targets. We found that the activity of intermediate-layer SC visuomotor neurons is in close agreement with the model predictions. We also found evidence that these effects may be a consequence of the visual responses of SC neurons to targets of different sizes. These results shed new light on the sources of delay within the saccadic system, a system that we heavily depend upon in the performance of most visuo-motor tasks.
Collapse
Affiliation(s)
- B. Caziot
- Graduate Center for Vision Research, Department of Biological and Vision Sciences, SUNY College of Optometry, 33 West 42 Street, New York, NY, 10036, USA
- Neurophysics Department, Philipps-Universität Marburg, 8A Karl-von-Frisch-Straße, 35043 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus–Liebig–Universität Gießen, Gießen, Germany
| | - B. Cooper
- Graduate Center for Vision Research, Department of Biological and Vision Sciences, SUNY College of Optometry, 33 West 42 Street, New York, NY, 10036, USA
| | - M. R. Harwood
- Department of Psychological Sciences, University of East London, London, UK
| | - R. M. McPeek
- Graduate Center for Vision Research, Department of Biological and Vision Sciences, SUNY College of Optometry, 33 West 42 Street, New York, NY, 10036, USA
| |
Collapse
|
5
|
Roberts K, Jentzsch I, Otto TU. Semantic congruency modulates the speed-up of multisensory responses. Sci Rep 2024; 14:567. [PMID: 38177170 PMCID: PMC10766646 DOI: 10.1038/s41598-023-50674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Responses to multisensory signals are often faster compared to their unisensory components. This speed-up is typically attributed to target redundancy in that a correct response can be triggered by one or the other signal. In addition, semantic congruency of signals can also modulate multisensory responses; however, the contribution of semantic content is difficult to isolate as its manipulation commonly changes signal redundancy as well. To disentangle the effects of redundancy and semantic congruency, we manipulated semantic content but kept redundancy constant. We presented semantically congruent/incongruent animal pictures and sounds and asked participants to respond with the same response to two target animals (cats and dogs). We find that the speed-up of multisensory responses is larger for congruent (e.g., barking dogs) than incongruent combinations (e.g., barking cats). We then used a computational modelling approach to analyse audio-visual processing interferences that may underlie the effect. Our data is best described by a model that explains the semantic congruency modulation with a parameter that was previously linked to trial sequence effects, which in our experiment occur from the repetition/switching of both sensory modality and animal category. Yet, a systematic analysis of such trial sequence effects shows that the reported congruency effect is an independent phenomenon. Consequently, we discuss potential contributors to the semantic modulation of multisensory responses.
Collapse
Affiliation(s)
- Kalvin Roberts
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, KY16 9JP, UK.
| | - Ines Jentzsch
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, KY16 9JP, UK
| | - Thomas U Otto
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, KY16 9JP, UK.
| |
Collapse
|
6
|
Roth N, Rolfs M, Hellwich O, Obermayer K. Objects guide human gaze behavior in dynamic real-world scenes. PLoS Comput Biol 2023; 19:e1011512. [PMID: 37883331 PMCID: PMC10602265 DOI: 10.1371/journal.pcbi.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
The complexity of natural scenes makes it challenging to experimentally study the mechanisms behind human gaze behavior when viewing dynamic environments. Historically, eye movements were believed to be driven primarily by space-based attention towards locations with salient features. Increasing evidence suggests, however, that visual attention does not select locations with high saliency but operates on attentional units given by the objects in the scene. We present a new computational framework to investigate the importance of objects for attentional guidance. This framework is designed to simulate realistic scanpaths for dynamic real-world scenes, including saccade timing and smooth pursuit behavior. Individual model components are based on psychophysically uncovered mechanisms of visual attention and saccadic decision-making. All mechanisms are implemented in a modular fashion with a small number of well-interpretable parameters. To systematically analyze the importance of objects in guiding gaze behavior, we implemented five different models within this framework: two purely spatial models, where one is based on low-level saliency and one on high-level saliency, two object-based models, with one incorporating low-level saliency for each object and the other one not using any saliency information, and a mixed model with object-based attention and selection but space-based inhibition of return. We optimized each model's parameters to reproduce the saccade amplitude and fixation duration distributions of human scanpaths using evolutionary algorithms. We compared model performance with respect to spatial and temporal fixation behavior, including the proportion of fixations exploring the background, as well as detecting, inspecting, and returning to objects. A model with object-based attention and inhibition, which uses saliency information to prioritize between objects for saccadic selection, leads to scanpath statistics with the highest similarity to the human data. This demonstrates that scanpath models benefit from object-based attention and selection, suggesting that object-level attentional units play an important role in guiding attentional processing.
Collapse
Affiliation(s)
- Nicolas Roth
- Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany
- Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany
| | - Martin Rolfs
- Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Germany
| | - Olaf Hellwich
- Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany
- Institute of Computer Engineering and Microelectronics, Technische Universität Berlin, Germany
| | - Klaus Obermayer
- Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany
- Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Germany
| |
Collapse
|
7
|
Van Opstal AJ, Noordanus E. Towards personalized and optimized fitting of cochlear implants. Front Neurosci 2023; 17:1183126. [PMID: 37521701 PMCID: PMC10372492 DOI: 10.3389/fnins.2023.1183126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
A cochlear implant (CI) is a neurotechnological device that restores total sensorineural hearing loss. It contains a sophisticated speech processor that analyzes and transforms the acoustic input. It distributes its time-enveloped spectral content to the auditory nerve as electrical pulsed stimulation trains of selected frequency channels on a multi-contact electrode that is surgically inserted in the cochlear duct. This remarkable brain interface enables the deaf to regain hearing and understand speech. However, tuning of the large (>50) number of parameters of the speech processor, so-called "device fitting," is a tedious and complex process, which is mainly carried out in the clinic through 'one-size-fits-all' procedures. Current fitting typically relies on limited and often subjective data that must be collected in limited time. Despite the success of the CI as a hearing-restoration device, variability in speech-recognition scores among users is still very large, and mostly unexplained. The major factors that underly this variability incorporate three levels: (i) variability in auditory-system malfunction of CI-users, (ii) variability in the selectivity of electrode-to-auditory nerve (EL-AN) activation, and (iii) lack of objective perceptual measures to optimize the fitting. We argue that variability in speech recognition can only be alleviated by using objective patient-specific data for an individualized fitting procedure, which incorporates knowledge from all three levels. In this paper, we propose a series of experiments, aimed at collecting a large amount of objective (i.e., quantitative, reproducible, and reliable) data that characterize the three processing levels of the user's auditory system. Machine-learning algorithms that process these data will eventually enable the clinician to derive reliable and personalized characteristics of the user's auditory system, the quality of EL-AN signal transfer, and predictions of the perceptual effects of changes in the current fitting.
Collapse
|
8
|
Le Naour T, Papinutto M, Lobier M, Bresciani JP. Controlling the trajectory of a moving object substantially shortens the latency of motor responses to visual stimuli. iScience 2023; 26:106838. [PMID: 37250785 PMCID: PMC10212987 DOI: 10.1016/j.isci.2023.106838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Motor responses to visual stimuli have shorter latencies for controlling than for initiating movement. The shorter latencies observed for movement control are notably believed to reflect the involvement of forward models when controlling moving limbs. We assessed whether controlling a moving limb is a "requisite" to observe shortened response latencies. The latency of button-press responses to a visual stimulus was compared between conditions involving or not involving the control of a moving object, but never involving any actual control of a body segment. When the motor response controlled a moving object, response latencies were significantly shorter and less variable, probably reflecting a faster sensorimotor processing (as assessed fitting a LATER model to our data). These results suggest that when the task at hand entails a control component, the sensorimotor processing of visual information is hastened, and this even if the task does not require to actually control a moving limb.
Collapse
Affiliation(s)
- Thibaut Le Naour
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
- Motion-up, Vannes, France
| | - Michael Papinutto
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | | | - Jean-Pierre Bresciani
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
- Grenoble-Alpes University, Grenoble, France
| |
Collapse
|
9
|
Breu MS, Ramezanpour H, Dicke PW, Thier P. A frontoparietal network for volitional control of gaze following. Eur J Neurosci 2023; 57:1723-1735. [PMID: 36967647 DOI: 10.1111/ejn.15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Gaze following is a major element of non-verbal communication and important for successful social interactions. Human gaze following is a fast and almost reflex-like behaviour, yet it can be volitionally controlled and suppressed to some extent if inappropriate or unnecessary, given the social context. In order to identify the neural basis of the cognitive control of gaze following, we carried out an event-related fMRI experiment, in which human subjects' eye movements were tracked while they were exposed to gaze cues in two distinct contexts: A baseline gaze following condition in which subjects were instructed to use gaze cues to shift their attention to a gazed-at spatial target and a control condition in which the subjects were required to ignore the gaze cue and instead to shift their attention to a distinct spatial target to be selected based on a colour mapping rule, requiring the suppression of gaze following. We could identify a suppression-related blood-oxygen-level-dependent (BOLD) response in a frontoparietal network comprising dorsolateral prefrontal cortex (dlPFC), orbitofrontal cortex (OFC), the anterior insula, precuneus, and posterior parietal cortex (PPC). These findings suggest that overexcitation of frontoparietal circuits in turn suppressing the gaze following patch might be a potential cause of gaze following deficits in clinical populations.
Collapse
Affiliation(s)
- M S Breu
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - H Ramezanpour
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - P W Dicke
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - P Thier
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Maeda K, Inoue KI, Takada M, Hikosaka O. Environmental context-dependent activation of dopamine neurons via putative amygdala-nigra pathway in macaques. Nat Commun 2023; 14:2282. [PMID: 37085491 PMCID: PMC10121604 DOI: 10.1038/s41467-023-37584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Seeking out good and avoiding bad objects is critical for survival. In practice, objects are rarely good every time or everywhere, but only at the right time or place. Whereas the basal ganglia (BG) are known to mediate goal-directed behavior, for example, saccades to rewarding objects, it remains unclear how such simple behaviors are rendered contingent on higher-order factors, including environmental context. Here we show that amygdala neurons are sensitive to environments and may regulate putative dopamine (DA) neurons via an inhibitory projection to the substantia nigra (SN). In male macaques, we combined optogenetics with multi-channel recording to demonstrate that rewarding environments induce tonic firing changes in DA neurons as well as phasic responses to rewarding events. These responses may be mediated by disinhibition via a GABAergic projection onto DA neurons, which in turn is suppressed by an inhibitory projection from the amygdala. Thus, the amygdala may provide an additional source of learning to BG circuits, namely contingencies imposed by the environment.
Collapse
Affiliation(s)
- Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Kerkeni H, Zee DS, Korda A, Morrison M, Mantokoudis G, Ramat S. Corrective saccades in acute vestibular neuritis: studying the role of prediction with automated passively induced head impulses. J Neurophysiol 2023; 129:445-454. [PMID: 36651642 DOI: 10.1152/jn.00382.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
When the demands for visual stabilization during head rotations overwhelm the ability of the vestibuloocular reflex (VOR) to produce compensatory eye movements, the brain produces corrective saccades that bring gaze toward the fixation target, even without visual cues (covert saccades). What triggers covert saccades and what might be the role of prediction in their generation are unknown. We studied 14 subjects with acute vestibular neuritis. To minimize variability of the stimulus, head impulses were imposed with a motorized torque generator with the subject on a bite bar. Predictable and unpredictable (timing, amplitude, direction) stimuli were compared. Distributions of covert corrective saccade latencies were analyzed with a "LATER" (linear approach to threshold with ergodic rate) approach. On the affected side, VOR gain was higher (0.47 ± 0.28 vs. 0.39 ± 0.22, P ≪ 0.001) with predictable than unpredictable head impulses, and gaze error at the end of the head movement was less (5.4 ± 3.3° vs. 6.9 ± 3.3°, P ≪ 0.001). Analyzing trials with covert saccades, gaze error at saccade end was significantly less with predictable than unpredictable head impulses (4.2 ± 2.8° vs. 5.5 ± 3.2°, P ≪ 0.001). Furthermore, covert corrective saccades occurred earlier with predictable than unpredictable head impulses (140 ± 37 vs. 153 ± 37 ms, P ≪ 0.001). Using a LATER analysis with reciprobit plots, we were able to divide covert corrective saccades into two classes, early and late, with a break point in the range of 88-98 ms. We hypothesized two rise-to-threshold decision mechanisms for triggering early and late covert corrective saccades, with the first being most engaged when stimuli are predictable.NEW & NOTEWORTHY We successfully used a LATER (linear approach to threshold with ergodic rate) analysis of the latencies of corrective saccades in patients with acute vestibular neuritis. We found two types of covert saccades: early (<90 ms) and late (>90 ms) covert saccades. Predictability led to an increase in VOR gain and a decrease in saccade latency.
Collapse
Affiliation(s)
- Hassen Kerkeni
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - David S Zee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Athanasia Korda
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Miranda Morrison
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Stefano Ramat
- Laboratory of Bioengineering, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Lawlor J, Zagala A, Jamali S, Boubenec Y. Pupillary dynamics reflect the impact of temporal expectation on detection strategy. iScience 2023; 26:106000. [PMID: 36798438 PMCID: PMC9926307 DOI: 10.1016/j.isci.2023.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/09/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Everyday life's perceptual decision-making is informed by experience. In particular, temporal expectation can ease the detection of relevant events in noisy sensory streams. Here, we investigated if humans can extract hidden temporal cues from the occurrences of probabilistic targets and utilize them to inform target detection in a complex acoustic stream. To understand what neural mechanisms implement temporal expectation influence on decision-making, we used pupillometry as a proxy for underlying neuromodulatory activity. We found that participants' detection strategy was influenced by the hidden temporal context and correlated with sound-evoked pupil dilation. A model of urgency fitted on false alarms predicted detection reaction time. Altogether, these findings suggest that temporal expectation informs decision-making and could be implemented through neuromodulatory-mediated urgency signals.
Collapse
Affiliation(s)
- Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA,Corresponding author
| | - Agnès Zagala
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
| | - Sara Jamali
- Institut Pasteur, INSERM, Institut de l’Audition, Paris, France
| | - Yves Boubenec
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|
13
|
Gacoin M, Ben Hamed S. Fluoxetine degrades luminance perceptual thresholds while enhancing motivation and reward sensitivity. Front Pharmacol 2023; 14:1103999. [PMID: 37153796 PMCID: PMC10157648 DOI: 10.3389/fphar.2023.1103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) increase serotonin activity in the brain. While they are mostly known for their antidepressant properties, they have been shown to improve visual functions in amblyopia and impact cognitive functions ranging from attention to motivation and sensitivity to reward. Yet, a clear understanding of the specific action of serotonin to each of bottom-up sensory and top-down cognitive control components and their interaction is still missing. To address this question, we characterize, in two adult male macaques, the behavioral effects of fluoxetine, a specific SSRI, on visual perception under varying bottom-up (luminosity, distractors) and top-down (uncertainty, reward biases) constraints while they are performing three different visual tasks. We first manipulate target luminosity in a visual detection task, and we show that fluoxetine degrades luminance perceptual thresholds. We then use a target detection task in the presence of spatial distractors, and we show that under fluoxetine, monkeys display both more liberal responses as well as a degraded perceptual spatial resolution. In a last target selection task, involving free choice in the presence of reward biases, we show that monkeys display an increased sensitivity to reward outcome under fluoxetine. In addition, we report that monkeys produce, under fluoxetine, more trials and less aborts, increased pupil size, shorter blink durations, as well as task-dependent changes in reaction times. Overall, while low level vision appears to be degraded by fluoxetine, performances in the visual tasks are maintained under fluoxetine due to enhanced top-down control based on task outcome and reward maximization.
Collapse
Affiliation(s)
- Maëva Gacoin
- *Correspondence: Maëva Gacoin, ; Suliann Ben Hamed,
| | | |
Collapse
|
14
|
Mesolimbic dopamine adapts the rate of learning from action. Nature 2023; 614:294-302. [PMID: 36653450 PMCID: PMC9908546 DOI: 10.1038/s41586-022-05614-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/30/2022] [Indexed: 01/20/2023]
Abstract
Recent success in training artificial agents and robots derives from a combination of direct learning of behavioural policies and indirect learning through value functions1-3. Policy learning and value learning use distinct algorithms that optimize behavioural performance and reward prediction, respectively. In animals, behavioural learning and the role of mesolimbic dopamine signalling have been extensively evaluated with respect to reward prediction4; however, so far there has been little consideration of how direct policy learning might inform our understanding5. Here we used a comprehensive dataset of orofacial and body movements to understand how behavioural policies evolved as naive, head-restrained mice learned a trace conditioning paradigm. Individual differences in initial dopaminergic reward responses correlated with the emergence of learned behavioural policy, but not the emergence of putative value encoding for a predictive cue. Likewise, physiologically calibrated manipulations of mesolimbic dopamine produced several effects inconsistent with value learning but predicted by a neural-network-based model that used dopamine signals to set an adaptive rate, not an error signal, for behavioural policy learning. This work provides strong evidence that phasic dopamine activity can regulate direct learning of behavioural policies, expanding the explanatory power of reinforcement learning models for animal learning6.
Collapse
|
15
|
Vencato V, Harwood M, Madelain L. Saccadic initiation biased by fixational activity. Vision Res 2022; 201:108117. [PMID: 36031689 DOI: 10.1016/j.visres.2022.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/23/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023]
Abstract
Both the gap and overlap paradigm may reveal the interaction between fixating and moving the eyes, but the effects of the overlap paradigm have not been fully characterized yet. Here we present a series of experiments probing how an overlap paradigm, combined with the manipulation of stimuli durations, saliency and transient changes might modulate saccadic reaction time distributions. We recorded saccadic reaction time in four participants in six experiments in which a saccade-target appeared at a pseudo-random amplitude after a fixation period. First, we parametrically manipulated the duration of the overlap using a range of intervals (from 0 to 200 ms). In a second experiment we probed the interaction of various foreperiod intervals (i.e. the duration of the fixation period prior to saccade-target onset) and overlap using two overlap intervals (20 or 140 ms). In two additional experiments we manipulated either the stimuli sizes or their contrast ratio in overlap paradigms (20 or 140 ms). Lastly, we introduced a visual transient during the overlap interval via two manipulations (both with a range of SOA): either a distractor ring appeared around the fixation-target, or a dynamic random noise patch replaced the fixation-target. Results show reliable modifications in the latency distributions depending on the overlap interval as well as idiosyncratic differences. Additional experimental manipulations also affected the latency distributions revealing strong interacting inhibitory processes. We conclude that the effects of overlap intervals may combine with the influence of other stimuli properties affecting decision process.
Collapse
Affiliation(s)
- Valentina Vencato
- Center for Neural Science, New York University, New York 10003, New York
| | | | - Laurent Madelain
- UMR 9193‑SCALab, CNRS, Univ. Lille, 59000 Lille, France; Institut de Neurosciences de la Timone, UMR 7289, CNRS, Faculté de Médecine de la Timone, Aix Marseille Université, 27 Bd Jean Moulin, Marseille 13005, France
| |
Collapse
|
16
|
Chamorro Y, Betz LT, Philipsen A, Kambeitz J, Ettinger U. The Eyes Have It: A Meta-analysis of Oculomotor Inhibition in Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1090-1102. [PMID: 34052459 DOI: 10.1016/j.bpsc.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diminished inhibitory control is one of the main characteristics of attention-deficit/hyperactivity disorder (ADHD), and impairments in oculomotor inhibition have been proposed as a potential biomarker of the disorder. The present meta-analysis summarizes the effects reported in studies comparing oculomotor inhibition in ADHD patients and healthy control subjects. METHODS Inhibitory outcomes were derived from oculomotor experimental paradigms including the antisaccade (AS), memory-guided saccade, and prolonged fixation tasks. Temporal and spatial measures were also extracted from these tasks and from visually guided saccade tasks as secondary outcomes. Data were available from k = 31 studies (N = 1567 participants). Summary effect sizes were computed using random-effects models and a restricted maximum-likelihood estimator. RESULTS Among inhibitory outcomes, direction errors in AS, after correcting for publication bias, showed a moderate effect and large between-study heterogeneity (k = 18, n = 739, g = 0.57, 95% confidence interval [CI] [0.27, 0.88], I2= 74%); anticipatory saccades in memory-guided saccade showed a large effect and low heterogeneity (k = 11, n = 487; g = 0.86, 95% CI [0.64, 1.08], I2 = 17.7%); and saccades during prolonged fixation evidenced large effect size and heterogeneity (k = 6, n = 325 g = 1.11, 95% CI [0.56, 1.65], I2 = 79.1%) partially related to age. Among secondary outcomes, saccadic reaction time in AS (k = 22, n = 932, g = 0.34, 95% CI [0.06, 0.63], I2 = 53.12%) and coefficient of variability in visually guided saccade (k = 5, n = 282, g = 0.53, 95% CI [0.28, 0.78], I2 = 0.01%) indicated significant effects with small to moderate effects sizes. CONCLUSIONS ADHD groups commit more oculomotor inhibition failures than control groups. The substantial effects support the conclusion that oculomotor disinhibition is a relevant ADHD-related mechanism. Moderate effects observed in saccadic reaction time variability suggest that fluctuant performance in oculomotor tasks is another relevant characteristic of ADHD.
Collapse
Affiliation(s)
- Yaira Chamorro
- Institute of Neurosciences, University of Guadalajara, Guadalajara, Mexico.
| | - Linda T Betz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
17
|
Crosse MJ, Foxe JJ, Tarrit K, Freedman EG, Molholm S. Resolution of impaired multisensory processing in autism and the cost of switching sensory modality. Commun Biol 2022; 5:601. [PMID: 35773473 PMCID: PMC9246932 DOI: 10.1038/s42003-022-03519-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Children with autism spectrum disorders (ASD) exhibit alterations in multisensory processing, which may contribute to the prevalence of social and communicative deficits in this population. Resolution of multisensory deficits has been observed in teenagers with ASD for complex, social speech stimuli; however, whether this resolution extends to more basic multisensory processing deficits remains unclear. Here, in a cohort of 364 participants we show using simple, non-social audiovisual stimuli that deficits in multisensory processing observed in high-functioning children and teenagers with ASD are not evident in adults with the disorder. Computational modelling indicated that multisensory processing transitions from a default state of competition to one of facilitation, and that this transition is delayed in ASD. Further analysis revealed group differences in how sensory channels are weighted, and how this is impacted by preceding cross-sensory inputs. Our findings indicate that there is a complex and dynamic interplay among the sensory systems that differs considerably in individuals with ASD. Crosse et al. study a cohort of 364 participants with autism spectrum disorders (ASD) and matched controls, and show that deficits in multisensory processing observed in high-functioning children and teenagers with ASD are not evident in adults with the disorder. Using computational modelling they go on to demonstrate that there is a delayed transition of multisensory processing from a default state of competition to one of facilitation in ASD, as well as differences in sensory weighting and the ability to switch between sensory modalities, which sheds light on the interplay among sensory systems that differ in ASD individuals.
Collapse
Affiliation(s)
- Michael J Crosse
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Trinity Centre for Biomedical Engineering, Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Katy Tarrit
- The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward G Freedman
- The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
18
|
Chua SFA, Liu Y, Harris JM, Otto TU. No selective integration required: A race model explains responses to audiovisual motion-in-depth. Cognition 2022; 227:105204. [PMID: 35753178 DOI: 10.1016/j.cognition.2022.105204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Looming motion is an ecologically salient signal that often signifies danger. In both audition and vision, humans show behavioral biases in response to perceiving looming motion, which is suggested to indicate an adaptation for survival. However, it is an open question whether such biases occur also in the combined processing of multisensory signals. Towards this aim, Cappe, Thut, Romei, and Murraya (2009) found that responses to audiovisual signals were faster for congruent looming motion compared to receding motion or incongruent combinations. They considered this as evidence for selective integration of multisensory looming signals. To test this proposal, here, we successfully replicate the behavioral results by Cappe et al. (2009). We then show that the redundant signals effect (RSE - a speedup of multisensory compared to unisensory responses) is not distinct for congruent looming motion. Instead, as predicted by a simple probability summation rule, the RSE is primarily modulated by the looming bias in audition, which suggests that multisensory processing inherits a unisensory effect. Finally, we compare a large set of so-called race models that implement probability summation, but that allow for interference between auditory and visual processing. The best-fitting model, selected by the Akaike Information Criterion (AIC), virtually perfectly explained the RSE across conditions with interference parameters that were either constant or varied only with auditory motion. In the absence of effects jointly caused by auditory and visual motion, we conclude that selective integration is not required to explain the behavioral benefits that occur with audiovisual looming motion.
Collapse
Affiliation(s)
- S F Andrew Chua
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom.
| | - Yue Liu
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom
| | - Julie M Harris
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom
| | - Thomas U Otto
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom.
| |
Collapse
|
19
|
Coubard OA. Attention deficit and hyperactivity disorder disrupts selective mechanisms of action. Clin Neurophysiol 2022; 140:145-158. [DOI: 10.1016/j.clinph.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
|
20
|
Török B, Nagy DG, Kiss M, Janacsek K, Németh D, Orbán G. Tracking the contribution of inductive bias to individualised internal models. PLoS Comput Biol 2022; 18:e1010182. [PMID: 35731822 PMCID: PMC9255757 DOI: 10.1371/journal.pcbi.1010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/05/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
Internal models capture the regularities of the environment and are central to understanding how humans adapt to environmental statistics. In general, the correct internal model is unknown to observers, instead they rely on an approximate model that is continually adapted throughout learning. However, experimenters assume an ideal observer model, which captures stimulus structure but ignores the diverging hypotheses that humans form during learning. We combine non-parametric Bayesian methods and probabilistic programming to infer rich and dynamic individualised internal models from response times. We demonstrate that the approach is capable of characterizing the discrepancy between the internal model maintained by individuals and the ideal observer model and to track the evolution of the contribution of the ideal observer model to the internal model throughout training. In particular, in an implicit visuomotor sequence learning task the identified discrepancy revealed an inductive bias that was consistent across individuals but varied in strength and persistence.
Collapse
Affiliation(s)
- Balázs Török
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - David G. Nagy
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
- Institute of Physics, Eötvös Loránd University, Budapest, Hungary
| | - Mariann Kiss
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezső Németh
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France
| | - Gergő Orbán
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| |
Collapse
|
21
|
DIANA, a Process-Oriented Model of Human Auditory Word Recognition. Brain Sci 2022; 12:brainsci12050681. [PMID: 35625067 PMCID: PMC9140177 DOI: 10.3390/brainsci12050681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
This article presents DIANA, a new, process-oriented model of human auditory word recognition, which takes as its input the acoustic signal and can produce as its output word identifications and lexicality decisions, as well as reaction times. This makes it possible to compare its output with human listeners’ behavior in psycholinguistic experiments. DIANA differs from existing models in that it takes more available neuro-physiological evidence on speech processing into account. For instance, DIANA accounts for the effect of ambiguity in the acoustic signal on reaction times following the Hick–Hyman law and it interprets the acoustic signal in the form of spectro-temporal receptive fields, which are attested in the human superior temporal gyrus, instead of in the form of abstract phonological units. The model consists of three components: activation, decision and execution. The activation and decision components are described in detail, both at the conceptual level (in the running text) and at the computational level (in the Appendices). While the activation component is independent of the listener’s task, the functioning of the decision component depends on this task. The article also describes how DIANA could be improved in the future in order to even better resemble the behavior of human listeners.
Collapse
|
22
|
Hoffmann A, Nolte JP, Sachse P. Variation in antisaccadic response latencies investigated with the hierarchical LATER process model. Brain Cogn 2022; 158:105850. [DOI: 10.1016/j.bandc.2022.105850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
|
23
|
From decision to action: Detailed modelling of frog tadpoles reveals neuronal mechanisms of decision-making and reproduces unpredictable swimming movements in response to sensory signals. PLoS Comput Biol 2021; 17:e1009654. [PMID: 34898604 PMCID: PMC8699619 DOI: 10.1371/journal.pcbi.1009654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/23/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
How does the brain process sensory stimuli, and decide whether to initiate locomotor behaviour? To investigate this question we develop two whole body computer models of a tadpole. The "Central Nervous System" (CNS) model uses evidence from whole-cell recording to define 2300 neurons in 12 classes to study how sensory signals from the skin initiate and stop swimming. In response to skin stimulation, it generates realistic sensory pathway spiking and shows how hindbrain sensory memory populations on each side can compete to initiate reticulospinal neuron firing and start swimming. The 3-D "Virtual Tadpole" (VT) biomechanical model with realistic muscle innervation, body flexion, body-water interaction, and movement is then used to evaluate if motor nerve outputs from the CNS model can produce swimming-like movements in a volume of "water". We find that the whole tadpole VT model generates reliable and realistic swimming. Combining these two models opens new perspectives for experiments.
Collapse
|
24
|
Faßbender K, Bey K, Lippold JV, Aslan B, Hurlemann R, Ettinger U. GABAergic modulation of performance in response inhibition and interference control tasks. J Psychopharmacol 2021; 35:1496-1509. [PMID: 34278874 DOI: 10.1177/02698811211032440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inhibitory control is a crucial executive function with high relevance to mental and physical well-being. However, there are still unanswered questions regarding its neural mechanisms, including the role of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). AIMS This study examined the effects of lorazepam (0.5 mg and 1 mg), a positive allosteric modulator at the GABAA receptor, on response inhibition and interference control. We also explored the heterogeneity of inhibitory control and calculated delta plots to explore whether lorazepam affects the gradual build-up of inhibition and activation over time. METHODS N = 50 healthy participants performed antisaccade, Eriksen flanker and Simon tasks in a within-subjects, placebo-controlled, double-blind randomized design. RESULTS Lorazepam increased reaction time (RT) and error rates dose dependently in all tasks (p ⩽ 0.005). In the antisaccade and Simon tasks, lorazepam increased congruency effects for error rate (p ⩽ 0.029) but not RT (p ⩾ 0.587). In the Eriksen flanker task, both congruency effects were increased by the drug (p ⩽ 0.031). Delta plots did not reflect drug-induced changes in inhibition and activation over time. Delta plots for RT in the Simon task were negative-going, as expected, whereas those for the antisaccade and flanker tasks were positive-going. CONCLUSIONS This study provides evidence for GABAergic involvement in performance on response inhibition and interference control tasks. Furthermore, our findings highlight the diversity of the broader construct of inhibitory control while also pointing out similarities between different inhibitory control tasks. In contrast to RT and error rates, the cognitive processes indexed by delta plots may not be sensitive to GABAergic modulation.
Collapse
Affiliation(s)
- Kaja Faßbender
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Behrem Aslan
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
25
|
Multisensory stimuli shift perceptual priors to facilitate rapid behavior. Sci Rep 2021; 11:23052. [PMID: 34845325 PMCID: PMC8629992 DOI: 10.1038/s41598-021-02566-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022] Open
Abstract
Multisensory stimuli speed behavioral responses, but the mechanisms subserving these effects remain disputed. Historically, the observation that multisensory reaction times (RTs) outpace models assuming independent sensory channels has been taken as evidence for multisensory integration (the "redundant target effect"; RTE). However, this interpretation has been challenged by alternative explanations based on stimulus sequence effects, RT variability, and/or negative correlations in unisensory processing. To clarify the mechanisms subserving the RTE, we collected RTs from 78 undergraduates in a multisensory simple RT task. Based on previous neurophysiological findings, we hypothesized that the RTE was unlikely to reflect these alternative mechanisms, and more likely reflected pre-potentiation of sensory responses through crossmodal phase-resetting. Contrary to accounts based on stimulus sequence effects, we found that preceding stimuli explained only 3-9% of the variance in apparent RTEs. Comparing three plausible evidence accumulator models, we found that multisensory RT distributions were best explained by increased sensory evidence at stimulus onset. Because crossmodal phase-resetting increases cortical excitability before sensory input arrives, these results are consistent with a mechanism based on pre-potentiation through phase-resetting. Mathematically, this model entails increasing the prior log-odds of stimulus presence, providing a potential link between neurophysiological, behavioral, and computational accounts of multisensory interactions.
Collapse
|
26
|
Setting the space for deliberation in decision-making. Cogn Neurodyn 2021; 15:743-755. [PMID: 34603540 DOI: 10.1007/s11571-021-09681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Decision-making models in the behavioral, cognitive, and neural sciences typically consist of forced-choice paradigms with two alternatives. While theoretically it is feasible to translate any decision situation to a sequence of binary choices, real-life decision-making is typically more complex and nonlinear, involving choices among multiple items, graded judgments, and deferments of decision-making. Here, we discuss how the complexity of real-life decision-making can be addressed using conventional decision-making models by focusing on the interactive dynamics between criteria settings and the collection of evidence. Decision-makers can engage in multi-stage, parallel decision-making by exploiting the space for deliberation, with non-binary readings of evidence available at any point in time. The interactive dynamics principally adhere to the speed-accuracy tradeoff, such that increasing the space for deliberation enables extended data collection. The setting of space for deliberation reflects a form of meta-decision-making that can, and should be, studied empirically as a value-based exercise that weighs the prior propensities, the economics of information seeking, and the potential outcomes. Importantly, the control of the space for deliberation raises a question of agency. Decision-makers may actively and explicitly set their own decision parameters, but these parameters may also be set by environmental pressures. Thus, decision-makers may be influenced-or nudged in a particular direction-by how decision problems are framed, with a sense of urgency or a binary definition of choice options. We argue that a proper understanding of these mechanisms has important practical implications toward the optimal usage of space for deliberation.
Collapse
|
27
|
Inter-trial effects in priming of pop-out: Comparison of computational updating models. PLoS Comput Biol 2021; 17:e1009332. [PMID: 34478446 PMCID: PMC8445473 DOI: 10.1371/journal.pcbi.1009332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/16/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022] Open
Abstract
In visual search tasks, repeating features or the position of the target results in faster response times. Such inter-trial ‘priming’ effects occur not just for repetitions from the immediately preceding trial but also from trials further back. A paradigm known to produce particularly long-lasting inter-trial effects–of the target-defining feature, target position, and response (feature)–is the ‘priming of pop-out’ (PoP) paradigm, which typically uses sparse search displays and random swapping across trials of target- and distractor-defining features. However, the mechanisms underlying these inter-trial effects are still not well understood. To address this, we applied a modeling framework combining an evidence accumulation (EA) model with different computational updating rules of the model parameters (i.e., the drift rate and starting point of EA) for different aspects of stimulus history, to data from a (previously published) PoP study that had revealed significant inter-trial effects from several trials back for repetitions of the target color, the target position, and (response-critical) target feature. By performing a systematic model comparison, we aimed to determine which EA model parameter and which updating rule for that parameter best accounts for each inter-trial effect and the associated n-back temporal profile. We found that, in general, our modeling framework could accurately predict the n-back temporal profiles. Further, target color- and position-based inter-trial effects were best understood as arising from redistribution of a limited-capacity weight resource which determines the EA rate. In contrast, response-based inter-trial effects were best explained by a bias of the starting point towards the response associated with a previous target; this bias appeared largely tied to the position of the target. These findings elucidate how our cognitive system continually tracks, and updates an internal predictive model of, a number of separable stimulus and response parameters in order to optimize task performance. In many perceptual tasks, performance is faster and more accurate when critical stimulus attributes are repeated from trial to trial compared to when they change. Priming of pop-out (PoP), visual search with sparse search displays and random swapping of the target feature between trials, is a paradigm in which such inter-trial effects can be traced back over several recent trial episodes. While many studies have explored PoP paradigms, the mechanisms underlying priming of the search-critical target feature, the target position, and the response-critical information are not yet fully understood. Here, we addressed this question by applying evidence accumulation (EA) decision models to the data from a previously published PoP study. The modeling framework combines evidence accumulation with Bayesian updating of the model parameters. Comparison of (> 1000) different combinations of decision models and updating rules revealed that the featural and positional priming effects were best explained by assuming that attentional “weight” resources are dynamically redistributed based on the recent history of target color and position, whereas response decisions are biased based on the recent history of the response-critical property of targets occuring at a particular (and nearby) position(s). These findings confirm that our cognitive system continually tracks, and updates an internal predictive model of, a number of separable stimulus and response parameters in order to optimize task performance.
Collapse
|
28
|
Wolf C, Lappe M. Vision as oculomotor reward: cognitive contributions to the dynamic control of saccadic eye movements. Cogn Neurodyn 2021; 15:547-568. [PMID: 34367360 PMCID: PMC8286912 DOI: 10.1007/s11571-020-09661-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
Humans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets' luminance but also crucially on high-level factors like the expected reward or a targets' relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.
Collapse
Affiliation(s)
- Christian Wolf
- Institute for Psychology, University of Muenster, Fliednerstrasse 21, 48149 Münster, Germany
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Fliednerstrasse 21, 48149 Münster, Germany
| |
Collapse
|
29
|
Jana S, Gopal A, Murthy A. Computational Mechanisms Mediating Inhibitory Control of Coordinated Eye-Hand Movements. Brain Sci 2021; 11:607. [PMID: 34068477 PMCID: PMC8150398 DOI: 10.3390/brainsci11050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Significant progress has been made in understanding the computational and neural mechanisms that mediate eye and hand movements made in isolation. However, less is known about the mechanisms that control these movements when they are coordinated. Here, we outline our computational approaches using accumulation-to-threshold and race-to-threshold models to elucidate the mechanisms that initiate and inhibit these movements. We suggest that, depending on the behavioral context, the initiation and inhibition of coordinated eye-hand movements can operate in two modes-coupled and decoupled. The coupled mode operates when the task context requires a tight coupling between the effectors; a common command initiates both effectors, and a unitary inhibitory process is responsible for stopping them. Conversely, the decoupled mode operates when the task context demands weaker coupling between the effectors; separate commands initiate the eye and hand, and separate inhibitory processes are responsible for stopping them. We hypothesize that the higher-order control processes assess the behavioral context and choose the most appropriate mode. This computational mechanism can explain the heterogeneous results observed across many studies that have investigated the control of coordinated eye-hand movements and may also serve as a general framework to understand the control of complex multi-effector movements.
Collapse
Affiliation(s)
- Sumitash Jana
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Atul Gopal
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20814, USA
| | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka 560012, India;
| |
Collapse
|
30
|
Abstract
Visual confidence is the observers’ estimate of their precision in one single perceptual decision. Ultimately, however, observers often need to judge their confidence over a task in general rather than merely on one single decision. Here, we measured the global confidence acquired across multiple perceptual decisions. Participants performed a dual task on two series of oriented stimuli. The perceptual task was an orientation-discrimination judgment. The metacognitive task was a global confidence judgment: observers chose the series for which they felt they had performed better in the perceptual task. We found that choice accuracy in global confidence judgments improved as the number of items in the series increased, regardless of whether the global confidence judgment was made before (prospective) or after (retrospective) the perceptual decisions. This result is evidence that global confidence judgment was based on an integration of confidence information across multiple perceptual decisions rather than on a single one. Furthermore, we found a tendency for global confidence choices to be influenced by response times, and more so for recent perceptual decisions than earlier ones in the series of stimuli. Using model comparison, we found that global confidence is well described as a combination of noisy estimates of sensory evidence and position-weighted response-time evidence. In summary, humans can integrate information across multiple decisions to estimate global confidence, but this integration is not optimal, in particular because of biases in the use of response-time information.
Collapse
|
31
|
Notaro G, Hasson U. Semantically predictable input streams impede gaze-orientation to surprising locations. Cortex 2021; 139:222-239. [PMID: 33882360 DOI: 10.1016/j.cortex.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
When available, people use prior knowledge to predict dimensions of future events such as their location and semantic features. However, few studies have examined how multi-dimensional predictions are implemented, and mechanistic accounts are absent. Using eye tracking, we evaluated whether predictions of target-location and target-category interact during the earliest stages of orientation. We presented stochastic series so that across four conditions, participants could predict either the location of the next target-image, its semantic category, both dimensions, or neither. Participants observed images in absence of any task involving their semantic content. We modeled saccade latencies using ELATER, a rise-to-threshold model that accounts for accumulation rate (AR), variance of AR over trials, and variance of decision baseline. The main findings were: 1) AR scaled with the degree of surprise associated with a target's location; 2) predictability of semantic-category hindered saccade latencies, suggesting a bottleneck in implementing joint predictions; 3) saccades to targets that satisfied semantic expectations were associated with greater AR-variance than saccades to semantically-surprising images, consistent with a richer repertoire of early evaluative processes for semantically-expected images. Predictability of target-category also impacted gaze pre-positioning prior to target presentation. The results indicate a strong interaction between foreknowledge of object location and semantics during stimulus-guided saccades, and suggest statistical regularities in an input stream can also impact anticipatory, non-stimulus-guided processes.
Collapse
Affiliation(s)
- Giuseppe Notaro
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, Italy.
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, Italy
| |
Collapse
|
32
|
Schwetlick L, Rothkegel LOM, Trukenbrod HA, Engbert R. Modeling the effects of perisaccadic attention on gaze statistics during scene viewing. Commun Biol 2020; 3:727. [PMID: 33262536 PMCID: PMC7708631 DOI: 10.1038/s42003-020-01429-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
How we perceive a visual scene depends critically on the selection of gaze positions. For this selection process, visual attention is known to play a key role in two ways. First, image-features attract visual attention, a fact that is captured well by time-independent fixation models. Second, millisecond-level attentional dynamics around the time of saccade drives our gaze from one position to the next. These two related research areas on attention are typically perceived as separate, both theoretically and experimentally. Here we link the two research areas by demonstrating that perisaccadic attentional dynamics improve predictions on scan path statistics. In a mathematical model, we integrated perisaccadic covert attention with dynamic scan path generation. Our model reproduces saccade amplitude distributions, angular statistics, intersaccadic turning angles, and their impact on fixation durations as well as inter-individual differences using Bayesian inference. Therefore, our result lend support to the relevance of perisaccadic attention to gaze statistics.
Collapse
Affiliation(s)
- Lisa Schwetlick
- Department of Psychology, University of Potsdam, 14469, Potsdam, Germany.
- DFG Collaborative Research Center 1294, University of Potsdam, 14469, Potsdam, Germany.
| | | | | | - Ralf Engbert
- Department of Psychology, University of Potsdam, 14469, Potsdam, Germany
- DFG Collaborative Research Center 1294, University of Potsdam, 14469, Potsdam, Germany
- Research Focus Cognitive Science, University of Potsdam, 14469, Potsdam, Germany
| |
Collapse
|
33
|
Vencato V, Madelain L. Perception of saccadic reaction time. Sci Rep 2020; 10:17192. [PMID: 33057041 PMCID: PMC7560701 DOI: 10.1038/s41598-020-72659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/07/2020] [Indexed: 12/02/2022] Open
Abstract
That saccadic reaction times (SRTs) may depend on reinforcement contingencies has been repeatedly demonstrated. It follows that one must be able to discriminate one's latencies to adequately assign credit to one's actions, which is to connect behaviour to its consequence. To quantify the ability to perceive one's SRT, we used an adaptive procedure to train sixteen participants in a stepping visual target saccade paradigm. Subsequently, we measured their RTs perceptual threshold at 75% in a conventional constant stimuli procedure. For each trial, observers had to saccade to a stepping target. Then, in a 2-AFC task, they had to choose one value representing the actual SRT, while the other value proportionally differed from the actual SRT. The relative difference between the two alternatives was computed by either adding or subtracting from the actual SRT a percent-difference value randomly chosen among a fixed set. Feedback signalling the correct choice was provided after each response. Overall, our results showed that the 75% SRT perceptual threshold averaged 23% (about 40 ms). The ability to discriminate small SRT differences provides support for the possibility that the credit assignment problem may be solved even for short reaction times.
Collapse
Affiliation(s)
- Valentina Vencato
- UMR 9193-SCALab, CNRS, Univ. Lille, 59000, Lille, France.
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Faculté de Médecine de la Timone, Aix Marseille Université, 27 Bd Jean Moulin, Marseille, 13005, France.
| | - Laurent Madelain
- UMR 9193-SCALab, CNRS, Univ. Lille, 59000, Lille, France
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Faculté de Médecine de la Timone, Aix Marseille Université, 27 Bd Jean Moulin, Marseille, 13005, France
| |
Collapse
|
34
|
Indrajeet I, Ray S. Efficacy of inhibitory control depends on procrastination and deceleration in saccade planning. Exp Brain Res 2020; 238:2417-2432. [PMID: 32776172 DOI: 10.1007/s00221-020-05901-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/03/2020] [Indexed: 01/23/2023]
Abstract
A goal-directed flexible behavior warrants our ability to timely inhibit impending movements deemed inappropriate due to an abrupt change in the context. Race model of countermanding rapid saccadic eye movement posits a competition between a preparatory GO process and an inhibitory STOP process rising to reach a fixed threshold. Stop-signal response time (SSRT), which is the average time STOP takes to rise to the threshold, is widely used as a metric to assess the ability to revoke a movement. A reliable estimation of SSRT critically depends on the assumption of independence between GO and STOP process, which has been violated in many studies. In addition, the physiological correlate of stochastic rise of STOP process to a threshold remains unsubstantiated thus far. Here, we introduce a method to estimate the efficacy of inhibitory control on the premise of an alternative model that assumes deceleration of GO process following the stop-signal onset. The average reaction time increased exponentially with the increase in the maximum duration available to attenuate GO process by the stop-signal. Our method estimates saccade procrastination in anticipation of the stop-signal, and the rate of increase in attenuation on GO process. Unlike SSRT, these new metrics are independent of how the stopping performance varies with the delay between go- and stop-signal onsets. We reckon that these metrics together qualify to be considered as an efficient alternative to SSRT for the estimation of individuals' ability to countermand saccades, especially in cases when the assumptions of race model are no longer valid.
Collapse
Affiliation(s)
- Indrajeet Indrajeet
- Centre of Behavioural and Cognitive Sciences, University of Allahabad (Senate Hall Campus), Prayagraj, Uttar Pradesh, 211002, India.
| | - Supriya Ray
- Centre of Behavioural and Cognitive Sciences, University of Allahabad (Senate Hall Campus), Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
35
|
Aging Effects and Test-Retest Reliability of Inhibitory Control for Saccadic Eye Movements. eNeuro 2020; 7:ENEURO.0459-19.2020. [PMID: 32907833 PMCID: PMC7540934 DOI: 10.1523/eneuro.0459-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Neuropsychological studies indicate that healthy aging is associated with a decline of inhibitory control of attentional and behavioral systems. A widely accepted measure of inhibitory control is the antisaccade task that requires both the inhibition of a reflexive saccadic response toward a visual target and the initiation of a voluntary eye movement in the opposite direction. To better understand the nature of age-related differences in inhibitory control, we evaluated antisaccade task performance in 78 younger (20-35 years) and 78 older (60-80 years) participants. In order to provide reliable estimates of inhibitory control for individual subjects, we investigated test-retest reliability of the reaction time, error rate, saccadic gain, and peak saccadic velocity and further estimated latent, not directly observable processed contributing to changes in the antisaccade task execution. The intraclass correlation coefficients (ICCs) for an older group of participants emerged as good to excellent for most of our antisaccade task measures. Furthermore, using Bayesian multivariate models, we inspected age-related differences in the performances of healthy younger and older participants. The older group demonstrated higher error rates, longer reaction times, significantly more inhibition failures, and late prosaccades as compared with young adults. The consequently lower ability of older adults to voluntarily inhibit saccadic responses has been interpreted as an indicator of age-related inhibitory control decline. Additionally, we performed a Bayesian model comparison of used computational models and concluded that the Stochastic Early Reaction, Inhibition and Late Action (SERIA) model explains our data better than PRO-Stop-Antisaccade (PROSA) that does not incorporate a late decision process.
Collapse
|
36
|
Xu J, Zommara NM, Ounjai K, Takahashi M, Kobayashi S, Matsuda T, Lauwereyns J. Urgency Promotes Affective Disengagement: Effects From Bivalent Cues on Preference Formation for Abstract Images. Front Psychol 2020; 11:1404. [PMID: 32655459 PMCID: PMC7325338 DOI: 10.3389/fpsyg.2020.01404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
Although previous research has characterized the important role for spatial and affective pre-cues in the control of visual attention, less is known about the impact of pre-cues on preference formation. In preference formation, the gaze cascade phenomenon suggests that the gaze serves both to enhance and express “liking” during value-based decision-making. This phenomenon has been interpreted as a type of Pavlovian approach toward preferred objects. Decision-making here reflects a process of gradual commitment in which the gaze functions as a precursor to choice; by this account, overt attention produces a necessarily positive, additive effect on the value of the attended object. The implication is that drawing attention to an object should initiate, and therefore promote, preference formation for that object. Alternatively, information-integration models of attention propose that attention produces a multiplicative effect on the value of the attended object, implying that negative information can impede preference formation. To pitch the gradual-commitment hypothesis against the information-integration hypothesis, we conducted four experiments that combined the spatial-cueing paradigm with a value-based choice paradigm. In each trial in all experiments, subjects were presented with an irrelevant, peripheral pre-cue for a duration of 500 ms, followed by a 500 ms blank, and then a pair of abstract images (one at the pre-cued position; one in the opposite hemifield). The subjects were asked to choose their preferred abstract image by pressing the corresponding button. We manipulated the type of pre-cues (images of faces versus foods; with varying affective associations) and the time constraints (a deadline of 1,500 ms versus self-paced). Overall, the choice data showed a clear pattern of influence from the pre-cues, such that, given a deadline, abstract images were chosen less often if they had been preceded by a pre-cue with a negative affective association (both for face and food images). Analyses of the gaze data showed the emergence of significant gaze biases in line with the subjects’ choices. Taken together, the data pattern provided support for the information-integration hypothesis, particularly under urgency. When tasked with a speeded preference choice, subjects showed affective disengagement following pre-cues that carried a negative association.
Collapse
Affiliation(s)
- Ji Xu
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kajornvut Ounjai
- Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | | | | | | | - Johan Lauwereyns
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan.,Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Oláh V, Knakker B, Trunk A, Lendvai B, Hernádi I. Dissociating cholinergic influence on alertness and temporal attention in primates in a simple reaction time paradigm. Eur J Neurosci 2020; 52:3776-3789. [PMID: 32516489 DOI: 10.1111/ejn.14852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
The ability to promptly respond to behaviourally relevant events depends on both general alertness and phasic changes in attentional state driven by temporal expectations. Using a variable foreperiod simple reaction time (RT) task in four adult male rhesus macaques, we investigated the role of the cholinergic system in alertness and temporal expectation. Foreperiod effects on RT reflect temporal expectation, while alertness is quantified as overall response speed. We measured these RT parameters under vehicle treatment and systemic administration of the muscarinic receptor antagonist scopolamine. We also investigated whether and to what extent the effects of scopolamine were reversed by donepezil, a cholinesterase inhibitor widely used for the treatment of dementia. In the control condition, RT showed a continuous decrease as the foreperiod duration increased, which clearly indicated the effect of temporal expectation on RT. This foreperiod effect was mainly detectable on the faster tail of the RT distribution and was eliminated by scopolamine. Furthermore, scopolamine treatment slowed down the average RT. Donepezil treatment was efficient on the slower tail of the RT distribution and improved scopolamine-induced impairments only on the average RT reflecting a general beneficial effect on alertness without any improvement in temporal expectation. The present results highlight the role of the cholinergic system in temporal expectation and alertness in primates and help delineate the efficacy and scope of donepezil and other cholinomimetic agents as cognitive enhancers in present and future clinical practice.
Collapse
Affiliation(s)
- Vilmos Oláh
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Balázs Knakker
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary
| | - Attila Trunk
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary
| | - Balázs Lendvai
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - István Hernádi
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary.,Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
38
|
Gu BM, Schmidt R, Berke JD. Globus pallidus dynamics reveal covert strategies for behavioral inhibition. eLife 2020; 9:57215. [PMID: 32519952 PMCID: PMC7314538 DOI: 10.7554/elife.57215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Flexible behavior requires restraint of actions that are no longer appropriate. This behavioral inhibition critically relies on frontal cortex - basal ganglia circuits. Within the basal ganglia, the globus pallidus pars externa (GPe) has been hypothesized to mediate selective proactive inhibition: being prepared to stop a specific action, if needed. Here we investigate population dynamics of rat GPe neurons during preparation-to-stop, stopping, and going. Rats selectively engaged proactive inhibition towards specific actions, as shown by slowed reaction times (RTs). Under proactive inhibition, GPe population activity occupied state-space locations farther from the trajectory followed during normal movement initiation. Furthermore, the state-space locations were predictive of distinct types of errors: failures-to-stop, failures-to-go, and incorrect choices. Slowed RTs on correct proactive trials reflected starting bias towards the alternative action, which was overcome before progressing towards action initiation. Our results demonstrate that rats can exert cognitive control via strategic adjustments to their GPe network state.
Collapse
Affiliation(s)
- Bon-Mi Gu
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Robert Schmidt
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Joshua D Berke
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Department of Psychiatry; Neuroscience Graduate Program; Kavli Institute for Fundamental Neuroscience; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
39
|
The interplay between multisensory integration and perceptual decision making. Neuroimage 2020; 222:116970. [PMID: 32454204 DOI: 10.1016/j.neuroimage.2020.116970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/23/2020] [Accepted: 05/15/2020] [Indexed: 01/15/2023] Open
Abstract
Facing perceptual uncertainty, the brain combines information from different senses to make optimal perceptual decisions and to guide behavior. However, decision making has been investigated mostly in unimodal contexts. Thus, how the brain integrates multisensory information during decision making is still unclear. Two opposing, but not mutually exclusive, scenarios are plausible: either the brain thoroughly combines the signals from different modalities before starting to build a supramodal decision, or unimodal signals are integrated during decision formation. To answer this question, we devised a paradigm mimicking naturalistic situations where human participants were exposed to continuous cacophonous audiovisual inputs containing an unpredictable signal cue in one or two modalities and had to perform a signal detection task or a cue categorization task. First, model-based analyses of behavioral data indicated that multisensory integration takes place alongside perceptual decision making. Next, using supervised machine learning on concurrently recorded EEG, we identified neural signatures of two processing stages: sensory encoding and decision formation. Generalization analyses across experimental conditions and time revealed that multisensory cues were processed faster during both stages. We further established that acceleration of neural dynamics during sensory encoding and decision formation was directly linked to multisensory integration. Our results were consistent across both signal detection and categorization tasks. Taken together, the results revealed a continuous dynamic interplay between multisensory integration and decision making processes (mixed scenario), with integration of multimodal information taking place both during sensory encoding as well as decision formation.
Collapse
|
40
|
Zuo S, Wang L, Shin JH, Cai Y, Zhang B, Lee SW, Appiah K, Zhou YD, Kwok SC. Behavioral evidence for memory replay of video episodes in the macaque. eLife 2020; 9:54519. [PMID: 32310083 PMCID: PMC7234809 DOI: 10.7554/elife.54519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/20/2020] [Indexed: 12/02/2022] Open
Abstract
Humans recall the past by replaying fragments of events temporally. Here, we demonstrate a similar effect in macaques. We trained six rhesus monkeys with a temporal-order judgement (TOJ) task and collected 5000 TOJ trials. In each trial, the monkeys watched a naturalistic video of about 10 s comprising two across-context clips, and after a 2 s delay, performed TOJ between two frames from the video. The data are suggestive of a non-linear, time-compressed forward memory replay mechanism in the macaque. In contrast with humans, such compression of replay is, however, not sophisticated enough to allow these monkeys to skip over irrelevant information by compressing the encoded video globally. We also reveal that the monkeys detect event contextual boundaries, and that such detection facilitates recall by increasing the rate of information accumulation. Demonstration of a time-compressed, forward replay-like pattern in the macaque provides insights into the evolution of episodic memory in our lineage.
Collapse
Affiliation(s)
- Shuzhen Zuo
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Lei Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jung Han Shin
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yudian Cai
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Boqiang Zhang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kofi Appiah
- Department of Computer Science, University of York, York, United Kingdom
| | - Yong-di Zhou
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| |
Collapse
|
41
|
Franklin NT, Frank MJ. Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning. PLoS Comput Biol 2020; 16:e1007720. [PMID: 32282795 PMCID: PMC7179934 DOI: 10.1371/journal.pcbi.1007720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/23/2020] [Accepted: 02/11/2020] [Indexed: 12/02/2022] Open
Abstract
Humans routinely face novel environments in which they have to generalize in order to act adaptively. However, doing so involves the non-trivial challenge of deciding which aspects of a task domain to generalize. While it is sometimes appropriate to simply re-use a learned behavior, often adaptive generalization entails recombining distinct components of knowledge acquired across multiple contexts. Theoretical work has suggested a computational trade-off in which it can be more or less useful to learn and generalize aspects of task structure jointly or compositionally, depending on previous task statistics, but it is unknown whether humans modulate their generalization strategy accordingly. Here we develop a series of navigation tasks that separately manipulate the statistics of goal values ("what to do") and state transitions ("how to do it") across contexts and assess whether human subjects generalize these task components separately or conjunctively. We find that human generalization is sensitive to the statistics of the previously experienced task domain, favoring compositional or conjunctive generalization when the task statistics are indicative of such structures, and a mixture of the two when they are more ambiguous. These results support a normative "meta-generalization" account and suggests that people not only generalize previous task components but also generalize the statistical structure most likely to support generalization.
Collapse
Affiliation(s)
- Nicholas T. Franklin
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
| | - Michael J. Frank
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
42
|
Roberts A, Borisyuk R, Buhl E, Ferrario A, Koutsikou S, Li WC, Soffe SR. The decision to move: response times, neuronal circuits and sensory memory in a simple vertebrate. Proc Biol Sci 2020; 286:20190297. [PMID: 30900536 DOI: 10.1098/rspb.2019.0297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All animals use sensory systems to monitor external events and have to decide whether to move. Response times are long and variable compared to reflexes, and fast escape movements. The complexity of adult vertebrate brains makes it difficult to trace the neuronal circuits underlying basic decisions to move. To simplify the problem, we investigate the nervous system and responses of hatchling frog tadpoles which swim when their skin is stimulated. Studying the neuron-by-neuron pathway from sensory to hindbrain neurons, where the decision to swim is made, has revealed two simple pathways generating excitation which sums to threshold in these neurons to initiate swimming. The direct pathway leads to short, and reliable delays like an escape response. The other includes a population of sensory processing neurons which extend firing to introduce noise and delay into responses. These neurons provide a brief, sensory memory of the stimulus, that allows tadpoles to integrate stimuli occurring within a second or so of each other. We relate these findings to other studies and conclude that sensory memory makes a fundamental contribution to simple decisions and is present in the brainstem of a basic vertebrate at a surprisingly early stage in development.
Collapse
Affiliation(s)
- Alan Roberts
- 1 School of Biological Sciences, University of Bristol , Bristol BS8 1TQ , UK
| | - Roman Borisyuk
- 2 School of Computing, Electronics and Mathematics, University of Plymouth , Plymouth PL4 8AA , UK
| | - Edgar Buhl
- 1 School of Biological Sciences, University of Bristol , Bristol BS8 1TQ , UK.,3 School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol BS8 1TD , UK
| | - Andrea Ferrario
- 2 School of Computing, Electronics and Mathematics, University of Plymouth , Plymouth PL4 8AA , UK
| | - Stella Koutsikou
- 1 School of Biological Sciences, University of Bristol , Bristol BS8 1TQ , UK.,4 Medway School of Pharmacy, University of Kent , Chatham Maritime ME4 4TB , UK
| | - Wen-Chang Li
- 5 School of Psychology and Neuroscience, University of St Andrews , St Andrews KY16 9JP , UK
| | - Stephen R Soffe
- 1 School of Biological Sciences, University of Bristol , Bristol BS8 1TQ , UK
| |
Collapse
|
43
|
Wispinski NJ, Gallivan JP, Chapman CS. Models, movements, and minds: bridging the gap between decision making and action. Ann N Y Acad Sci 2020; 1464:30-51. [DOI: 10.1111/nyas.13973] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jason P. Gallivan
- Centre for Neuroscience StudiesQueen's University Kingston Ontario Canada
- Department of PsychologyQueen's University Kingston Ontario Canada
- Department of Biomedical and Molecular SciencesQueen's University Kingston Ontario Canada
| | - Craig S. Chapman
- Faculty of Kinesiology, Sport, and RecreationUniversity of Alberta Edmonton Alberta Canada
- Neuroscience and Mental Health Institute, University of Alberta Edmonton Alberta Canada
| |
Collapse
|
44
|
Kuhnell R, Whitwell Z, Arnold S, Kingsley MIC, Hale MW, Wahrendorf M, Dragano N, Wright BJ. Assessing the association of university stress and physiological reactivity with decision-making among students. Stress 2020; 23:136-143. [PMID: 31401912 DOI: 10.1080/10253890.2019.1651285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Compared with age-matched employees, university students report higher levels of chronic stress and this may affect their decision-making. The impact of chronic stress and physiological reactivity upon cognitive function is receiving more attention, but few studies have empirically assessed the associations of these variables concurrently. Our aim was to investigate if chronic student stress, as assessed by effort-reward imbalance (ERI) and overcommitment, and physiological reactivity, were related to decision-making. As measures of physiological reactivity, we collected salivary alpha-amylase (sAA) and continuously recorded heart rate variability (HRV) data from male students (n = 79) at pretest and immediately after some computerized decision-making tasks (simple and choice- reaction times). Our findings suggest that students who are higher in overcommitment and who are more physiologically reactive (sAA and HRV indices) at the pretest stage may be more "at-risk" of poor decision-making than others. If others can replicate our findings in more diverse samples, this will contribute to an evidence base for interventions targeted at reducing overcommitment, ERI, and dysregulated autonomic reactivity to improve decision-making.
Collapse
Affiliation(s)
- Raymond Kuhnell
- School of Psychology and Public Health, La Trobe University, Bundoora, Australia
| | - Zoe Whitwell
- School of Psychology and Public Health, La Trobe University, Bundoora, Australia
| | - Steven Arnold
- School of Psychology and Public Health, La Trobe University, Bundoora, Australia
| | - Michael I C Kingsley
- School of Psychology and Public Health, La Trobe University, Bundoora, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Bundoora, Australia
| | - Morten Wahrendorf
- Medical Faculty, Institute of Medical Sociology, University of Duesseldorf, Duesseldorf, Germany
| | - Nico Dragano
- Medical Faculty, Institute of Medical Sociology, University of Duesseldorf, Duesseldorf, Germany
| | - Bradley J Wright
- School of Psychology and Public Health, La Trobe University, Bundoora, Australia
| |
Collapse
|
45
|
Nachmani O, Coutinho J, Khan AZ, Lefèvre P, Blohm G. Predicted Position Error Triggers Catch-Up Saccades during Sustained Smooth Pursuit. eNeuro 2020; 7:ENEURO.0196-18.2019. [PMID: 31862791 PMCID: PMC6964921 DOI: 10.1523/eneuro.0196-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/09/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
For humans, visual tracking of moving stimuli often triggers catch-up saccades during smooth pursuit. The switch between these continuous and discrete eye movements is a trade-off between tolerating sustained position error (PE) when no saccade is triggered or a transient loss of vision during the saccade due to saccadic suppression. de Brouwer et al. (2002b) demonstrated that catch-up saccades were less likely to occur when the target re-crosses the fovea within 40-180 ms. To date, there is no mechanistic explanation for how the trigger decision is made by the brain. Recently, we proposed a stochastic decision model for saccade triggering during visual tracking (Coutinho et al., 2018) that relies on a probabilistic estimate of predicted PE (PEpred). Informed by model predictions, we hypothesized that saccade trigger time length and variability will increase when pre-saccadic predicted errors are small or visual uncertainty is high (e.g., for blurred targets). Data collected from human participants performing a double step-ramp task showed that large pre-saccadic PEpred (>10°) produced short saccade trigger times regardless of the level of uncertainty while saccade trigger times preceded by small PEpred (<10°) significantly increased in length and variability, and more so for blurred targets. Our model also predicted increased signal-dependent noise (SDN) as retinal slip (RS) increases; in our data, this resulted in longer saccade trigger times and more smooth trials without saccades. In summary, our data supports our hypothesized predicted error-based decision process for coordinating saccades during smooth pursuit.
Collapse
Affiliation(s)
- Omri Nachmani
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Jonathan Coutinho
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Aarlenne Z Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
- VISATTAC, École d'Optométrie, Université de Montréal, Montreal, Ontario, Canada H3T 1P1
| | - Philippe Lefèvre
- Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium MJ98+V6
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
46
|
Pogson JM, Taylor RL, McGarvie LA, Bradshaw AP, D’Souza M, Flanagan S, Kong J, Halmagyi GM, Welgampola MS. Head impulse compensatory saccades: Visual dependence is most evident in bilateral vestibular loss. PLoS One 2020; 15:e0227406. [PMID: 31940394 PMCID: PMC6961882 DOI: 10.1371/journal.pone.0227406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022] Open
Abstract
The normal vestibulo-ocular reflex (VOR) generates almost perfectly compensatory smooth eye movements during a 'head-impulse' rotation. An imperfect VOR gain provokes additional compensatory saccades to re-acquire an earth-fixed target. In the present study, we investigated vestibular and visual contributions on saccade production. Eye position and velocity during horizontal and vertical canal-plane head-impulses were recorded in the light and dark from 16 controls, 22 subjects after complete surgical unilateral vestibular deafferentation (UVD), eight subjects with idiopathic bilateral vestibular loss (BVL), and one subject after complete bilateral vestibular deafferentation (BVD). When impulses were delivered in the horizontal-canal plane, in complete darkness compared with light, first saccade frequency mean(SEM) reduced from 96.6(1.3)-62.3(8.9) % in BVL but only 98.3(0.6)-92.0(2.3) % in UVD; saccade amplitudes reduced from 7.0(0.5)-3.6(0.4) ° in BVL but were unchanged 6.2(0.3)-5.5(0.6) ° in UVD. In the dark, saccade latencies were prolonged in lesioned ears, from 168(8.4)-240(24.5) ms in BVL and 177(5.2)-196(5.7) ms in UVD; saccades became less clustered. In BVD, saccades were not completely abolished in the dark, but their amplitudes decreased from 7.3-3.0 ° and latencies became more variable. For unlesioned ears (controls and unlesioned ears of UVD), saccade frequency also reduced in the dark, but their small amplitudes slightly increased, while latency and clustering remained unchanged. First and second saccade frequencies were 75.3(4.5) % and 20.3(4.1) %; without visual fixation they dropped to 32.2(5.0) % and 3.8(1.2) %. The VOR gain was affected by vision only in unlesioned ears of UVD; gains for the horizontal-plane rose slightly, and the vertical-planes reduced slightly. All head-impulse compensatory saccades have a visual contribution, the magnitude of which depends on the symmetry of vestibular-function and saccade latency: BVL is more profoundly affected by vision than UVD, and second saccades more than first saccades. Saccades after UVD are probably triggered by contralateral vestibular function.
Collapse
Affiliation(s)
- Jacob M. Pogson
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rachael L. Taylor
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Leigh A. McGarvie
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Department of Psychology, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Andrew P. Bradshaw
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
| | - Mario D’Souza
- Department of Clinical Research, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sean Flanagan
- Otolaryngology, Head and Neck and Skull Base Surgery, St Vincent’s Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of NSW, Kensington, New South Wales, Australia
| | - Jonathan Kong
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Department of Otolaryngology, Head & Neck Surgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - G. Michael Halmagyi
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Miriam S. Welgampola
- Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia
- Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
47
|
Crawford TJ, Taylor S, Mardanbegi D, Polden M, Wilcockson TW, Killick R, Sawyer P, Gellersen H, Leroi I. The Effects of Previous Error and Success in Alzheimer's Disease and Mild Cognitive Impairment. Sci Rep 2019; 9:20204. [PMID: 31882919 PMCID: PMC6934582 DOI: 10.1038/s41598-019-56625-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
This work investigated in Alzheimer’s disease dementia (AD), whether the probability of making an error on a task (or a correct response) was influenced by the outcome of the previous trials. We used the antisaccade task (AST) as a model task given the emerging consensus that it provides a promising sensitive and early biological test of cognitive impairment in AD. It can be employed equally well in healthy young and old adults, and in clinical populations. This study examined eye-movements in a sample of 202 participants (42 with dementia due to AD; 65 with mild cognitive impairment (MCI); 95 control participants). The findings revealed an overall increase in the frequency of AST errors in AD and MCI compared to the control group, as predicted. The errors on the current trial increased in proportion to the number of consecutive errors on the previous trials. Interestingly, the probability of errors was reduced on the trials that followed a previously corrected error, compared to the trials where the error remained uncorrected, revealing a level of adaptive control in participants with MCI or AD dementia. There was an earlier peak in the AST distribution of the saccadic reaction times for the inhibitory errors in comparison to the correct saccades. These findings revealed that the inhibitory errors of the past have a negative effect on the future performance of healthy adults as well as people with a neurodegenerative cognitive impairment.
Collapse
Affiliation(s)
- T J Crawford
- Psychology Department, Lancaster University, Centre for Ageing Research, Lancaster, LA1 4YF, UK.
| | - S Taylor
- Department of Statistics, Lancaster University, Fylde College, Lancaster, LA1 4YF, UK
| | - D Mardanbegi
- Computing and Communications Department, Lancaster University, Lancaster, UK
| | - M Polden
- Psychology Department, Lancaster University, Centre for Ageing Research, Lancaster, LA1 4YF, UK
| | - T W Wilcockson
- Psychology Department, Lancaster University, Centre for Ageing Research, Lancaster, LA1 4YF, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - R Killick
- Department of Statistics, Lancaster University, Fylde College, Lancaster, LA1 4YF, UK
| | - P Sawyer
- Engineering and Applied Science, Aston University, Birmingham, UK
| | - H Gellersen
- Computing and Communications Department, Lancaster University, Lancaster, UK
| | - I Leroi
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Wolf C, Schütz AC. Choice-induced inter-trial inhibition is modulated by idiosyncratic choice-consistency. PLoS One 2019; 14:e0226982. [PMID: 31877183 PMCID: PMC6932778 DOI: 10.1371/journal.pone.0226982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Humans constantly decide among multiple action plans. Carrying out one action usually implies that other plans are suppressed. Here we make use of inter-trial effects to determine whether suppression of non-chosen action plans is due to proactively preparing for upcoming decisions or due to retroactive influences from previous decisions. Participants received rewards for timely and accurate saccades to targets appearing left or right from fixation. Each block interleaved trials with one (single-trial) or two targets (choice-trial). Whereas single-trial rewards were always identical, rewards for the two targets in choice-trials could either be identical (unbiased) or differ (biased) within one block. We analyzed single-trial latencies as a function of idiosyncratic choice-consistency or reward-bias, the previous trial type and whether the same or the other target was selected in the preceding trial. After choice-trials, single-trial responses to the previously non-chosen target were delayed. For biased choices, inter-trial effects were strongest when choices were followed by a single-trial to the non-chosen target. In the unbiased condition, inter-trial effects increased with increasing individual consistency of choice behavior. These findings suggest that the suppression of alternative action plans is not coupled to target selection and motor execution but instead depends on top-down signals like the overall preference of one target over another.
Collapse
Affiliation(s)
- Christian Wolf
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Allgemeine Psychologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander C. Schütz
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
49
|
Arcizet F, Mirpour K, Foster DJ, Bisley JW. Activity in LIP, But not V4, Matches Performance When Attention is Spread. Cereb Cortex 2019; 28:4195-4209. [PMID: 29069324 DOI: 10.1093/cercor/bhx274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The enhancement of neuronal responses in many visual areas while animals perform spatial attention tasks has widely been thought to be the neural correlate of visual attention, but it is unclear whether the presence or absence of this modulation contributes to our striking inability to notice changes in change blindness examples. We asked whether neuronal responses in visual area V4 and the lateral intraparietal area (LIP) in posterior parietal cortex could explain the limited ability of subjects to attend multiple items in a display. We trained animals to perform a change detection task in which they had to compare 2 arrays of stimuli separated briefly in time and found that each animal's performance decreased as function of set-size. Neuronal discriminability in V4 was consistent across set-sizes, but decreased for higher set-sizes in LIP. The introduction of a reward bias produced attentional enhancement in V4, but this could not explain the vast improvement in performance, whereas the enhancement in LIP responses could. We suggest that behavioral set-size effects and the marked improvement in performance with focused attention may not be related to response enhancement in V4 but, instead, may occur in or on the way to LIP.
Collapse
Affiliation(s)
- Fabrice Arcizet
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Koorosh Mirpour
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel J Foster
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Psychology and the Brain Research Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
50
|
RSE-box: An analysis and modelling package to study response times to multiple signals. ACTA ACUST UNITED AC 2019. [DOI: 10.20982/tqmp.15.2.p112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|