1
|
Gottiparthy A, Lam K, Kundu S, Yang Z, Tremont-Lukats I, Tummala S. Neurofilament light chain in serum of cancer patients with acute neurological complications. CNS Oncol 2024; 13:2386233. [PMID: 39136375 PMCID: PMC11323868 DOI: 10.1080/20450907.2024.2386233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: Neurofilament light chain (NfL) is a nonspecific sensitive biomarker of axonal damage.Methods: This case series identified cancer patients with neurological complications who had serum NfL measurements and paired these results to outcomes.Results: NfL serum levels were available in 15 patients with hematological malignancies or solid tumors. The neurological complications studied were immune effector cell-associated neurotoxicity syndrome, immune checkpoint inhibitor-related encephalopathy, anoxic brain injury, Guillain-Barre syndrome, hemophagocytic lymphohistiocytosis, transverse myelitis, paraneoplastic syndrome, central nervous system demyelinating disorder and chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. All patients but one with serum NfL >900 pg/ml died during hospitalization.Conclusion: Serum NfL levels consistently corresponded to death, disease severity or recovery in this series.
Collapse
Affiliation(s)
- Amulya Gottiparthy
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX77030, USA
| | - Keng Lam
- Department of Neuro-Oncology, Division of Cancer Medicine, Unit 431, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Suprateek Kundu
- Department of Biostatistics, Unit 1411, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Zixi Yang
- Department of Biostatistics, Unit 1411, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Ivo Tremont-Lukats
- Kenneth R Peak Brain & Pituitary Tumor Center, Houston Methodist Hospital, Houston, TX77030, USA
| | - Sudhakar Tummala
- Department of Neuro-Oncology, Division of Cancer Medicine, Unit 431, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| |
Collapse
|
2
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
3
|
Gao Y, Xu SM, Cheng Y, Takenaka K, Lindner G, Janitz M. Investigation of the Circular Transcriptome in Alzheimer's Disease Brain. J Mol Neurosci 2024; 74:64. [PMID: 38981928 PMCID: PMC11233389 DOI: 10.1007/s12031-024-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs which have demonstrated potential as biomarkers for Alzheimer's disease (AD). In this study, we conducted a comprehensive exploration of the circRNA transcriptome within AD brain tissues. Specifically, we assessed circRNA expression patterns in the dorsolateral prefrontal cortex collected from nine AD-afflicted individuals and eight healthy controls. Utilising two circRNA detection tools, CIRI2 and CIRCexplorer2, we detected thousands of circRNAs and performed a differential expression analysis. CircRNAs which exhibited statistically significantly differential expression were identified as AD-specific differentially expressed circRNAs. Notably, our investigation revealed 120 circRNAs with significant upregulation and 1325 circRNAs displaying significant downregulation in AD brains when compared to healthy brain tissue. Additionally, we explored the expression profiles of the linear RNA counterparts corresponding to differentially expressed circRNAs in AD-afflicted brains and discovered that the linear RNA counterparts exhibited no significant changes in the levels of expression. We used CRAFT tool to predict that circUBE4B had potential to target miRNA named as hsa-miR-325-5p, ultimately regulated CD44 gene. This study provides a comprehensive overview of differentially expressed circRNAs in the context of AD brains, underscoring their potential as molecular biomarkers for AD. These findings significantly enhance our comprehension of AD's underlying pathophysiological mechanisms, offering promising avenues for future diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Nisha Aji K, Cisbani G, Weidenauer A, Koppel A, Hafizi S, Da Silva T, Kiang M, Rusjan PM, Bazinet RP, Mizrahi R. Neurofilament light-chain (NfL) and 18 kDa translocator protein in early psychosis and its putative high-risk. Brain Behav Immun Health 2024; 37:100742. [PMID: 38495956 PMCID: PMC10940889 DOI: 10.1016/j.bbih.2024.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Evidence of elevated peripheral Neurofilament light-chain (NfL) as a biomarker of neuronal injury can be utilized to reveal nonspecific axonal damage, which could reflect altered neuroimmune function. To date, only a few studies have investigated NfL as a fluid biomarker in schizophrenia primarily, though none in its putative prodrome (Clinical High-Risk, CHR) or in untreated first-episode psychosis (FEP). Further, it is unknown whether peripheral NfL is associated with 18 kDa translocator protein (TSPO), a validated neuroimmune marker. In this secondary study, we investigated for the first time (1) serum NfL in early stages of psychosis including CHR and FEP as compared to healthy controls, and (2) examined its association with brain TSPO, using [18F]FEPPA positron emission tomography (PET). Further, in the exploratory analyses, we aimed to assess associations between serum NfL and symptom severity in patient group and cognitive impairment in the combined cohort. A large cohort of 84 participants including 27 FEP (24 antipsychotic-naive), 41 CHR (34 antipsychotic-naive) and 16 healthy controls underwent structural brain MRI and [18F]FEPPA PET scan and their blood samples were obtained and assessed for serum NfL concentrations. We found no significant differences in serum NfL levels across clinical groups, controlling for age. We also found no significant association between NfL levels and brain TSPO in the entire cohort. We observed a negative association between serum NfL and negative symptom severity in CHR. Our findings suggest that neither active neuroaxonal deterioration as measured with NfL nor associated neuroimmune activation (TSPO) is clearly identifiable in an early mostly untreated psychosis sample including its putative high-risk.
Collapse
Affiliation(s)
- Kankana Nisha Aji
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Alex Koppel
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Mantellatto Grigoli M, Pelegrini LNC, Whelan R, Cominetti MR. Present and Future of Blood-Based Biomarkers of Alzheimer's Disease: Beyond the Classics. Brain Res 2024; 1830:148812. [PMID: 38369085 DOI: 10.1016/j.brainres.2024.148812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The field of blood-based biomarkers for Alzheimer's disease (AD) has advanced at an incredible pace, especially after the development of sensitive analytic platforms that can facilitate large-scale screening. Such screening will be important when more sophisticated diagnostic methods are scarce and expensive. Thus, blood-based biomarkers can potentially reduce diagnosis inequities among populations from different socioeconomic contexts. This large-scale screening can be performed so that older adults at risk of cognitive decline assessed using these methods can then undergo more complete assessments with classic biomarkers, increasing diagnosis efficiency and reducing costs to the health systems. Blood-based biomarkers can also aid in assessing the effect of new disease-modifying treatments. This paper reviews recent advances in the area, focusing on the following leading candidates for blood-based biomarkers: amyloid-beta (Aβ), phosphorylated tau isoforms (p-tau), neurofilament light (NfL), and glial fibrillary acidic (GFAP) proteins, as well as on new candidates, Neuron-Derived Exosomes contents (NDEs) and Transactive response DNA-binding protein-43 (TDP-43), based on data from longitudinal observational cohort studies. The underlying challenges of validating and incorporating these biomarkers into routine clinical practice and primary care settings are also discussed. Importantly, challenges related to the underrepresentation of ethnic minorities and socioeconomically disadvantaged persons must be considered. If these challenges are overcome, a new time of cost-effective blood-based biomarkers for AD could represent the future of clinical procedures in the field and, together with continued prevention strategies, the beginning of an era with a lower incidence of dementia worldwide.
Collapse
Affiliation(s)
| | | | - Robert Whelan
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Bertran-Cobo C, Dumont E, Noordin NR, Lai MY, Stone W, Tetteh KK, Drakeley C, Krishna S, Lau YL, Wassmer SC. Plasmodium knowlesi infection is associated with elevated circulating biomarkers of brain injury and endothelial activation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306382. [PMID: 38712121 PMCID: PMC11071568 DOI: 10.1101/2024.04.25.24306382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a non-comatose, fatal case of severe knowlesi infection, but the potential impact of this malaria species on the brain remains underexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. Methods Archived plasma samples from 19 patients with confirmed symptomatic knowlesi infection and 19 healthy, age-matched controls from Peninsular Malaysia were analysed. A total of 52 plasma biomarkers of brain injury, inflammation, and vascular activation were measured using Luminex and SIMOA assays. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. Results Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (p<0.0001), Tau (p=0.0007), UCH-L1 (p<0.0001), αSyn (p<0.0001), Park7 (p=0.0006), NRGN (p=0.0022), and TDP-43 (p=0.005). Compared to controls, levels were lower in the infected group for BDNF (p<0.0001), CaBD (p<0.0001), CNTN1 (p<0.0001), NCAM-1 (p<0.0001), GFAP (p=0.0013), and KLK6 (p=0.0126). Hierarchical clustering revealed distinct group profiles for circulating levels of brain injury and vascular activation biomarkers. Conclusions Our findings highlight for the first time the impact of Plasmodium knowlesi infection on the brain, with distinct alterations in cerebral injury and endothelial activation biomarker profiles compared to healthy controls. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered surrogate markers, through both neuroimaging and long-term neurocognitive assessments.
Collapse
|
7
|
Xu L, Li F, Xu J, Li B, Li Y, Jia J. Vascular endothelial growth factor is an effective biomarker for vascular dementia, not for Alzheimer's disease: A meta-analysis. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12612. [PMID: 38912304 PMCID: PMC11193096 DOI: 10.1002/dad2.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Vascular pathology is known to contribute to dementia and vascular endothelial growth factor (VEGF) is a well-established biomarker associated with vascular alterations. Nonetheless, research findings on VEGF in Alzheimer's disease (AD) and vascular dementia (VaD) are inconsistent across various studies. METHODS We conducted a meta-analysis to elucidate relationships between VEGF and AD/VaD. RESULTS Twenty-four studies were included. Pooled data showed that both blood and cerebrospinal fluid (CSF) VEGF levels were higher in VaD patients, whereas no significant difference was found between AD patients and healthy controls. However, the correlation between blood VEGF and AD was found among studies with AD pathology verification. And blood VEGF levels were higher in AD patients than controls in "age difference < 5 years" subgroup and CSF samples for European cohorts. DISCUSSION This study highlights that VEGF is more effective for the diagnosis of VaD and vascular factors are also an important contributor in AD. Highlights Vascular endothelial growth factor (VEGF) levels were higher in the vascular dementia group, but not in the overall Alzheimer's disease (AD) group.Correlation between VEGF and AD was found among studies with clear AD pathological verification.Elevated VEGF in the cerebrospinal fluid might be a diagnostic marker for AD in European populations.
Collapse
Affiliation(s)
- Ling‐Zhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Fang‐Yu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jin Xu
- Department of Library, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Bing‐Qiu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jian‐Ping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| |
Collapse
|
8
|
Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, Triaca V, Imbimbo C, Gabelle A, Mielke MM, Nisticò R, Santos-Lozano A, Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer's disease. Ageing Res Rev 2024; 96:102290. [PMID: 38580173 DOI: 10.1016/j.arr.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-β (Aβ) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aβ1-42, the Aβ1-42/Aβ1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aβ1-42/Aβ1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome 00015, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | - Audrey Gabelle
- Memory Resources and Research Center, Montpellier University of Excellence i-site, Montpellier 34295, France.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome 00133, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome 00143, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| |
Collapse
|
9
|
Brown Q, Nicholson E, Wang C, Greenlee J, Seger H, Veneziano S, Cassmann E. Temporal serum neurofilament light chain concentrations in sheep inoculated with the agent of classical scrapie. PLoS One 2024; 19:e0299038. [PMID: 38394122 PMCID: PMC10889644 DOI: 10.1371/journal.pone.0299038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Neurofilament light chain (Nf-L) has been used to detect neuroaxonal damage in the brain caused by physical injury or disease. The purpose of this study was to determine if serum Nf-L could be used as a biomarker for pre-symptomatic detection of scrapie in sheep. METHODS Four sheep with prion protein genotype AVQQ were intranasally inoculated with the classical scrapie strain x124. Blood was collected every 4 weeks until 44 weeks post-inoculation, at which point weekly collection commenced. Serum was analyzed using single molecule array (Quanterix SR-X) to evaluate Nf-L concentrations. RESULTS Scrapie was confirmed in each sheep by testing homogenized brainstem at the level of the obex with a commercially available enzyme immunoassay. Increased serum Nf-L concentrations were identified above the determined cutoff during the last tenth of the respective incubation period for each sheep. Throughout the time course study, PrPSc accumulation was not detected antemortem by immunohistochemistry in rectal tissue at any timepoint for any sheep. RT-QuIC results were inconsistently positive throughout the timepoints tested for each sheep; however, each sheep had at least one timepoint detected positive. When assessing serum Nf-L utility using receiver operator characteristic curves against different clinical parameters, such as asymptomatic and symptomatic (pruritus or neurologic signs), results showed that Nf-L was most useful at being an indicator of disease only late in disease progression when neurologic signs were present. CONCLUSION Serum Nf-L concentrations in the cohort of sheep increased as disease progressed; however, serum Nf-L did not increase during the presymptomatic window. The levels increased substantially throughout the final 10% of the animals' scrapie incubation period when other clinical signs were present. Serum Nf-L is not a reliable biomarker for pre-clinical detection of scrapie.
Collapse
Affiliation(s)
- Quazetta Brown
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Christensen, Ames, United States of America
| | - Eric Nicholson
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Justin Greenlee
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Hannah Seger
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Susan Veneziano
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Eric Cassmann
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
10
|
Muir RT, Ismail Z, Black SE, Smith EE. Comparative methods for quantifying plasma biomarkers in Alzheimer's disease: Implications for the next frontier in cerebral amyloid angiopathy diagnostics. Alzheimers Dement 2024; 20:1436-1458. [PMID: 37908054 PMCID: PMC10916950 DOI: 10.1002/alz.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 11/02/2023]
Abstract
Plasma amyloid beta (Aβ) and tau are emerging as accessible biomarkers for Alzheimer's disease (AD). However, many assays exist with variable test performances, highlighting the need for a comparative assessment to identify the most valid assays for future use in AD and to apply to other settings in which the same biomarkers may be useful, namely, cerebral amyloid angiopathy (CAA). CAA is a progressive cerebrovascular disease characterized by deposition of Aβ40 and Aβ42 in cortical and leptomeningeal vessels. Novel immunotherapies for AD can induce amyloid-related imaging abnormalities resembling CAA-related inflammation. Few studies have evaluated plasma biomarkers in CAA. Identifying a CAA signature could facilitate diagnosis, prognosis, and a safer selection of patients with AD for emerging immunotherapies. This review evaluates studies that compare the diagnostic test performance of plasma biomarker techniques in AD and cerebrovascular and plasma biomarker profiles of CAA; it also discusses novel hypotheses and future avenues for plasma biomarker research in CAA.
Collapse
Affiliation(s)
- Ryan T. Muir
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Zahinoor Ismail
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryUniversity of CalgaryCalgaryAlbertaCanada
| | - Sandra E. Black
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
- LC Campbell Cognitive Neurology Research UnitDr Sandra Black Centre for Brain Resilience and Recovery, and Hurvitz Brain Sciences ProgramSunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Eric E. Smith
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
11
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024:S0929-6646(24)00051-2. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Jung Y, Damoiseaux JS. The potential of blood neurofilament light as a marker of neurodegeneration for Alzheimer's disease. Brain 2024; 147:12-25. [PMID: 37540027 PMCID: PMC11484517 DOI: 10.1093/brain/awad267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Over the past several years, there has been a surge in blood biomarker studies examining the value of plasma or serum neurofilament light (NfL) as a biomarker of neurodegeneration for Alzheimer's disease. However, there have been limited efforts to combine existing findings to assess the utility of blood NfL as a biomarker of neurodegeneration for Alzheimer's disease. In addition, we still need better insight into the specific aspects of neurodegeneration that are reflected by the elevated plasma or serum concentration of NfL. In this review, we survey the literature on the cross-sectional and longitudinal relationships between blood-based NfL levels and other, neuroimaging-based, indices of neurodegeneration in individuals on the Alzheimer's continuum. Then, based on the biomarker classification established by the FDA-NIH Biomarker Working group, we determine the utility of blood-based NfL as a marker for monitoring the disease status (i.e. monitoring biomarker) and predicting the severity of neurodegeneration in older adults with and without cognitive decline (i.e. a prognostic or a risk/susceptibility biomarker). The current findings suggest that blood NfL exhibits great promise as a monitoring biomarker because an increased NfL level in plasma or serum appears to reflect the current severity of atrophy, hypometabolism and the decline of white matter integrity, particularly in the brain regions typically affected by Alzheimer's disease. Longitudinal evidence indicates that blood NfL can be useful not only as a prognostic biomarker for predicting the progression of neurodegeneration in patients with Alzheimer's disease but also as a susceptibility/risk biomarker predicting the likelihood of abnormal alterations in brain structure and function in cognitively unimpaired individuals with a higher risk of developing Alzheimer's disease (e.g. those with a higher amyloid-β). There are still limitations to current research, as discussed in this review. Nevertheless, the extant literature strongly suggests that blood NfL can serve as a valuable prognostic and susceptibility biomarker for Alzheimer's disease-related neurodegeneration in clinical settings, as well as in research settings.
Collapse
Affiliation(s)
- Youjin Jung
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
13
|
Trieu C, van Harten AC, Leeuwis AE, Exalto LG, Hooghiemstra AM, Verberk IMW, Allaart CP, Brunner-La Rocca HP, Kappelle LJ, van Oostenbrugge RJ, Biessels GJ, Teunissen CE, van der Flier WM. Alzheimer's Disease and Cognitive Decline in Patients with Cardiovascular Diseases Along the Heart-Brain Axis. J Alzheimers Dis 2024; 98:987-1000. [PMID: 38489178 DOI: 10.3233/jad-231096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background We hypothesize that Alzheimer's disease (AD)-related pathology may accelerate cognitive decline in patients with cardiovascular diseases. Objective To investigate the association between blood-based biomarkers of AD, astrocyte activation, and neurodegeneration and cognitive decline. Methods From the multi-center Heart-Brain study, we included 412 patients with heart failure, carotid occlusive disease or vascular cognitive impairment (age:68.6±9.0) and 128 reference participants (65.7±7.5). Baseline amyloid-β42/40 (Aβ42/40), phosphorylated-tau181 (pTau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) were determined using SiMoA (Quanterix). Memory, attention, language, and executive functioning were evaluated (follow-up:2.1±0.3 years). We applied linear mixed models with terms for biomarker, time and biomarker*time interactions, adjusted for age, sex, education, and site, to assess associations between biomarkers and cognitive decline. Results Among patients, Aβ42/40 was not associated with cognitive performance at baseline. However, lower Aβ42/40 was associated with steeper decline in global cognition (β±SE:0.04±0.02). Higher pTau181 was associated with worse baseline performance on global cognition (-0.14±0.04) and memory (-0.31±0.09) and with steeper decline in global cognition (-0.07±0.02), memory (-0.09±0.04), attention (-0.05±0.02), and language (-0.10±0.03). Higher GFAP was associated with worse baseline performance on global cognition (-0.22±0.05), memory (-0.43±0.10), attention (-0.14±0.06), language (-0.15±0.05), and executive functioning (-0.15±0.05) and steeper decline in global cognition (-0.05±0.01). Higher NfL was associated with worse baseline performance on global cognition (-0.16±0.04), memory (-0.28±0.09), attention (-0.20±0.06), and executive functioning (-0.10±0.04), but was not associated with performance over time. In reference participants, no associations were found. Conclusions Our findings suggest that blood-based biomarkers of AD-related pathology predict cognitive decline in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Calvin Trieu
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam Neuroscience, Program Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | - Argonde C van Harten
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Anna E Leeuwis
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Lieza G Exalto
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research Center, Zwolle, The Netherlands
- Julius Clinical, Zeist, The Netherlands
| | - Astrid M Hooghiemstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam Neuroscience, Program Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | - Cor P Allaart
- Department of Cardiology, Institute for Cardiovascular Research, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | | | - L Jaap Kappelle
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Geert-Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Charlotte E Teunissen
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam Neuroscience, Program Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Fang J, Wu J, Zhang T, Yuan X, Zhao J, Zheng L, Hong G, Yu L, Lin Q, An X, Jing C, Zhang Q, Wang C, Wang Z, Ma Q. Serum neurofilament light chain levels in migraine patients: a monocentric case-control study in China. J Headache Pain 2023; 24:149. [PMID: 37932721 PMCID: PMC10626745 DOI: 10.1186/s10194-023-01674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023] Open
Abstract
PURPOSE Serum neurofilament light chain (sNfL) can reflect nerve damage. Whether migraine can cause neurological damage remain unclear. This study assesses sNfL levels in migraine patients and explores whether there is nerve damage in migraine. METHODS A case-control study was conducted in Xiamen, China. A total of 138 migraine patients and 70 healthy controls were recruited. sNfL (pg/mL) was measured on the single-molecule array platform. Univariate, Pearson correlation and linear regression analysis were used to assess the relationship between migraine and sNfL levels, with further subgroup analysis by migraine characteristics. RESULTS Overall, 85.10% of the 208 subjects were female, with a median age of 36 years. sNfL levels were higher in the migraine group than in the control group (4.85 (3.49, 6.62) vs. 4.11 (3.22, 5.59)), but the difference was not significant (P = 0.133). The two groups showed an almost consistent trend in which sNfL levels increased significantly with age. Subgroup analysis showed a significant increase in sNfL levels in patients with a migraine course ≥ 10 years (β = 0.693 (0.168, 1.220), P = 0.010). Regression analysis results show that age and migraine course are independent risk factors for elevated sNfL levels, and there is an interaction between the two factors. Patients aged < 45 years and with a migraine course ≥ 10 years have significantly increased sNfL levels. CONCLUSIONS This is the first study to evaluate sNfL levels in migraine patients. The sNfL levels significantly increased in patients with a migraine course ≥ 10 years. More attention to nerve damage in young patients with a long course of migraine is required.
Collapse
Affiliation(s)
- Jie Fang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Jielong Wu
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Tengkun Zhang
- Department of Neurology, The Fifth Hospital of Xiamen, Xiamen, China
| | - Xiaodong Yuan
- Department of Gynecology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Jiedong Zhao
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Liangcheng Zheng
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Ganji Hong
- Cerebrovascular Interventional Department, Zhangzhou Hospital of Fujian Province, Zhangzhou, China
| | - Lu Yu
- Department of Neurology, Changxing People's Hospital, Huzhou, China
| | - Qing Lin
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Xingkai An
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Chuya Jing
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Qiuhong Zhang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Zhanxiang Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China.
- Xiamen Key Laboratory of Brain Center, Xiamen, China.
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China.
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China.
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China.
- School of Medicine, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China.
| | - Qilin Ma
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China.
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China.
- Xiamen Key Laboratory of Brain Center, Xiamen, China.
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China.
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China.
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China.
- School of Medicine, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
15
|
Sahrai H, Norouzi A, Hamzehzadeh S, Majdi A, Kahfi-Ghaneh R, Sadigh-Eteghad S. SIMOA-based analysis of plasma NFL levels in MCI and AD patients: a systematic review and meta-analysis. BMC Neurol 2023; 23:331. [PMID: 37723414 PMCID: PMC10506291 DOI: 10.1186/s12883-023-03377-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The single-molecule array assay (SIMOA)-based detection of neurofilament light (NFL) chain could be useful in diagnosing mild cognitive impairment (MCI) and Alzheimer's disease (AD). This meta-analysis aimed to evaluate the circulating concentration of NFL in AD and MCI patients compared with healthy controls using the SIMOA technique. METHODS To this end, Google Scholar, PubMed, Scopus, Web of Science, and the reference lists of relevant articles were systematically searched for studies reporting serum NFL chain levels in healthy controls, MCI, and AD patients. Appropriate statistical methods were employed to achieve the study purpose. RESULTS Fifteen eligible studies including 3086 patients were pooled out of a total of 347 publications. Fixed effect model analysis showed that NFL chain level was significantly higher in the serum of patients with MCI (0.361 SMD, 95% CI, 0.286-0.435, p = 0.000, I2 = 49.179) and AD (0.808 SMD, 95% CI, 0.727-0.888, p = 0.000, I2 = 39.433) compared with healthy individuals. The analysis also showed that the NFL chain levels in plasma were significantly different between patients with MCI and AD (0.436 SMD, 95% CI, 0.359-0.513, p = 0.000, I2 = 37.44). The overall heterogeneity of the studies was modest. CONCLUSIONS This study highlights the potential of serum NFL chain detected using SIMOA in differentiating MCI, AD, and healthy controls.
Collapse
Affiliation(s)
- Hadi Sahrai
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Norouzi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Hamzehzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Rana Kahfi-Ghaneh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Beydoun MA, Noren Hooten N, Beydoun HA, Weiss J, Maldonado AI, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Plasma neurofilament light and brain volumetric outcomes among middle-aged urban adults. Neurobiol Aging 2023; 129:28-40. [PMID: 37257406 PMCID: PMC10524231 DOI: 10.1016/j.neurobiolaging.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Elevated plasma neurofilament light chain (NfL) is associated with dementia though underlying mechanisms remain unknown. We examined cross-sectional relationships of time-dependent plasma NfL with selected brain structural magnetic resonance imaging (sMRI) prognostic markers of dementia. The sample was drawn from the Healthy Aging in Neighborhoods of Diversity Across the Life Span (HANDLS) study, selecting participants with complete v1 (2004-2009) and v2 (2009-2013) plasma NfL exposure and ancillary sMRI data at vscan (2011-2015, n = 179, mean v1 to vscan time: 5.4 years). Multivariable-adjusted linear regression models were conducted, overall, by sex, and race, correcting for multiple testing with q-values. NfL(v1) was associated with larger WMLV (both Loge transformed), after 5-6 years' follow-up, overall (β = +2.131 ± 0.660, b = +0.29, p = 0.001, and q = 0.0029) and among females. NfLv2 was linked to a 125 mm3 lower left hippocampal volume (p = 0.004 and q = 0.015) in reduced models, mainly among males, as was observed for annualized longitudinal change in NfL (δNfLbayes). Among African American adults, NfLv1 was inversely related to total, gray and white matter volumes. Plasma NfL may reflect future brain pathologies in middle-aged adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Jordan Weiss
- Department of Demography, University of California Berkeley, Berkeley, CA, USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA; Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Leslie I Katzel
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA; Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA; Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA; Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
18
|
McCluskey G, Morrison KE, Donaghy C, McConville J, McCarron MO, McVerry F, Duddy W, Duguez S. Serum Neurofilaments in Motor Neuron Disease and Their Utility in Differentiating ALS, PMA and PLS. Life (Basel) 2023; 13:1301. [PMID: 37374084 DOI: 10.3390/life13061301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Neurofilament levels are elevated in many neurodegenerative diseases and have shown promise as diagnostic and prognostic biomarkers in Amyotrophic Lateral Sclerosis (ALS), the most common form of Motor Neuron Disease (MND). This study assesses serum neurofilament light (NFL) and neurofilament heavy (NFH) chain concentrations in patients with ALS, other variants of motor neuron disease such as Progressive Muscular Atrophy (PMA) and Primary Lateral Sclerosis (PLS), and a range of other neurological diseases. It aims to evaluate the use of NFL and NFH to differentiate these conditions and for the prognosis of MND disease progression. NFL and NFH levels were quantified using electrochemiluminescence immunoassays (ECLIA). Both were elevated in 47 patients with MND compared to 34 patients with other neurological diseases and 33 healthy controls. NFL was able to differentiate patients with MND from the other groups with a Receiver Operating Characteristic (ROC) curve area under the curve (AUC) of 0.90 (p < 0.001). NFL correlated with the rate of disease progression in MND (rho 0.758, p < 0.001) and with the ALS Functional Rating Scale (rho -0.335, p = 0.021). NFL levels were higher in patients with ALS compared to both PMA (p = 0.032) and PLS (p = 0.012) and were able to distinguish ALS from both PMA and PLS with a ROC curve AUC of 0.767 (p = 0.005). These findings support the use of serum NFL to help diagnose and differentiate types of MND, in addition to providing prognostic information to patients and their families.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Karen E Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen's University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Belfast BT16 1RH, UK
| | - Mark O McCarron
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Ferghal McVerry
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| |
Collapse
|
19
|
Saunders TS, Pozzolo FE, Heslegrave A, King D, McGeachan RI, Spires-Jones MP, Harris SE, Ritchie C, Muniz-Terrera G, Deary IJ, Cox SR, Zetterberg H, Spires-Jones TL. Predictive blood biomarkers and brain changes associated with age-related cognitive decline. Brain Commun 2023; 5:fcad113. [PMID: 37180996 PMCID: PMC10167767 DOI: 10.1093/braincomms/fcad113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience.
Collapse
Affiliation(s)
- Tyler S Saunders
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Francesca E Pozzolo
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Amanda Heslegrave
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Robert I McGeachan
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Craig Ritchie
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, Ohio 45701, USA
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago 3485, Chile
| | - Ian J Deary
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Simon R Cox
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Henrik Zetterberg
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Molndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
20
|
Dhana A, DeCarli C, Aggarwal NT, Dhana K, Desai P, Evans DA, Rajan KB. Serum neurofilament light chain, brain infarcts, and the risk of stroke: a prospective population-based cohort study. Eur J Epidemiol 2023; 38:427-434. [PMID: 36867286 PMCID: PMC10081967 DOI: 10.1007/s10654-023-00978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
Neurofilament light chain (NfL), a neuron-specific protein, has been related to several neurodegenerative diseases. In addition, elevated levels of NfL have also been observed in patients admitted to the hospital for stroke, suggesting that NfL as a biomarker may extend well beyond neurodegenerative diseases. Therefore, using data from the Chicago Health and Aging Project (CHAP), a population-based cohort study, we prospectively investigated the association of serum NfL levels with incident stroke and brain infarcts. During a follow-up of 3603 person-years, 133 (16.3%) individuals developed incident stroke, including ischemic and hemorrhagic. The HR (95%CI) of incident stroke was 1.28 (95%CI 1.10-1.50) per 1 standard deviation (SD) increase of log10 NfL serum levels. Compared to participants in the first tertile of NfL (i.e., lower levels), the risk of stroke was 1.68 times higher (95%CI 1.07-2.65) in those in the second tertile and 2.35 times higher (95%CI 1.45-3.81) in those in the third tertile of NfL. NfL levels were also positively associated with brain infarcts; 1-SD in log10 NfL levels was associated with 1.32 (95%CI 1.06-1.66) higher odds of one or more brain infarcts. These results suggest that NfL may serve as a biomarker of stroke in older adults.
Collapse
Affiliation(s)
- Anisa Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, 1700 W Van Buren, Suite 245, Chicago, IL, 60612, US.
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, US.
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, CA, US
| | - Neelum T Aggarwal
- Department of Neurological Sciences and the Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, US
- Department of Neurology, Rush University Medical Center, Chicago, IL, US
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, 1700 W Van Buren, Suite 245, Chicago, IL, 60612, US
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, US
| | - Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, 1700 W Van Buren, Suite 245, Chicago, IL, 60612, US
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, US
| | - Denis A Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, 1700 W Van Buren, Suite 245, Chicago, IL, 60612, US
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, US
| | - Kumar B Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, 1700 W Van Buren, Suite 245, Chicago, IL, 60612, US
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, US
| |
Collapse
|
21
|
Neurofilament-light chain quantification by Simoa and Ella in plasma from patients with dementia: a comparative study. Sci Rep 2023; 13:4041. [PMID: 36899015 PMCID: PMC10006166 DOI: 10.1038/s41598-023-29704-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Neurofilament light chains (NfL) are neuron-specific cytoskeletal proteins whose plasmatic concentrations have been explored as a clinically useful marker in several types of dementia. Plasma concentrations of NfL are extremely low, and just two assays are commercially available for their study: one based on the SiMoA technology and one based on Ella. We thus studied plasma levels of NfL with both platforms to check the correlation between them and to assess their potential in the diagnosis of neurodegeneration. Plasma NfL levels were measured on 50 subjects: 18 healthy controls, 20 Alzheimer's disease, and 12 frontotemporal dementia patients. Ella returned plasmatic NfL levels significantly higher than SiMoA, however the results were strongly correlated (r = 0.94), and a proportional coefficient of 0.58 between the two assays was calculated. Both assays detected higher plasma NfL levels in patients with dementia than in the control group (p < 0.0001) and allowed their discrimination with excellent diagnostic performance (AUC > 0.95). No difference was found between Alzheimer's and Frontotemporal dementia either using SiMoA or Ella. In conclusion, both the analytical platforms resulted effective in analysing plasma levels of NfL. However, the correct interpretation of results requires the precise knowledge of the assay used.
Collapse
|
22
|
Lopes das Neves P, Durães J, Silva-Spinola A, Lima M, Leitão MJ, Tábuas-Pereira M, Santana I, Baldeiras I. Serum Neurofilament Light Chain in the Diagnostic Evaluation of Patients with Cognitive Symptoms in the Neurological Consultation of a Tertiary Center. J Alzheimers Dis 2023; 95:391-397. [PMID: 37545232 DOI: 10.3233/jad-221208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Serum light-chain neurofilaments (sNfL) have been investigated as a potential minimally invasive biomarker that could help in the diagnosis of patients with cognitive symptoms. We assessed the correlation between sNfL and cerebrospinal fluid (CSF) biomarkers (sNfL versus CSF NfL, ρ= 0.70, p < 0.001), the performance of sNfL in distinguishing controls from patients (controls versus frontotemporal dementia, area under curve 0.86), and sNfL differences in mild cognitive impairment according to amyloid-β (Aβ) deposition (Aβ versus non-Aβ, p = 0.017). Our results support the role of this biomarker in the screening and risk stratification of patients followed in a neurological consultation of a tertiary center.
Collapse
Affiliation(s)
| | - João Durães
- Neurology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Anuschka Silva-Spinola
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Marisa Lima
- Neurology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Maria João Leitão
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Neurology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Axelsson Andrén E, Kettunen P, Bjerke M, Rolstad S, Zetterberg H, Blennow K, Wallin A, Svensson J. Diagnostic Performance of Cerebrospinal Fluid Neurofilament Light Chain and Soluble Amyloid-β Protein Precursor β in the Subcortical Small Vessel Type of Dementia. J Alzheimers Dis 2023; 96:1515-1528. [PMID: 37980667 PMCID: PMC10741327 DOI: 10.3233/jad-230680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND The subcortical small vessel type of dementia (SSVD) is a common subtype of vascular dementia, but there is a lack of disease-specific cerebrospinal fluid (CSF) biomarkers. OBJECTIVE We investigated whether CSF concentrations of neurofilament light chain (NFL), soluble amyloid-β protein precursor α (sAβPPα), sAβPPβ, and CSF/serum albumin ratio could separate SSVD from healthy controls, Alzheimer's disease (AD), and mixed dementia (combined AD and SSVD). METHODS This was a mono-center study of patients with SSVD (n = 38), AD (n = 121), mixed dementia (n = 62), and controls (n = 96). The CSF biomarkers were measured using immunoassays, and their independent contribution to the separation between groups were evaluated using the Wald test. Then, the area under the receiver operating characteristics curve (AUROC) and 95% confidence intervals (CIs) were calculated. RESULTS Elevated neurofilament light chain (NFL) and decreased sAβPPβ independently separated SSVD from controls, and sAβPPβ also distinguished SSVD from AD and mixed dementia. The combination of NFL and sAβPPβ discriminated SSVD from controls with high accuracy (AUROC 0.903, 95% CI: 0.834-0.972). Additionally, sAβPPβ combined with the core AD biomarkers (amyloid-β42, total tau, and phosphorylated tau181) had a high ability to separate SSVD from AD (AUROC 0.886, 95% CI: 0.830-0.942) and mixed dementia (AUROC 0.903, 95% CI: 0.838-0.968). CONCLUSIONS The high accuracy of NFL and sAβPPβ to separate SSVD from controls supports that SSVD is a specific diagnostic entity. Moreover, SSVD was distinguished from AD and mixed dementia using sAβPPβ in combination with the core AD biomarkers.
Collapse
Affiliation(s)
- Elin Axelsson Andrén
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Mölndal, Sweden
| | - Maria Bjerke
- Laboratory of Clinical Neurochemistry, Department of Clinical Biology, Universitair Ziekenhuis Brussel, and Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biomedical Sciences and Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sindre Rolstad
- Department of Psychology, Faculty of Social Science, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Labratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Labratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Mölndal, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine, Skaraborg Central Hospital, Region Västra Götaland, Skövde, Sweden
| |
Collapse
|
24
|
Chong JR, Hilal S, Ashton NJ, Karikari TK, Reilhac A, Vrooman H, Schöll M, Zetterberg H, Blennow K, Chen CP, Lai MKP. Brain atrophy and white matter hyperintensities are independently associated with plasma neurofilament light chain in an Asian cohort of cognitively impaired patients with concomitant cerebral small vessel disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12396. [PMID: 36994314 PMCID: PMC10040495 DOI: 10.1002/dad2.12396] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 03/28/2023]
Abstract
Introduction Plasma neurofilament light chain (NfL) is a potential biomarker for neurodegeneration in Alzheimer's disease (AD), ischemic stroke, and non-dementia cohorts with cerebral small vessel disease (CSVD). However, studies of AD in populations with high prevalence of concomitant CSVD to evaluate associations of brain atrophy, CSVD, and amyloid beta (Aβ) burden on plasma NfL are lacking. Methods Associations were tested between plasma NfL and brain Aβ, medial temporal lobe atrophy (MTA) as well as neuroimaging features of CSVD, including white matter hyperintensities (WMH), lacunes, and cerebral microbleeds. Results We found that participants with either MTA (defined as MTA score ≥2; neurodegeneration [N]+WMH-) or WMH (cut-off for log-transformed WMH volume at 50th percentile; N-WMH+) manifested increased plasma NfL levels. Participants with both pathologies (N+WMH+) showed the highest NfL compared to N+WMH-, N-WMH+, and N-WMH- individuals. Discussion Plasma NfL has potential utility in stratifying individual and combined contributions of AD pathology and CSVD to cognitive impairment.
Collapse
Affiliation(s)
- Joyce R. Chong
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| | - Saima Hilal
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
- Saw Swee Hock School of Public HealthNational University of Singapore and National University Health SystemKent RidgeSingapore
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- King's College LondonInstitute of PsychiatryPsychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Thomas K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anthonin Reilhac
- Clinical Imaging Research CentreYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
| | - Henri Vrooman
- Department of Radiology and Nuclear MedicineErasmus Medical CenterRotterdamthe Netherlands
| | - Michael Schöll
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
- Hong Kong Center for Neurodegenerative Diseasesthe Hong Kong University of Science and TechnologyHong Kong Science ParkShatinNew TerritoriesHong Kong SARChina
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
| | - Christopher P. Chen
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
- Department of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
| | - Mitchell K. P. Lai
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| |
Collapse
|
25
|
Santos F, Cabreira V, Rocha S, Massano J. Blood Biomarkers for the Diagnosis of Neurodegenerative Dementia: A Systematic Review. J Geriatr Psychiatry Neurol 2022:8919887221141651. [PMID: 36423207 DOI: 10.1177/08919887221141651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
IMPORTANCE Accurately diagnosing neurodegenerative dementia is often challenging due to overlapping clinical features. Disease specific biomarkers could enhance diagnostic accuracy. However, CSF analysis procedures and advanced imaging modalities are either invasive or high-priced, and routinely unavailable. Easily accessible disease biomarkers would be of utmost value for accurate differential diagnosis of dementia subtypes. OBJECTIVE To assess the diagnostic accuracy of blood-based biomarkers for the differential diagnosis of AD from Frontotemporal Lobar Degeneration (FTLD), or AD from Dementia with Lewy Bodies (DLB). METHODS Systematic review. Three databases (PubMed, Scopus, and Web of Science) were searched. Studies assessing blood-based biomarkers levels in AD versus FTLD, or AD versus DLB, and its diagnostic accuracy, were selected. When the same biomarker was assessed in three or more studies, a meta-analysis was performed. QUADAS-2 criteria were used for quality assessment. RESULTS Twenty studies were included in this analysis. Collectively, 905 AD patients were compared to 1262 FTLD patients, and 209 AD patients were compared to 246 DLB patients. Regarding biomarkers for AD versus FTLD, excellent discriminative accuracy (AUC >0.9) was found for p-tau181, p-tau217, synaptophysin, synaptopodin, GAP43 and calmodulin. Other biomarkers also demonstrated good accuracy (AUC = 0.8-0.9). For AD versus DLB distinction, only miR-21-5p and miR-451a achieved excellent accuracy (AUC >0.9). CONCLUSION Encouraging results were found for several biomarkers, alone or in combination. Prospective longitudinal designs and consensual protocols, comprising larger cohorts and homogeneous testing modalities across centres, are essential to validate the clinical value of blood biomarkers for the precise etiological diagnosis of dementia.
Collapse
Affiliation(s)
- Filipa Santos
- Department of Clinical Neurosciences and Mental Health, 26705Faculty of Medicine University of Porto, Porto, Portugal
| | - Verónica Cabreira
- Department of Clinical Neurosciences and Mental Health, 26705Faculty of Medicine University of Porto, Porto, Portugal.,Department of Neurology, 285211Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Sara Rocha
- iLoF - Intelligent Lab on Fiber, Oxford, UK.,Department of Biochemistry, 26705Faculty of Medicine University of Porto, Porto, Portugal
| | - João Massano
- Department of Clinical Neurosciences and Mental Health, 26705Faculty of Medicine University of Porto, Porto, Portugal.,Department of Neurology, 285211Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
26
|
Whelan R, Barbey FM, Cominetti MR, Gillan CM, Rosická AM. Developments in scalable strategies for detecting early markers of cognitive decline. Transl Psychiatry 2022; 12:473. [PMID: 36351888 PMCID: PMC9645320 DOI: 10.1038/s41398-022-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Effective strategies for early detection of cognitive decline, if deployed on a large scale, would have individual and societal benefits. However, current detection methods are invasive or time-consuming and therefore not suitable for longitudinal monitoring of asymptomatic individuals. For example, biological markers of neuropathology associated with cognitive decline are typically collected via cerebral spinal fluid, cognitive functioning is evaluated from face-to-face assessments by experts and brain measures are obtained using expensive, non-portable equipment. Here, we describe scalable, repeatable, relatively non-invasive and comparatively inexpensive strategies for detecting the earliest markers of cognitive decline. These approaches are characterized by simple data collection protocols conducted in locations outside the laboratory: measurements are collected passively, by the participants themselves or by non-experts. The analysis of these data is, in contrast, often performed in a centralized location using sophisticated techniques. Recent developments allow neuropathology associated with potential cognitive decline to be accurately detected from peripheral blood samples. Advances in smartphone technology facilitate unobtrusive passive measurements of speech, fine motor movement and gait, that can be used to predict cognitive decline. Specific cognitive processes can be assayed using 'gamified' versions of standard laboratory cognitive tasks, which keep users engaged across multiple test sessions. High quality brain data can be regularly obtained, collected at-home by users themselves, using portable electroencephalography. Although these methods have great potential for addressing an important health challenge, there are barriers to be overcome. Technical obstacles include the need for standardization and interoperability across hardware and software. Societal challenges involve ensuring equity in access to new technologies, the cost of implementation and of any follow-up care, plus ethical issues.
Collapse
Affiliation(s)
- Robert Whelan
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| | - Florentine M Barbey
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Cumulus Neuroscience Ltd, Dublin, Ireland
| | - Marcia R Cominetti
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Department of Gerontology, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Claire M Gillan
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Anna M Rosická
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Eratne D, Loi SM, Li QX, Stehmann C, Malpas CB, Santillo A, Janelidze S, Cadwallader C, Walia N, Ney B, Lewis V, Senesi M, Fowler C, McGlade A, Varghese S, Ravanfar P, Kelso W, Farrand S, Keem M, Kang M, Goh AMY, Dhiman K, Gupta V, Watson R, Yassi N, Kaylor-Hughes C, Kanaan R, Perucca P, Dobson H, Vivash L, Ali R, O'Brien TJ, Hansson O, Zetterberg H, Blennow K, Walterfang M, Masters CL, Berkovic SF, Collins S, Velakoulis D. Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings. Alzheimers Dement 2022; 18:2218-2233. [PMID: 35102694 DOI: 10.1002/alz.12549] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. METHODS Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). RESULTS A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. DISCUSSION We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy.
Collapse
Affiliation(s)
- Dhamidhu Eratne
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Samantha M Loi
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Qiao-Xin Li
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christiane Stehmann
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles B Malpas
- Department of Medicine, Department of Neurology, Clinical Outcomes Research Unit (CORe), Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Alexander Santillo
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Claire Cadwallader
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Nirbaanjot Walia
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Blair Ney
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Victoria Lewis
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Matteo Senesi
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Amelia McGlade
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Shiji Varghese
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Parsa Ravanfar
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Wendy Kelso
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sarah Farrand
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Keem
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Matthew Kang
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anita M Y Goh
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Rosie Watson
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Cath Kaylor-Hughes
- Department of General Practice, Integrated Mental Health Team, University of Melbourne, Parkville, Victoria, Australia
| | - Richard Kanaan
- Department of Psychiatry, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Piero Perucca
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Comprehensive Epilepsy Program, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Hannah Dobson
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry, Alfred Health, Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Rashida Ali
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mark Walterfang
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Colin L Masters
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Samuel F Berkovic
- Department of Medicine, Austin Health, Epilepsy Research Centre, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
28
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
29
|
Schilling LP, Balthazar MLF, Radanovic M, Forlenza OV, Silagi ML, Smid J, Barbosa BJAP, Frota NAF, Souza LCD, Vale FAC, Caramelli P, Bertolucci PHF, Chaves MLF, Brucki SMD, Damasceno BP, Nitrini R. Diagnosis of Alzheimer’s disease: recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2022. [DOI: 10.1590/1980-5764-dn-2022-s102en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
ABSTRACT This paper presents the consensus of the Scientific Department of Cognitive Neurology and Aging from the Brazilian Academy of Neurology on the diagnostic criteria for Alzheimer’s disease (AD) in Brazil. The authors conducted a literature review regarding clinical and research criteria for AD diagnosis and proposed protocols for use at primary, secondary, and tertiary care levels. Within this clinical scenario, the diagnostic criteria for typical and atypical AD are presented as well as clinical, cognitive, and functional assessment tools and complementary propaedeutics with laboratory and neuroimaging tests. The use of biomarkers is also discussed for both clinical diagnosis (in specific conditions) and research.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil
| | | | | | | | - Marcela Lima Silagi
- Universidade Federal de São Paulo, Brasil; Universidade de São Paulo, Brasil
| | | | - Breno José Alencar Pires Barbosa
- Universidade de São Paulo, Brasil; Universidade Federal de Pernambuco, Brasil; Instituto de Medicina Integral Prof. Fernando Figueira, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Havdal LB, Berven LL, Selvakumar J, Stiansen-Sonerud T, Leegaard TM, Tjade T, Zetterberg H, Blennow K, Wyller VBB. Neurological Involvement in COVID-19 Among Non-Hospitalized Adolescents and Young Adults. Front Neurol 2022; 13:915712. [PMID: 35812102 PMCID: PMC9257204 DOI: 10.3389/fneur.2022.915712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is prevalent among young people, and neurological involvement has been reported. We investigated neurological symptoms, cognitive test results, and biomarkers of brain injury, as well as associations between these variables in non-hospitalized adolescents and young adults with COVID-19. Methods This study reports baseline findings from an ongoing observational cohort study of COVID-19 cases and non-COVID controls aged 12–25 years (Clinical Trials ID: NCT04686734). Symptoms were charted using a standardized questionnaire. Cognitive performance was evaluated by applying tests of working memory, verbal learning, delayed recall, and recognition. The brain injury biomarkers, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp), were assayed in serum samples using ultrasensitive immunoassays. Results A total of 405 COVID-19 cases and 111 non-COVID cases were prospectively included. Serum Nfl and GFAp concentrations were significantly elevated in COVID-19 cases as compared with non-COVID controls (p = 0.050 and p = 0.014, respectively). The COVID-19 cases reported more fatigue (p < 0.001) and post-exertional malaise (PEM) (p = 0.001) compared to non-COVID-19 controls. Cognitive test performance and clinical neurological examination did not differ across the two groups. Within the COVID-19 group, there were no associations between symptoms, cognitive test results, and NfL or GFAp levels. However, fatigue and PEM were strongly associated with older age and female sex. Conclusions Non-hospitalized adolescents and young adults with COVID-19 reported more fatigue and PEM and had slightly elevated levels of brain injury markers, but showed normal cognitive performance. No associations were found between symptoms, brain injury markers, and cognitive test results, but fatigue and PEM were strongly related to female sex and older age.
Collapse
Affiliation(s)
- Lise Beier Havdal
- Department of Pediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
- *Correspondence: Lise Beier Havdal ; orcid.org/0000-0001-7429-8119
| | - Lise Lund Berven
- Department of Pediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
| | - Joel Selvakumar
- Department of Pediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tonje Stiansen-Sonerud
- Department of Pediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
- Department of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Truls Michael Leegaard
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Vegard Bruun Bratholm Wyller
- Department of Pediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Rübsamen N, Willemse EAJ, Leppert D, Wiendl H, Nauck M, Karch A, Kuhle J, Berger K. A Method to Combine Neurofilament Light Measurements From Blood Serum and Plasma in Clinical and Population-Based Studies. Front Neurol 2022; 13:894119. [PMID: 35775045 PMCID: PMC9237479 DOI: 10.3389/fneur.2022.894119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionNeurofilament light (NfL) can be detected in blood of healthy individuals and at elevated levels in those with different neurological diseases. We investigated if the choice of biological matrix can affect results when using NfL as biomarker in epidemiological studies.MethodWe obtained paired serum and EDTA-plasma samples of 299 individuals aged 37–67 years (BiDirect study) and serum samples of 373 individuals aged 65–83 years (MEMO study). In BiDirect, Passing–Bablok analyses were performed to assess proportional and systematic differences between biological matrices. Associations between serum or EDTA-plasma NfL and renal function (serum creatinine, serum cystatin C, glomerular filtration rate, and kidney disease) were investigated using linear or logistic regression, respectively. All regression coefficients were estimated (1) per one ng/L increase and (2) per one standard deviation increase (standardization using z-scores). In MEMO, regression coefficients were estimated (1) per one ng/L increase of serum or calculated EDTA-plasma NfL and (2) per one standard deviation increase providing a comparison to the results from BiDirect.ResultsWe found proportional and systematic differences between paired NfL measurements in BiDirect, i.e., serum NfL [ng/L] = −0.33 [ng/L] + 1.11 × EDTA-plasma NfL [ng/L]. Linear regression coefficients for the associations between NfL and renal function did not vary between the different NfL measurements. In MEMO, one standard deviation increase in serum NfL was associated with greater changes in the outcomes than in BiDirect.ConclusionAlthough there are differences between serum and EDTA-plasma NfL, results can be used interchangeably if standardized values are used.
Collapse
Affiliation(s)
- Nicole Rübsamen
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- *Correspondence: Nicole Rübsamen
| | - Eline A. J. Willemse
- Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - André Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
32
|
Recent Advances in Frontotemporal Dementia. Neurol Sci 2022:1-10. [DOI: 10.1017/cjn.2022.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Hawksworth J, Fernández E, Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res Rev 2022; 79:101654. [PMID: 35636691 DOI: 10.1016/j.arr.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and cases are rising worldwide. The effort to fight this disease is hampered by a lack of disease-modifying treatments and the absence of an early, accurate diagnostic tool. Neuropathology begins years or decades before symptoms occur and, upon onset of symptoms, diagnosis can take a year or more. Such delays postpone treatment and make research into the early stages of the disease difficult. Ideally, clinicians require a minimally invasive test that can detect AD in its early stages, before cognitive symptoms occur. Advances in proteomic technologies have facilitated the study of promising biomarkers of AD. Over the last two years (2019-2021) studies have identified and validated many species which can be measured in cerebrospinal fluid (CSF), plasma, or in both fluids, and which have a high predictive value for AD. We herein discuss proteins which have been highlighted as promising biomarkers of AD in the last two years, and consider implications for future research within the research framework of the amyloid (A), tau (T), neurodegeneration (N) scoring system. We review recently identified species of amyloid and tau which may improve diagnosis when used in combination with current measures such as amyloid-beta-42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau). In addition, several proteins have been identified as likely proxies for neurodegeneration, including neurofilament light (NfL), synaptosomal-associated protein 25 (SNAP-25) and neurogranin (NRGN). Finally, proteins originating from diverse processes such as neuroinflammation, lipid transport and mitochondrial dysfunction could aid in both AD diagnosis and patient stratification.
Collapse
|
34
|
Polymeris AA, Helfenstein F, Benkert P, Aeschbacher S, Leppert D, Coslovsky M, Willemse E, Schaedelin S, Blum MR, Rodondi N, Reichlin T, Moschovitis G, Wuerfel J, De Marchis GM, Engelter ST, Lyrer PA, Conen D, Kühne M, Osswald S, Bonati LH, Kuhle J. Renal Function and Body Mass Index Contribute to Serum Neurofilament Light Chain Levels in Elderly Patients With Atrial Fibrillation. Front Neurosci 2022; 16:819010. [PMID: 35495025 PMCID: PMC9047720 DOI: 10.3389/fnins.2022.819010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Serum neurofilament light chain (sNfL) is increasingly used as a neuroaxonal injury biomarker in the elderly. Besides age, little is known about how other physiological factors like renal function and body mass index (BMI) alter its levels. Here, we investigated the association of estimated glomerular filtration rate (eGFR) and BMI with sNfL in a large sample of elderly patients with atrial fibrillation (AF). Methods This is a cross-sectional analysis from the Swiss-AF Cohort (NCT02105844). We measured sNfL using an ultrasensitive single-molecule array assay. We calculated eGFR using the chronic kidney disease epidemiology collaboration (CKD-EPI) creatinine (eGFRcrea) and creatinine–cystatin C (eGFRcrea–cys) formulas, and BMI from weight and height measurements. We evaluated the role of eGFR and BMI as determinants of sNfL levels using multivariable linear regression and the adjusted R2 (R2adj). Results Among 2,277 Swiss-AF participants (mean age 73.3 years), eGFRcrea showed an inverse curvilinear association with sNfL after adjustment for age and cardiovascular comorbidities. BMI also showed an independent, inverse linear association with sNfL. The R2adj of models with age, eGFRcrea, and BMI alone was 0.26, 0.35, and 0.02, respectively. A model with age and eGFRcrea combined explained 45% of the sNfL variance. Sensitivity analyses (i) further adjusting for vascular brain lesions (N = 1,402 participants with MRI) and (ii) using eGFRcrea–cys yielded consistent results. Interpretation In an elderly AF cohort, both renal function and BMI were associated with sNfL, but only renal function explained a substantial proportion of the sNfL variance. This should be taken into account when using sNfL in elderly patients or patients with cardiovascular disease.
Collapse
Affiliation(s)
- Alexandros A. Polymeris
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Alexandros A. Polymeris,
| | - Fabrice Helfenstein
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel (CRIB), Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - David Leppert
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michael Coslovsky
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), Basel, Switzerland
| | - Eline Willemse
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Manuel R. Blum
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
- Department of General Internal Medicine, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Nicolas Rodondi
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
- Department of General Internal Medicine, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Giorgio Moschovitis
- Cardiology Division, Department of Medicine, Ente Ospedaliero Cantonale (EOC), Regional Hospital of Lugano, Lugano, Switzerland
| | - Jens Wuerfel
- Department of Biomedical Engineering, Medical Image Analysis Center (MIAC) AG, University of Basel, Basel, Switzerland
| | - Gian Marco De Marchis
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefan T. Engelter
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurology and Neurorehabilitation, University Department of Geriatric Medicine FELIX PLATTER, University of Basel, Basel, Switzerland
| | - Philippe A. Lyrer
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Michael Kühne
- Cardiovascular Research Institute Basel (CRIB), Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefan Osswald
- Cardiovascular Research Institute Basel (CRIB), Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Leo H. Bonati
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- *Correspondence: Jens Kuhle,
| | | |
Collapse
|
35
|
Serum NfL in Alzheimer Dementia: Results of the Prospective Dementia Registry Austria. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030433. [PMID: 35334608 PMCID: PMC8955532 DOI: 10.3390/medicina58030433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The neurofilament light chain (NfL) is a biomarker for neuro-axonal injury in various acute and chronic neurological disorders, including Alzheimer’s disease (AD). We here investigated the cross-sectional and longitudinal associations between baseline serum NfL (sNfL) levels and cognitive, behavioural as well as MR volumetric findings in the Prospective Dementia Registry Austria (PRODEM-Austria). Materials and Methods: All participants were clinically diagnosed with AD according to NINCDS-ADRDA criteria and underwent a detailed clinical assessment, cognitive testing (including the Mini Mental State Examination (MMSE) and the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)), the neuropsychiatric inventory (NPI) and laboratory evaluation. A total of 237 patients were included in the study. Follow-up examinations were done at 6 months, 1 year and 2 years with 93.3% of patients undergoing at least one follow-up. We quantified sNfL by a single molecule array (Simoa). In a subgroup of 125 subjects, brain imaging data (1.5 or 3T MRI, with 1 mm isotropic resolution) were available. Brain volumetry was assessed using the FreeSurfer image analysis suite (v6.0). Results: Higher sNfL concentrations were associated with worse performance in cognitive tests at baseline, including CERAD (B = −10.084, SE = 2.999, p < 0.001) and MMSE (B = −3.014, SE = 1.293, p = 0.021). The sNfL levels also correlated with the presence of neuropsychiatric symptoms (NPI total score: r = 0.138, p = 0.041) and with smaller volumes of the temporal lobe (B = −0.012, SE = 0.003, p = 0.001), the hippocampus (B = −0.001, SE = 0.000201, p = 0.013), the entorhinal (B = −0.000308, SE = 0.000124, p = 0.014), and the parahippocampal cortex (B = −0.000316, SE = 0.000113, p = 0.006). The sNfL values predicted more pronounced cognitive decline over the mean follow-up period of 22 months, but there were no significant associations with respect to change in neuropsychiatric symptoms and brain volumetric measures. Conclusions: the sNfL levels relate to cognitive, behavioural, and imaging hallmarks of AD and predicts short term cognitive decline.
Collapse
|
36
|
Dittrich A, Ashton NJ, Zetterberg H, Blennow K, Simrén J, Geiger F, Zettergren A, Shams S, Machado A, Westman E, Schöll M, Skoog I, Kern S. Plasma and CSF NfL are differentially associated with biomarker evidence of neurodegeneration in a community-based sample of 70-year-olds. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12295. [PMID: 35280965 PMCID: PMC8897823 DOI: 10.1002/dad2.12295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Neurofilament light protein (NfL) in cerebrospinal fluid (CSF) and plasma (P) are suggested to be interchangeable markers of neurodegeneration. However, evidence is scarce from community-based samples. NfL was examined in a small-scale sample of 287 individuals from the Gothenburg H70 Birth cohort 1944 study, using linear models in relation to CSF and magnetic resonance imaging (MRI) biomarker evidence of neurodegeneration. CSF-NfL and P-NfL present distinct associations with biomarker evidence of Alzheimer's disease (AD) pathology and neurodegeneration. P-NfL was associated with several markers that are characteristic of AD, including smaller hippocampal volumes, amyloid beta (Aβ)42, Aβ42/40, and Aβ42/t-tau (total tau). CSF-NfL demonstrated associations with measures of synaptic and neurodegeneration, including t-tau, phosphorylated tau (p-tau), and neurogranin. Our findings suggest that P-NfL and CSF-NfL may exert different effects on markers of neurodegeneration in a small-scale community-based sample of 70-year-olds.
Collapse
Affiliation(s)
- Anna Dittrich
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalMölndalSweden
| | - Nicholas J. Ashton
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center of Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- King's College London, Institute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Henrik Zetterberg
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLUCL Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Kaj Blennow
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Joel Simrén
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Fiona Geiger
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anna Zettergren
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sara Shams
- Department of Clinical NeuroscienceKarolinska University HospitalStockholmSweden
- Care Sciences and Society, Karolinska Institutet, and Department of RadiologyKarolinska University HospitalStockholmSweden
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Alejandra Machado
- Division of Clinical GeriatricsDepartment of NeurobiologyKarolinska University HospitalStockholmSweden
| | - Eric Westman
- Division of Clinical GeriatricsDepartment of NeurobiologyKarolinska University HospitalStockholmSweden
| | - Michael Schöll
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center of Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Ingmar Skoog
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalMölndalSweden
| | - Silke Kern
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
37
|
Heshmatollah A, Fani L, Koudstaal PJ, Ghanbari M, Ikram MA, Ikram MK. Plasma Amyloid Beta, Total-Tau and Neurofilament Light Chain Levels and the Risk of Stroke: A Prospective Population-Based Study. Neurology 2022; 98:e1729-e1737. [PMID: 35232820 DOI: 10.1212/wnl.0000000000200004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To unravel whether Alzheimer's disease-related pathology or neurodegeneration play a role in stroke etiology, we determined the effect of plasma levels amyloid β (Aβ), total-tau and neurofilament light chain (NfL) on risk of stroke and its subtypes. METHODS Between 2002 and 2005, we measured plasma Aβ40, Aβ42, total-tau, and NfL in 4,661 stroke-free participants from the population-based Rotterdam Study. We used Cox proportional-hazards models to determine the association between these markers with incident stroke for the entire cohort, per stroke subtype, and by median age, sex, Apolipoprotein E (APOE) ε4 carriership, and education. RESULTS After a mean follow-up of 10.8 ± 3.3 years, 379 participants suffered a first-ever stroke. Log2 total-tau at baseline showed a non-linear association with risk of any stroke and ischemic stroke: compared to the first (lowest) quartile the adjusted hazard ratio for the highest quartile total-tau was 1.68, 95% CI: 1.18-2.40 for any stroke. Log2 NfL was associated with an increased risk of any stroke (HR per SD increase 1.27, 95% CI: 1.12-1.44), ischemic stroke, and hemorrhagic stroke (HR 1.56, 95% CI: 1.14-2.12). Log2 Aβ40, Aβ42, and Aβ42/40 ratio levels were not associated with stroke risk.Discussion Participants with higher total-tau and NfL at baseline had a higher risk of stroke and several stroke subtypes. These findings support the role of markers of neurodegeneration in the etiology of stroke. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that higher plasma levels of total-tau and NfL are associated with an increased risk of subsequent stroke.
Collapse
Affiliation(s)
- Alis Heshmatollah
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
38
|
Plasma neurofilament light levels correlate with white matter damage prior to Alzheimer's disease: results from ADNI. Aging Clin Exp Res 2022; 34:2363-2372. [PMID: 35226303 DOI: 10.1007/s40520-022-02095-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The blood biomarker neurofilament light (NFL) is one of the most widely used for monitoring Alzheimer's disease (AD). According to recent research, a higher NFL plasma level has a substantial predictive value for cognitive deterioration in AD patients. Diffusion tensor imaging (DTI) is an MRI-based approach for detecting neurodegeneration, white matter (WM) disruption, and synaptic damage. There have been few studies on the relationship between plasma NFL and WM microstructure integrity. AIMS The goal of the current study is to assess the associations between plasma levels of NFL, CSF total tau, phosphorylated tau181 (P-tau181), and amyloid-β (Aβ) with WM microstructural alterations. METHODS We herein have investigated the cross-sectional association between plasma levels of NFL and WM microstructural alterations as evaluated by DTI in 92 patients with mild cognitive impairment (MCI) provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. We analyzed the potential association between plasma NFL levels and radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD), and fractional anisotropy (FA) in each region of the Montreal Neurological Institute and Hospital (MNI) atlas, using simple linear regression models stratified by age, sex, and APOE ε4 genotype. RESULTS Our findings demonstrated a significant association between plasma NFL levels and disrupted WM microstructure across the brain. In distinct areas, plasma NFL has a negative association with FA in the fornix, fronto-occipital fasciculus, corpus callosum, uncinate fasciculus, internal capsule, and corona radiata and a positive association with RD, AxD, and MD values in sagittal stratum, corpus callosum, fronto-occipital fasciculus, corona radiata, internal capsule, thalamic radiation, hippocampal cingulum, fornix, and cingulum. Lower FA and higher RD, AxD, and MD values are related to demyelination and degeneration in WM. CONCLUSION Our findings revealed that the level of NFL in the blood is linked to WM alterations in MCI patients. Plasma NFL has the potential to be a biomarker for microstructural alterations. However, further longitudinal studies are necessary to validate the predictive role of plasma NFL in cognitive decline.
Collapse
|
39
|
Schumacher-Schuh A, Bieger A, Borelli WV, Portley MK, Awad PS, Bandres-Ciga S. Advances in Proteomic and Metabolomic Profiling of Neurodegenerative Diseases. Front Neurol 2022; 12:792227. [PMID: 35173667 PMCID: PMC8841717 DOI: 10.3389/fneur.2021.792227] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Proteomics and metabolomics are two emerging fields that hold promise to shine light on the molecular mechanisms causing neurodegenerative diseases. Research in this area may reveal and quantify specific metabolites and proteins that can be targeted by therapeutic interventions intended at halting or reversing the neurodegenerative process. This review aims at providing a general overview on the current status of proteomic and metabolomic profiling in neurodegenerative diseases. We focus on the most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We discuss the relevance of state-of-the-art metabolomics and proteomics approaches and their potential for biomarker discovery. We critically review advancements made so far, highlighting how metabolomics and proteomics may have a significant impact in future therapeutic and biomarker development. Finally, we further outline technologies used so far as well as challenges and limitations, placing the current information in a future-facing context.
Collapse
Affiliation(s)
- Artur Schumacher-Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Andrei Bieger
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wyllians V. Borelli
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Makayla K. Portley
- Neurodegenerative Disorders Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Paula Saffie Awad
- Movement Disorders Clinic, Centro de Trastornos de Movimiento (CETRAM), Santiago, Chile
| | - Sara Bandres-Ciga
- Neurodegenerative Disorders Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Sara Bandres-Ciga
| |
Collapse
|
40
|
Clinical Application of Plasma Neurofilament Light Chain in a Memory Clinic: A Pilot Study. Dement Neurocogn Disord 2022; 21:59-70. [PMID: 35585907 PMCID: PMC9085534 DOI: 10.12779/dnd.2022.21.2.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Neurofilament light chain (NfL) has been considered as a biomarker for neurodegenerative diseases including Alzheimer’s disease (AD). We measured plasma NfL levels in older adults with cognitive complaints and evaluated their clinical usefulness in AD. Methods Plasma levels of NfL, measured by using the single molecule array method, were acquired in a total of 113 subjects consisting of subjective cognitive decline (SCD; n=14), mild cognitive impairment (MCI; n=37), or dementia of Alzheimer type (DAT; n=62). Plasma NfL level was compared among three groups, and its association with cognitive and functional status was also analyzed. Results After adjusting for age, plasma NfL level was higher in subjects with DAT (65.98±84.96 pg/mL), compared to in subjects with SCD (16.90±2.54 pg/mL) or MCI (25.53±10.42 pg/mL, p=0.004). NfL levels were correlated with scores of the mini-mental state examination (r=−0.242, p=0.021), clinical dementia rating (CDR) (r=0.291, p=0.005), or CDR-sum of boxes (r=0.276, p=0.008). Just for participants who performed amyloid positron emission tomography (PET), the levels were different between subjects with PET (−) (n=17, 25.95±13.25 pg/mL) and PET (+) (n=16, 63.65±81.90 pg/mL, p=0.010). Additionally, plasma NfL levels were different between vascular dementia and vascular MCI, and between Parkinson’s disease- dementia and no dementia. Conclusions This pilot study shows that in subjects with DAT, plasma NfL levels increase. Plasma NfL level correlated with cognitive and functional status. Further longitudinal studies may help to apply the plasma NfL levels to AD, as a potential biomarker for the diagnosis and predicting progression.
Collapse
|
41
|
Beydoun MA, Noren Hooten N, Maldonado AI, Beydoun HA, Weiss J, Evans MK, Zonderman AB. BMI and Allostatic Load Are Directly Associated with Longitudinal Increase in Plasma Neurofilament Light among Urban Middle-Aged Adults. J Nutr 2021; 152:535-549. [PMID: 34718678 PMCID: PMC8826916 DOI: 10.1093/jn/nxab381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plasma neurofilament light chain (NfL) is a novel biomarker for age-related neurodegenerative disease. We tested whether NfL may be linked to cardiometabolic risk factors, including BMI, the allostatic load (AL) total score (ALtotal), and related AL continuous components (ALcomp). We also tested whether these relations may differ by sex or by race. METHODS We used data from the HANDLS (Healthy Aging in Neighborhoods of Diversity across the Life Span) study [n = 608, age at visit 1 (v1: 2004-2009): 30-66 y, 42% male, 58% African American] to investigate associations of initial cardiometabolic risk factors and time-dependent plasma NfL concentrations over 3 visits (2004-2017; mean ± SD follow-up time: 7.72 ± 1.28 y), with outcomes being NfLv1 and annualized change in NfL (δNfL). We used mixed-effects linear regression and structural equations modeling (SM). RESULTS BMI was associated with lower initial (γ01 = -0.014 ± 0.002, P < 0.001) but faster increase in plasma NfL over time (γ11 = +0.0012 ± 0.0003, P < 0.001), a pattern replicated for ALtotal. High-sensitivity C-reactive protein (hsCRP), serum total cholesterol, and resting heart rate at v1 were linked with faster plasma NfL increase over time, overall, while being uncorrelated with NfLv1 (e.g., hsCRP × Time, full model: γ11 = +0.004 ± 0.002, P = 0.015). In SM analyses, BMI's association with δNfL was significantly mediated through ALtotal among women [total effect (TE) = +0.0014 ± 0.00038, P < 0.001; indirect effect = +0.00042 ± 0.00019, P = 0.025; mediation proportion = 30%], with only a direct effect (DE) detected among African American adults (TE = +0.0011 ± 0.0004, P = 0.015; DE = +0.0010 ± 0.00048, P = 0.034). The positive associations between ALtotal/BMI and δNfL were mediated through increased glycated hemoglobin (HbA1c) concentrations, overall. CONCLUSIONS Cardiometabolic risk factors, particularly elevated HbA1c, should be screened and targeted for neurodegenerative disease, pending comparable longitudinal studies. Other studies examining the clinical utility of plasma NfL as a neurodegeneration marker should account for confounding effects of BMI and AL.
Collapse
Affiliation(s)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| | - Ana I Maldonado
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Jordan Weiss
- Department of Demography, University of California, Berkeley, Berkeley, CA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
42
|
Beydoun MA, Noren Hooten N, Beydoun HA, Maldonado AI, Weiss J, Evans MK, Zonderman AB. Plasma neurofilament light as a potential biomarker for cognitive decline in a longitudinal study of middle-aged urban adults. Transl Psychiatry 2021; 11:436. [PMID: 34420032 PMCID: PMC8380245 DOI: 10.1038/s41398-021-01563-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Plasma neurofilament light (NfL) is a marker for neurodegenerative diseases. Few studies have examined the association of NfL with middle-aged changes in cognitive performance, and no studies have examined differential NfL effects by race. Using data from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study (n = 625, Agev1: 30-66 y, 41.6% male, 56.3% African American, 27.8% below poverty), we investigated the associations of initial NfL levels and annualized change with cognitive performance over time in global mental status, verbal and visual memory, fluency, attention, and executive function. We used ordinary least squares and mixed-effects regressions stratified by race, while exploring differential associations by age group, sex, and poverty status. Over a mean follow-up of 4.3 years, we found initial NfL level was associated with a faster decline on normalized mental status scores in Whites only and in those >50 years old. Annualized increase in NfL was associated with a greater decline in verbal fluency in men. In other exploratory analyses, annualized increase in NfL was associated with a slower decline in verbal memory among individuals living above poverty; in the older group (>50 years), first-visit NfL was linked with better performance at baseline in global mental status and verbal memory. In summary, first-visit NfL was primarily associated with the global mental status decline among Whites, while exhibiting inconsistent relationships in some exploratory analyses. Plasma NfL levels can be detected and quantified in non-demented middle-aged adults and changes can be analyzed over time. More longitudinal studies are needed to address the clinical utility of this biomarker for early cognitive defects.
Collapse
Affiliation(s)
- May A. Beydoun
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA
| | - Nicole Noren Hooten
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA
| | - Hind A. Beydoun
- grid.413661.70000 0004 0595 1323Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA USA
| | - Ana I. Maldonado
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA ,grid.266673.00000 0001 2177 1144Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD USA
| | - Jordan Weiss
- grid.47840.3f0000 0001 2181 7878Department of Demography, University of California, Berkeley, Berkeley, CA USA
| | - Michele K. Evans
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA
| | - Alan B. Zonderman
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA
| |
Collapse
|
43
|
Lin X, Lu T, Deng H, Liu C, Yang Y, Chen T, Qin Y, Xie X, Xie Z, Liu M, Ouyang M, Li S, Song Y, Zhong N, Qiu W, Zhou C. Serum neurofilament light chain or glial fibrillary acidic protein in the diagnosis and prognosis of brain metastases. J Neurol 2021; 269:815-823. [PMID: 34283286 DOI: 10.1007/s00415-021-10660-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Brain metastases (BM) remains the most cumbersome disease burden in patients with lung cancer. This study aimed to investigate whether serum brain injury biomarkers can indicate BM, to further establish related diagnostic models, or to predict prognosis of BM. MATERIALS AND METHODS This was a prospective study of patients diagnosed with lung cancer with BM (BM group), with lung cancer without BM (NBM group), and healthy participants (control group). Serum neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) were detected at baseline. We identified and integrated the risk factors of BM to establish diagnostic models. RESULTS A total of 158 patients were included (n = 37, 57, and 64 in the BM, NBM, and control groups, respectively). Serum biomarker levels were significantly higher in the NBM group than in the control group. Higher serum NfL and GFAP concentrations were associated with BM (odds ratios, 3.06 and 1.79, respectively). NfL (area under curve [AUC] = 0.77, p < 0.001) and GFAP (AUC = 0.64, p = 0.02) had diagnostic value for BM. The final diagnostic model included NfL level, age, Karnofsky Performance Status. The model had an AUC value of 0.83 (95% confidence interval [CI] 0.75-0.92). High NfL concentration was correlated with poor overall survival of patients with BM (hazard ratio, 3.31; 95% CI 1.22-9.04; p = 0.019). CONCLUSION Serum NfL and GFAP could be potential diagnostic biomarkers for BM in patients with lung cancer. We established a model that can provide individual diagnoses of BM. Higher NfL level may be associated with poor prognosis of patients with BM.
Collapse
Affiliation(s)
- Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Tingting Lu
- Department of Neurology, Psychological and Neurological Diseases Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Chunxin Liu
- Department of Neurology, Psychological and Neurological Diseases Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yilin Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Xiaohong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Zhanhong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Ming Ouyang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China
| | - Wei Qiu
- Department of Neurology, Psychological and Neurological Diseases Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, 151# Yanjiang Road, Guangzhou, 510120, China.
| |
Collapse
|
44
|
Milán-Tomás Á, Fernández-Matarrubia M, Rodríguez-Oroz MC. Lewy Body Dementias: A Coin with Two Sides? Behav Sci (Basel) 2021; 11:94. [PMID: 34206456 PMCID: PMC8301188 DOI: 10.3390/bs11070094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lewy body dementias (LBDs) consist of dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), which are clinically similar syndromes that share neuropathological findings with widespread cortical Lewy body deposition, often with a variable degree of concomitant Alzheimer pathology. The objective of this article is to provide an overview of the neuropathological and clinical features, current diagnostic criteria, biomarkers, and management of LBD. Literature research was performed using the PubMed database, and the most pertinent articles were read and are discussed in this paper. The diagnostic criteria for DLB have recently been updated, with the addition of indicative and supportive biomarker information. The time interval of dementia onset relative to parkinsonism remains the major distinction between DLB and PDD, underpinning controversy about whether they are the same illness in a different spectrum of the disease or two separate neurodegenerative disorders. The treatment for LBD is only symptomatic, but the expected progression and prognosis differ between the two entities. Diagnosis in prodromal stages should be of the utmost importance, because implementing early treatment might change the course of the illness if disease-modifying therapies are developed in the future. Thus, the identification of novel biomarkers constitutes an area of active research, with a special focus on α-synuclein markers.
Collapse
Affiliation(s)
- Ángela Milán-Tomás
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Marta Fernández-Matarrubia
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, 31008 Pamplona, Spain
| |
Collapse
|
45
|
Kim SH, Gwak HS, Lee Y, Park NY, Han M, Kim Y, Kim SY, Kim HJ. Evaluation of Serum Neurofilament Light Chain and Glial Fibrillary Acidic Protein as Screening and Monitoring Biomarkers for Brain Metastases. Cancers (Basel) 2021; 13:cancers13092227. [PMID: 34066445 PMCID: PMC8125258 DOI: 10.3390/cancers13092227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Approximately 20% of patients with cancer develop brain metastases (BM). Early BM diagnosis is critical to enable less invasive or toxic approaches. Sensitive and easy-to-use blood-based BM biomarkers may allow early diagnosis and appropriate timely treatment and may improve overall survival. This study aimed to evaluate the potential roles of serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP) for diagnosing and monitoring BM. We found significant differences in the sNfL and the sGFAP levels between patients with and without BMs. The optimal cutoff-levels of sNfL and sGFAP had sensitivities of 91% and 91%, respectively, and combining the two biomarkers (sNfL or sGFAP) improved the sensitivity to up to 98%, with an overall accuracy higher than 91%. Thus, sNfL and sGFAP may be used as biomarkers for BM screening in patients with cancer. Abstract We evaluated the potential serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP) roles in diagnosing and monitoring brain metastases (BMs). We included 70 patients with newly diagnosed BMs, 71 age- and cancer type-matched patients without BMs, and 67 healthy controls (HCs). We compared sNfL and sGFAP levels among the groups using a single-molecule array immunoassay. We prospectively followed 26 patients with BMs every 2–3 months by measuring sNfL and sGFAP levels and performing magnetic resonance imaging (MRI) scans. The sNfL and the sGFAP levels were higher in patients with BMs (medians: sNfL, 63.7 µL; sGFAP, 819.5 pg/µL) than in those without BMs (sNfL, 13.3 µL; sGFAP, 154 pg/µL; p < 0.001) and HCs (sNfL, 12.5 µL; sGFAP, 135 pg/µL; p < 0.001). The sNfL and the sGFAP cutoff levels had a sensitivity and a specificity of 91%. The sGFAP cutoff level had a sensitivity of 91% and a specificity of 97%. The sNfL and the sGFAP levels were related to the BM size but not to the primary cancer type. After BM treatment, sNfL and sGFAP levels decreased with reduced BM lesions on MRI; however, they increased when BMs progressed. sNfL and sGFAP are potential biomarkers for BM screening in cancer patients.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Neurology, National Cancer Center, Goyang 10408, Korea; (N.-Y.P.); (Y.K.); (S.-Y.K.); (H.J.K.)
- Correspondence: ; Tel.: +82-31-920-1683; Fax: +82-31-920-1275
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea;
| | - Youngjoo Lee
- Department of Internal Medicine, National Cancer Center, Goyang 10408, Korea;
| | - Na-Young Park
- Department of Neurology, National Cancer Center, Goyang 10408, Korea; (N.-Y.P.); (Y.K.); (S.-Y.K.); (H.J.K.)
| | - Mira Han
- Biometric Research Branch, National Cancer Center, Goyang 10408, Korea;
| | - Yeseul Kim
- Department of Neurology, National Cancer Center, Goyang 10408, Korea; (N.-Y.P.); (Y.K.); (S.-Y.K.); (H.J.K.)
| | - So-Yeon Kim
- Department of Neurology, National Cancer Center, Goyang 10408, Korea; (N.-Y.P.); (Y.K.); (S.-Y.K.); (H.J.K.)
| | - Ho Jin Kim
- Department of Neurology, National Cancer Center, Goyang 10408, Korea; (N.-Y.P.); (Y.K.); (S.-Y.K.); (H.J.K.)
| |
Collapse
|
46
|
Gonzales MM, Short MI, Satizabal CL, O’ Bryant S, Tracy RP, Zare H, Seshadri S. Blood biomarkers for dementia in Hispanic and non-Hispanic White adults. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12164. [PMID: 33860071 PMCID: PMC8033409 DOI: 10.1002/trc2.12164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The study evaluated if blood markers reflecting diverse biological pathways differentiate clinical diagnostic groups among Hispanic and non-Hispanic White adults. METHODS Within Hispanic (n = 1193) and non-Hispanic White (n = 650) participants, serum total tau (t-tau), neurofilament light (NfL), ubiquitin carboxyl-terminal hydrolase LI, glial fibrillary acidic protein (GFAP), soluble cluster of differentiation-14, and chitinase-3-like protein 1 (YKL-40) were quantified. Mixed-effects partial proportional odds ordinal logistic regression and linear mixed-effects models were used to evaluate the association of biomarkers with diagnostic group and cognition, adjusting for age, sex, ethnicity, apolipoprotein E ε4, education, and site. RESULTS T-tau, NfL, GFAP, and YKL-40 discriminated between diagnostic groups (receiver operating curve: 0.647-0.873). Higher t-tau (odds ratio [OR] = 1.671, 95% confidence interval [CI] = 1.457-1.917, P < .001), NfL (OR = 2.150, 95% CI = 1.819-2.542, P < .001), GFAP (OR = 2.283, 95% CI = 1.915-2.722, P < .001), and YKL-40 (OR = 1.288, 95% CI = 1.125-1.475, P < .001) were associated with increased likelihood of dementia relative to cognitively unimpaired and mild cognitive impairment groups. Higher NfL was associated with poorer global cognition (β = -0.455, standard error [SE] = 0.083, P < .001), semantic fluency (β = -0.410, SE = 0.133, P = .002), attention/processing speed (β = 2.880, SE = 0.801, P < .001), and executive function (β = 5.965, SE = 2.037, P = .003). Higher GFAP was associated with poorer global cognition (β = -0.345, SE = 0.092, P = .001), learning (β = -1.426, SE = 0.359, P < .001), and memory (β = -0.890, SE = 0.266, P < .001). Higher YKL-40 (β = -0.537, SE = 0.186, P = .004) was associated with lower memory scores. Interactions with ethnicity were observed for learning (NfL, GFAP, YKL-40), memory (NfL, GFAP), and semantic fluency (NfL; interaction terms P < .008), which were generally no longer significant in a demographically matched subset of Hispanic and non-Hispanic White participants. DISCUSSION Blood biomarkers of neuronal/axonal and glial injury differentiated between clinical diagnostic groups in a bi-ethnic cohort of Hispanic and non-Hispanic Whites. Our results add to the growing literature indicating that blood biomarkers may be viable tools for detecting neurodegenerative conditions and highlight the importance of validation in diverse cohorts.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science CenterSan AntonioTexasUSA
- Department of NeurologyUT Health San AntonioSan AntonioTexasUSA
| | - Meghan I. Short
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science CenterSan AntonioTexasUSA
- Department of Population Health SciencesUniversity of Texas Health Science CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Sid O’ Bryant
- Institute for Translational Research and Department of Pharmacology & NeuroscienceUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Russel P. Tracy
- Departments of Pathology and Laboratory Medicine, and BiochemistryLarner College of Medicine, University of VermontBurlingtonVermontUSA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science CenterSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science CenterSan AntonioTexasUSA
- Department of NeurologyUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
47
|
Wang Z, Wang R, Li Y, Li M, Zhang Y, Jiang L, Fan J, Wang Q, Yang D. Plasma Neurofilament Light Chain as a Predictive Biomarker for Post-stroke Cognitive Impairment: A Prospective Cohort Study. Front Aging Neurosci 2021; 13:631738. [PMID: 33679379 PMCID: PMC7933545 DOI: 10.3389/fnagi.2021.631738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Plasma neurofilaments light chain (pNfL) is a marker of axonal injury. The purpose of this study was to examine the role of pNfL as a predictive biomarker for post-stroke cognitive impairment (PSCI). METHODS A prospective single-center observational cohort study was conducted at the General Hospital of Western Theater Command between July 1, 2017 and December 31, 2019. Consecutive patients ≥18 years with first-ever acute ischemic stroke (AIS) of anterior circulation within 24 h of symptom onset were included. PSCI was defined by the Montreal Cognitive Assessment (MOCA) (MOCA < 26) at 90 days after stroke onset. RESULTS A total of 1,694 patients [male, 893 (52.70%); median age, 64 (16) years] were enrolled in the cohort analysis, and 1,029 (60.70%) were diagnosed with PSCI. Patients with PSCI had significantly higher pNfL [median (IQR), 55.96 (36.13) vs. 35.73 (17.57) pg/ml; P < 0.001] than Non-PSCI. pNfL was valuable for the prediction of PSCI (OR 1.044, 95% CI 1.038-1.049, P < 0.001) after a logistic regression analysis, even after adjusting for conventional risk factors including age, sex, education level, NIHSS, TOAST classification, and infarction volume (OR 1.041, 95% CI 1.034-1.047, P < 0.001). The optimal cutoff value of the pNfL concentration was 46.12 pg/ml, which yielded a sensitivity of 71.0% and a specificity of 81.5%, with the area under the curve (AUC) at 0.785 (95% CI 0.762-0.808, P < 0.001). CONCLUSION This prospective cohort study showed that the pNfL concentration within 48 h of onset was an independent risk factor for PSCI 90 days after an anterior circulation stroke, even after being adjusted for potential influencing factors regarded as clinically relevant. CLINICAL TRIAL REGISTRATION www.chictr.org.cn, identifier ChiCTR1800020330.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Rongyu Wang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Yuxia Li
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Mao Li
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Yaodan Zhang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Lianyan Jiang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Jin Fan
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Qingsong Wang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
48
|
Boeve BF, Rosen H. Clinical and Neuroimaging Aspects of Familial Frontotemporal Lobar Degeneration Associated with MAPT and GRN Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:77-92. [PMID: 33433870 DOI: 10.1007/978-3-030-51140-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.
Collapse
Affiliation(s)
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Xiong YL, Meng T, Luo J, Zhang H. The Potential of Neurofilament Light as a Biomarker in Alzheimer's Disease. Eur Neurol 2021; 84:6-15. [PMID: 33477142 DOI: 10.1159/000513008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss and cognitive impairment. In 2011, the National Institute on Aging and Alzheimer's Association (NIA-AA) Research Framework has proposed to use biomarkers to diagnose AD in living persons. AD core biomarkers show high diagnostic specificity in distinguishing AD from healthy control subjects, but have little additional value for prognosis or stage of disease. SUMMARY With the update of detection methods and techniques, other AD biomarkers have been discovered. Neurofilament light (NFL) is currently recognized as a biomarker of nerve axonal injury and one of the candidate markers in AD neurodegeneration, and the relationship between NFL and AD pathophysiology has attracted widespread attention. More and more studies have shown that NFL plays an important role in predicting the clinical progress and prognosis of AD. Recently, the genome-wide association study also found that multiple single-nucleotide polymorphisms are associated with NFL levels and AD risk. Key Messages: In this review, we discuss the relationship between the genetic characteristics of NFL and AD, the NFL levels in AD, and the relationship between NFL and AD core biomarkers, neuroimaging, and cognitive performance.
Collapse
Affiliation(s)
- Yong-Lan Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Meng
- Department of Neurology, Chongqing University Central Hospital, Chongqing, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| |
Collapse
|
50
|
Fluid Biomarkers of Frontotemporal Lobar Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:123-139. [PMID: 33433873 DOI: 10.1007/978-3-030-51140-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype-pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer's disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.
Collapse
|