1
|
Duclot F, Wu L, Wilkinson CS, Kabbaj M, Knackstedt LA. Ceftriaxone alters the gut microbiome composition and reduces alcohol intake in male and female Sprague-Dawley rats. Alcohol 2024; 120:169-178. [PMID: 38290696 DOI: 10.1016/j.alcohol.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Ceftriaxone is an antibiotic that increases central nervous system (CNS) protein expression of the glutamate transporters GLT-1 and xCT and ameliorates pathological behaviors in rodent models of neurological disease and substance use disorder. However, little ceftriaxone passes through the blood-brain barrier, the CNS binding partner of ceftriaxone is unknown, and ceftriaxone does not consistently upregulate GLT-1 and xCT in cell culture. Ceftriaxone alters the gut microbiome composition in rodents and humans, and the microbiome-gut-brain axis regulates drug-seeking. Thus, here we test the hypothesis that ceftriaxone reduces alcohol intake while ameliorating alcohol-induced disruption of the gut microbiome composition. Male and female Sprague-Dawley rats received intermittent access to alcohol (IAA) while controls received access to only water. Following 17 IAA sessions, ceftriaxone/vehicle treatment was given for 5 days. Analysis of the gut microbiome composition was assessed by 16S rRNA gene amplicon sequencing conducted on fecal pellets collected prior to and after alcohol consumption and following ceftriaxone treatment. Male rats displayed escalated alcohol intake and preference over the course of the 17 sessions; however, total alcohol intake did not differ between the sexes. Ceftriaxone reduced alcohol intake and preference in male and female rats. While alcohol affected a diverse set of amplicon sequencing variants (ASV), ceftriaxone markedly reduced the diversity of microbial communities reflected by a blooming of the Enterococcaceae family. The remaining effects of ceftriaxone, however, encompassed families both affected and unaffected by prior alcohol drinking and highlight the Ruminococcaceae and Muribaculaceae families as bidirectionally modulated by alcohol and ceftriaxone. Altogether, our study confirms that ceftriaxone reduces alcohol intake in rats and partially reverses alcohol-induced dysbiosis.
Collapse
Affiliation(s)
- Florian Duclot
- Florida State University, Biomedical Sciences Department, Tallahassee, FL, United States.
| | - Lizhen Wu
- University of Florida, Psychology Department, Gainesville, FL, United States.
| | - Courtney S Wilkinson
- University of Florida, Psychology Department, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| | - Mohamed Kabbaj
- Florida State University, Biomedical Sciences Department, Tallahassee, FL, United States.
| | - Lori A Knackstedt
- University of Florida, Psychology Department, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
2
|
Saeedi N, Giahi M, Jaafari suha A, Azizi H, Janahmadi M, Hosseinmardi N. Differential Effects of Intrahippocampal Administration of Ceftriaxone on Morphine Dependence and Withdrawal Syndrome in Rats. ACS OMEGA 2024; 9:42895-42904. [PMID: 39464486 PMCID: PMC11500136 DOI: 10.1021/acsomega.4c05331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Glutamate is a key factor in opiate addiction. Glial glutamate transporter-1 (GLT-1) plays a prominent role in glutamate homeostasis. Therefore, different regimens of ceftriaxone as a GLT-1 activator were prescribed to determine whether modulating GLT-1 prevents morphine dependence or withdrawal syndrome. Rats received 10 mg/kg morphine subcutaneously for ten consecutive days. Intrahippocampal ceftriaxone (0.5 μL of 0.5 mM solution) was injected 30 min before morphine administration to assess its effect on dependence process. In the next experiment, after the animals became dependent, ceftriaxone was injected before or after the last morphine administration, and its effect on withdrawal symptoms was evaluated. The reversibility of developed dependence was evaluated in the conditions when morphine and ceftriaxone were administered simultaneously. Two hours after the last morphine injection, naloxone hydrochloride (1.5 mg/kg) was administered, and morphine withdrawal syndrome was recorded for 25 min. Ceftriaxone administration before each morphine injection caused a decrease in the occurrence of withdrawal symptoms. Single dose of ceftriaxone after or before the last dose of morphine did not change the withdrawal symptoms significantly. Ceftriaxone injection for 5 days after becoming dependent could decrease the occurrence of some withdrawal symptoms. Modulation of glutamate with ceftriaxone during morphine injection may be able to prevent dependence. However, a single dose of ceftriaxone after becoming dependent could not decrease withdrawal syndrome. More prolonged administration of ceftriaxone could alleviate the induced dependence.
Collapse
Affiliation(s)
- Negin Saeedi
- Student Research
Committee, Faculty of Medicine, Shahid Beheshti
University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohadeseh Giahi
- Department
of Physiology, School of Medicine, Shahid
Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Ali Jaafari suha
- Department
of Physiology, School of Medicine, Shahid
Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hossein Azizi
- Department
of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Mahyar Janahmadi
- Department
of Physiology, School of Medicine, Shahid
Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Narges Hosseinmardi
- Department
of Physiology, School of Medicine, Shahid
Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| |
Collapse
|
3
|
AlAsmari AF, Alshehri MM, Ali N, AlAsmari F, Sari Y, Childers WE, Abou-Gharbia M, Alharbi M, Elnagar DM, AL-Qahtani WS. Ceftriaxone and MC-100093 mitigate fentanyl-induced cardiac injury in mice: Preclinical investigation of its underlying molecular mechanisms. Saudi Pharm J 2024; 32:102148. [PMID: 39157423 PMCID: PMC11327467 DOI: 10.1016/j.jsps.2024.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Drug addiction is considered a worldwide concern and one of the most prevailing causes of death globally. Opioids are highly addictive drugs, and one of the most common opioids that is frequently used clinically is fentanyl. The potential harmful effects of chronic exposure to opioids on the heart are still to be elucidated. Although β-lactam antibiotics are well recognized for their ability to fight bacteria, its protective effect in the brain and liver has been reported. In this study, we hypothesize that β-lactam antibiotic, ceftriaxone, and the novel synthetic non-antibiotic β-lactam, MC-100093, are cardioprotective against fentanyl induced-cardiac injury by upregulating xCT expression. Mice were exposed to repeated low dose (0.05 mg/kg, i.p.) of fentanyl for one week and then challenged on day 9 with higher dose of fentanyl (1 mg/kg, i.p.). This study investigated cardiac histopathology and target genes and proteins in serum and cardiac tissues in mice exposed to fentanyl overdose and β-lactams. We revealed that fentanyl treatment induced cardiac damage as evidenced by elevated cardiac enzymes (troponin I). Furthermore, fentanyl treatment caused large aggregations of inflammatory cells and elevation in the areas and volumes of myocardial fibers, indicating hypertrophy and severe cardiac damage. Ceftriaxone and MC-100093 treatment, However, induced cardioprotective effects as evidenced by marked reduction in cardiac enzymes (troponin I) and changes in histopathology. Furthermore, ceftriaxone and MC-100093 treatment decreased the levels of hypertrophic genes (α-MHC & β-MHC), apoptotic (caspase-3), and inflammatory markers (IL-6 & NF-κB). This study reports for the first time the cardioprotective effect of β-lactams against fentanyl-induced cardiac injury. Further studies are greatly encouraged to completely identify the cardioprotective properties of ceftriaxone and MC-100093.
Collapse
Affiliation(s)
- Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa M. Elnagar
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Wejdan S. AL-Qahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Riboldi JG, Correa J, Renfijes MM, Tintorelli R, Viola H. Arc and BDNF mediated effects of hippocampal astrocytic glutamate uptake blockade on spatial memory stages. Commun Biol 2024; 7:1032. [PMID: 39174690 PMCID: PMC11341830 DOI: 10.1038/s42003-024-06586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Glutamate is involved in fundamental functions, including neuronal plasticity and memory. Astrocytes are integral elements involved in synaptic function, and the GLT-1 transporter possesses a critical role in glutamate uptake. Here, we study the role of GLT-1, specifically located in astrocytes, in the consolidation, expression, reconsolidation and persistence of spatial object recognition memory in rats. Administration of dihydrokainic acid (DHK), a selective GLT-1 inhibitor, into the dorsal hippocampus around a weak training which only induces short-term memory, promotes long-term memory formation. This promotion is prevented by hippocampal administration of protein-synthesis translation inhibitor, blockade of Activity-regulated cytoskeleton-associated protein (Arc) translation or Brain-Derived Neurotrophic Factor (BDNF) action, which are plasticity related proteins necessary for memory consolidation. However, DHK around a strong training, which induces long-term memory, does not affect memory consolidation. Administration of DHK before the test session impairs the expression of long-term memory, and this effect is dependent of Arc translation. Furthermore, DHK impairs reconsolidation if applied before a reactivation session, and this effect is independent of Arc translation. These findings reveal specific consequences on spatial memory stages developed under hippocampal GLT-1 blockade, shedding light on the intricate molecular mechanisms, governed in part for the action of glia.
Collapse
Affiliation(s)
- Juan Gabriel Riboldi
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Correa
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Matías M Renfijes
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramiro Tintorelli
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Haydee Viola
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Alasmari MS, Alasmari F, Alsharari SD, Alasmari AF, Ali N, Ahamad SR, Alghamdi AM, Kadi AA, Hammad AM, Ali YSM, Childers WE, Abou-Gharbia M, Sari Y. Neuroinflammation and Neurometabolomic Profiling in Fentanyl Overdose Mouse Model Treated with Novel β-Lactam, MC-100093, and Ceftriaxone. TOXICS 2024; 12:604. [PMID: 39195706 PMCID: PMC11360732 DOI: 10.3390/toxics12080604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Opioid-related deaths are attributed to overdoses, and fentanyl overdose has been on the rise in many parts of the world, including the USA. Glutamate transporter 1 (GLT-1) has been identified as a therapeutic target in several preclinical models of substance use disorders, and β-lactams effectively enhance its expression and function. In the current study, we characterized the metabolomic profile of the nucleus accumbens (NAc) in fentanyl-overdose mouse models, and we evaluated the protective effects of the functional enhancement of GLT-1 using β-lactams, ceftriaxone, and MC-100093. BALB/c mice were divided into four groups: control, fentanyl, fentanyl/ceftriaxone, and fentanyl/MC-100093. While the control group was intraperitoneally (i.p.) injected with normal saline simultaneously with other groups, all fentanyl groups were i.p. injected with 1 mg/kg of fentanyl as an overdose after habituation with four repetitive non-consecutive moderate doses (0.05 mg/kg) of fentanyl for a period of seven days. MC-100093 (50 mg/kg) and ceftriaxone (200 mg/kg) were i.p. injected from days 5 to 9. Gas chromatography-mass spectrometry (GC-MS) was used for metabolomics, and Western blotting was performed to determine the expression of target proteins. Y-maze spontaneous alternation performance and the open field activity monitoring system were used to measure behavioral manifestations. Fentanyl overdose altered the abundance of about 30 metabolites, reduced the expression of GLT-1, and induced the expression of inflammatory mediators IL-6 and TLR-4 in the NAc. MC-100093 and ceftriaxone attenuated the effects of fentanyl-induced downregulation of GLT-1 and upregulation of IL-6; however, only ceftriaxone attenuated fentanyl-induced upregulation of TRL4 expression. Both of the β-lactams attenuated the effects of fentanyl overdose on locomotor activities but did not induce significant changes in the overall metabolomic profile. Our findings revealed that the exposure to a high dose of fentanyl causes alterations in key metabolic pathways in the NAc. Pretreatment with ceftriaxone and MC-100093 normalized fentanyl-induced downregulation of GLT-1 expression with subsequent attenuation of neuroinflammation as well as the hyperactivity, indicating that β-lactams may be promising drugs for treating fentanyl use disorder.
Collapse
Affiliation(s)
- Mohammed S. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdullah M. Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Aban A. Kadi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Alaa M. Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Yousif S. Mohamed Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (W.E.C.); (M.A.-G.)
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (W.E.C.); (M.A.-G.)
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
6
|
Poljak L, Miše B, Čičin-Šain L, Tvrdeić A. Ceftriaxone Inhibits Conditioned Fear and Compulsive-like Repetitive Marble Digging without Central Nervous System Side Effects Typical of Diazepam-A Study on DBA2/J Mice and a High-5HT Subline of Wistar-Zagreb 5HT Rats. Biomedicines 2024; 12:1711. [PMID: 39200176 PMCID: PMC11351474 DOI: 10.3390/biomedicines12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Ceftriaxone upregulates GLT1 glutamate transporter in the brain and may have anti-CFC and anti-OCD effects. Methods: Twenty WZ-5HT rats were used to investigate the effects of ceftriaxone on obsessive-compulsive (OCD)-like behaviour in the marble-burying (MB) test, freezing behaviour in contextual fear conditioning (CFC) and expression of GLT1 protein in the hippocampus or amygdala using immunoblots. Fifteen DBA/2J mice were used in the MB test. We also compared diazepam with ceftriaxone in open-field, beam-walking, and wire-hanging tests on 47 DBA/2J mice. Ceftriaxone (200 mg/kg) and saline were applied intraperitoneally, once daily for 7 (rats) or 5 (mice) consecutive days. A single dose of diazepam (1.5-3.0 mg/kg) or saline was injected 30 min before the behavioural tests. Results: Ceftriaxone significantly diminished OCD-like behaviour (↓ number of marbles buried) and freezing behaviour in CFC context session (↑ latencies, ↓ total duration, ↓ duration over four 2 min periods of the session) but increased GLT1 protein expression in the amygdala and hippocampus of rats. Diazepam induced sedation, ataxia and myorelaxation in mice. Ceftriaxone did not have these side effects. Conclusions: The results of this study confirm the anti-CFC and anti-OCD effects of ceftriaxone, which did not produce the unwanted effects typical of diazepam.
Collapse
Affiliation(s)
- Ljiljana Poljak
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Branko Miše
- University Hospital for Infectious Diseases “Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Lipa Čičin-Šain
- Laboratory for Neurochemistry and Molecular Neurobiology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Ante Tvrdeić
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Sari Y, Swiss GM, Alrashedi FA, Baeshen KA, Alshammari SA, Alsharari SD, Ali N, Alasmari AF, Alhoshani A, Alameen AA, Childers WE, Abou-Gharbia M, Alasmari F. Effects of novel beta-lactam, MC-100093, and ceftriaxone on astrocytic glutamate transporters and neuroinflammatory factors in nucleus accumbens of C57BL/6 mice exposed to escalated doses of morphine. Saudi Pharm J 2024; 32:102108. [PMID: 38868175 PMCID: PMC11166880 DOI: 10.1016/j.jsps.2024.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-β) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-β mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghadeer M.S. Swiss
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin A. Alrashedi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kholoud A. Baeshen
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Sultan A. Alshammari
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa A. Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Fitzgerald ND, Liu Y, Wang A, Striley CW, Setlow B, Knackstedt L, Cottler LB. Sequencing hour-level temporal patterns of polysubstance use among persons who use cocaine, alcohol, and cannabis: A back-translational approach. Drug Alcohol Depend 2024; 258:111272. [PMID: 38555662 DOI: 10.1016/j.drugalcdep.2024.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Polysubstance use is highly prevalent among persons who use cocaine; however, little is known about how alcohol and cannabis are used with cocaine. We identified temporal patterns of cocaine+alcohol and cocaine+cannabis polysubstance use to inform more translationally relevant preclinical models. METHODS Participants who used cocaine plus alcohol and/or cannabis at least once in the past 30 days (n=148) were interviewed using the computerized Substance Abuse Module and the newer Polysubstance Use-Temporal Patterns Section. For each day in the past 30 days, participants reported whether they had used cocaine, alcohol, and cannabis; if any combinations of use were endorsed, participants described detailed hourly use of each substance on the most "typical day" for the combination. Sequence analysis and hierarchical clustering were applied to identify patterns of timing of drug intake on typical days of cocaine polysubstance use. RESULTS We identified five temporal patterns among the 180 sequences of reported cocaine polysubstance use: 1) limited cocaine/cocaine+alcohol use (53%); 2) extensive cannabis then cocaine+alcohol+cannabis use (22%); 3) limited alcohol/cannabis then cocaine+alcohol use (13%); 4) extensive cocaine+cannabis then cocaine+alcohol+cannabis use (4%); and 5) extensive cocaine then cocaine+alcohol use (8%). While drug intake patterns differed, prevalence of use disorders did not. CONCLUSIONS Patterns were characterized by cocaine, alcohol, and cannabis polysubstance use and by the timing, order, duration, and quantity of episode-level substance use. The identification of real-world patterns of cocaine polysubstance use represents an important step toward developing laboratory models that accurately reflect human behavior.
Collapse
Affiliation(s)
- Nicole D Fitzgerald
- Department of Epidemiology, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA.
| | - Yiyang Liu
- Department of Epidemiology, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Anna Wang
- Department of Epidemiology, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Catherine W Striley
- Department of Epidemiology, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA; Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lori Knackstedt
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA; Department of Psychology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Linda B Cottler
- Department of Epidemiology, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Wang J, Qiao H, Wang Z, Zhao W, Chen T, Li B, Zhu L, Chen S, Gu L, Wu Y, Zhang Z, Bi L, Chen P. Rational Design and Acoustic Assembly of Human Cerebral Cortex-Like Microtissues from hiPSC-Derived Neural Progenitors and Neurons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210631. [PMID: 37170683 DOI: 10.1002/adma.202210631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Development of biologically relevant and clinically relevant human cerebral cortex models is demanded by mechanistic studies of human cerebral cortex-associated neurological diseases and discovery of preclinical neurological drug candidates. Here, rational design of human-sourced brain-like cortical tissue models is demonstrated by reverse engineering and bionic design. To implement this design, the acoustic assembly technique is employed to assemble hiPSC-derived neural progenitors and neurons separately in a label-free and contact-free manner followed by subsequent neural differentiation and culture. The generated microtissues encapsulate the neuronal microanatomy of human cerebral-cortex tissue that contains six-layered neuronal architecture, a 400-µm interlayer distance, synaptic connections between interlayers, and neuroelectrophysiological transmission. Furthermore, these microtissues are infected with herpes simplex virus type I (HSV-1) virus, and the HSV-induced pathogenesis associated with Alzheimer's disease is determined, including neuron loss and the expression of Aβ. Overall, a high-fidelity human-relevant in vitro histotypic model is provided for the cerebral cortex, which will facilitate wide applications in probing the mechanisms of neurodegenerative diseases and screening the candidates for neuroprotective agents.
Collapse
Affiliation(s)
- Jibo Wang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Haowen Qiao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Zhenyan Wang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Tao Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Bin Li
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Lili Zhu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Sihan Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Longjun Gu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Ying Wu
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Linlin Bi
- Department of Pathology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
10
|
Kalivas PW, Gourley SL, Paulus MP. Intrusive thinking: Circuit and synaptic mechanisms of a transdiagnostic psychiatric symptom. Neurosci Biobehav Rev 2023; 150:105196. [PMID: 37094741 PMCID: PMC10249786 DOI: 10.1016/j.neubiorev.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Spontaneous thought is an adaptive cognitive process that can produce novel and insightful thought sequences useful in guiding future behavior. In many psychiatric disorders, spontaneous thinking becomes intrusive and uncontrolled, and can trigger symptoms such as craving, repetitive negative thinking and trauma-related memories. We link studies using clinical imaging and rodent modeling towards understanding the neurocircuitry and neuroplasticity of intrusive thinking. We propose a framework in which drugs or stress change the homeostatic set point of brain reward circuitry, which then impacts subsequent plasticity induced by drug/stress conditioned cues (metaplastic allostasis). We further argue for the importance of examining not only the canonical pre- and postsynapse, but also the adjacent astroglial protrusions and extracellular matrix that together form the tetrapartite synapse and that plasticity throughout the tetrapartite synapse is necessary for cue-induced drug or stress behaviors. This analysis reveals that drug use or trauma cause long-lasting allostatic brain plasticity that sets the stage for subsequent drug/trauma-associated cues to induce transient plasticity that can lead to intrusive thinking.
Collapse
Affiliation(s)
- Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
11
|
Smaga I, Gawlińska K, Gawliński D, Surówka P, Filip M. A maternal high-fat diet during pregnancy and lactation disrupts short-term memory functions via altered hippocampal glutamatergic signaling in female rat offspring. Behav Brain Res 2023; 445:114396. [PMID: 36934986 DOI: 10.1016/j.bbr.2023.114396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
A maternal high-fat diet (HFD) provokes changes in the offspring's brain's structure, function, and development. These changes may cause neuropsychiatric disorders in the early life of offspring the basis of which may be memory impairment. In this study, the effects of maternal HFD during pregnancy and lactation on the short-term memory in adolescent and young adult offspring were evaluated. We analyzed the expression of genes encoding the glutamatergic transporters in the hippocampus to verify the association between changes in glutamatergic transporters and behavioral changes in offspring. Next, we examined whether maternal diet-induced changes in the mRNA levels of genes encoding the NMDA receptor subunits and the AMPA receptor subunits, as well as BDNF in this structure in offspring. All significant changes were validated at the protein level. We found that a maternal HFD during pregnancy and lactation disrupts short-term memory in adolescent and young adult females. The latter change is likely related to the dysregulation of hippocampal levels of GluN2B subunit of NMDA receptors and of reduced levels of BDNF. In summary, we showed that a maternal HFD during pregnancy and lactation triggered several changes within the glutamatergic system in the hippocampus of rat offspring, which may be related to producing behavioral changes in offspring.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, 31-343 Kraków, Poland.
| | - Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, 31-343 Kraków, Poland
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, 31-343 Kraków, Poland
| | - Paulina Surówka
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, 31-343 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
12
|
Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, Pastor-Maldonado C, Cilleros-Holgado P, Gómez-Fernández D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Piñero-Pérez R, Reche-López D, Romero-Domínguez JM, Sánchez-Alcázar JA. Neurodegeneration, Mitochondria, and Antibiotics. Metabolites 2023; 13:metabo13030416. [PMID: 36984858 PMCID: PMC10056573 DOI: 10.3390/metabo13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Juan López-Pérez
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Inés Muela-Zarzuela
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Carmen Pastor-Maldonado
- Department of Molecular Biology Interfaculty Institute for Cell Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José M. Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954978071
| |
Collapse
|
13
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
14
|
Funke JR, Hwang EK, Wunsch AM, Baker R, Engeln KA, Murray CH, Milovanovic M, Caccamise AJ, Wolf ME. Persistent Neuroadaptations in the Nucleus Accumbens Core Accompany Incubation of Methamphetamine Craving in Male and Female Rats. eNeuro 2023; 10:ENEURO.0480-22.2023. [PMID: 36792361 PMCID: PMC10016192 DOI: 10.1523/eneuro.0480-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
Relapse is a major problem in treating methamphetamine use disorder. "Incubation of craving" during abstinence is a rat model for persistence of vulnerability to craving and relapse. While methamphetamine incubation has previously been demonstrated in male and female rats, it has not been demonstrated after withdrawal periods greater than 51 d and most mechanistic work used males. Here, we address both gaps. First, although methamphetamine intake was higher in males during self-administration training (6 h/d × 10 d), incubation was similar in males and females, with "incubated" craving persisting through withdrawal day (WD)100. Second, using whole-cell patch-clamp recordings in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) core, we assessed synaptic levels of calcium-permeable AMPA receptors (CP-AMPARs), as their elevation is required for expression of incubation in males. In both sexes, compared with saline-self-administering controls, CP-AMPAR levels were significantly higher in methamphetamine rats across withdrawal, although this was less pronounced in WD100-135 rats than WD15-35 or WD40-75 methamphetamine rats. We also examined membrane properties and NMDA receptor (NMDAR) transmission. In saline controls, MSNs from males exhibited lower excitability than females. This difference was eliminated after incubation because of increased excitability of MSNs from males. NMDAR transmission did not differ between sexes and was not altered after incubation. In conclusion, incubation persists for longer than previously described and equally persistent CP-AMPAR plasticity in NAc core occurs in both sexes. Thus, abstinence-related synaptic plasticity in NAc is similar in males and females although other methamphetamine-related behaviors and neuroadaptations show differences.
Collapse
Affiliation(s)
- Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Kimberley A Engeln
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Conor H Murray
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Aaron J Caccamise
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| |
Collapse
|
15
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
16
|
Hong D, Zhang C, Wu W, Lu X, Zhang L. Modulation of the gut-brain axis via the gut microbiota: a new era in treatment of amyotrophic lateral sclerosis. Front Neurol 2023; 14:1133546. [PMID: 37153665 PMCID: PMC10157060 DOI: 10.3389/fneur.2023.1133546] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
There are trillions of different microorganisms in the human digestive system. These gut microbes are involved in the digestion of food and its conversion into the nutrients required by the body. In addition, the gut microbiota communicates with other parts of the body to maintain overall health. The connection between the gut microbiota and the brain is known as the gut-brain axis (GBA), and involves connections via the central nervous system (CNS), the enteric nervous system (ENS), and endocrine and immune pathways. The gut microbiota regulates the central nervous system bottom-up through the GBA, which has prompted researchers to pay considerable attention to the potential pathways by which the gut microbiota might play a role in the prevention and treatment of amyotrophic lateral sclerosis (ALS). Studies with animal models of ALS have shown that dysregulation of the gut ecology leads to dysregulation of brain-gut signaling. This, in turn, induces changes in the intestinal barrier, endotoxemia, and systemic inflammation, which contribute to the development of ALS. Through the use of antibiotics, probiotic supplementation, phage therapy, and other methods of inducing changes in the intestinal microbiota that can inhibit inflammation and delay neuronal degeneration, the clinical symptoms of ALS can be alleviated, and the progression of the disease can be delayed. Therefore, the gut microbiota may be a key target for effective management and treatment of ALS.
Collapse
Affiliation(s)
- Du Hong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wenshuo Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohui Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Liping Zhang
| |
Collapse
|
17
|
Padovan-Hernandez Y, Rojas G, Wu L, Knackstedt LA. Individual differences in cocaine seeking during voluntary abstinence predicts cocaine relapse and the circuitry mediating relapse. Psychopharmacology (Berl) 2022; 239:3963-3973. [PMID: 36329194 PMCID: PMC10240883 DOI: 10.1007/s00213-022-06270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
RATIONALE There are no FDA-approved treatments to facilitate recovery from cocaine use disorder. Contingency management offers non-drug reinforcers to encourage abstinence and is effective at reducing drug seeking during treatment, but once discontinued, relapse rates increase. OBJECTIVES We sought to establish a choice-based rodent model of voluntary abstinence (VA) from cocaine to test the ability of ceftriaxone, an antibiotic consistently shown to prevent relapse to cocaine seeking in rodents, to attenuate relapse after discontinuation of VA, and to investigate relapse-induced neuronal activation via c-Fos expression. METHODS Male Sprague-Dawley rats self-administered sucrose pellets for 5 days and intravenous cocaine for 12 days. Rats then underwent 14 days of voluntary or forced abstinence. VA sessions entailed the opportunity to choose between sucrose and cocaine delivery in discrete trials (20 trials/day). Ceftriaxone (or vehicle) was administered during the last 7 days of abstinence. During a relapse test, only the cocaine-paired lever was available and presses on the lever delivered cocaine-paired cues. RESULTS There were more presses on the sucrose lever during VA, but cocaine intake did not decline to zero. Ceftriaxone had no effect on cocaine intake during VA. Neither ceftriaxone nor VA reduced cocaine seeking during the relapse test, and cocaine intake during VA positively correlated with cocaine seeking during the test in vehicle-treated animals. Relapse-induced c-Fos expression was found to be greater in the ventral orbitofrontal cortex following VA. CONCLUSIONS Sucrose availability leads to a decrease in, but not cessation of, cocaine seeking and a differential engagement of the circuitry underlying relapse.
Collapse
Affiliation(s)
- Yasmin Padovan-Hernandez
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Giselle Rojas
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611, USA
| | - Lizhen Wu
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611, USA
| | - Lori A Knackstedt
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, USA.
| |
Collapse
|
18
|
Iannone LF, Gómez-Eguílaz M, De Caro C. Gut microbiota manipulation as an epilepsy treatment. Neurobiol Dis 2022; 174:105897. [DOI: 10.1016/j.nbd.2022.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
|
19
|
The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms232012289. [PMID: 36293176 PMCID: PMC9603886 DOI: 10.3390/ijms232012289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.
Collapse
|
20
|
Hadizadeh H, Flores JM, Mayerson T, Worhunsky PD, Potenza MN, Angarita GA. Glutamatergic Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Hammad AM, Meknas SJ, Hall FS, Hikmat S, Sari Y, Al-Qirim TM, Alfaraj M, Amawi H. Effects of waterpipe tobacco smoke and ceftriaxone treatment on the expression of endocannabinoid receptors in mesocorticolimbic brain regions. Brain Res Bull 2022; 185:56-63. [PMID: 35490908 DOI: 10.1016/j.brainresbull.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Chronic tobacco exposure can alter the endocannabinoid (eCB) system, consequently leading to an anxiety state. In this study, we investigated the effects of waterpipe tobacco smoke (WTS) on cannabinoid receptor 1 and 2 (CBR1 and CBR2) gene and protein expression in mesocorticolimbic brain regions. Using elevated plus maze (EPM) and open field (OF) tests, the effects of WTS exposure on withdrawal-induced anxiety-like behavior were examined. The effect of ceftriaxone (CEF), a β-lactam known to upregulate glutamate transporter 1 (GLT-1), on anxiety and the expression of cannabinoid receptors was also determined. Male Sprague-Dawley rats were randomly assigned to four groups: 1) the Control group was exposed only to standard room air; 2) the WTS group was exposed to tobacco smoke and treated with saline vehicle; 3) the WTS-CEF group was exposed to WTS and treated with ceftriaxone; and 4) the CEF group was exposed only to standard room air and treated with ceftriaxone. Rats were exposed to WTS (or room air) for two hours per day, five days per week for a period of four weeks. Behavioral tests (EPM and OF) were conducted weekly during acute withdrawal, 24 h following WTS exposure. Rats were given either saline or ceftriaxone (200 mg/kg i.p.) for five days during Week 4, 30 min prior to WTS exposure. Withdrawal-induced anxiety was induced by WTS exposure but was reduced by ceftriaxone treatment. WTS exposure decreased CBR1 mRNA and protein expression in the NAc and VTA, but not PFC, and ceftriaxone treatment attenuated these effects. WTS exposure did not change CBR2 mRNA expression in the NAc, VTA, or PFC. These findings demonstrate that WTS exposure dysregulated the endocannabinoid system and increased anxiety-like behavior, and these effects were reversed by ceftriaxone treatment, which suggest the involvement of glutamate transporter 1 in these effects.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Sara Jamal Meknas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suhair Hikmat
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - T M Al-Qirim
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Malek Alfaraj
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Haneen Amawi
- Department of Clinical Pharmacy and Pharmacy Practice, College of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
22
|
An Eluate of the Medicinal Plant Garcinia kola Displays Strong Antidiabetic and Neuroprotective Properties in Streptozotocin-Induced Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8708961. [PMID: 35356236 PMCID: PMC8959977 DOI: 10.1155/2022/8708961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 02/12/2022] [Indexed: 12/04/2022]
Abstract
Materials and Methods G. kola methanolic extract was fractionated using increasingly polar solvents. Fractions were administered to streptozotocin (STZ)-induced diabetic mice until marked motor signs developed in diabetic controls. Fine motor skills indicators were measured in the horizontal grid test (HGT) to confirm the prevention of motor disorders in treated animals. Column chromatography was used to separate the most active fraction, and subfractions were tested in turn in the HGT. Gas chromatography-mass spectrometry (GC-MS) technique was used to assess the components of the most active subfraction. Results Treatment with ethyl acetate fraction and its fifth eluate (F5) preserved fine motor skills and improved the body weight and blood glucose level. At dose 1.71 mg/kg, F5 kept most parameters comparable to the nondiabetic vehicle group values. GC-MS chromatographic analysis of F5 revealed 36 compounds, the most abundantly expressed (41.8%) being the β-lactam molecules N-ethyl-2-carbethoxyazetidine (17.8%), N,N-dimethylethanolamine (15%), and isoniacinamide (9%). Conclusions Our results suggest that subfraction F5 of G. kola extract prevented the development of motor signs and improved disease profile in an STZ-induced mouse model of diabetic encephalopathy. Antidiabetic activity of β-lactam molecules accounted at least partly for these effects.
Collapse
|
23
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
24
|
Smaga I, Wydra K, Witek K, Surówka P, Suder A, Pieniążek R, Caffino L, Fumagalli F, Sanak M, Filip M. Intravenous administration of Tat-NR2B9c peptide, a PSD95 inhibitor, attenuates reinstatement of cocaine-seeking behavior in rats. Behav Brain Res 2022; 416:113537. [PMID: 34416299 DOI: 10.1016/j.bbr.2021.113537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Cocaine use disorder is a serious, chronic and relapsing disease of the nervous system, for which effective treatments do not yet exist. Recently, the role of the N-methyl-d-aspartate (NMDA) receptor subunit GluN2B has been highlighted in cocaine abstinence followed by extinction training. Since the GluN2B subunit is stabilized at synaptic level by the interaction with its scaffolding protein PSD95, in this study we aimed at investigating efficacy of Tat-NR2B9c peptide, a PSD95 inhibitor, which disrupts the interaction of PSD95 with GluN2B, in the attenuation of cocaine seeking-behavior or cue-induced reinstatement. We found that Tat-NR2B9c, administered intravenously, attenuated the reinstatement of active lever presses induced by a priming dose of cocaine or by drug-associated conditioned stimuli. At the same time, the GluN2B/PSD95 complex levels were decreased in the ventral hippocampus of rats that previously self-administered cocaine injected with Tat-NR2B9c during cocaine- or cue-induced reinstatement. In conclusion, we here provide the first evidence showing that the disruption of the GluN2B/PSD95 complexes during cocaine abstinence followed by extinction training may represent a useful strategy to reduce reinstatement of cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland.
| | - Karolina Wydra
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| | - Kacper Witek
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| | - Paulina Surówka
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Pharmacology, Affective Cognitive Neuroscience Laboratory, Smętna 12, PL 31-343, Kraków, Poland
| | - Agata Suder
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| | - Renata Pieniążek
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066, Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| |
Collapse
|
25
|
Hodebourg R, Kalivas PW, Kruyer A. Extrasynaptic therapeutic targets in substance use and stress disorders. Trends Pharmacol Sci 2022; 43:56-68. [PMID: 34753604 PMCID: PMC8688303 DOI: 10.1016/j.tips.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
Treatments for substance use and stress disorders are based on ameliorating behavioral symptoms, not on reversing the synaptic pathology that has the potential to cure disorders. This failing arises in part from a research focus on how pre- and postsynaptic physiology is changed even though key neuropathology exists in the perisynaptic neuropil that homeostatically regulates synaptic transmission. We explore recent findings from the substance use and stress disorder literature pointing to a key role for perisynaptic astroglia and signaling in the extracellular matrix (ECM) in regulating synaptic pathology. We conclude that drugs and stress initiate long-lasting changes in brain synapses via enduring neuroadaptations in astroglia and the ECM, and that modulating extrasynaptic regulators may be therapeutically useful.
Collapse
Affiliation(s)
- Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29464, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29464, USA.
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29464, USA
| |
Collapse
|
26
|
Chen Y, Li Y, Du M, Yu J, Gao F, Yuan Z, Chen Z. Ultrasound Neuromodulation: Integrating Medicine and Engineering for Neurological Disease Treatment. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract Neurological diseases associated with dysfunctions of neural circuits, including Alzheimer’s disease (AD), depression and epilepsy, have been increasingly prevalent. To tackle these issues, artificial stimulation or regulation of specific neural circuits and
nuclei are employed to alleviate or cure certain neurological diseases. In particular, ultrasound neuromodulation has been an emerging interdisciplinary approach, which integrates medicine and engineering methodologies in the treatment. With the development of medicine and engineering, ultrasound
neuromodulation has gradually been applied in the treatment of central nervous system diseases. In this review, we aimed to summarize the mechanism of ultrasound neuromodulation and the advances of focused ultrasound (FUS) in neuromodulation in recent years, with a special emphasis on its
application in central nervous system disease treatment. FUS showed great feasibility in the treatment of epilepsy, tremor, AD, depression, and brain trauma. We also suggested future directions of ultrasound neuromodulation in clinical settings, with a focus on its fusion with genetic engineering
or nanotechnology.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Meng Du
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Fei Gao
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhiyi Chen
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
27
|
Ren C, He KJ, Hu H, Zhang JB, Dong LG, Li D, Chen J, Mao CJ, Wang F, Liu CF. Induction of Parkinsonian-Like Changes via Targeted Downregulation of Astrocytic Glutamate Transporter GLT-1 in the Striatum. JOURNAL OF PARKINSONS DISEASE 2021; 12:295-314. [PMID: 34719508 DOI: 10.3233/jpd-212640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Previous investigations have suggested that decreased expression of glutamate transporter-1 (GLT-1) is involved in glutamate excitotoxicity and contribute to the development of Parkinson's disease (PD), GLT-1 is decreased in animal models of PD. GLT-1 is mainly expressed in astrocytes, and the striatum is a GLT-1-rich brain area. OBJECTIVE The aim was to explore the function and mechanism of astrocytic GLT-1 in PD-like changes. METHODS In the study, PD-like changes and their molecular mechanism in rodents were tested by a behavioral assessment, micro-positron emission tomography/computed tomography (PET/CT), western blotting, immunohistochemical and immunofluorescence staining, and high performance liquid chromatography pre-column derivatization with O-pthaldialdehida after downregulating astrocytic GLT-1 in vivo and in vitro. RESULTS In vivo, after 6 weeks of brain stereotactic injection of adeno-associated virus into the striatum, rats in the astrocytic GLT-1 knockdown group showed poorer motor performance, abnormal gait, and depression-like feature; but no olfactory disorders. The results of micro-PET/CT and western blotting indicated that the dopaminergic system was impaired in astrocytic GLT-1 knockdown rats. Similarly, tyrosine hydroxylase (TH) positive immune-staining in neurons of astrocytic GLT-1 knockdown rats showed deficit in cell count. In vitro, knockdown of astrocytic GLT-1 via RNA interference led to morphological injury of TH-positive neurons, which may be related to the abnormal calcium signal induced by glutamate accumulation after GLT-1 knockdown. Furthermore, the GLT-1 agonist ceftriaxone showed a protective effect on TH-positive neuron impairment. CONCLUSION The present findings may shed new light on the future prevention and treatment of PD based on blocking glutamate excitotoxicity.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kai-Jie He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, Suqian First Hospital, Suqian, China.,Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China.,Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
28
|
Tikhonova MA, Amstislavskaya TG, Ho YJ, Akopyan AA, Tenditnik MV, Ovsyukova MV, Bashirzade AA, Dubrovina NI, Aftanas LI. Neuroprotective Effects of Ceftriaxone Involve the Reduction of Aβ Burden and Neuroinflammatory Response in a Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:736786. [PMID: 34658774 PMCID: PMC8511453 DOI: 10.3389/fnins.2021.736786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Ceftriaxone (CEF) is a safe and multipotent antimicrobial agent that possesses neuroprotective properties. Earlier, we revealed the restoration of cognitive function in OXYS rats with signs of Alzheimer's disease (AD)-like pathology by CEF along with its modulating the expression of genes related to the system of amyloid beta (Aβ) metabolism in the brain. The aim of this study was to determine the effects of CEF on behavior, Aβ deposition, and associated neuroinflammation using another model of an early AD-like pathology induced by Aβ. Mice were injected bilaterally i.c.v. with Aβ fragment 25-35 to produce the AD model, while the CEF treatment (100 mg/kg/day, i.p., 36 days) started the next day after the surgery. The open field test, T-maze, Barnes test, IntelliCage, and passive avoidance test were used for behavioral phenotyping. Neuronal density, amyloid accumulation, and the expression of neuroinflammatory markers were measured in the frontal cortex and hippocampus. CEF exhibited beneficial effects on some cognitive features impaired by Aβ neurotoxicity including complete restoration of the fear-induced memory and learning in the passive avoidance test and improved place learning in the IntelliCage. CEF significantly attenuated amyloid deposition and neuroinflammatory response. Thus, CEF could be positioned as a potent multipurpose drug as it simultaneously targets proteostasis network and neuroinflammation, as well as glutamate excitotoxicity, oxidative pathways, and neurotrophic function as reported earlier. Together with previous reports on the positive effects of CEF in AD models, the results confirm the potential of CEF as a promising treatment against cognitive decline from the early stages of AD progression.
Collapse
Affiliation(s)
- Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Anna A Akopyan
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Michael V Tenditnik
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Marina V Ovsyukova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Alim A Bashirzade
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Faculty of Life Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Nina I Dubrovina
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Lyubomir I Aftanas
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,Department of Clinical Neuroscience, Behavior and Neurotechnologies, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| |
Collapse
|
29
|
Smaga I, Wydra K, Suder A, Sanak M, Caffino L, Fumagalli F, Filip M. Enhancement of the GluN2B subunit of glutamatergic NMDA receptors in rat brain areas after cocaine abstinence. J Psychopharmacol 2021; 35:1226-1239. [PMID: 34587833 DOI: 10.1177/02698811211048283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cocaine use disorder is associated with compulsive drug-seeking and drug-taking, whereas relapse may be induced by several factors, including stress, drug-related places, people, and cues. Recent observations strongly support the involvement of the N-methyl-D-aspartate (NMDA) receptors in cocaine use disorders and abstinence, whereas withdrawal in different environments may affect the intensification of relapse. METHODS The aim of this study was to examine the GluN2B subunit expression and its association with the postsynaptic density protein 95 (PSD95) in several brain structures in rats with a history of cocaine self-administration and housed either in an enriched environment or in an isolated condition. Furthermore, a selective antagonist of the GluN2B subunit-CP 101,606 (10 and 20 mg/kg) administered during exposure to cocaine or a drug-associated conditional stimulus (a cue) was used to evaluate seeking behavior in rats. RESULTS In rats previously self-administering cocaine, we observed an increase in the GluN2B expression in the total homogenate from the dorsal hippocampus under both enriched environment and isolation. Cocaine abstinence under isolation conditions increased the GluN2B and GluN2B/PSD95 complex levels in the PSD fraction of the prelimbic cortex in rats previously self-administering cocaine. Administration of CP 101,606 attenuated cue-induced cocaine-seeking behavior only in isolation-housed rats. CONCLUSION In summary, in this study we showed region-specific changes in both the expression of GluN2B subunit and NMDA receptor trafficking during cocaine abstinence under different housing conditions. Furthermore, we showed that the pharmacological blockade of the GluN2B subunit may be useful in attenuating cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Suder
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
30
|
Knackstedt LA, Wu L, Rothstein J, Vidensky S, Gordon J, Ramanjulu M, Dunman P, Blass B, Childers W, Abou-Gharbia M. MC-100093, a Novel β-Lactam Glutamate Transporter-1 Enhancer Devoid of Antimicrobial Properties, Attenuates Cocaine Relapse in Rats. J Pharmacol Exp Ther 2021; 378:51-59. [PMID: 33986035 PMCID: PMC8407531 DOI: 10.1124/jpet.121.000532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
Cocaine use disorder currently lacks Food and Drug Administration-approved treatments. In rodents, the glutamate transporter-1 (GLT-1) is downregulated in the nucleus accumbens after cocaine self-administration, and increasing the expression and function of GLT-1 reduces the reinstatement of cocaine seeking. The β-lactam antibiotic ceftriaxone upregulates GLT-1 and attenuates cue- and cocaine-induced cocaine seeking without affecting motivation for natural rewards. Although ceftriaxone shows promise for treating cocaine use disorder, it possesses characteristics that limit successful translation from bench to bedside, including poor brain penetration, a lack of oral bioavailability, and a risk of bacterial resistance when used chronically. Thus, we aimed to develop novel molecules that retained the GLT-1-enhancing effects of ceftriaxone but displayed superior drug-like properties. Here, we describe a new monocyclic β-lactam, MC-100093, as a potent upregulator of GLT-1 that is orally bioavailable and devoid of antimicrobial properties. MC-100093 was synthesized and tested in vitro and in vivo to determine physiochemical, pharmacokinetic, and pharmacodynamic properties. Next, adult male rats underwent cocaine self-administration and extinction training. During extinction training, rats received one of four doses of MC-100093 for 6-8 days prior to a single cue-primed reinstatement test. Separate cohorts of rats were used to assess nucleus accumbens GLT-1 expression and MC-100093 effects on sucrose self-administration. We found that 50 mg/kg MC-100093 attenuated cue-primed reinstatement of cocaine seeking while upregulating GLT-1 expression in the nucleus accumbens core. This dose did not produce sedation, nor did it decrease sucrose consumption or body weight. Thus, MC-100093 represents a potential treatment to reduce cocaine relapse. SIGNIFICANCE STATEMENT: Increasing GLT-1 activity reliably reduces drug-seeking across classes of drugs; however, existing GLT1-enhancers have side effects and lack oral bioavailability. To address this issue, novel GLT-1 enhancers were synthesized, and the compound with the most favorable pharmacokinetic and pharmacodynamic properties, MC-100093, was selected for further testing. MC-100093 attenuated cued cocaine seeking without reducing food seeking or locomotion and upregulated GLT-1 expression in the nucleus accumbens.
Collapse
Affiliation(s)
- Lori A Knackstedt
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Lizhen Wu
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Jeffrey Rothstein
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Svetlana Vidensky
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - John Gordon
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Mercy Ramanjulu
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Paul Dunman
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Benjamin Blass
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Wayne Childers
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Magid Abou-Gharbia
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| |
Collapse
|
31
|
N-acetylcysteine in substance use disorder: a lesson from preclinical and clinical research. Pharmacol Rep 2021; 73:1205-1219. [PMID: 34091880 PMCID: PMC8460563 DOI: 10.1007/s43440-021-00283-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Substance use disorder (SUD) is a chronic brain condition, with compulsive and uncontrollable drug-seeking that leads to long-lasting and harmful consequences. The factors contributing to the development of SUD, as well as its treatment settings, are not fully understood. Alterations in brain glutamate homeostasis in humans and animals implicate a key role of this neurotransmitter in SUD, while the modulation of glutamate transporters has been pointed as a new strategy to diminish the excitatory glutamatergic transmission observed after drugs of abuse. N-acetylcysteine (NAC), known as a safe mucolytic agent, is involved in the regulation of this system and may be taken into account as a novel pharmacotherapy for SUD. In this paper, we summarize the current knowledge on the ability of NAC to reduce drug-seeking behavior induced by psychostimulants, opioids, cannabinoids, nicotine, and alcohol in animals and humans. Preclinical studies showed a beneficial effect in animal models of SUD, while the clinical efficacy of NAC has not been fully established. In summary, NAC will be a small add-on to usual treatment and/or psychotherapy for SUD, however, further studies are required.
Collapse
|
32
|
Smaga I, Frankowska M, Filip M. N-acetylcysteine as a new prominent approach for treating psychiatric disorders. Br J Pharmacol 2021; 178:2569-2594. [PMID: 33760228 DOI: 10.1111/bph.15456] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
N-acetylcysteine (NAC) is a well-known and safe mucolytic agent, also used in patients with paracetamol overdose. In addition to these effects, recent preclinical and clinical studies have shown that NAC exerts beneficial effects on different psychiatric disorders. Many potential mechanisms have been proposed to underlie the therapeutic effects of NAC, including the regulation of several neurotransmitters, oxidative homeostasis, and inflammatory mediators. In this paper, we summarize the current knowledge on the ability of NAC to ameliorate symptoms and neuropathologies related to different psychiatric disorders, including attention deficit hyperactivity disorder, anxiety, bipolar disorder, depression, obsessive-compulsive disorder, obsessive-compulsive-related disorder, posttraumatic stress disorder, and schizophrenia. Although preclinical studies have shown a positive effect of NAC on animal models of psychiatric disorders, the clinical efficacy of NAC is not fully established. NAC remains a strong candidate for adjunct treatment for many psychiatric disorders, but additional preclinical and clinical studies are needed.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
33
|
Effects of ceftriaxone on ethanol drinking and GLT-1 expression in ethanol dependence and relapse drinking. Alcohol 2021; 92:1-9. [PMID: 33465464 DOI: 10.1016/j.alcohol.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of alcohol (ethanol) in mice. Previous reports from our laboratory show that CIE increases extracellular glutamate in the nucleus accumbens (NAc) and that manipulating accumbal glutamate concentrations will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. A number of studies have shown that ceftriaxone increases GLT-1 expression, the major glutamate transporter, and that treatment with this antibiotic reduces ethanol drinking. The present studies examined the effects of ceftriaxone on ethanol drinking and GLT-1 in a mouse model of ethanol dependence and relapse drinking. The results show that ceftriaxone did not influence drinking at any dose in either ethanol-dependent or non-dependent mice. Further, ceftriaxone did not increase GLT-1 expression in the accumbens core or shell, with the exception of the ethanol-dependent mice receiving the highest dose of ceftriaxone. Interestingly, ethanol-dependent mice treated with only vehicle displayed reduced expression of GLT-1 in the accumbens shell and of the presynaptic mGlu2 receptor in the accumbens core. The reduced expression of the major glutamate transporter (GLT-1), as well as a receptor that regulates glutamate release (mGlu2), may help explain, at least in part, increased glutamatergic transmission in this model of ethanol dependence and relapse drinking.
Collapse
|
34
|
Wilkie CM, Barron JC, Brymer KJ, Barnes JR, Nafar F, Parsons MP. The Effect of GLT-1 Upregulation on Extracellular Glutamate Dynamics. Front Cell Neurosci 2021; 15:661412. [PMID: 33841104 PMCID: PMC8032948 DOI: 10.3389/fncel.2021.661412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Pharmacological upregulation of glutamate transporter-1 (GLT-1), commonly achieved using the beta-lactam antibiotic ceftriaxone, represents a promising therapeutic strategy to accelerate glutamate uptake and prevent excitotoxic damage in neurological conditions. While excitotoxicity is indeed implicated in numerous brain diseases, it is typically restricted to select vulnerable brain regions, particularly in early disease stages. In healthy brain tissue, the speed of glutamate uptake is not constant and rather varies in both an activity- and region-dependent manner. Despite the widespread use of ceftriaxone in disease models, very little is known about how such treatments impact functional measures of glutamate uptake in healthy tissue, and whether GLT-1 upregulation can mask the naturally occurring activity-dependent and regional heterogeneities in uptake. Here, we used two different compounds, ceftriaxone and LDN/OSU-0212320 (LDN), to upregulate GLT-1 in healthy wild-type mice. We then used real-time imaging of the glutamate biosensor iGluSnFR to investigate functional consequences of GLT-1 upregulation on activity- and regional-dependent variations in glutamate uptake capacity. We found that while both ceftriaxone and LDN increased GLT-1 expression in multiple brain regions, they did not prevent activity-dependent slowing of glutamate clearance nor did they speed basal clearance rates, even in areas characterized by slow uptake (e.g., striatum). Unexpectedly, ceftriaxone but not LDN decreased glutamate release in the cortex, suggesting that ceftriaxone may alter release properties independent of its effects on GLT-1 expression. In sum, our data demonstrate the complexities of glutamate uptake by showing that GLT-1 expression does not necessarily translate to accelerated uptake. Furthermore, these data suggest that the mechanisms underlying activity- and regional-dependent differences in glutamate dynamics are independent of GLT-1 expression levels.
Collapse
Affiliation(s)
- Crystal M Wilkie
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Jessica C Barron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Kyle J Brymer
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Jocelyn R Barnes
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Firoozeh Nafar
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
35
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
The role of glutamate transporter-1 in firing activity of locus coeruleus neurons and nociception in rats. Exp Brain Res 2021; 239:1287-1294. [PMID: 33619583 DOI: 10.1007/s00221-021-06065-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Locus coeruleus (LC) is considered to be the main source of norepinephrine in the central nervous system (CNS) and plays important role in relieving pain in the body. Changes in the activity of synaptic excitatory amino acid transporters (EAATs) would be an applicable way to regulate synaptic transmission in the LC. In the present study, we examined the role of astrocytic glutamate transporter-1 (GLT1) in the firing activity of LC neurons and the sensation of pain in rats. Male Wistar rats were divided into three control (CNT), ceftriaxone (CFT) and dihydrokainic acid (DHK) groups. Animals were given intraperitoneal injections for nine consecutive days after which the electrophysiological and behavioral experiments were performed to determine the single-unit activity of LC neurons and pain sensation. Results of this study revealed that CFT as a well-known up-regulator of GLT1 expression decreases the latency of pain sensation in rats but inhibition of GLT1 activity by DHK showed no significant effects. Furthermore, the results obtained by single-unit recording from LC showed a significant decrease in evoked response in CFT group compared to the CNT group. Therefore, this study suggests that GLT1 might be considered as a potential therapeutic target for pain modulation in the future.
Collapse
|
37
|
Gipson CD, Rawls S, Scofield MD, Siemsen BM, Bondy EO, Maher EE. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J Neuroinflammation 2021; 18:56. [PMID: 33612110 PMCID: PMC7897396 DOI: 10.1186/s12974-021-02072-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 02/28/2023] Open
Abstract
Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA.
| | - Scott Rawls
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
| | - Emma O Bondy
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| | - Erin E Maher
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| |
Collapse
|
38
|
Kumari S, Deshmukh R. β-lactam antibiotics to tame down molecular pathways of Alzheimer's disease. Eur J Pharmacol 2021; 895:173877. [PMID: 33453224 DOI: 10.1016/j.ejphar.2021.173877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is a multifactorial disorder characterized by extracellular accumulation of amyloid-β (Aβ) and intracellular accumulations of neurofibrillary tangles. Numerous drug targets have been explored for therapeutic efficacy but failed to deliver successful treatments clinically. However, over the years our understanding of the disease pathophysiology increased significantly. Many of the novel targets which can cure or modify disease pathology are being explored preclinically as well as clinically. On contrarily, the drug discovery and development process is lengthy and the cost involved makes it difficult for faster translation of therapeutic outcomes. Therefore, repurposing existing drugs for a new therapeutic indication is considered a better approach and helps in the fast translation of therapeutic information. The existing drugs have well-proven records on their safety, pharmacokinetics, etc. In recent years, beta (β)-lactam antibiotics have been repurposed for the management of neurodegenerative pathologies. Here in the current review, we have explored β-lactam antibiotics, their target sites, molecular mechanisms, and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| |
Collapse
|