1
|
Lai MSL, Sørensen MH, Lee K, Chu JMT, Chang RCC. 3D mapping of direct VTA-CA2 circuit with potential involvement in Parkinson's disease degeneration. Neurobiol Dis 2024; 202:106723. [PMID: 39486774 DOI: 10.1016/j.nbd.2024.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Parkinson's disease dementia (PDD) is commonly developed in patients at the late stage of Parkinson's disease (PD) with unknown progression mechanisms. From the post-mortem tissues and animal models, the ventral tegmental area (VTA) and the CA2 regions are closely associated with dementia development in PDD. However, the structural connection between the two regions has not been fully traced. In this study, we applied tissue clearing and adeno-associated virus (AAV) tracing to map the neural circuits in a 3D manner. Hence, we have confirmed the direct connection between the regions with two dual AAV tracing systems and traced the VTA-CA2 circuit in 3D reconstruction. With the immunostaining, we have shown that the GABAergic neurons are the potential subtype of the postsynaptic CA2 neurons in the VTA-CA2 circuit. Under the 6-hydroxydopamine (6-OHDA), we have demonstrated the degeneration of the VTA-CA2 circuit from the observation of fragmented axonal projections. Collectively, we have first traced the direct connection of the whole VTA-CA2 circuit in an intact 3D manner and monitored the fragmentation of this target circuit in the 6-OHDA model. This VTA-CA2 circuit can be a target for future studies of the pathological spreading and degeneration mechanism from PD to PDD.
Collapse
Affiliation(s)
- Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Maja Højvang Sørensen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Krit Lee
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - John Man-Tak Chu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Wang S, Li Z, Liu X, Fan S, Wang X, Chang J, Qin L, Zhao P. Repeated postnatal sevoflurane exposure impairs social recognition in mice by disrupting GABAergic neuronal activity and development in hippocampus. Br J Anaesth 2024; 133:810-822. [PMID: 39142987 DOI: 10.1016/j.bja.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Repeated exposure to sevoflurane during early developmental stages is a risk factor for social behavioural disorders, but the underlying neuropathological mechanisms remain unclear. As the hippocampal cornu ammonis area 2 subregion (CA2) is a critical centre for social cognitive functions, we hypothesised that sevoflurane exposure can lead to social behavioural disorders by disrupting neuronal activity in the CA2. METHODS Neonatal mice were anaesthetised with sevoflurane 3 vol% for 2 h on postnatal day (PND) 6, 8, and 10. Bulk RNA sequencing of CA2 tissue was conducted on PND 12. Social cognitive function was assessed by behavioural experiments, and in vivo CA2 neuronal activity was recorded by multi-channel electrodes on PND 60-65. RESULTS Repeated postnatal exposure to sevoflurane impaired social novelty recognition in adulthood. It also caused a decrease in the synchronisation of neuronal spiking, gamma oscillation power, and spike phase-locking between GABAergic spiking and gamma oscillations in the CA2 during social interaction. After sevoflurane exposure, we observed a reduction in the density and dendritic complexity of CA2 GABAergic neurones, and decreased expression of transcription factors critical for GABAergic neuronal development after. CONCLUSIONS Repeated postnatal exposure to sevoflurane disturbed the development of CA2 GABAergic neurones through downregulation of essential transcription factors. This resulted in impaired electrophysiological function in adult GABAergic neurones, leading to social recognition deficits. These findings reveal a potential electrophysiological mechanism underlying the long-term social recognition deficits induced by sevoflurane and highlight the crucial role of CA2 GABAergic neurones in social interactions.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zijie Li
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Xin Liu
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Shiyue Fan
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuejiao Wang
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Jianjun Chang
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China.
| | - Ping Zhao
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
3
|
Bin Ibrahim MZ, Wang Z, Sajikumar S. Synapses tagged, memories kept: synaptic tagging and capture hypothesis in brain health and disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230237. [PMID: 38853570 PMCID: PMC11343274 DOI: 10.1098/rstb.2023.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024] Open
Abstract
The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Zijun Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
| |
Collapse
|
4
|
Amiri S, van den Berg M, Nazem-Zadeh MR, Verhoye M, Amiri M, Keliris GA. Nodal degree centrality in the default mode-like network of the TgF344-AD Alzheimer's disease rat model as a measure of early network alterations. NPJ AGING 2024; 10:29. [PMID: 38902224 PMCID: PMC11190202 DOI: 10.1038/s41514-024-00151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
This study investigates brain network alterations in the default mode-like network (DMLN) at early stages of disease progression in a rat model of Alzheimer's disease (AD) with application in the development of early diagnostic biomarkers of AD in translational studies. Thirteen male TgF344-AD (TG) rats, and eleven male wild-types (WT) littermates underwent longitudinal resting-state fMRI at the age of 4 and 6 months (pre and early-plaque stages of AD). Alterations in connectivity within DMLN were characterized by calculating the nodal degree (ND), a graph theoretical measure of centrality. The ND values of the left CA2 subregion of the hippocampus was found to be significantly lower in the 4-month-old TG cohort compared to the age-matched WT littermates. Moreover, a lower ND value (hypo-connectivity) was observed in the right prelimbic cortex (prL) and basal forebrain in the 6-month-old TG cohort, compared to the same age WT cohort. Indeed, the ND pattern in the DMLN in both TG and WT cohorts showed significant differences across the two time points that represent pre-plaque and early plaque stages of disease progression. Our findings indicate that lower nodal degree (hypo-connectivity) in the left CA2 in the pre-plaque stage of AD and hypo-connectivity between the basal forebrain and the DMLN regions in the early-plaque stage demonstrated differences in comparison to healthy controls. These results suggest that a graph-theoretical measure such as the nodal degree, can characterize brain networks and improve our insights into the mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Saba Amiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of neuroscience, Monash university, Melbourne, Vic, Australia
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
- Institute of Computer Science, Hellas Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
5
|
Szabó P, Bonet S, Hetényi R, Hanna D, Kovács Z, Prisztóka G, Križalkovičová Z, Szentpéteri J. Systematic review: pain, cognition, and cardioprotection-unpacking oxytocin's contributions in a sport context. Front Physiol 2024; 15:1393497. [PMID: 38915776 PMCID: PMC11194439 DOI: 10.3389/fphys.2024.1393497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This systematic review investigates the interplay between oxytocin and exercise; in terms of analgesic, anti-inflammatory, pro-regenerative, and cardioprotective effects. Furthermore, by analyzing measurement methods, we aim to improve measurement validity and reliability. Methods Utilizing PRISMA, GRADE, and MECIR protocols, we examined five databases with a modified SPIDER search. Including studies on healthy participants, published within the last 20 years, based on keywords "oxytocin," "exercise" and "measurement," 690 studies were retrieved initially (455 unique records). After excluding studies of clinically identifiable diseases, and unpublished and reproduction-focused studies, 175 studies qualified for the narrative cross-thematic and structural analysis. Results The analysis resulted in five categories showing the reciprocal impact of oxytocin and exercise: Exercise (50), Physiology (63), Environment (27), Social Context (65), and Stress (49). Exercise-induced oxytocin could promote tissue regeneration, with 32 studies showing its analgesic and anti-inflammatory effects, while 14 studies discussed memory and cognition. Furthermore, empathy-associated OXTR rs53576 polymorphism might influence team sports performance. Since dietary habits and substance abuse can impact oxytocin secretion too, combining self-report tests and repeated salivary measurements may help achieve precision. Discussion Oxytocin's effect on fear extinction and social cognition might generate strategies for mental training, and technical, and tactical development in sports. Exercise-induced oxytocin can affect the amount of stress experienced by athletes, and their response to it. However, oxytocin levels could depend on the type of sport in means of contact level, exercise intensity, and duration. The influence of oxytocin on athletes' performance and recovery could have been exploited due to its short half-life. Examining oxytocin's complex interactions with exercise paves the way for future research and application in sports science, psychology, and medical disciplines. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=512184, identifier CRD42024512184.
Collapse
Affiliation(s)
- Péter Szabó
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
- Faculty of Humanities, University of Pécs, Pécs, Hungary
- Medical School, Institute of Transdisciplinary Discoveries, University of Pécs, Pécs, Hungary
| | - Sara Bonet
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Roland Hetényi
- RoLink Biotechnology Kft., Pécs, Hungary
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Virology Laboratory, University of Pécs, Pécs, Hungary
| | - Dániel Hanna
- RoLink Biotechnology Kft., Pécs, Hungary
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Virology Laboratory, University of Pécs, Pécs, Hungary
| | - Zsófia Kovács
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
| | - Gyöngyvér Prisztóka
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
| | - Zuzana Križalkovičová
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, Department of Sport Science, Pécs, Hungary
| | - József Szentpéteri
- Medical School, Institute of Transdisciplinary Discoveries, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Gliozzi M, Coppoletta AR, Cardamone A, Musolino V, Carresi C, Nucera S, Ruga S, Scarano F, Bosco F, Guarnieri L, Macrì R, Mollace R, Belzung C, Mollace V. The dangerous "West Coast Swing" by hyperglycaemia and chronic stress in the mouse hippocampus: Role of kynurenine catabolism. Pharmacol Res 2024; 201:107087. [PMID: 38301816 DOI: 10.1016/j.phrs.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Growing epidemiological studies highlight a bi-directional relationship between depressive symptoms and diabetes mellitus. However, the detrimental impact of their co-existence on mental health suggests the need to treat this comorbidity as a separate entity rather than the two different pathologies. Herein, we characterized the peculiar mechanisms activated in mouse hippocampus from the concurrent development of hyperglycaemia, characterizing the different diabetes subtypes, and chronic stress, recognized as a possible factor predisposing to major depression. Our work demonstrates that kynurenine overproduction, leading to apoptosis in the hippocampus, is triggered in a different way depending on hyperglycaemia or chronic stress. Indeed, in the former, kynurenine appears produced by infiltered macrophages whereas, in the latter, peripheral kynurenine preferentially promotes resident microglia activation. In this scenario, QA, derived from kynurenine catabolism, appears a key mediator causing glutamatergic synapse dysfunction and apoptosis, thus contributing to brain atrophy. We demonstrated that the coexistence of hyperglycaemia and chronic stress worsened hippocampal damage through alternative mechanisms, such as GLUT-4 and BDNF down-expression, denoting mitochondrial dysfunction and apoptosis on one hand and evoking the compromission of neurogenesis on the other. Overall, in the degeneration of neurovascular unit, hyperglycaemia and chronic stress interacted each other as the partners of a "West Coast Swing" in which the leading role can be assumed alternatively by each partner of the dance. The comprehension of these mechanisms can open novel perspectives in the management of diabetic/depressed patients, but also in the understanding the pathogenesis of other neurodegenerative disease characterized by the compromission of hippocampal function.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Catherine Belzung
- UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Rosenblum EW, Williams EM, Champion SN, Frosch MP, Augustinack JC. The prosubiculum in the human hippocampus: A rostrocaudal, feature-driven, and systematic approach. J Comp Neurol 2024; 532:e25604. [PMID: 38477395 PMCID: PMC11060218 DOI: 10.1002/cne.25604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The hippocampal subfield prosubiculum (ProS), is a conserved neuroanatomic region in mouse, monkey, and human. This area lies between CA1 and subiculum (Sub) and particularly lacks consensus on its boundaries; reports have varied on the description of its features and location. In this report, we review, refine, and evaluate four cytoarchitectural features that differentiate ProS from its neighboring subfields: (1) small neurons, (2) lightly stained neurons, (3) superficial clustered neurons, and (4) a cell sparse zone. ProS was delineated in all cases (n = 10). ProS was examined for its cytoarchitectonic features and location rostrocaudally, from the anterior head through the body in the hippocampus. The most common feature was small pyramidal neurons, which were intermingled with larger pyramidal neurons in ProS. We quantitatively measured ProS pyramidal neurons, which showed (average, width at pyramidal base = 14.31 µm, n = 400 per subfield). CA1 neurons averaged 15.57 µm and Sub neurons averaged 15.63 µm, both were significantly different than ProS (Kruskal-Wallis test, p < .0001). The other three features observed were lightly stained neurons, clustered neurons, and a cell sparse zone. Taken together, these findings suggest that ProS is an independent subfield, likely with distinct functional contributions to the broader interconnected hippocampal network. Our results suggest that ProS is a cytoarchitecturally varied subfield, both for features and among individuals. This diverse architecture in features and individuals for ProS could explain the long-standing complexity regarding the identification of this subfield.
Collapse
Affiliation(s)
- Emma W Rosenblum
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Emily M Williams
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Samantha N Champion
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
López-Aranda MF, Bach K, Bui R, Phan M, Lu O, Thadani C, Luchetti A, Mandanas R, Herrera I, López-Ávalos MD, Silva AJ. Early Post-Natal Immune Activation Leads to Object Memory Deficits in Female Tsc2+/- Mice: The Importance of Including Both Sexes in Neuroscience Research. Biomedicines 2024; 12:203. [PMID: 38255309 PMCID: PMC10813674 DOI: 10.3390/biomedicines12010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
There is evidence that viral infections during pre-natal development constitute a risk factor for neuropsychiatric disorders and lead to learning and memory deficits. However, little is known about why viral infections during early post-natal development have a different impact on learning and memory depending on the sex of the subject. We previously showed that early post-natal immune activation induces hippocampal-dependent social memory deficits in a male, but not in a female, mouse model of tuberous sclerosis complex (TSC; Tsc2+/- mice). Here, we explored the impact of a viral-like immune challenge in object memory. We demonstrate that early post-natal immune activation (during the first 2 weeks of life) leads to object memory deficits in female, but not male, mice that are heterozygous for a gene responsible for tuberous sclerosis complex (Tsc2+/- mice), while no effect was observed in wild type (WT) mice. Moreover, we found that the same immune activation in Tsc2+/- adult mice was not able to cause object memory deficits in females, which suggests that the early post-natal development stage constitutes a critical window for the effects of immune challenge on adult memory. Also, our results suggest that mTOR plays a critical role in the observed deficit in object memory in female Tsc2+/- mice. These results, together with previous results published by our laboratory, showing sex-specific memory deficits due to early post-natal immune activation, reinforce the necessity of using both males and females for research studies. This is especially true for studies related to immune activation, since the higher levels of estrogens in females are known to affect inflammation and to provide neuroprotection.
Collapse
Affiliation(s)
- Manuel F. López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, 29590 Málaga, Spain
| | - Karen Bach
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Raymond Bui
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Miranda Phan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Odilia Lu
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Chirag Thadani
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Rochelle Mandanas
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Isaiah Herrera
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - María Dolores López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, 29590 Málaga, Spain
| | - Alcino J. Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| |
Collapse
|
9
|
Dorst KE, Senne RA, Diep AH, de Boer AR, Suthard RL, Leblanc H, Ruesch EA, Pyo AY, Skelton S, Carstensen LC, Malmberg S, McKissick OP, Bladon JH, Ramirez S. Hippocampal Engrams Generate Variable Behavioral Responses and Brain-Wide Network States. J Neurosci 2024; 44:e0340232023. [PMID: 38050098 PMCID: PMC10860633 DOI: 10.1523/jneurosci.0340-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we optogenetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reactivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reactivation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not observed in control conditions. Additionally, regions spanning putative "fear" and "defense" systems were recruited as hub regions in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns, it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Ryan A Senne
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Anh H Diep
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Antje R de Boer
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Rebecca L Suthard
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Sara Skelton
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Lucas C Carstensen
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Samantha Malmberg
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Olivia P McKissick
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - John H Bladon
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| |
Collapse
|
10
|
Whitebirch AC, Santoro B, Barnett A, Lisgaras CP, Scharfman HE, Siegelbaum SA. Reduced Cholecystokinin-Expressing Interneuron Input Contributes to Disinhibition of the Hippocampal CA2 Region in a Mouse Model of Temporal Lobe Epilepsy. J Neurosci 2023; 43:6930-6949. [PMID: 37643861 PMCID: PMC10573827 DOI: 10.1523/jneurosci.2091-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and CA2 pyramidal neurons (PNs). A role for CA2 in seizure generation was suggested based on findings of a reduction in CA2 synaptic inhibition (Williamson and Spencer, 1994) and the presence of interictal-like spike activity in CA2 in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus (PILO-SE) mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study, we explored the cellular basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches in PILO-SE male and female mice. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive (CCK+) interneurons and a functional impairment of CCK+ interneuron-mediated inhibition of CA2 PNs. We also found a disruption in the perisomatic perineuronal net in the CA2 stratum pyramidale. Such pathologic alterations may contribute to an enhanced excitation of CA2 PNs and CA2-dependent seizure activity in the PILO-SE mouse model.SIGNIFICANCE STATEMENT Impaired synaptic inhibition in hippocampal circuits has been identified as a key feature that contributes to the emergence and propagation of seizure activity in human patients and animal models of temporal lobe epilepsy (TLE). Among the hippocampal subfields, the CA2 region is particularly resilient to seizure-associated neurodegeneration and has been suggested to play a key role in seizure activity in TLE. Here we report that perisomatic inhibition of CA2 pyramidal neurons mediated by cholecystokinin-expressing interneurons is selectively reduced in acute hippocampal slices from epileptic mice. Parvalbumin-expressing interneurons, in contrast, appear relatively conserved in epileptic mice. These findings advance our understanding of the cellular mechanisms underlying inhibitory disruption in hippocampal circuits in a mouse model of spontaneous recurring seizures.
Collapse
Affiliation(s)
- Alexander C Whitebirch
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Anastasia Barnett
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Christos Panagiotis Lisgaras
- Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Langone Health, New York, New York 10016
- Department of Psychiatry, New York University Langone Health, New York, New York 10016
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Helen E Scharfman
- Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Langone Health, New York, New York 10016
- Department of Psychiatry, New York University Langone Health, New York, New York 10016
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Steven A Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| |
Collapse
|
11
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of DYRK1A function reverses Dyrk1a-associated impairment in social recognition. Neuron 2023; 111:3084-3101.e5. [PMID: 37797581 PMCID: PMC10575685 DOI: 10.1016/j.neuron.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Peng S, Gu W, Zhu W, Zhuang Y, Yang X, Lv Y, Meng S, Xie W, Li M. A new AAV tool for highly preferentially targeting hippocampal CA2. Mol Brain 2023; 16:50. [PMID: 37303064 DOI: 10.1186/s13041-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Mice hippocampus contains three prominent subregions, CA1, CA3 and DG and is well regarded as an essential multiple task processor for learning, memory and cognition based on tremendous studies on these three subregions. The narrow region sandwiched between CA1 and CA3 called CA2 has been neglected for a long time. But it raises great attentions recently since this region manifests the indispensable role in social memory. Its unique physical position connecting CA1 and CA3 suggests the potential novel functions besides social memory regulation. But the CA2 is too small to be accurately targeted. A flexible AAV tool capable of accurately and efficiently targeting this region is highly demanded. To fill this gap, we generate an AAV expressing Cre driven by the mini Map3k15 promoter, AAV/M1-Cre, which can be easily utilized to help tracing and manipulating CA2 pyramidal neurons. However, M1-Cre labeled a small percentage of M1+RGS14- neurons that do not colocalize with any RGS14+/STEP+/PEP4+/Amigo2+ pyramidal neurons. They are proved to be the mixture of normal CA2 pyramidal neurons, CA3-like neurons in CA2-CA3 mixed border, some CA2 interneurons and rarely few CA1-like neurons, which are probably the ones projecting to the revealed CA2 downstream targets, VMH, STHY and PMV in WT mice injecting this AAV/M1-Cre virus but not in Amigo2-Cre mice. Though it is still challenging to get a pure CA2 tracking and manipulation system, this tool provides a new, more flexible and extended strategy for in-depth CA2 functional study in the future.
Collapse
Affiliation(s)
- Siqi Peng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Wenzhen Gu
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Wenxiu Zhu
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Yan Zhuang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Xiuqi Yang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Yaochen Lv
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Sibie Meng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Wei Xie
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
- Jiangsu Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Moyi Li
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Jiangsu Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Lehr AB, Hitti FL, Deibel SH, Stöber TM. Silencing hippocampal CA2 reduces behavioral flexibility in spatial learning. Hippocampus 2023; 33:759-768. [PMID: 36938702 DOI: 10.1002/hipo.23521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023]
Abstract
The hippocampus is a key structure involved in learning and remembering spatial information. However, the extent to which hippocampal region CA2 is involved in these processes remains unclear. Here, we show that chronically silencing dorsal CA2 impairs reversal learning in the Morris water maze. After platform relocation, CA2-silenced mice spent more time in the vicinity of the old platform location and less time in the new target quadrant. Accordingly, behavioral strategy analysis revealed increased perseverance in navigating to the old location during the first day and an increased use of non-spatial strategies during the second day of reversal learning. Confirming previous indirect indications, these results demonstrate that CA2 is recruited when mice must flexibly adapt their behavior as task contingencies change. We discuss how these findings can be explained by recent theories of CA2 function and outline testable predictions to understand the underlying neural mechanisms. Demonstrating a direct involvement of CA2 in spatial learning, this work lends further support to the notion that CA2 plays a fundamental role in hippocampal information processing.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Scott H Deibel
- Department of Psychology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Tristan M Stöber
- Institute for Neuroinformatics, Ruhr University Bochum, Bochum, Germany.,Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| |
Collapse
|
14
|
Chevaleyre V, Piskorowski R. New hues for CA2. Hippocampus 2023; 33:161-165. [PMID: 36585825 DOI: 10.1002/hipo.23496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Vivien Chevaleyre
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Rebecca Piskorowski
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
15
|
Bienkowski MS. Further refining the boundaries of the hippocampus CA2 with gene expression and connectivity: Potential subregions and heterogeneous cell types. Hippocampus 2023; 33:150-160. [PMID: 36786207 PMCID: PMC9987718 DOI: 10.1002/hipo.23508] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Over the last two decades, the definition of hippocampal area CA2 has evolved from Lorente de Nó's original Golgi-based morphological description with the discovery of specific CA2 gene expression markers. Exploiting the specificity of these molecules has allowed for the genetic dissection of CA2 structure and function in transgenic mice. With this change in criteria, the anatomical boundaries of the CA2 have expanded across the hippocampal axis but the CA2's full rostrocaudal extent is not consistently delineated across atlases. The Hippocampus Gene Expression Atlas (HGEA) provides a comprehensive map of 20 gene expression domains across the entire mouse hippocampus including the CA2. In this commentary, I will review the consensus gene expression patterns that demarcate the expanded CA2 boundaries in the HGEA. Using DropViz single-cell transcriptomics and Mouse Connectome Project connectomics data, I will then suggest potential differences in CA2 cell type heterogeneity and connectivity that may identify and characterize further CA2 subregions.
Collapse
Affiliation(s)
- Michael S Bienkowski
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- USC Center for Integrative Connectomics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Wang Y, Xu L, Fang H, Wang F, Gao T, Zhu Q, Jiao G, Ke X. Social Brain Network of Children with Autism Spectrum Disorder: Characterization of Functional Connectivity and Potential Association with Stereotyped Behavior. Brain Sci 2023; 13:brainsci13020280. [PMID: 36831823 PMCID: PMC9953760 DOI: 10.3390/brainsci13020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Objective: To identify patterns of social dysfunction in adolescents with autism spectrum disorder (ASD), study the potential linkage between social brain networks and stereotyped behavior, and further explore potential targets of non-invasive nerve stimulation to improve social disorders. Methods: Voxel-wise and ROI-wise analysis methods were adopted to explore abnormalities in the functional activity of social-related regions of the brain. Then, we analyzed the relationships between clinical variables and the statistical indicators of social-related brain regions. Results: Compared with the typically developing group, the functional connectivity strength of social-related brain regions with the precentral gyrus, postcentral gyrus, supplementary motor area, paracentral lobule, median cingulum, and paracingulum gyri was significantly weakened in the ASD group (all p < 0. 01). The functional connectivity was negatively correlated with communication, social interaction, communication + social interaction, and the total score of the ADOS scale (r = -0.38, -0.39, -0.40, and -0.3, respectively; all p < 0.01), with social awareness, social cognition, social communication, social motivation, autistic mannerisms, and the total score of the SRS scale (r = -0.32, -0.32, -0.40, -0.30, -0.28, and -0.27, respectively; all p < 0.01), and with the total score of SCQ (r = -0.27, p < 0.01). In addition, significant intergroup differences in clustering coefficients and betweenness centrality were seen across multiple brain regions in the ASD group. Conclusions: The functional connectivity between social-related brain regions and many other brain regions was significantly weakened compared to the typically developing group, and it was negatively correlated with social disorders. Social network dysfunction seems to be related to stereotyped behavior. Therefore, these social-related brain regions may be taken as potential stimulation targets of non-invasive nerve stimulation to improve social dysfunction in children with ASD in the future.
Collapse
|
17
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of Dyrk1a function reverses Dyrk1a -associated impairment in social recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526955. [PMID: 36778241 PMCID: PMC9915696 DOI: 10.1101/2023.02.03.526955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heterozygous mutations in the Dual specificity tyrosine-phosphorylation-regulated kinase 1a Dyrk1a gene define a syndromic form of Autism Spectrum Disorder. The synaptic and circuit mechanisms mediating Dyrk1a functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which Dyrk1a recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, Ablim3, as a synaptic substrate of Dyrk1a. We demonstrate that Ablim3 downregulation in dentate granule cells of adult hemizygous Dyrk1a mice is sufficient to restore PV IN mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult hemizygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting Dyrk1a synaptic and circuit substrates as "enhancers of Dyrk1a function" harbors potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments. Highlights Dyrk1a in mossy fibers recruits PV IN mediated feed-forward inhibition of CA3 and CA2Dyrk1a-Ablim3 signaling in mossy fiber-PV IN synapses promotes inhibition of CA3 and CA2 Downregulating Ablim3 restores PV IN excitability, CA3/CA2 inhibition and social recognition in Dyrk1a+/- mice Chemogenetic activation of PV INs in CA3/CA2 rescues social recognition in Dyrk1a+/- mice.
Collapse
|
18
|
Tekam CKS, Majumdar S, Kumari P, Prajapati SK, Sahi AK, Shinde S, Singh R, Samaiya PK, Patnaik R, Krishnamurthy S, Mahto SK. Effects of ELF-PEMF exposure on spontaneous alternation, anxiety, motor co-ordination and locomotor activity of adult wistar rats and viability of C6 (Glial) cells in culture. Toxicology 2023; 485:153409. [PMID: 36572170 DOI: 10.1016/j.tox.2022.153409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
The effects of ELF-PEMF exposure on spontaneous alternation, anxiety, motor coordination, and locomotor activity have been discussed in various pre-clinical and clinical settings. Several epidemiological and experimental studies have demonstrated the potential effects of ELF-PEMF when exposed > ∼1 h/day; however, very few studies have focused on understanding the influence of ELF-PEMF exposure of 1-3 mT with an exposure duration of < 1 h/day on spontaneous alternation, anxiety, motor coordination, and locomotor activity. Hence, we attempted to study the effects of ELF-PEMF exposure of 1-3 mT, 50 Hz with an exposure duration of 20 min each with a 4 h gap (2 times) on the cellular proliferation and morphologies of C6 (Glial) cells and spontaneous alternation, anxiety, motor coordination and locomotor activity of Wistar rats under in vitro and in vivo conditions, respectively. The results showed that ELF-PEMF exposure did not induce any significant levels of cellular fragmentation and changes in the morphology of glial cells. Also, the outcomes revealed no noticeable effects on spontaneous alternation, anxiety, motor coordination, and locomotor activity in PEMF-exposed groups compared with the control. No undesirable side effects were observed at the highest dose (B=3 mT). We also performed histological analysis of the selected brain sections (hippocampus and cortex) following ELF-PEMF exposure. Incidentally, no significant changes were observed in cortical cell counts, tissue structure, and morphology.
Collapse
Affiliation(s)
- Chandra Kant Singh Tekam
- Tissue Engineering and Bio-Microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, India
| | - Pooja Kumari
- Tissue Engineering and Bio-Microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, India; Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33613, USA
| | - Ajay Kumar Sahi
- Tissue Engineering and Bio-Microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, India
| | - Saksha Shinde
- Department of Biomedical Engineering, Shri Govindram Seksariya Institute of Technology and Science, Indore, India
| | - Richa Singh
- Tissue Engineering and Bio-Microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, India
| | - Puneet Kumar Samaiya
- Department of Pharmacy, Shri Govindram Seksariya Institute of Technology and Science, Indore, India
| | - Ranjana Patnaik
- School of Biological and Biomedical Sciences, Galgotias University, Greater Noida, UP, India; Electrophysiology Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Bio-Microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, India.
| |
Collapse
|
19
|
Shuman T. Et tu, CA2: CA2 Is Hyperexcitable and Controls Seizures in a Mouse Model of Temporal Lobe Epilepsy. Epilepsy Curr 2023; 23:121-123. [PMID: 37122405 PMCID: PMC10131565 DOI: 10.1177/15357597221150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
[Box: see text]
Collapse
Affiliation(s)
- Tristan Shuman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
20
|
Rodríguez-Moreno A, Andrade-Talavera Y. Kainate receptors in the CA2 region of the hippocampus. Neural Regen Res 2023; 18:320-321. [PMID: 35900415 PMCID: PMC9396525 DOI: 10.4103/1673-5374.343912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Piskorowski RA, Chevaleyre V. Hippocampal area CA2: interneuron disfunction during pathological states. Front Neural Circuits 2023; 17:1181032. [PMID: 37180763 PMCID: PMC10174260 DOI: 10.3389/fncir.2023.1181032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Hippocampal area CA2 plays a critical role in social recognition memory and has unique cellular and molecular properties that distinguish it from areas CA1 and CA3. In addition to having a particularly high density of interneurons, the inhibitory transmission in this region displays two distinct forms of long-term synaptic plasticity. Early studies on human hippocampal tissue have reported unique alteration in area CA2 with several pathologies and psychiatric disorders. In this review, we present recent studies revealing changes in inhibitory transmission and plasticity of area CA2 in mouse models of multiple sclerosis, autism spectrum disorder, Alzheimer's disease, schizophrenia and the 22q11.2 deletion syndrome and propose how these changes could underly deficits in social cognition observed during these pathologies.
Collapse
Affiliation(s)
- Rebecca A. Piskorowski
- Université Paris Cité, INSERM UMRS 1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Université, Paris, France
- *Correspondence: Rebecca A. Piskorowski,
| | - Vivien Chevaleyre
- Université Paris Cité, INSERM UMRS 1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Lehr AB, Luboeinski J, Tetzlaff C. Neuromodulator-dependent synaptic tagging and capture retroactively controls neural coding in spiking neural networks. Sci Rep 2022; 12:17772. [PMID: 36273097 PMCID: PMC9588040 DOI: 10.1038/s41598-022-22430-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Events that are important to an individual's life trigger neuromodulator release in brain areas responsible for cognitive and behavioral function. While it is well known that the presence of neuromodulators such as dopamine and norepinephrine is required for memory consolidation, the impact of neuromodulator concentration is, however, less understood. In a recurrent spiking neural network model featuring neuromodulator-dependent synaptic tagging and capture, we study how synaptic memory consolidation depends on the amount of neuromodulator present in the minutes to hours after learning. We find that the storage of rate-based and spike timing-based information is controlled by the level of neuromodulation. Specifically, we find better recall of temporal information for high levels of neuromodulation, while we find better recall of rate-coded spatial patterns for lower neuromodulation, mediated by the selection of different groups of synapses for consolidation. Hence, our results indicate that in minutes to hours after learning, the level of neuromodulation may alter the process of synaptic consolidation to ultimately control which type of information becomes consolidated in the recurrent neural network.
Collapse
Affiliation(s)
- Andrew B. Lehr
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Jannik Luboeinski
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Whitebirch AC, LaFrancois JJ, Jain S, Leary P, Santoro B, Siegelbaum SA, Scharfman HE. Enhanced excitability of the hippocampal CA2 region and its contribution to seizure activity in a mouse model of temporal lobe epilepsy. Neuron 2022; 110:3121-3138.e8. [PMID: 35987207 PMCID: PMC9547935 DOI: 10.1016/j.neuron.2022.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
The hippocampal CA2 region, an area important for social memory, has been suspected to play a role in temporal lobe epilepsy (TLE) because of its resistance to degeneration observed in neighboring CA1 and CA3 regions in both humans and rodent models of TLE. However, little is known about whether alterations in CA2 properties promote seizure generation or propagation. Here, we addressed the role of CA2 using the pilocarpine-induced status epilepticus model of TLE. Ex vivo electrophysiological recordings from acute hippocampal slices revealed a set of coordinated changes that enhance CA2 PC intrinsic excitability, reduce CA2 inhibitory input, and increase CA2 excitatory output to its major CA1 synaptic target. Moreover, selective chemogenetic silencing of CA2 pyramidal cells caused a significant decrease in the frequency of spontaneous seizures measured in vivo. These findings provide the first evidence that CA2 actively contributes to TLE seizure activity and may thus be a promising therapeutic target.
Collapse
Affiliation(s)
- Alexander C Whitebirch
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA
| | - John J LaFrancois
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, USA
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA
| | - Steven A Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA.
| | - Helen E Scharfman
- Department of Child Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| |
Collapse
|
24
|
Tsai TC, Fang YS, Hung YC, Hung LC, Hsu KS. A dorsal CA2 to ventral CA1 circuit contributes to oxytocinergic modulation of long-term social recognition memory. J Biomed Sci 2022; 29:50. [PMID: 35811321 PMCID: PMC9272559 DOI: 10.1186/s12929-022-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Social recognition memory (SRM) is the ability to distinguish familiar from novel conspecifics and is crucial for survival and reproductive success across social species. We previously reported that oxytocin (OXT) receptor (OXTR) signaling in the CA2/CA3a of dorsal hippocampus is essential to promote the persistence of long-term SRM, yet how the endogenous OXT system influences CA2 outputs to regulate long-term SRM formation remains unclear. METHODS To achieve a selective deletion of CA2 OXTRs, we crossed Amigo2-Cre mice with Oxtr-floxed mice to generate CA2-specific Oxtr conditional knockout (Oxtr-/-) mice. A three-chamber paradigm test was used for studying SRM in mice. Chemogenetic and optogenetic targeting strategies were employed to manipulate neuronal activity. RESULTS We show that selective ablation of Oxtr in the CA2 suffices to impair the persistence of long-term SRM but has no effect on sociability and social novelty preference in the three-chamber paradigm test. We find that cell-type specific activation of OXT neurons within the hypothalamic paraventricular nucleus enhances long-term SRM and this enhancement is blocked by local application of OXTR antagonist L-368,899 into dorsal hippocampal CA2 (dCA2) region. In addition, chemogenetic neuronal silencing in dCA2 demonstrated that neuronal activity is essential for forming long-term SRM. Moreover, chemogenetic terminal-specific inactivation reveals a crucial role for dCA2 outputs to ventral CA1 (vCA1), but not dorsal lateral septum, in long-term SRM. Finally, targeted activation of the dCA2-to-vCA1 circuit effectively ameliorates long-term SRM deficit observed in Oxtr-/- mice. CONCLUSIONS These findings highlight the importance of hippocampal CA2 OXTR signaling in governing the persistence of long-term SRM and identify a hippocampal circuit linking dCA2 to vCA1 necessary for controlling long-term SRM formation.
Collapse
Affiliation(s)
- Tsung-Chih Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Syuan Fang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan, 70101, Taiwan
| | - Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ling-Chien Hung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
25
|
McCorkle TA, Romm ZL, Raghupathi R. Repeated Mild TBI in Adolescent Rats Reveals Sex Differences in Acute and Chronic Behavioral Deficits. Neuroscience 2022; 493:52-68. [PMID: 35469970 PMCID: PMC10074545 DOI: 10.1016/j.neuroscience.2022.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023]
Abstract
High school students who participate in contact sports are vulnerable to sustaining multiple concussions and exhibit deficits in cognitive function in both the acute and chronic phases and in emotional behavior in the chronic phase. Further, boys are more likely to suffer cognitive problems whereas girls tend to report depression and anxiety. The effects of repetitive mild TBI in adolescent (35-40-day old) male and female Sprague-Dawley rats on object location and spatial working memory (hippocampal-dependent) and object recognition memory (hippocampal-independent) at 1-and-4-weeks post-injury along with trait-dependent anxiety- and depressive-like behaviors at 5 weeks were examined. Compared to sham-injured rats, male brain-injured rats demonstrated significant impairment in both hippocampal-dependent and -independent memory tasks at both time points, whereas female brain-injured rats only exhibited impairment in these tests at the 4-week time point. In contrast, depressive-like behaviors were present in the forced swim test in only the female brain-injured animals at 5 weeks post-injury; anxiety-like behaviors were not evident in either male or female brain-injured animals. Histological analysis at 6 weeks after injury revealed that repeated mild TBI in male and female adolescent rats resulted in increased reactivity of astrocytes and microglia within the corpus callosum below the impact site and in the stratum oriens and stratum pyramidale of the CA2 region of the dorsal hippocampus. Together, these data are indicative of the differences in the temporal pattern of post-traumatic behavioral deficits between male and female animals and that female animals may be more likely to develop deficits in the chronic post-traumatic period.
Collapse
Affiliation(s)
- T A McCorkle
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Philadelphia, PA 19129, United States
| | - Z L Romm
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - R Raghupathi
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Philadelphia, PA 19129, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
26
|
Benoy A, Wong LW, Ather N, Sajikumar S. Serotonin facilitates late-associative plasticity via synaptic tagging/cross-tagging and capture at hippocampal CA2 synapses in male rats. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac002. [PMID: 38596711 PMCID: PMC10913837 DOI: 10.1093/oons/kvac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 04/11/2024]
Abstract
Synaptic plasticity in the hippocampal Cornu Ammonis (CA) subfield, CA2, is tightly regulated. However, CA2 receives projections from several extra-hippocampal modulatory nuclei that release modulators that could serve to fine-tune plasticity at CA2 synapses. Considering that there are afferent projections from the serotonergic median raphe to hippocampal CA2, we hypothesized that the neuromodulator serotonin (5-hydroxytryptamine; 5-HT) could modulate CA2 synaptic plasticity. Here, we show that bath-application of serotonin facilitates the persistence of long-term depression (LTD) at the CA3 Schaffer collateral inputs to CA2 neurons (SC-CA2) when coupled to a weak low frequency electrical stimulation, in acute rat hippocampal slices. The observed late-LTD at SC-CA2 synapses was protein synthesis- and N-methyl-D-aspartate receptor (NMDAR)-dependent. Moreover, this late-LTD at SC-CA2 synapses paves way for the associative persistence of transient forms of LTD as well as long-term potentiation to long-lasting late forms of plasticity through synaptic tagging and cross-tagging respectively, at the entorhinal cortical synapses of CA2. We further observe that the 5-HT-mediated persistence of activity-dependent LTD at SC-CA2 synapses is blocked in the presence of the brain-derived neurotrophic factor scavenger, TrkB/Fc.
Collapse
Affiliation(s)
- Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, 117456 Singapore
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, 117456 Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Niha Ather
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, 117456 Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, 117456 Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| |
Collapse
|
27
|
Kim S, Nam Y, Kim HS, Jung H, Jeon SG, Hong SB, Moon M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040845. [PMID: 35453595 PMCID: PMC9025507 DOI: 10.3390/biomedicines10040845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial to understand the alterations in the neural circuits associated with AD-related behavioral and psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that are associated with AD-related behavioral and psychological symptoms, and reviewed studies of healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore, we provide therapeutic implications for targeting neuronal circuits through various therapeutic approaches and the appropriate timing of treatment for AD.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
- Correspondence:
| |
Collapse
|
28
|
Lehr AB, Stöber TM. Differential involvement of CA2 in internally vs. externally driven hippocampal sequences. Proc Natl Acad Sci U S A 2021; 118:e2110671118. [PMID: 34518233 PMCID: PMC8463789 DOI: 10.1073/pnas.2110671118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrew B Lehr
- Department of Computational Neuroscience, University of Göttingen, 37073 Göttingen, Germany;
- Bernstein Center for Computational Neuroscience, University of Göttingen, 37073 Göttingen, Germany
| | - Tristan M Stöber
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany;
- Centre for Integrative Neuroplasticity, University of Oslo, 0315 Oslo, Norway
- Department of Informatics, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|