1
|
Olivieri F, Biscetti L, Pimpini L, Pelliccioni G, Sabbatinelli J, Giunta S. Heart rate variability and autonomic nervous system imbalance: Potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res Rev 2024; 101:102521. [PMID: 39341508 DOI: 10.1016/j.arr.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The most cutting-edge issue in the research on aging is the quest for biomarkers that transcend molecular and cellular domains to encompass organismal-level implications. We recently hypothesized the role of Autonomic Nervous System (ANS) imbalance in this context. Studies on ANS functions during aging highlighted an imbalance towards heightened sympathetic nervous system (SNS) activity, instigating a proinflammatory milieu, and attenuated parasympathetic nervous system (PNS) function, which exerts anti-inflammatory effects via the cholinergic anti-inflammatory pathway (CAP) and suppression of the hypothalamic-pituitary-adrenal (HPA) axis. This scenario strongly suggests that ANS imbalance can fuel inflammaging, now recognized as one of the most relevant risk factors for age-related disease development. Recent recommendations have increasingly highlighted the need for actionable strategies to improve the quality of life for older adults by identifying biomarkers that can be easily measured, even in asymptomatic individuals. We advocate for considering ANS imbalance as a biomarker of aging and inflammaging. Measures of ANS imbalance, such as heart rate variability (HRV), are relatively affordable, non-invasive, and cost-effective, making this hallmark easily diagnosable. HRV gains renewed significance within the aging research landscape, offering a tangible link between pathophysiological perturbations and age-related health outcomes.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | | | | | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Sergio Giunta
- Casa di Cura Prof. Nobili (Gruppo Garofalo GHC), Castiglione dei Pepoli, Bologna, Italy
| |
Collapse
|
2
|
Mulvihill E, Hoesni S. Management of a vagus nerve stimulator in a patient undergoing an emergency caesarean delivery: a case report. Int J Obstet Anesth 2024; 60:104244. [PMID: 39232860 DOI: 10.1016/j.ijoa.2024.104244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
|
3
|
Cheng W, Fang K, Ouyang X, Jin L, Song Y, Yu B. Vagus nerve stimulation with a small total charge transfer improves motor behavior and reduces neuroinflammation in a mouse model of Parkinson's disease. Neurochem Int 2024; 180:105871. [PMID: 39362497 DOI: 10.1016/j.neuint.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Conventional treatments are ineffective in reversing disease progression. Recently, the therapeutic and rehabilitation potential of vagus nerve stimulation (VNS) in PD has been explored. However, the underlying mechanisms remain largely unknown. In this study, we investigated the neuroprotective effects of VNS in a lateral lesioned mice model of PD. Excluding controls, experimental mice received cuff electrode implantation on the left vagus nerve and 6-hydroxydopamine administration into the bilateral striatum. After ten days, electrical stimulation was delivered for 11 consecutive days onto PD animals. Behavioral tests were performed after stimulation. The expression of TH, Iba-1, GFAP, adrenergic receptors and cytokines in the SN and striatum was detected by immunofluorescence or western blotting. The activity of noradrenergic neurons in the locus coeruleus (LC) was also measured. Our results suggest that VNS improved behavioral performance in rod rotation, open field tests and pole-climbing tests in PD mice, accompanied by a decrease in the loss of dopaminergic neurons in the SN and increased TH expression in the striatum. Neuroinflammation-related factors, such as GFAP, Iba-1, TNF-α and IL-1β were also suppressed in PD mice after VNS compared to those without treatment. Furthermore, the proportion of c-Fos-positive noradrenergic neurons in the LC increased when animals received VNS. Additionally, the expression of the adrenergic receptor of α1BR was also upregulated after VNS compared to PD mice. In conclusion, VNS has potential as a novel PD therapy for neuroprotective effects, and indicate that activation of norepinephric neurons in LC may plays an important role in VNS treatment for PD.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Kexin Fang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Xiaorong Ouyang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Bin Yu
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Subtirelu R, Writer M, Teichner E, Patil S, Indrakanti D, Werner T, Alavi A. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder: A Comprehensive Review of MR Imaging, fMR Imaging, and PET Studies. PET Clin 2024:S1556-8598(24)00081-6. [PMID: 39482217 DOI: 10.1016/j.cpet.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a characteristically heterogeneous disorder, as multiple neurodevelopmental disorders are characterized by similar symptomology and behavior. Research has shown that individuals with ASD benefit from early intervention; neuroimaging data may reveal information that cannot be obtained from traditional behavioral analysis. This review discusses the use of structural MR imaging, functional MR imaging (fMR imaging), and PET in the detection of ASD. Larger datasets, standardized methods of collection and analysis, and more robust meta-analyses are required to implement the observed biomarkers and improve the lives of patients living with AUD.
Collapse
Affiliation(s)
- Robert Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Milo Writer
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Eric Teichner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Shiv Patil
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Deepak Indrakanti
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Kim KJ, Hwang J, Lee KW, Kim J, Han Y, Namgung U. Neuron-Microglia Interaction is Involved in Anti-inflammatory Response by Vagus Nerve Stimulation in the Prefrontal Cortex of Rats Injected with Polyinosinic:Polycytidylic Acid. Mol Neurobiol 2024; 61:7403-7418. [PMID: 38383920 DOI: 10.1007/s12035-024-04054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Injection of polyinosinic:polycytidylic acid (poly(I:C)) into experimental animals induces neuroimmunological responses and thus has been used for the study of neurological disorders such as anxiety, depression, and chronic fatigue. Here, we investigated the effects of vagus nerve stimulation (VNS) on poly(I:C)-induced neuroinflammation and associated behavioral consequences in rats. The microglia in the prefrontal cortex (PFC) displayed the activated form of morphology in poly(I:C)-injected rats and changed to a normal shape after acute VNS (aVNS). Production of phospho-NF-κB, phospho-IκB, IL-1β, and cleaved caspase 3 was elevated by poly(I:C) and downregulated by aVNS. In contrast, phospho-Akt levels were decreased by poly(I:C) and increased by aVNS. Neuronal production of fractalkine (CX3CL1) in the PFC was markedly reduced by poly(I:C), but recovered by aVNS. Fractalkine interaction with its receptor CX3CR1 was highly elevated by VNS. We further demonstrated that the pharmacological blockade of CX3CR1 activity counteracted the production of IL-1β, phospho-Akt, and cleaved form of caspase 3 that was modulated by VNS, suggesting the anti-inflammatory effects of fractalkine-CX3CR1 signaling as a mediator of neuron-microglia interaction. Behavioral assessments of pain and temperature sensations by von Frey and hot/cold plate tests showed significant improvement by chronic VNS (cVNS) and forced swimming and marble burying tests revealed that the depressive-like behaviors caused by poly(I:C) injection were rescued by cVNS. We also found that the recognition memory which was impaired by poly(I:C) administration was improved by cVNS. This study suggests that VNS may play a role in regulating neuroinflammation and somatosensory and cognitive functions in poly(I:C)-injected animals.
Collapse
Affiliation(s)
- Ki-Joong Kim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Jinyeon Hwang
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Kang-Woo Lee
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Jieun Kim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Yunha Han
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Uk Namgung
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea.
| |
Collapse
|
6
|
Mathias K, Machado RS, Tiscoski ADB, Dos Santos D, Lippert FW, Costa MA, Gonçalves CL, Generoso JS, Prophiro JS, Giustina AD, Petronilho F. IL-33 in Ischemic Stroke: Brain vs. Periphery. Inflammation 2024:10.1007/s10753-024-02148-6. [PMID: 39294293 DOI: 10.1007/s10753-024-02148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Cerebrovascular disease is the second-leading cause of death and disability worldwide, with stroke being the most common cause. In ischemic stroke, several processes combine to produce immunosuppression, leaving the post-stroke body susceptible to infection, which in turn affects neuroinflammation. Interleukin-33 (IL-33), a member of the interleukin-1 family (IL-1), functions as a modulator of immune responses and inflammation, playing a crucial role in the establishment of immunologic responses. IL-33 has been shown to have a protective effect on brain injury and represents a potential target by modulating inflammatory cytokines and stimulating immune regulatory cells. With an emphasis on preclinical and clinical studies, this review covers the impact of IL-33 on immune system mechanisms following ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricio Weinheimer Lippert
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Maiara Aguiar Costa
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Jaqueline Silva Generoso
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Amanda Della Giustina
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, ON, Canada
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
7
|
Nezu T, Eto F, Hironaka A, Aoki S, Neshige S, Tasaka S, Kirimoto H, Maruyama H. Vagus nerve size determined via ultrasonography is associated with white matter lesions in patients with vascular risk factors. J Ultrasound 2024; 27:723-732. [PMID: 39073732 PMCID: PMC11333691 DOI: 10.1007/s40477-024-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
PURPOSE The cross-sectional area (CSA) of the cervical vagus nerve (VN), as assessed through ultrasonography, might be linked to autonomic nervous system dysfunction. Hypertension is the primary factor associated with cerebral white matter lesions (WMLs), but there is also evidence of a connection with autonomic nervous system dysfunction. However, the associations between WMLs and VN size are unclear. Our objective was to investigate the associations between WMLs and VN size in patients with vascular risk factors. METHODS The CSA of the VN was evaluated using carotid ultrasonography in patients with a history of stroke (acute or chronic) and comorbidities (n = 196, 70.2 ± 12.7 years). Common carotid artery (CCA) intima-media thickness and interadventitial diameter (IAD) were also measured. The severity of the WMLs was assessed by the Fazekas classification and Scheltens' scale. RESULTS The CSA of the right VN (2.08 ± 0.65 mm2) was significantly greater than that of the CSA of the left VN (1.56 ± 0.44 mm2) (P < 0.001). Multiple linear regression analyses revealed that older age, hypertension, increased right CCA IAD, and decreased CSA of the right VN (standardized partial regression coefficient [β] - 0.226; P < 0.001) were independently associated with the severity of WMLs (Scheltens' scale). A decreased CSA of the left VN was also associated with the severity of WMLs (β = - 0.239; P < 0.001). CONCLUSION VN size determined via ultrasonography was associated with the severity of WMLs. While these findings do not establish a causal relationship, they suggest that autonomic nervous system dysfunction is involved in the progression of WMLs.
Collapse
Affiliation(s)
- Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Futoshi Eto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Akemi Hironaka
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shuichiro Neshige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Saki Tasaka
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
8
|
Zhong YJ, Liu LL, Zhao Y, Feng Z, Liu Y. Elucidating the molecular mechanisms behind the therapeutic impact of median nerve stimulation on cognitive dysfunction post-traumatic brain injury. Exp Gerontol 2024; 194:112500. [PMID: 38901771 DOI: 10.1016/j.exger.2024.112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Ferroptosis represents a form of regulated cellular death dependent upon iron and lipid peroxidation derivatives, holding considerable implications for cerebral and neurologic pathologies. In the present study, we endeavored to elucidate the molecular mechanisms governing ferroptosis and appraise the therapeutic value of electrical stimulation of median nerve in addressing cognitive impairments following traumatic brain injury (TBI), employing a rodent model. METHODS In this study, we established a rat model to investigate the cognitive impairments resulting from TBI, followed by the application of median nerve stimulation (MNS). Initially, rats received an intraperitoneal injection of Erastin (2 mg/kg) prior to undergoing MNS. After 24 h of MNS treatment, the rats were subjected to an open field test to evaluate their cognitive and motor functions. Subsequently, we conducted biochemical assays to measure the serum levels of GSH, MDA and SOD. The structural integrity and cellular morphology of hippocampal tissue were examined through H&E staining, Nissl staining and transmission electron microscopy. Additionally, we assessed the expression levels of proteins crucial for neuronal health and function in the hippocampus, including VEGF, SLC7A11, GPX4, Nrf2, α-syn, NEUN and PSD95. RESULTS Compared to the control group, rats in the stimulation group demonstrated enhanced mobility, reduced levels of tissue damage, a decrease in MDA concentration, and increased levels of GSH and SOD. Additionally, there was a significant upregulation in the expression of proteins critical for cellular defense and neuronal health, including GPX4, SLC7A11, Nrf2, VEGF, α-syn, NEUN, and PSD95 proteins. Conversely, rats in the Erastin group demonstrated decreased mobility, exacerbated pathological tissue damage, elevated MDA concentration, and decreased levels of GSH and SOD. There was also a notable decrease in the expression of GPX4, SLC7CA11, Nrf2, and VEGF proteins. The expression levels of α-syn, NEUN, and PSD95 were similarly diminished in the Erastin group. Each of these findings was statistically significant, indicating that MNS exerts neuroprotective effect in the hippocampal tissue of rats with TBI by inhibiting the ferroptosis pathway. CONCLUSION (1) MNS may enhance the cognitive and behavioral performance of rats after TBI; (2) MNS can play a neuroprotective role by promoting the expression of nerve injury-related proteins, alleviating oxidative stress and ferroptosis process; (3) MNS may inhibit ferroptosis of neuronal cells by activating Nrf2/ GPX4 signaling pathway, thereby improving cognitive impairment in TBI rats.
Collapse
Affiliation(s)
- Ying-Jun Zhong
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Ling-Ling Liu
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yue Zhao
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| | - Yuan Liu
- Department of Orthopedics, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
9
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
10
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2024:10.1007/s11010-024-05091-0. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
11
|
Zhang W, Mou Z, Zhong Q, Liu X, Yan L, Gou L, Chen Z, So KF, Zhang L. Transcutaneous auricular vagus nerve stimulation improves social deficits through the inhibition of IL-17a signaling in a mouse model of autism. Front Psychiatry 2024; 15:1393549. [PMID: 38993386 PMCID: PMC11237520 DOI: 10.3389/fpsyt.2024.1393549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Background Maternal exposure to inflammation is one of the causes of autism spectrum disorder (ASD). Electrical stimulation of the vagus nerve exerts a neuroprotective effect via its anti-inflammatory action. We thus investigated whether transcutaneous auricular vagus nerve stimulation (taVNS) can enhance social abilities in a mouse model of ASD induced by maternal immune activation (MIA). Methods ASD mouse model were constructed by intraperitoneal injection of polyinosinic:polycytidylic acid (poly (I:C)). TaVNS with different parameters were tested in ASD mouse model and in C57BL/6 mice, then various behavioral tests and biochemical analyses related to autism were conducted. ASD model mice were injected with an interleukin (IL)-17a antibody into the brain, followed by behavioral testing and biochemical analyses. Results TaVNS reduced anxiety, improved social function, decreased the number of microglia, and inhibited M1 polarization of microglia. Additionally, taVNS attenuated the expression of the IL-17a protein in the prefrontal cortex and blood of ASD model mice. To examine the possible involvement of IL-17a in taVNS-induced neuroprotection, we injected an IL-17a antibody into the prefrontal cortex of ASD model mice and found that neutralizing IL-17a decreased the number of microglia and inhibited M1 polarization. Furthermore, neutralizing IL-17a improved social function in autism model mice. Conclusion Our study revealed that reduced neuroinflammation is an important mechanism of taVNS-mediated social improvement and neuroprotection against autism. This effect of taVNS could be attributed to the inhibition of the IL-17a pathway.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiwei Mou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Qi Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaocao Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Lan Yan
- Key Laboratory of Central Nervous System (CNS) Regeneration (Ministry of Education), Guangdong–Hong Kong–Macau Institute of Central Nervous System (CNS) Regeneration, Jinan University, Guangzhou, China
| | - Lei Gou
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of Central Nervous System (CNS) Regeneration (Ministry of Education), Guangdong–Hong Kong–Macau Institute of Central Nervous System (CNS) Regeneration, Jinan University, Guangzhou, China
| | - Li Zhang
- Key Laboratory of Central Nervous System (CNS) Regeneration (Ministry of Education), Guangdong–Hong Kong–Macau Institute of Central Nervous System (CNS) Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Zhang H, Zhao Y, Qu Y, Du J, Peng Y. Transcutaneous Cervical Vagus Nerve Magnetic Stimulation in Patients With Traumatic Brain Injury: A Feasibility Study. Neuromodulation 2024; 27:672-680. [PMID: 37865889 DOI: 10.1016/j.neurom.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Transcutaneous vagus nerve stimulation has shown promising results in improving cognitive and motor function after stroke. However, to our knowledge, there have been no studies in the modulation of the cervical vagus nerve using repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury (TBI) with cognitive dysfunction. Thus, we conducted a single-arm feasibility trial to assess the safety and effectiveness of rTMS of the vagus nerve in patients with TBI. MATERIALS AND METHODS We enrolled ten patients with TBI and administered half-hour vagus nerve magnetic stimulation (VNMS) sessions for ten days to evaluate the feasibility of the treatment. The Montreal cognitive assessment-Beijing (MoCA-B), the Digit Span Test, and the Auditory Verbal Learning Test (AVLT) were used to measure cognitive function before and after the VNMS treatment. Physiological parameters of all subjects were assessed by electrocardiogram. RESULTS The findings showed that daily half-hour VNMS for ten days was feasible in patients with TBI, with minimal side effects and no clinically significant effects on physiological parameters. Eight patients showed improvement in MoCA-B, and five patients showed improvement in immediate memory as measured by AVLT. CONCLUSIONS We conclude that VNMS is a safe and feasible treatment option for patients with TBI with cognitive dysfunction. However, further controlled studies are necessary to establish the efficacy of VNMS in promoting cognitive recovery after TBI. SIGNIFICANCE This study is, to our knowledge, the first study to investigate the feasibility of VNMS for cognitive dysfunction in patients with TBI. Our findings offer the possibility of rTMS applied to the vagus nerve in clinical practice.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Juan Du
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yi Peng
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
13
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
14
|
Mac CH, Tai HM, Huang SM, Peng HH, Sharma AK, Nguyen GLT, Chang PJ, Wang JT, Chang Y, Lin YJ, Sung HW. Orally Ingested Self-Powered Stimulators for Targeted Gut-Brain Axis Electrostimulation to Treat Obesity and Metabolic Disorders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310351. [PMID: 38591658 DOI: 10.1002/adma.202310351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO3 (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve. Upon ingestion by diet-induced obese (DIO) mice, the BTO@Cap particles specifically target and bind to Cap-sensitive sensory nerve endings in the gastric mucosa. In response to stomach peristalsis, these particles generate electrical signals. The signals travel via the gut-brain axis, ultimately influencing the hypothalamus. By enhancing satiety signals in the brain, this neuromodulatory intervention reduces food intake, promotes energy metabolism, and demonstrates minimal toxicity. Over a 3-week period of daily treatments, DIO mice treated with BTO@Cap particles show a significant reduction in body weight compared to control mice, while maintaining their general locomotor activity. Furthermore, this BTO@Cap particle-based treatment mitigates various metabolic alterations associated with obesity. Importantly, this noninvasive and easy-to-administer intervention holds potential for addressing other intracerebral neurological diseases.
Collapse
Affiliation(s)
- Cam-Hoa Mac
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsien-Meng Tai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 350401, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Giang Le Thi Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ju Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-To Wang
- Neurological Institute, Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
15
|
Alvarez MR, Alkaissi H, Rieger AM, Esber GR, Acosta ME, Stephenson SI, Maurice AV, Valencia LMR, Roman CA, Alarcon JM. The immunomodulatory effect of oral NaHCO 3 is mediated by the splenic nerve: multivariate impact revealed by artificial neural networks. J Neuroinflammation 2024; 21:79. [PMID: 38549144 PMCID: PMC10976719 DOI: 10.1186/s12974-024-03067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy for treating systemic inflammatory disorders. Recent studies suggest oral sodium bicarbonate (NaHCO3) as a potential activator of the IR, offering a safe and cost-effective treatment approach. However, the mechanisms underlying NaHCO3-induced anti-inflammatory effects remain unclear. We investigated whether oral NaHCO3's immunomodulatory effects are mediated by the splenic nerve. Female rats received NaHCO3 or water (H2O) for four days, and splenic immune markers were assessed using flow cytometry. NaHCO3 led to a significant increase (p < 0.05, and/or partial eta squared > 0.06) in anti-inflammatory markers, including CD11bc + CD206 + (M2-like) macrophages, CD3 + CD4 + FoxP3 + cells (Tregs), and Tregs/M1-like ratio. Conversely, proinflammatory markers, such as CD11bc + CD38 + TNFα + (M1-like) macrophages, M1-like/M2-like ratio, and SSChigh/SSClow ratio of FSChighCD11bc + cells, decreased in the spleen following NaHCO3 administration. These effects were abolished in spleen-denervated rats, suggesting the necessity of the splenic nerve in mediating NaHCO3-induced immunomodulation. Artificial neural networks accurately classified NaHCO3 and H2O treatment in sham rats but failed in spleen-denervated rats, highlighting the splenic nerve's critical role. Additionally, spleen denervation independently influenced Tregs, M2-like macrophages, Tregs/M1-like ratio, and CD11bc + CD38 + cells, indicating distinct effects from both surgery and treatment. Principal component analysis (PCA) further supported the separate effects. Our findings suggest that the splenic nerve transmits oral NaHCO3-induced immunomodulatory changes to the spleen, emphasizing NaHCO3's potential as an IR activator with therapeutic implications for a wide spectrum of systemic inflammatory conditions.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- School of Graduate Studies & Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
- Department of Rheumatology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| | - Hussam Alkaissi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, NIH/NIDDK, Bethesda, MD, USA
| | - Aja M Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - Guillem R Esber
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada
| | - Manuel E Acosta
- Mathematics and Computer Sciences Department, Barry University, Miami, FL, USA
| | - Stacy I Stephenson
- Division of Comparative Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allison V Maurice
- Division of Comparative Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Christopher A Roman
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Juan Marcos Alarcon
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
16
|
Morais A, Chung JY, Wu L, Ayata C, Simon B, Whalen MJ. Non-Invasive Vagal Nerve Stimulation Pre-Treatment Reduces Neurological Dysfunction After Closed Head Injury in Mice. Neurotrauma Rep 2024; 5:150-158. [PMID: 38435077 PMCID: PMC10908330 DOI: 10.1089/neur.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Non-invasive vagus nerve stimulation (nVNS) has recently been suggested as a potential therapy for traumatic brain injury (TBI). We previously demonstrated that nVNS inhibits cortical spreading depolarization, the electrophysiological event underlying migraine aura, and is relevant to TBI. Our past work also suggests a role for interleukin-1 beta (IL-1β) in cognitive deficits after closed head injury (CHI) in mice. We show that nVNS pre-treatment suppresses CHI-associated spatial learning and memory impairment and prevents IL-1β activation in injured neurons, but not endothelial cells. In contrast, nVNS administered 10 min after CHI was ineffective. These data suggest that nVNS prophylaxis might ameliorate neuronal dysfunction associated with CHI in populations at high risk for concussive TBI.
Collapse
Affiliation(s)
- Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joon Yong Chung
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bruce Simon
- ElectroCore, Inc., Basking Ridge, New Jersey, USA
| | - Michael J. Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
17
|
Long JY, Li B, Ding P, Mei H, Li Y. Correlations between multimodal neuroimaging and peripheral inflammation in different subtypes and mood states of bipolar disorder: a systematic review. Int J Bipolar Disord 2024; 12:5. [PMID: 38388844 PMCID: PMC10884387 DOI: 10.1186/s40345-024-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Systemic inflammation-immune dysregulation and brain abnormalities are believed to contribute to the pathogenesis of bipolar disorder (BD). However, the connections between peripheral inflammation and the brain, especially the interactions between different BD subtypes and episodes, remain to be elucidated. Therefore, we conducted the present study to provide a comprehensive understanding of the complex association between peripheral inflammation and neuroimaging findings in patients with bipolar spectrum disorders. METHODS This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42023447044) and conducted according to the Population, Intervention, Comparison, Outcomes, and Study Design (PICOS) framework. Online literature databases (PubMed, Web of Science, Scopus, EMBASE, MEDLINE, PsycINFO, and the Cochrane Library) were searched for studies that simultaneously investigated both peripheral inflammation-related factors and magnetic resonance neurography of BD patients up to July 01, 2023. Then, we analysed the correlations between peripheral inflammation and neuroimaging, as well as the variation trends and the shared and specific patterns of these correlations according to different clinical dimensions. RESULTS In total, 34 publications ultimately met the inclusion criteria for this systematic review, with 2993 subjects included. Among all patterns of interaction between peripheral inflammation and neuroimaging, the most common pattern was a positive relationship between elevated inflammation levels and decreased neuroimaging measurements. The brain regions most susceptible to inflammatory activation were the anterior cingulate cortex, amygdala, prefrontal cortex, striatum, hippocampus, orbitofrontal cortex, parahippocampal gyrus, postcentral gyrus, and posterior cingulate cortex. LIMITATIONS The small sample size, insufficiently explicit categorization of BD subtypes and episodes, and heterogeneity of the research methods limited further implementation of quantitative data synthesis. CONCLUSIONS Disturbed interactions between peripheral inflammation and the brain play a critical role in BD, and these interactions exhibit certain commonalities and differences across various clinical dimensions of BD. Our study further confirmed that the fronto-limbic-striatal system may be the central neural substrate in BD patients.
Collapse
Affiliation(s)
- Jing-Yi Long
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- School of Public Administration, China University of Geosciences, Wuhan, 430074, China
| | - Pei Ding
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hao Mei
- Zhongnan Hospital of Wuhan University, No. 169, East Lake Rd., Wuchang District, Wuhan, 430062, Hubei Province, China.
| | - Yi Li
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China.
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Aranberri Ruiz A. Transcutaneous Auricular Vagus Nerve Stimulation to Improve Emotional State. Biomedicines 2024; 12:407. [PMID: 38398009 PMCID: PMC10886536 DOI: 10.3390/biomedicines12020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Emotional experiences are a part of our lives. The maladaptive functioning of an individual's emotional field can lead to emotional disturbances of various kinds, such as anxiety and depression. Currently, there is an increasing prevalence of emotional disorders that cause great human suffering and high socioeconomic costs. Emotional processing has a biological basis. The major neuroscientific theories of emotion are based on biological functioning, and all of them take into account the anatomy and function of the tenth cranial nerve: the vagus nerve. The vagus nerve connects the subdiaphragmatic and supradiaphragmatic areas and modulates emotional processing as the basis of interoceptive functioning. Auricular vagus nerve stimulation is a new and innovative neuromodulation technique based on the function of the vagus nerve. Several interventions have shown that this new neurostimulation technique is a very promising resource for treating emotional disorders. In this paper, we summarise three neuroscientific theories of emotion, explain what transcutaneous auricular nerve stimulation is, and present arguments for its use and continued research.
Collapse
Affiliation(s)
- Ainara Aranberri Ruiz
- Department of Basic Psychological Process and Development, University of the Basque Country, 20018 San Sebastian, Spain
| |
Collapse
|
19
|
Seifert O, Baerwald C. Stimulation of the vagus nerve as a therapeutic principle. Z Rheumatol 2024; 83:1-7. [PMID: 37597013 DOI: 10.1007/s00393-023-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/21/2023]
Abstract
Modulation of the parasympathetic tone leads to extensive physiological reactions at several levels, including the decreased production of proinflammatory cytokines. Many studies have demonstrated that chronic inflammatory diseases are associated with reduced parasympathetic and increased sympathetic activities. Moreover, it was demonstrated that a low parasympathetic and a high sympathetic activity in patients with rheumatoid arthritis (RA) predicts a poor therapeutic response to anti-tumor necrosis factor (TNF) treatment compared to RA patients with a more balanced autonomic nervous system. The autonomic equilibrium could be restored by electrical stimulation of the vagus nerve. Considering the patients who do not sufficiently respond to the available drugs, patients for whom the effectiveness of the drugs wanes over time, or have drug-related adverse events, a nonpharmacological approach such as bioelectronics might be a useful supplement as an instrument in the successful extension of the therapeutic armamentarium for rheumatic diseases; however, there is a great need for further studies and the development of novel therapeutic strategies in the field of neuroimmunology.
Collapse
Affiliation(s)
- O Seifert
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - C Baerwald
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Sun L, Ma S, Yu Y, Li X, Wei Q, Min L, Rong P. Transcutaneous auricular vagus nerve stimulation ameliorates adolescent depressive- and anxiety-like behaviors via hippocampus glycolysis and inflammation response. CNS Neurosci Ther 2024; 30:e14614. [PMID: 38358062 PMCID: PMC10867795 DOI: 10.1111/cns.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) is a crucial neuromodulation therapy for depression, yet its molecular mechanism remains unclear. Here, we aim to unveil the underlying mechanisms of antidepression by systematically evaluating the change of gene expression in different brain regions (i.e., hippocampus, anterior cingulate cortex, and medial prefrontal cortex). METHODS The adolescent depression rat model was established by chronic unpredictable mild stress (CUMS), followed by the taVNS treatment for 3 weeks. The open field test (OFT), forced swimming test (FST), elevated plus maze test (EPM), and new object recognition (NOR) test were used to evaluate depressive- and anxiety-like behaviors. Gene expression analysis of three brain regions was conducted by RNA sequencing (RNA-seq) and further bioinformatics methods. RESULTS The depressive- and anxiety-like behaviors in CUMS-exposed rats were manifested by decreased spontaneous locomotor activity of OFT, increased immobility time of FST, increased entries and time in the closed arms of EPM, and decreased new object index of NOR. Furthermore, CUMS exposure also led to alterations in gene expression within the hippocampus (HIP), anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC), suggesting a potential link between adolescent stress and pathological changes within these brain regions. TaVNS could significantly ameliorate depressive- and anxiety-like behaviors. Its effects on these three brain regions were found related to regulation of the metabolism, and there were some brain region-specific findings. Compared with ACC and mPFC, taVNS has a more concrete effect on HIP by regulating the inflammation response and glycolysis. CONCLUSION taVNS is capable of ameliorating adolescent depressive- and anxiety-like behaviors by regulating plenty of genes in the three brain regions. Suppressed level of inflammatory response and enhanced glycolysis manifests the dominant role of taVNS in HIP, which provides a theoretical foundation and data support for the molecular mechanism of antidepression by taVNS.
Collapse
Affiliation(s)
- Lan Sun
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
| | - Shixiang Ma
- Department of Retroperitoneal Tumor SurgeryPeking University International HospitalBeijingChina
| | - Yun Yu
- School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xiangji Li
- State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Department of GastroenterologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Qianwen Wei
- School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese MedicineBeijingChina
| | - Li Min
- State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Department of GastroenterologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
21
|
Liu G, Chi B. Technological Modalities in the Assessment and Treatment of Disorders of Consciousness. Phys Med Rehabil Clin N Am 2024; 35:109-126. [PMID: 37993182 DOI: 10.1016/j.pmr.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Over the last 10 years, there have been rapid advances made in technologies that can be utilized in the diagnosis and treatment of patients with a disorder of consciousness (DoC). This article provides a comprehensive review of these modalities including the evidence supporting their potential use in DoC. This review specifically addresses diagnostic, non-invasive therapeutic, and invasive therapeutic technological modalities except for neuroimaging, which is discussed in another article. While technologic advances appear promising for both assessment and treatment of patients with a DoC, high-quality evidence supporting widespread clinical adoption remains limited.
Collapse
Affiliation(s)
- Gang Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Bradley Chi
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Kang K, Shi K, Liu J, Li N, Wu J, Zhao X. Autonomic dysfunction and treatment strategies in intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14544. [PMID: 38372446 PMCID: PMC10875714 DOI: 10.1111/cns.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024] Open
Abstract
AIMS Autonomic dysfunction with central autonomic network (CAN) damage occurs frequently after intracerebral hemorrhage (ICH) and contributes to a series of adverse outcomes. This review aims to provide insight and convenience for future clinical practice and research on autonomic dysfunction in ICH patients. DISCUSSION We summarize the autonomic dysfunction in ICH from the aspects of potential mechanisms, clinical significance, assessment, and treatment strategies. The CAN structures mainly include insular cortex, anterior cingulate cortex, amygdala, hypothalamus, nucleus of the solitary tract, ventrolateral medulla, dorsal motor nucleus of the vagus, nucleus ambiguus, parabrachial nucleus, and periaqueductal gray. Autonomic dysfunction after ICH is closely associated with neurological functional outcomes, cardiac complications, blood pressure fluctuation, immunosuppression and infection, thermoregulatory dysfunction, hyperglycemia, digestive dysfunction, and urogenital disturbances. Heart rate variability, baroreflex sensitivity, skin sympathetic nerve activity, sympathetic skin response, and plasma catecholamine concentration can be used to assess the autonomic functional activities after ICH. Risk stratification of patients according to autonomic functional activities, and development of intervention approaches based on the restoration of sympathetic-parasympathetic balance, would potentially improve clinical outcomes in ICH patients. CONCLUSION The review systematically summarizes the evidence of autonomic dysfunction and its association with clinical outcomes in ICH patients, proposing that targeting autonomic dysfunction could be potentially investigated to improve the clinical outcomes.
Collapse
Affiliation(s)
- Kaijiang Kang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Kaibin Shi
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jiexin Liu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Na Li
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jianwei Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
23
|
Wang Y, Zhang J, Zhai W, Wang Y, Li S, Yang Y, Zheng Y, He J, Rong P. Current status and prospect of transcutaneous auricular vagus nerve stimulation for disorders of consciousness. Front Neurosci 2024; 17:1274432. [PMID: 38260020 PMCID: PMC10800843 DOI: 10.3389/fnins.2023.1274432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
Disordered Consciousness (DOC) is among neurological disorders for which there is currently no admitted treatment. The pathogenesis of DOC is still unclear, covering a variety of indistinguishable types of diseases, high misdiagnosis rate and poor prognosis. Most treatments remain to be clarified in the future to provide adequate evidence for clinical guidance. Neuromodulation technology aims to regulate neural circuits to promote awakening more directly. At present, it is confirmed that the potential of transcutaneous auricular vagus nerve stimulation (taVNS) as a therapeutic tool is worth exploring in the context of consciousness disorders, as previously proposed for invasive forms of VNS, in which the means of stimulating the vagus nerve to change the brain areas related to cosciousness have also received widespread attention. In this paper, we review the literature on taVNS and DOC to better understand the current status and development prospect of taVNS treament as a non-invasive neuromodulation method with sensitivity and/or specificity at the single subject.
Collapse
Affiliation(s)
- Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weihang Zhai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanfeng Zheng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Huang Y, Dong S, Li X, Shi J, Zhang Y, Liu S, Zhang Y, Yu J. VNS-mediated α7nAChR signaling promotes SPM synthesis via regulation of netrin-1 expression during LPS-induced ALI. FASEB J 2024; 38:e9664. [PMID: 38038805 DOI: 10.1096/fj.202301623r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Zhou Y, Sun Y, He P, Xiong Q, Kang J, Tang Y, Feng Z, Dong X. The efficacy and safety of transcutaneous auricular vagus nerve stimulation for patients with minimally conscious state: a sham-controlled randomized double-blind clinical trial. Front Neurosci 2023; 17:1323079. [PMID: 38156271 PMCID: PMC10752952 DOI: 10.3389/fnins.2023.1323079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a potentially effective neuromodulation technique for addressing neurological disorders, including disorders of consciousness. Expanding upon our prior clinical study, which demonstrated the superior effectiveness of a 4-week taVNS treatment in patients with minimally conscious state (MCS) compared to those in a vegetative state/unresponsive wakefulness state, the aim of this investigation was to evaluate the safety and therapeutic efficacy of taVNS in individuals with MCS through a sham-controlled randomized double-blind clinical trial. Methods A cohort of 50 adult patients (male = 33, female = 17) diagnosed with a MCS were randomly assigned to either the active taVNS (N = 25) or sham taVNS (N = 25) groups. The treatment period lasted for 4 weeks, followed by an 8-week follow-up period. The Coma Recovery Scale-Revised (CRS-R) and Glasgow Coma Scale (GCS) were administered at baseline and weekly during the initial 4 weeks. Additionally, the Disability Rating Scale (DRS) was used to assess the patients' functional abilities via telephone at week 12. Furthermore, various neurophysiological measures, including electroencephalogram (EEG), upper-limb somatosensory evoked potentials (USEP), brainstem auditory evoked potentials (BAEP), and P300 event-related potentials (P300), were employed to monitor changes in brain activity and neural conduction pathways. Results The scores for the active taVNS group in the CRS-R and GCS showed greater improvement over time compared to the sham taVNS group (CRS-R: 1-week, Z = -1.248, p = 0.212; 2-week, Z = -1.090, p = 0.276; 3-week, Z = -2.017, p = 0.044; 4-week, Z = -2.267, p = 0.023. GCS: 1-week, Z = -1.325, p = 0.185; 2-week, Z = -1.245, p = 0.213; 3-week, Z = -1.848, p = 0.065; 4-week, Z = -1.990, p = 0.047). Additionally, the EEG, USEP, BAEP, and P300 also demonstrated significant improvement in the active taVNS group compared to the sham taVNS group at week 4 (EEG, Z = -2.086, p = 0.037; USEP, Z = -2.014, p = 0.044; BAEP, Z = -2.298, p = 0.022; P300 amplitude, Z = -1.974, p = 0.049; P300 latency, t = 2.275, p = 0.027). Subgroup analysis revealed that patients with MCS derived greater benefits from receiving taVNS treatment earlier (CRS-R, Disease duration ≤ 1-month, mean difference = 8.50, 95% CI = [2.22, 14.78], p = 0.027; GCS, Disease duration ≤ 1-month, mean difference = 3.58, 95% CI = [0.14, 7.03], p = 0.044). By week 12, the active taVNS group exhibited lower Disability Rating Scale (DRS) scores compared to the sham taVNS group (Z = -2.105, p = 0.035), indicating a more favorable prognosis for MCS patients who underwent taVNS. Furthermore, no significant adverse events related to taVNS were observed during treatment. Conclusion The findings of this study suggest that taVNS may serve as a potentially effective and safe intervention for facilitating the restoration of consciousness in individuals diagnosed with MCS. This therapeutic approach appears to enhance cerebral functioning and optimize neural conduction pathways. Clinical trial registration http://www.chictr.org.cn, Identifier ChiCTR2200066629.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yejing Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Pei He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Qi Xiong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Junwei Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yunliang Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Zhang T, Guo B, Zuo Z, Long X, Hu S, Li S, Su X, Wang Y, Liu C. Excitatory-inhibitory modulation of transcranial focus ultrasound stimulation on human motor cortex. CNS Neurosci Ther 2023; 29:3829-3841. [PMID: 37309308 PMCID: PMC10651987 DOI: 10.1111/cns.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/10/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Transcranial focus ultrasound stimulation (tFUS) is a promising non-invasive neuromodulation technology. This study aimed to evaluate the modulatory effects of tFUS on human motor cortex (M1) excitability and explore the mechanism of neurotransmitter-related intracortical circuitry and plasticity. METHODS Single pulse transcranial magnetic stimulation (TMS)-eliciting motor-evoked potentials (MEPs) were used to assessed M1 excitability in 10 subjects. Paired-pulse TMS was used to measure the effects of tFUS on GABA- and glutamate-related intracortical excitability and 1 H-MRS was used to assess the effects of repetitive tFUS on GABA and Glx (glutamine + glutamate) neurometabolic concentrations in the targeting region in nine subjects. RESULTS The etFUS significantly increased M1 excitability, decreased short interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI). The itFUS significantly suppressed M1 excitability, increased SICI, LICI, and decreased intracortical facilitation (ICF). Seven times of etFUS decreased the GABA concentration (6.32%), increased the Glx concentration (12.40%), and decreased the GABA/Glx ratio measured by MRS, while itFUS increased the GABA concentration (18.59%), decreased Glx concentration (0.35%), and significantly increased GABA/Glx ratio. CONCLUSION The findings support that tFUS with different parameters can exert excitatory and inhibitory neuromodulatory effects on the human motor cortex. We provide novel insights that tFUS change cortical excitability and plasticity by regulating excitatory-inhibition balance related to the GABAergic and glutamatergic receptor function and neurotransmitter metabolic level.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Bingqi Guo
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- Hefei Comprehensive National Science CenterInstitute of Artificial IntelligenceHefeiChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Long
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Shimin Hu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Siran Li
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin Su
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
- Institute of Sleep and Consciousness Disorders, Center of Epilepsy, Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
- Hebei Hospital of Xuanwu HospitalCapital Medical UniversityShijiazhuangChina
- Neuromedical Technology Innovation Center of Hebei ProvinceShijiazhuangChina
| | - Chunyan Liu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| |
Collapse
|
27
|
Gao X, Wang Y, Meng H, Li S, Jiang H, Zhang Z, He J, Zhao Y, Zhang S, Zhai W, Bao T, Rong P. Acupuncture for brain diseases: Conception, application, and exploration. Anat Rec (Hoboken) 2023; 306:2958-2973. [PMID: 35195374 DOI: 10.1002/ar.24884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
The brain is probably the most complex organ in the human body. It has been the hot spot and direction of brain science research all over the world to deeply study the pathogenesis of various kinds of brain diseases and find effective treatment methods. Acupuncture is a nonpharmacological therapy of traditional Chinese medicine originating from ancient clinical practice. The research on the treatment of brain diseases by acupuncture has been constantly enriched and updated with the promotion of interdisciplinary research. In order to account for the current achievements in the field of acupuncture for brain diseases, this article reviews it in terms of conception, application, and exploration. Based on the literature review, we found that in the past decades, acupuncture has received widespread attention worldwide and many literatures have reported the clinical efficacy and underlying mechanisms of acupuncture in the treatment of brain diseases. Presently, the conception, application, and exploration of acupuncture in the treatment of brain diseases have evolved from empirical medicine to evidence-based medicine and precision medicine, and are experiencing a deeper understanding of the information about acupuncture regulating the brain function based on interdisciplinary research.
Collapse
Affiliation(s)
- Xingzhou Gao
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Meng
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weihang Zhai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Chen H, Feng Z, Min L, Tan M, Zhang D, Gong Q, Liu H, Hou J. Vagus Nerve Stimulation Prevents Endothelial Necroptosis to Alleviate Blood-Spinal Cord Barrier Disruption After Spinal Cord Injury. Mol Neurobiol 2023; 60:6466-6475. [PMID: 37460917 DOI: 10.1007/s12035-023-03477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 09/28/2023]
Abstract
Vagus nerve stimulation (VNS) is a promising neuromodulation technique, which has been demonstrated to promote functional recovery after spinal cord injury (SCI) in our previous study. But the underlying mechanism remains to be explored. Using a compressed SCI model, our present study first demonstrated that activated microglia produce abundant tumor necrosis factor-α (TNF-α) to induce endothelial necroptosis via receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed lineage kinase domain-like protein (MLKL) pathway, thus destroying the blood-spinal cord barrier (BSCB) after SCI. While both TNF-α specifical antibody (infliximab) and necroptosis inhibitor (necrostatin-1) alleviate BSCB disruption. Then our study found that VNS significantly inhibits microglia-derived TNF-α production and reduces expression of p-RIP3 and p-MLKL in endothelial cells. As expected, further results indicated that VNS mitigates the BSCB disruption, thus reducing inflammatory cells infiltration and neural damage. Finally, both electrophysiological evaluation and locomotor test demonstrated that VNS promotes motor function recovery after SCI. In conclusion, our data demonstrated VNS restricts microglia-derived TNF-α to prevent RIP1/RIP3/MLKL mediated endothelial necroptosis, thus alleviating the decisive pathophysiological BSCB disruption to reduce neuroinflammation and neural damage, which ultimately promotes motor function recovery after SCI. Therefore, these results further elaborate that VNS might be a promising therapeutic strategy for SCI. Vagus nerve stimulation prevents microglia-derived TNF-α induced endothelial necroptosis to alleviate blood-spinal cord barrier disruption after spinal cord injury.
Collapse
Affiliation(s)
- Hui Chen
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Rehabilitation, Wusheng Hospital of Traditional Chinese Medicine, Sichuan, China
| | - Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lingxia Min
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingliang Tan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongyun Zhang
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiuwen Gong
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
29
|
Tatsushima D, Kurioka T, Mizutari K, Suzuki J, Ikeda R, Hisaoka T, Koshiba Y, Takahashi H, Hashimoto H, Katori Y, Shiotani A. Effects of Unilateral Vagotomy on LPS-Induced Aspiration Pneumonia in Mice. Dysphagia 2023; 38:1353-1362. [PMID: 36788140 DOI: 10.1007/s00455-023-10564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Respiratory-related dysphagia and aspiration pneumonia can be attributed to multiple causes. However, reproduction of multiple factor-related respiratory distress and aspiration pneumonia in a single animal model is challenging. To validate animals with vagal nerve palsy as novel models for severe aspiration pneumonia associated with respiratory distress, we investigated the effects of unilateral vagotomy on the swallowing function and severity of pneumonia after forced aspiration in mice. Unilateral vagotomy was performed in C57BL6 male mice that subsequently underwent evaluation of swallowing function by videofluoroscopic swallow study (VFSS) and histological assessments for aspiration pneumonia induced by lipopolysaccharide (LPS). VFSS examinations demonstrated that unilateral vagotomy did not cause apparent aspiration in mice, but it resulted in a significant loss of body weight (BW) due to decreased oral intake. In addition, when aspiration pneumonia was induced by forced administration of LPS, significantly prolonged BW loss and severe infiltration of inflammatory cells associated with aspiration pneumonia were observed in the mice that underwent unilateral vagotomy. In conclusion, the vagotomized mice showed appropriate characteristics as a model of aspiration pneumonia caused by multiple factors, including the paralysis of vocal fold movement and respiratory distress. This model can help elucidate the pathogenesis of aspiration pneumonia and the treatment methods for the respiration-compromised model.
Collapse
Affiliation(s)
- Daisuke Tatsushima
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takaomi Kurioka
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Kunio Mizutari
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryoukichi Ikeda
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takuma Hisaoka
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yasutoshi Koshiba
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiyori Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hikaru Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
30
|
Hu Y, Feng Z, Zheng L, Ye X. Interactions between cathodic- and anodic-pulses during high-frequency stimulations with the monophasic-pulses alternating in polarity at axons-experiment and simulation studies. J Neural Eng 2023; 20:056021. [PMID: 37703869 DOI: 10.1088/1741-2552/acf959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Background. Electrical neuromodulation therapies commonly utilize high-frequency stimulations (HFS) of biphasic-pulses to treat neurological disorders. The biphasic pulse consists of a leading cathodic-phase to activate neurons and a lagging anodic-phase to balance electrical charges. Because both monophasic cathodic- and anodic-pulses can depolarize neuronal membranes, splitting biphasic-pulses into alternate cathodic- and anodic-pulses could be a feasible strategy to improve stimulation efficiency.Objective. We speculated that neurons in the volume initially activated by both polarity pulses could change to be activated only by anodic-pulses during sustained HFS of alternate monophasic-pulses. To verify the hypothesis, we investigated the interactions of the monophasic pulses during HFS and revealed possible underlying mechanisms.Approach. Different types of pulse stimulations were applied at the alvear fibers (i.e. the axons of CA1 pyramidal neurons) to antidromically activate the neuronal cell bodies in the hippocampal CA1 region of anesthetized ratsin-vivo. Sequences of antidromic HFS (A-HFS) were applied with alternate monophasic-pulses or biphasic-pulses. The pulse frequency in the A-HFS sequences was 50 or 100 Hz. The A-HFS duration was 120 s. The amplitude of antidromically-evoked population spike was measured to evaluate the neuronal firing induced by each pulse. A computational model of axon was used to explore the possible mechanisms of neuronal modulations. The changes of model variables during sustained A-HFS were analyzed.Main results. In rat experiments, with a same pulse intensity, the activation volume of a cathodic-pulse was greater than that of an anodic-pulse. In paired-pulse tests, a preceding cathodic-pulse was able to prevent a following anodic-pulse from activating neurons due to refractory period. This indicated that the activation volume of a cathodic-pulse covered that of an anodic-pulse. However, during sustained A-HFS of alternate monophasic-pulses, the anodic-pulses were able to prevail over the cathodic-pulses in activating neurons in the overlapped activation volume. Model simulation results show the mechanisms of the activation failures of cathodic-pulses. They include the excessive membrane depolarization caused by an accumulation of potassium ions, the obstacle of hyperpolarization in the conduction pathway and the interactions from anodic-pulses.Significance. The study firstly showed the domination of anodic-pulses over cathodic-pulses in their competitions to activate neurons during sustained HFS. The finding provides new clues for designing HFS paradigms to improve the efficiency of neuromodulation therapies.
Collapse
Affiliation(s)
- Yifan Hu
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhouyan Feng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lvpiao Zheng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangyu Ye
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
31
|
Abdullahi A, Wong TWL, Ng SSM. Effects and safety of vagus nerve stimulation on upper limb function in patients with stroke: a systematic review and meta-analysis. Sci Rep 2023; 13:15415. [PMID: 37723225 PMCID: PMC10507009 DOI: 10.1038/s41598-023-42077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Vagus nerve stimulation (VNS) is used to deliver electric current to stimulate the vagus nerve. The aim of this study is to carry out a systematic review and meta-analysis to determine its effects on motor function in patients with stroke. PubMED, Embase, Web of Science (WoS), and Scopus were searched. Data on time since stroke, and mean scores and standard deviation on outcomes such as level of impairment and motor function were extracted. The results showed that invasive (MD 2.66, 95% CI 1.19-4.13, P = 0.0004) and non-invasive (MD 24.16, 95% CI 23.56-24.75, P = 0.00001) VNS are superior at improving level of motor impairment than the control post intervention and at follow-up respectively. Similarly, VNS improved motor function post intervention (MD 0.28, 95% CI 0.15-0.41, P < 0.0001); and there was no significant difference in adverse events between invasive VNS and control (OR 2.15, 95% CI 0.97-4.74, P = 0.06), and between non-invasive VNS and control (OR 4.54, 95% CI 0.48-42.97, P = 0.19). VNS can be used to improve motor function in patients with stroke.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
32
|
Dong X, Tang Y, Zhou Y, Feng Z. Stimulation of vagus nerve for patients with disorders of consciousness: a systematic review. Front Neurosci 2023; 17:1257378. [PMID: 37781261 PMCID: PMC10540190 DOI: 10.3389/fnins.2023.1257378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose The purpose of this study is to evaluate the efficacy and safety of stimulating the vagus nerve in patients with disorders of consciousness (DOCs). Methods A comprehensive systematic review was conducted, encompassing the search of databases such as PubMed, CENTRAL, EMBASE and PEDro from their inception until July 2023. Additionally, manual searches and exploration of grey literature were performed. The literature review was conducted independently by two reviewers for search strategy, selection of studies, data extraction, and judgment of evidence quality according to the American Academy of Cerebral Palsy and Developmental Medicine (AACPDM) Study Quality Scale. Results A total of 1,269 articles were retrieved, and 10 studies met the inclusion criteria. Among these, there were three case reports, five case series, and only two randomized controlled trials (RCTs). Preliminary studies have suggested that stimulation of vagus nerve can enhance the levels of DOCs in both vegetative state/unresponsive wakefulness state (VS/UWS) and minimally conscious state (MCS). However, due to a lack of high-quality RCTs research and evidence-based medical evidence, no definitive conclusion can be drawn regarding the intervention's effectiveness on consciousness level. Additionally, there were no significant adverse effects observed following stimulation of vagus nerve. Conclusion A definitive conclusion cannot be drawn from this systematic review as there was a limited number of eligible studies and low-quality evidence. The findings of this systematic review can serve as a roadmap for future research on the use of stimulation of vagus nerve to facilitate recovery from DOCs.
Collapse
Affiliation(s)
| | | | | | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
34
|
Seifert O, Baerwald C. [Stimulation of the vagus nerve as a therapeutic principle. German Version]. Z Rheumatol 2023:10.1007/s00393-023-01390-x. [PMID: 37490129 DOI: 10.1007/s00393-023-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/26/2023]
Abstract
Modulation of the parasympathetic tone leads to extensive physiological reactions at several levels, including the decreased production of proinflammatory cytokines. Many studies have demonstrated that chronic inflammatory diseases are associated with reduced parasympathetic and increased sympathetic activities. Moreover, it was demonstrated that a low parasympathetic and a high sympathetic activity in patients with rheumatoid arthritis (RA) predicts a poor therapeutic response to anti-tumor necrosis factor (TNF) treatment compared to RA patients with a more balanced autonomic nervous system. The autonomic equilibrium could be restored by electrical stimulation of the vagus nerve. Considering the patients who do not sufficiently respond to the available drugs, patients for whom the effectiveness of the drugs wanes over time, or have drug-related adverse events, a nonpharmacological approach such as bioelectronics might be a useful supplement as an instrument in the successful extension of the therapeutic armamentarium for rheumatic diseases; however, there is a great need for further studies and the development of novel therapeutic strategies in the field of neuroimmunology.
Collapse
Affiliation(s)
- O Seifert
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| | - C Baerwald
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| |
Collapse
|
35
|
Tamura K, Sasaki R, Sakakibara T, Dahal R, Takeshima Y, Matsuda R, Yamada S, Nishimura F, Nakagawa I, Park YS, Hirabayashi H, Nakase H. Additional Effect of High-output Current and/or High-duty Cycle in Vagus Nerve Stimulation for Adolescent/Adult Intractable Epilepsy. Neurol Med Chir (Tokyo) 2023; 63:273-282. [PMID: 37045770 PMCID: PMC10406457 DOI: 10.2176/jns-nmc.2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/20/2023] [Indexed: 04/14/2023] Open
Abstract
A vagus nerve stimulation (VNS) device delivers electrical pulses to the vagus nerve at a rhythm defined by the duty cycle. The standard therapeutic range is advocated for an output current of 1.5-2.25 mA and a duty cycle of 10%. As the optimal settings vary from patient to patient, some patients may benefit from additional seizure reduction when stimulated beyond the standard range. A total of 74 patients (15 children aged <12 years and 59 adolescents/adults) who underwent VNS implantation between 2011 and 2020 and who were followed up for at least 2 years were included in this retrospective study. Stimulation parameters exceeding 2.25 mA of output current, 25% of duty cycle, and 0.5625 (2.25 mA × 25%) of current × duty cycle were defined as high stimulation. The proportion achieved an additional seizure reduction of 20%, and the 50% seizure reduction rate at the last follow-up was compared between adolescents/adults and children. Approximately 40% of patients in adolescents/adults treated with high stimulation experienced an additional acute effect, resulting in a 50% or greater reduction in seizures in almost all patients. Moreover, in adolescents/adults, 22.2%-41.9% of the patients were treated with high stimulation, and the responder rate was 69.5%. Conversely, the responder rate in children was 26.7%, significantly worse than that in adolescents/adults, despite higher stimulation. VNS with high-stimulation settings is effective for adolescent and adult patients with intractable epilepsy. Even high stimulation may not be effective in extremely refractory pediatric epilepsy with a high seizure frequency.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Neurosurgery, Nara Medical University
- Epilepsy Center, National Hospital Organization Nara Medical Center
| | - Ryota Sasaki
- Department of Neurosurgery, Nara Medical University
- Epilepsy Center, National Hospital Organization Nara Medical Center
| | - Takafumi Sakakibara
- Epilepsy Center, National Hospital Organization Nara Medical Center
- Department of Pediatrics, Nara Medical University
| | - Riju Dahal
- Department of Neurosurgery, Nara Medical University
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fang YT, Lin YT, Tseng WL, Tseng P, Hua GL, Chao YJ, Wu YJ. Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Front Aging Neurosci 2023; 15:1173987. [PMID: 37484689 PMCID: PMC10358778 DOI: 10.3389/fnagi.2023.1173987] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Vagus nerve stimulation (VNS) is a technology that provides electrical stimulation to the cervical vagus nerve and can be applied in the treatment of a wide variety of neuropsychiatric and systemic diseases. VNS exerts its effect by stimulating vagal afferent and efferent fibers, which project upward to the brainstem nuclei and the relayed circuits and downward to the internal organs to influence the autonomic, neuroendocrine, and neuroimmunology systems. The neuroimmunomodulation effect of VNS is mediated through the cholinergic anti-inflammatory pathway that regulates immune cells and decreases pro-inflammatory cytokines. Traditional and non-invasive VNS have Food and Drug Administration (FDA)-approved indications for patients with drug-refractory epilepsy, treatment-refractory major depressive disorders, and headaches. The number of clinical trials and translational studies that explore the therapeutic potentials and mechanisms of VNS is increasing. In this review, we first introduced the anatomical and physiological bases of the vagus nerve and the immunomodulating functions of VNS. We covered studies that investigated the mechanisms of VNS and its therapeutic implications for a spectrum of brain disorders and systemic diseases in the context of neuroimmunomodulation.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ye-Ting Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Lung Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Philip Tseng
- Cross College Elite Program, National Cheng Kung University, Tainan, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Gia-Linh Hua
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jui Chao
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jen Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
37
|
Messina R, Christensen RH, Cetta I, Ashina M, Filippi M. Imaging the brain and vascular reactions to headache treatments: a systematic review. J Headache Pain 2023; 24:58. [PMID: 37221469 DOI: 10.1186/s10194-023-01590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Neuroimaging studies have made an important contribution to our understanding of headache pathophysiology. This systematic review aims to provide a comprehensive overview and critical appraisal of mechanisms of actions of headache treatments and potential biomarkers of treatment response disclosed by imaging studies. MAIN BODY We performed a systematic literature search on PubMed and Embase databases for imaging studies investigating central and vascular effects of pharmacological and non-pharmacological treatments used to abort and prevent headache attacks. Sixty-three studies were included in the final qualitative analysis. Of these, 54 investigated migraine patients, 4 cluster headache patients and 5 patients with medication overuse headache. Most studies used functional magnetic resonance imaging (MRI) (n = 33) or molecular imaging (n = 14). Eleven studies employed structural MRI and a few used arterial spin labeling (n = 3), magnetic resonance spectroscopy (n = 3) or magnetic resonance angiography (n = 2). Different imaging modalities were combined in eight studies. Despite of the variety of imaging approaches and results, some findings were consistent. This systematic review suggests that triptans may cross the blood-brain barrier to some extent, though perhaps not sufficiently to alter the intracranial cerebral blood flow. Acupuncture in migraine, neuromodulation in migraine and cluster headache patients, and medication withdrawal in patients with medication overuse headache could promote headache improvement by reverting headache-affected pain processing brain areas. Yet, there is currently no clear evidence for where each treatment acts, and no firm imaging predictors of efficacy. This is mainly due to a scarcity of studies and heterogeneous treatment schemes, study designs, subjects, and imaging techniques. In addition, most studies used small sample sizes and inadequate statistical approaches, which precludes generalizable conclusions. CONCLUSION Several aspects of headache treatments remain to be elucidated using imaging approaches, such as how pharmacological preventive therapies work, whether treatment-related brain changes may influence therapy effectiveness, and imaging biomarkers of clinical response. In the future, well-designed studies with homogeneous study populations, adequate sample sizes and statistical approaches are needed.
Collapse
Affiliation(s)
- R Messina
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
| | - R H Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - I Cetta
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - M Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - M Filippi
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
38
|
Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep 2023; 13:7721. [PMID: 37173458 PMCID: PMC10182028 DOI: 10.1038/s41598-023-34746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The etiology of PCOS is multifactorial, and current treatments for PCOS are far from satisfactory. Recently, an imbalanced autonomic nervous system (ANS) with sympathetic hyperactivity and reduced parasympathetic nerve activity (vagal tone) has aroused increasing attention in the pathogenesis of PCOS. In this paper, we review an innovative therapy for the treatment of PCOS and related co-morbidities by targeting parasympathetic modulation based on non-invasive transcutaneous auricular vagal nerve stimulation (ta-VNS). In this work, we present the role of the ANS in the development of PCOS and describe a large number of experimental and clinical reports that support the favorable effects of VNS/ta-VNS in treating a variety of symptoms, including obesity, insulin resistance, type 2 diabetes mellitus, inflammation, microbiome dysregulation, cardiovascular disease, and depression, all of which are also commonly present in PCOS patients. We propose a model focusing on ta-VNS that may treat PCOS by (1) regulating energy metabolism via bidirectional vagal signaling; (2) reversing insulin resistance via its antidiabetic effect; (3) activating anti-inflammatory pathways; (4) restoring homeostasis of the microbiota-gut-brain axis; (5) restoring the sympatho-vagal balance to improve CVD outcomes; (6) and modulating mental disorders. ta-VNS is a safe clinical procedure and it might be a promising new treatment approach for PCOS, or at least a supplementary treatment for current therapeutics.
Collapse
Affiliation(s)
- Shike Zhang
- Southern University of Science and Technology Yantian Hospital, Shenzhen, 518081, China
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Hui He
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Yu Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaofang Liu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
39
|
Broderick L, Tuohy G, Solymos O, Lakhani S, Staunton B, Ennis P, Clark N, Moppett IK, Chalissery A, Kilbride RD, Sweeney KJ, O'Brien D, O'Hare A, Harvey A, Larkin CM. Management of vagus nerve simulation therapy in the peri-operative period: Guidelines from the Association of Anaesthetists: Guidelines from the Association of Anaesthetists. Anaesthesia 2023; 78:747-757. [PMID: 37096456 DOI: 10.1111/anae.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/26/2023]
Abstract
Vagus nerve stimulation is a well-established treatment option for patients with drug-resistant epilepsy and has an expanding range of other clinical indications. Side effects of vagus nerve stimulation therapy include: cough; voice changes; vocal cord adduction; rarely, obstructive sleep apnoea; and arrhythmia. Patients with implanted vagus nerve stimulation devices may present for unrelated surgery and critical care to clinicians who are unfamiliar with their function and safe management. These guidelines have been formulated by multidisciplinary consensus based on case reports, case series and expert opinion to support clinicians in the management of patients with these devices. The aim is to provide specific guidance on the management of vagus nerve stimulation devices in the following scenarios: the peri-operative period; peripartum period; during critical illness; and in the MRI suite. Patients should be aware of the importance of carrying their personal vagus nerve stimulation device magnet with them at all times to facilitate urgent device deactivation if necessary. We advise that it is generally safer to formally deactivate vagus nerve stimulation devices before general and spinal anaesthesia. During periods of critical illness associated with haemodynamic instability, we also advise cessation of vagus nerve stimulation and early consultation with neurology services.
Collapse
Affiliation(s)
| | - G Tuohy
- Rotunda Hospital, Dublin, Ireland
| | - O Solymos
- St Vincent's University Hospital, Dublin, Ireland
| | - S Lakhani
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | - P Ennis
- Beaumont Hospital, Dublin, Ireland
| | - N Clark
- Bristol Children's Hospital, Bristol, UK
| | | | | | | | | | | | - A O'Hare
- Beaumont Hospital, Dublin, Ireland
| | - A Harvey
- Royal Cornwall Hospital Trust, Cornwall, UK
| | | |
Collapse
|
40
|
Yue Y, Zou L, Li H, Xia Y, Ren Z, Yang F, Kong D, Re G, Luo H, Zhang Z, Wang K, Zhu M. Therapeutic effect of implanted and non-invasive vagus nerve stimulation on heroin-induced anxiety. Biochem Biophys Res Commun 2023; 652:46-54. [PMID: 36809704 DOI: 10.1016/j.bbrc.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Substance addiction causes anxiety, which in turn reinforces the maintaining of substance use, resulting in a vicious circle. And this circle is one of the reasons why addiction is so hard to cure. However, there is no treatment involved in addiction-induced anxiety at present. We tested whether VNS (vagus nerve stimulation) can improve heroin-induced anxiety, and made a comparison between nVNS (transcervical vagus nerve stimulation) and taVNS (transauricular vagus nerve stimulation) on therapeutic effect. Mice were subjected to nVNS or taVNS before heroin administration. By observing c-Fos expression in the NTS (nucleus of the solitary tract), we assessed vagal fiber activation. Using the OFT (open field test) and the EPM (elevated cross maze test), we evaluated the anxiety-like behaviors of the mice. Using immunofluorescence, we observed the proliferation and activation of microglia in the hippocampus. And ELISA was used to measure the levels of proinflammatory factors in the hippocampus. Both nVNS and taVNS significantly increased the expression of c-Fos in the nucleus of solitary tract, suggesting the feasibility of nVNS and taVNS. The anxiety level of heroin-treated mice was significantly increased, microglia in the hippocampus was significantly proliferated and activated, and the proinflammatory factors (IL-1β, IL-6, TNF-α) in the hippocampus were significantly up-regulated. Crucially, both nVNS and taVNS reversed the above changes caused by heroin addiction. SIGNIFICANCE: It was confirmed that the therapeutic effect of VNS on heroin-induced anxiety may be an effective treatment method to break the "addiction-anxiety" cycle and provides some insights for subsequent treatment of addiction.
Collapse
Affiliation(s)
- Yingbiao Yue
- National Health Commission Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Lei Zou
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Hong Li
- Narcotics Control Bureau of the Ministry of Public Security of Yunnan Province, Kunming, 650032, China
| | - Yu Xia
- Peking University Health Science Center, Beijing, 100191, China
| | - Zhouyang Ren
- Narcotics Control Bureau of the Ministry of Public Security of Yunnan Province, Kunming, 650032, China
| | - Fazhen Yang
- Narcotics Control Bureau of the Ministry of Public Security of Yunnan Province, Kunming, 650032, China
| | - Deshenyue Kong
- National Health Commission Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Guofen Re
- National Health Commission Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | | | | | - Mei Zhu
- First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
41
|
Marano G, Mazza M, Lisci FM, Ciliberto M, Traversi G, Kotzalidis GD, De Berardis D, Laterza L, Sani G, Gasbarrini A, Gaetani E. The Microbiota-Gut-Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023; 15:nu15061496. [PMID: 36986226 PMCID: PMC10059722 DOI: 10.3390/nu15061496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
There is growing interest in the role that the intestinal microbiota and the related autoimmune processes may have in the genesis and presentation of some psychiatric diseases. An alteration in the communication of the microbiota-gut-brain axis, which constitutes a communicative model between the central nervous system (CNS) and the gastro-enteric tract, has been identified as one of the possible causes of some psychiatric diseases. The purpose of this narrative review is to describe evidence supporting a role of the gut microbiota in psychiatric diseases and the impact of diet on microbiota and mental health. Change in the composition of the gut microbiota could determine an increase in the permeability of the intestinal barrier, leading to a cytokine storm. This could trigger a systemic inflammatory activation and immune response: this series of events could have repercussions on the release of some neurotransmitters, altering the activity of the hypothalamic-pituitary-adrenal axis, and reducing the presence of trophic brain factors. Although gut microbiota and psychiatric disorders seem to be connected, more effort is needed to understand the potential causative mechanisms underlying the interactions between these systems.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Maria Lisci
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michele Ciliberto
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | | | - Lucrezia Laterza
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
42
|
The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12030663. [PMID: 36978911 PMCID: PMC10045397 DOI: 10.3390/antiox12030663] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.
Collapse
|
43
|
Sigurdsson HP, Hunter H, Alcock L, Wilson R, Pienaar I, Want E, Baker MR, Taylor JP, Rochester L, Yarnall AJ. Safety and tolerability of adjunct non-invasive vagus nerve stimulation in people with parkinson's: a study protocol. BMC Neurol 2023; 23:58. [PMID: 36737716 PMCID: PMC9896761 DOI: 10.1186/s12883-023-03081-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the fastest growing neurological condition worldwide. Recent theories suggest that symptoms of PD may arise due to spread of Lewy-body pathology where the process begins in the gut and propagate transynaptically via the vagus nerve to the central nervous system. In PD, gait impairments are common motor manifestations that are progressive and can appear early in the disease course. As therapies to mitigate gait impairments are limited, novel interventions targeting these and their consequences, i.e., reducing the risk of falls, are urgently needed. Non-invasive vagus nerve stimulation (nVNS) is a neuromodulation technique targeting the vagus nerve. We recently showed in a small pilot trial that a single dose of nVNS improved (decreased) discrete gait variability characteristics in those receiving active stimulation relative to those receiving sham stimulation. Further multi-dose, multi-session studies are needed to assess the safety and tolerability of the stimulation and if improvement in gait is sustained over time. DESIGN This will be an investigator-initiated, single-site, proof-of-concept, double-blind sham-controlled randomised pilot trial in 40 people with PD. Participants will be randomly assigned on a 1:1 ratio to receive either active or sham transcutaneous cervical VNS. All participants will undergo comprehensive cognitive, autonomic and gait assessments during three sessions over 24 weeks, in addition to remote monitoring of ambulatory activity and falls, and exploratory analyses of cholinergic peripheral plasma markers. The primary outcome measure is the safety and tolerability of multi-dose nVNS in PD. Secondary outcomes include improvements in gait, cognition and autonomic function that will be summarised using descriptive statistics. DISCUSSION This study will report on the proportion of eligible and enrolled patients, rates of eligibility and reasons for ineligibility. Adverse events will be recorded informing on the safety and device tolerability in PD. This study will additionally provide us with information for sample size calculations for future studies and evidence whether improvement in gait control is enhanced when nVNS is delivered repeatedly and sustained over time. TRIAL REGISTRATION This trial is prospectively registered at www.isrctn.com/ISRCTN19394828 . Registered August 23, 2021.
Collapse
Affiliation(s)
- Hilmar P. Sigurdsson
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Heather Hunter
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK ,grid.420004.20000 0004 0444 2244The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Lisa Alcock
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Ross Wilson
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Ilse Pienaar
- grid.6572.60000 0004 1936 7486Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B12 2TT UK
| | - Elizabeth Want
- grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Mark R. Baker
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - John-Paul Taylor
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Lynn Rochester
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Alison J. Yarnall
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK ,grid.420004.20000 0004 0444 2244The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
44
|
Xu H, Jin T, Zhang R, Xie H, Zhuang C, Zhang Y, Kong D, Xiao G, Yu X. Cerebral cortex and hippocampus neural interaction during vagus nerve stimulation under in vivo large-scale imaging. Front Neurosci 2023; 17:1131063. [PMID: 36937685 PMCID: PMC10017477 DOI: 10.3389/fnins.2023.1131063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective The purpose of this study was to study mechanisms of VNS modulation from a single neuron perspective utilizing a practical observation platform with single neuron resolution and widefield, real-time imaging coupled with an animal model simultaneously exposing the cerebral cortex and the hippocampus. Methods We utilized the observation platform characterized of widefield of view, real-time imaging, and high spatiotemporal resolution to obtain the neuronal activities in the cerebral cortex and the hippocampus during VNS in awake states and under anesthesia. Results Some neurons in the hippocampus were tightly related to VNS modulation, and varied types of neurons showed distinct responses to VNS modulation. Conclusion We utilized such an observation platform coupled with a novel animal model to obtain more information on neuron activities in the cerebral cortex and the hippocampus, providing an effective method to further study the mechanisms of therapeutic effects modulated by VNS.
Collapse
Affiliation(s)
- Hanyun Xu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Jin
- Pulmonary and Critical Care Department, Wuhu Hospital of East China Normal University, Wuhu, Anhui, China
| | - Rujin Zhang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongsheng Kong
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
- BNRist, Tsinghua University, Beijing, China
- *Correspondence: Guihua Xiao,
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Xinguang Yu,
| |
Collapse
|
45
|
Wang X, Eguchi A, Yang Y, Chang L, Wan X, Shan J, Qu Y, Ma L, Mori C, Yang J, Hashimoto K. Key role of the gut-microbiota-brain axis via the subdiaphragmatic vagus nerve in demyelination of the cuprizone-treated mouse brain. Neurobiol Dis 2023; 176:105951. [PMID: 36493975 DOI: 10.1016/j.nbd.2022.105951] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease that attacks the central nervous system. Dietary intake of cuprizone (CPZ) produces demyelination resembling that of patients with MS. Given the role of the vagus nerve in gut-microbiota-brain axis in development of MS, we performed this study to investigate whether subdiaphragmatic vagotomy (SDV) affects demyelination in CPZ-treated mice. SDV significantly ameliorated demyelination and microglial activation in the brain compared with sham-operated CPZ-treated mice. Furthermore, 16S ribosomal RNA analysis revealed that SDV significantly improved the abnormal gut microbiota composition of CPZ-treated mice. An untargeted metabolomic analysis demonstrated that SDV significantly improved abnormal blood levels of metabolites in CPZ-treated mice compared with sham-operated CPZ-treated mice. Notably, there were correlations between demyelination or microglial activation in the brain and the relative abundance of several microbiome populations, suggesting a link between gut microbiota and the brain. There were also correlations between demyelination or microglial activation in the brain and blood levels of metabolites. Together, these data suggest that CPZ produces demyelination in the brain through the gut-microbiota-brain axis via the subdiaphragmatic vagus nerve.
Collapse
Affiliation(s)
- Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
46
|
Yu LH, Jia GW, Liu YL, Wang SR, Ma JX. Vagus nerve stimulation is a potential treatment for ischemic stroke. Neural Regen Res 2023; 18:825-831. [DOI: 10.4103/1673-5374.350698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Xie C, Gao X, Liu G, Tang H, Li C. USP10 is a potential mediator for vagus nerve stimulation to alleviate neuroinflammation in ischaemic stroke by inhibiting NF-κB signalling pathway. Front Immunol 2023; 14:1130697. [PMID: 37153558 PMCID: PMC10157167 DOI: 10.3389/fimmu.2023.1130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Vagus nerve stimulation (VNS) has a protective effect on neurological recovery in ischaemic stroke. However, its underlying mechanism remains to be clarified. Ubiquitin-specific protease 10 (USP10), a member of the ubiquitin-specific protease family, has been shown to inhibit the activation of the NF-κB signalling pathway. Therefore, this study investigated whether USP10 plays a key role in the protective effect of VNS against ischemic stroke and explore its mechanism. Methods Ischaemic stroke model was constructed by transient middle cerebral artery occlusion (tMCAO) in mice. VNS was performed at 30 min, 24hr, and 48hr after the establishment of tMCAO model. USP10 expression induced by VNS after tMCAO was measured. LV-shUSP10 was used to establish the model with low expression of USP10 by stereotaxic injection technique. The effects of VNS with or without USP10 silencing on neurological deficits, cerebral infarct volume, NF-κB pathway activation, glial cell activation, and release of pro-inflammation cytokines were assessed. Results VNS enhanced the expression of USP10 following tMCAO. VNS ameliorated neurological deficits and reduced cerebral infarct volume, but this effect was inhibited by silencing of USP10. Activation of the NF-κB pathway and the expression of inflammatory cytokines induced by tMCAO were suppressed by VNS. Moreover, VNS promoted the pro-to-anti-inflammatory response of microglia and inhibited activation of astrocytes, while silencing of USP10 prevented the neuroprotective and anti-neuroinflammatory effects of VNS. Conclusion USP10 is a potential mediator for VNS to alleviate neurological deficits, neuroinflammation, and glial cell activation in ischaemic stroke by inhibiting NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chenchen Xie
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Geriatrics, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Changqing Li,
| |
Collapse
|
49
|
Wei T, Ge X, Lu L, Li J, Xu P, Wu Q. Efficacy and safety of vagus nerve stimulation on upper extremity motor function in patients with stroke: A meta-analysis of randomized controlled trials. NeuroRehabilitation 2023; 53:253-267. [PMID: 37694313 DOI: 10.3233/nre-230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND In 2021, the U.S. Food and Drug Administration (FDA) approved paired vagus nerve stimulation (VNS) for patients with moderate-to-severe upper extremity motor impairments following chronic ischemic stroke. OBJECTIVE Previous meta-analyses have shown that VNS may impact stroke rehabilitation, but each has some limitations. METHODS PubMed, Ovid, Cochrane Library, ScienceDirect, Web of Science and WHO ICTRP databases were searched until July 14, 2022 for randomized controlled trials (RCTs). We defined primary outcomes as Fugl-Meyer Assessment for Upper Extremity (FMA-UE) and Wolf Motor Function Test (WMFT). Subgroup analyses included types of VNS, time since onset and long-term effects. Secondary outcomes included adverse events of VNS. RESULTS Eight RCTs involving 266 patients were analyzed, of which five used direct VNS and three transcutaneous auricular VNS. The results revealed that VNS enhanced upper extremity function via FMA-UE (SMD = 0.73; 95% CI: 0.48 to 0.99; P < 0.00001) and WMFT (SMD = 0.82; 95% CI:0.52 to 1.13; P < 0.00001) in comparison to the control group, but showed no significant change on long-term effects of FMA-UE (SMD = 0.69; 95% CI: - 0.06 to 1.44; P = 0.07). There was no difference in adverse events between the VNS and control groups (RR = 1.16; 95% CI: 0.46 to 2.92; P = 0.74). CONCLUSION For stroke victims with upper limb disabilities, VNS paired with rehabilitation was significantly safe and effective. More high-quality multicentric RCTs are needed to validate this conclusion.
Collapse
Affiliation(s)
- Tianqi Wei
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Xiangyang Ge
- Department of Rehabilitation Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Jiangsu, China
| | - Lingfeng Lu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu, China
| | - Jing Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Panpan Xu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Qinfeng Wu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| |
Collapse
|
50
|
Li R, Hu H, Luo N, Fang J. Bibliometric analysis of publication trends and research hotspots in vagus nerve stimulation: A 20-year panorama. Front Neurol 2022; 13:1045763. [PMID: 36619909 PMCID: PMC9811144 DOI: 10.3389/fneur.2022.1045763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background As a promising neuromodulation technique, vagus nerve stimulation (VNS) has been utilized to treat diverse diseases and the number of VNS studies has grown prosperously. Nonetheless, publication trends and research hotspots in this field remain unknown. This study aimed to perform a bibliometric analysis to systematically identify publication trends and research hotspots in VNS research within a 20-year panorama. Methods The Web of Science Core Collection (WoSCC) database was retrieved to screen eligible VNS-related publications from 2002 to 2021. The online analytic tool of the WoSCC database was used to analyze various bibliometric parameters, such as the number of annual publications, the output of countries/regions, journals, total citations, citations per publication, and the Hirsch index. Bibliometrics (http://bibliometric.com/) and CiteSpace (version 5.6.R3) were used to identify research trends and hotspots. Results A total of 7,283 publications were included for analysis. The annual number of publications increased stably but it increased significantly in recent years. The top five prolific countries were the United States, China, Germany, England, and France. The top five productive institutions were the University of California (Los Angeles), Harvard Medical School, Harvard University, University College London, and the University of Texas at Dallas. Notably, there was a geographical imbalance in countries and institutions. In addition, Epilepsy & Behavior, Epilepsia, and Plos One were the top three journals with the largest number of VNS publications. Michael P Kilgard was the most prolific author. Moreover, evolving research hotspots mainly included the effectiveness and mechanism of VNS on epilepsy, the role of VNS as an anti-inflammatory regulator, the application of VNS for psychiatric disorders, and the neuromodulation effect of VNS in headache management. Conclusion This study has revealed the overall publication trends and evolving research trends at a global level over a 20-year panorama. The potential collaborators, institutions, hotspots, and future research trends are also identified in this field, which will help guide new research directions of VNS.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hantong Hu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ning Luo
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianqiao Fang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,*Correspondence: Jianqiao Fang ✉
| |
Collapse
|