1
|
Mandl S, Alexopoulos J, Doering S, Wildner B, Seidl R, Bartha-Doering L. The effect of prenatal maternal distress on offspring brain development: A systematic review. Early Hum Dev 2024; 192:106009. [PMID: 38642513 DOI: 10.1016/j.earlhumdev.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Prenatal maternal distress can negatively affect pregnancy outcomes, yet its impact on the offspring's brain structure and function remains unclear. This systematic review summarizes the available literature on the relationship between prenatal maternal distress and brain development in fetuses and infants up to 12 months of age. METHODS We searched Central, Embase, MEDLINE, PsycINFO, and PSYNDEXplus for studies published between database inception and December 2023. Studies were included if prenatal maternal anxiety, stress, and/or depression was assessed, neuroimaging was used to examine the offspring, and the offspring's brain was imaged within the first year of life. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-II. RESULTS Out of the 1516 studies retrieved, 71 met our inclusion criteria. Although the studies varied greatly in their methodology, the results generally pointed to structural and functional aberrations in the limbic system, prefrontal cortex, and insula in fetuses and infants prenatally exposed to maternal distress. CONCLUSIONS The hippocampus, amygdala, and prefrontal cortex have a high density of glucocorticoid receptors, which play a key role in adapting to stressors and maintaining stress-related homeostasis. We thus conclude that in utero exposure to maternal distress prompts these brain regions to adapt by undergoing structural and functional changes, with the consequence that these alterations increase the risk for developing a neuropsychiatric illness later on. Future research should investigate the effect of providing psychological support for pregnant women on the offspring's early brain development.
Collapse
Affiliation(s)
- Sophie Mandl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Doering
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Brigitte Wildner
- University Library, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Oancea M, Strilciuc Ș, Borza DB, Ciortea R, Diculescu D, Mihu D. Neurobiological and Behavioral Underpinnings of Perinatal Mood and Anxiety Disorders (PMADs): A Selective Narrative Review. J Clin Med 2024; 13:2088. [PMID: 38610853 PMCID: PMC11012341 DOI: 10.3390/jcm13072088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Perinatal mood and anxiety disorders (PMADs) profoundly impact maternal and infant health, affecting women worldwide during pregnancy and postpartum. This review synthesizes current research on the neurobiological effects of PMADs, particularly their influence on brain structure, function, and corresponding cognitive, behavioral, and mental health outcomes in mothers. A literature search across PubMed, PsycINFO, and Google Scholar yielded studies utilizing neuroimaging (MRI, fMRI) and cognitive assessments to explore brain changes in PMADs. The key findings indicate significant neurobiological alterations in PMADs, such as glutamatergic dysfunction, neuronal damage, and altered neural connectivity, particularly in postpartum depression (PPD). Functional MRI studies reveal distinct patterns of brain function alteration, including amygdala non-responsivity in PPD, differing from traditional major depressive disorder (MDD). These neurobiological changes are connected with cognitive impairments and behavioral modifications, impacting maternal caregiving. Understanding these alterations is fundamental for developing effective treatments. The findings emphasize the importance of focusing on maternal mental health, advocating for early detection, and personalized treatment strategies to improve maternal and child outcomes.
Collapse
Affiliation(s)
- Mihaela Oancea
- Department of Obstetrics and Gynaecology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ștefan Strilciuc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, 400337 Cluj-Napoca, Romania
| | - Dan Boitor Borza
- Department of Obstetrics and Gynaecology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Răzvan Ciortea
- Department of Obstetrics and Gynaecology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Doru Diculescu
- Department of Obstetrics and Gynaecology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Dan Mihu
- Department of Obstetrics and Gynaecology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Zhu Y, Li X, Chen J, Gong W. Perinatal depression trajectories and child development at one year: a study in China. BMC Pregnancy Childbirth 2024; 24:176. [PMID: 38448846 PMCID: PMC10918895 DOI: 10.1186/s12884-024-06330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The objective of the current study was to investigate the correlation between trajectories of maternal perinatal depression (PND) spanning from early pregnancy to one year postpartum and developmental delays observed in one-year-old children. METHODS The dataset under examination encompassed 880 women who took part in a mother-child birth study conducted in China. Latent class growth analysis (LCGA) was employed to identify patterns in Edinburgh Postnatal Depression Scale (EPDS) scores of women, spanning from early pregnancy to one year postpartum. To assess the neurodevelopment of one-year-old children, a Chinese version of the Bayley Scale of Infant Development (BSID-CR) was employed. Logistic regression was employed to explore the association between PND trajectories and developmental delays in children, with appropriate covariate adjustments. RESULTS The trajectories of maternal PND identified in this study included a minimal-stable symptom group (n = 155), low-stable symptom group (n = 411), mild-stable symptom group (n = 251), and moderate-stable symptom group (n = 63). Logistic regression analysis revealed that mothers falling into the moderate-stable symptom group exhibited a notably heightened risk of having a child with psychomotor developmental delays at the age of one year. CONCLUSIONS The findings drawn from a representative sample in China provide compelling empirical evidence that bolsters the association between maternal PND and the probability of psychomotor developmental delays in children. It is imperative to develop tailored intervention strategies and meticulously design mother-infant interactive intervention programs for women with PND.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoyu Li
- HER Team and Department of Maternal and Child Health, Xiangya School of Public Health, Hunan, China
| | - Junyu Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenjie Gong
- HER Team and Department of Maternal and Child Health, Xiangya School of Public Health, Hunan, China.
- Department of Psychiatry, University of Rochester, Rochester, New York, USA.
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK.
- Xiangya School of Public Health, Central South University, 172 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, China.
| |
Collapse
|
4
|
Singh MK, Gorelik AJ, Stave C, Gotlib IH. Genetics, epigenetics, and neurobiology of childhood-onset depression: an umbrella review. Mol Psychiatry 2024; 29:553-565. [PMID: 38102485 DOI: 10.1038/s41380-023-02347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Depression is a serious and persistent psychiatric disorder that commonly first manifests during childhood. Depression that starts in childhood is increasing in frequency, likely due both to evolutionary trends and to increased recognition of the disorder. In this umbrella review, we systematically searched the extant literature for genetic, epigenetic, and neurobiological factors that contribute to a childhood onset of depression. We searched PubMed, EMBASE, OVID/PsychInfo, and Google Scholar with the following inclusion criteria: (1) systematic review or meta-analysis from a peer-reviewed journal; (2) inclusion of a measure assessing early age of onset of depression; and (3) assessment of neurobiological, genetic, environmental, and epigenetic predictors of early onset depression. Findings from 89 systematic reviews of moderate to high quality suggest that childhood-onset depressive disorders have neurobiological, genetic, environmental, and epigenetic roots consistent with a diathesis-stress theory of depression. This review identified key putative markers that may be targeted for personalized clinical decision-making and provide important insights concerning candidate mechanisms that might underpin the early onset of depression.
Collapse
|
5
|
Koc D, El Marroun H, Stricker BH, Muetzel RL, Tiemeier H. Intrauterine Exposure to Antidepressants or Maternal Depressive Symptoms and Offspring Brain White Matter Trajectories From Late Childhood to Adolescence. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:217-226. [PMID: 37926188 DOI: 10.1016/j.bpsc.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND During pregnancy, both selective serotonin reuptake inhibitor (SSRI) exposure and maternal depression have been associated with poor offspring neurodevelopmental outcomes. In a population-based cohort, we investigated the association between intrauterine exposure to SSRIs and depressive symptoms and offspring white matter development from childhood to adolescence. METHODS Self-reported SSRI use was verified by pharmacy records. In midpregnancy, women reported on depressive symptoms using the Brief Symptom Inventory. Using diffusion tensor imaging, offspring white matter microstructure, including whole-brain and tract-specific fractional anisotropy (FA) and mean diffusivity, was measured at 3 assessments between ages 7 to 15 years. The participants were divided into 4 groups: prenatal SSRI exposure (n = 37 with 60 scans), prenatal depression exposure (n = 229 with 367 scans), SSRI use before pregnancy (n = 72 with 95 scans), and reference (n = 2640 with 4030 scans). RESULTS Intrauterine exposure to SSRIs and depressive symptoms were associated with lower FA in the whole-brain and the forceps minor at 7 years. Exposure to higher prenatal depressive symptom scores was associated with lower FA in the uncinate fasciculus, cingulum bundle, superior and inferior longitudinal fasciculi, and corticospinal tracts. From ages 7 to 15 years, children exposed to prenatal depressive symptoms showed a faster increase in FA in these white matter tracts. Prenatal SSRI exposure was not related to white matter microstructure growth over and above exposure to depressive symptoms. CONCLUSIONS These results suggest that prenatal exposure to maternal depressive symptoms was negatively associated with white matter microstructure in childhood, but these differences attenuated during development, suggesting catch-up growth.
Collapse
Affiliation(s)
- Dogukan Koc
- Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
6
|
Koc D, Tiemeier H, Stricker BH, Muetzel RL, Hillegers M, El Marroun H. Prenatal Antidepressant Exposure and Offspring Brain Morphologic Trajectory. JAMA Psychiatry 2023; 80:1208-1217. [PMID: 37647036 PMCID: PMC10469300 DOI: 10.1001/jamapsychiatry.2023.3161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/13/2023] [Indexed: 09/01/2023]
Abstract
Importance Clinical decision-making on antidepressant treatment during pregnancy, particularly selective serotonin reuptake inhibitors (SSRIs), is challenging, as both prenatal SSRI exposure and maternal depressive symptoms may be associated with negative outcomes in offspring. Objective To investigate the association between intrauterine SSRI exposure and maternal depressive symptoms and structural brain development in offspring from mid-childhood to early puberty. Design, Setting, and Participants This prospective, population-based cohort study was embedded in the Generation R Study in Rotterdam, the Netherlands. All pregnant individuals with an expected delivery date between April 1, 2002, and January 31, 2006, were invited to participate. Data were analyzed from February 1 to September 30, 2022. Exposure Maternal-reported SSRI use verified by pharmacy records. In mid-pregnancy and 2 and 6 months after delivery, participants reported depressive symptoms using the Brief Symptom Inventory and were divided into 5 groups: SSRI use during pregnancy (n = 41; 80 scans), SSRI use only before pregnancy (n = 77; 126 scans), prenatal depressive symptoms without prenatal SSRI use (n = 257; 477 scans), postnatal depressive symptoms only (n = 74; 128 scans), and nonexposed control individuals (n = 2749; 4813 scans). Main Outcomes and Measures The main outcome was brain morphometry in offspring, including global and cortical brain volumes, measured at 3 magnetic resonance imaging assessments from 7 to 15 years of age. Results The study included 3198 mother-child dyads. A total of 3198 mothers (100%) identified as women; mean (SD) age at intake was 31.1 (4.7) years. Children (1670 [52.2%] female) underwent brain imaging assessment from 7 to 15 years of age with 5624 total scans. Most brain gray matter volumes showed an inverted U-shaped trajectory. Compared with nonexposed controls, children prenatally exposed to SSRIs had less cerebral gray matter (β [SE], -20 212.2 [7285.6] mm3; P = .006), particularly within the corticolimbic circuit, which persisted up to 15 years of age. Children exposed to SSRIs prenatally showed a steeper increase in volumes of the amygdala (age interaction: β [SE], 43.3 [13.4] mm3; P = .006) and fusiform gyrus (age interaction: β [SE], 168.3 [51.4] mm3; P = .003) from 7 to 15 years of age. These volumetric differences in the amygdala and fusiform observed in childhood did not persist until early adolescence. Prenatal depression was associated with a smaller volume in the rostral anterior cingulate gyrus (β [SE], -166.3 [65.1] mm3; P = .006), and postnatal depression was associated with a reduced fusiform gyrus (β [SE], -480.5 [189.2] mm3; P = .002). No association of SSRI use before pregnancy with brain outcomes was observed. Conclusions and Relevance The results of this cohort study suggest that prenatal SSRI exposure may be associated with altered developmental trajectories of brain regions involved in emotional regulation in offspring. Further research on the functional implications of these findings is needed.
Collapse
Affiliation(s)
- Dogukan Koc
- Generation R Study Group, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Bruno H. Stricker
- Department of Epidemiology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Ryan L. Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Ayyash S, Sunderji A, Gallant HD, Hall A, Davis AD, Pokhvisneva I, Meaney MJ, Silveira PP, Sassi RB, Hall GB. Examining resting-state network connectivity in children exposed to perinatal maternal adversity using anatomically weighted functional connectivity (awFC) analyses; A preliminary report. Front Neurosci 2023; 17:1066373. [PMID: 37008220 PMCID: PMC10060836 DOI: 10.3389/fnins.2023.1066373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionEnvironmental perturbations during critical periods can have pervasive, organizational effects on neurodevelopment. To date, the literature examining the long-term impact of early life adversity has largely investigated structural and functional imaging data outcomes independently. However, emerging research points to a relationship between functional connectivity and the brain’s underlying structural architecture. For instance, functional connectivity can be mediated by the presence of direct or indirect anatomical pathways. Such evidence warrants the use of structural and functional imaging in tandem to study network maturation. Accordingly, this study examines the impact of poor maternal mental health and socioeconomic context during the perinatal period on network connectivity in middle childhood using an anatomically weighted functional connectivity (awFC) approach. awFC is a statistical model that identifies neural networks by incorporating information from both structural and functional imaging data.MethodsResting-state fMRI and DTI scans were acquired from children aged 7–9 years old.ResultsOur results indicate that maternal adversity during the perinatal period can affect offspring’s resting-state network connectivity during middle childhood. Specifically, in comparison to controls, children of mothers who had poor perinatal maternal mental health and/or low socioeconomic status exhibited greater awFC in the ventral attention network.DiscussionThese group differences were discussed in terms of the role this network plays in attention processing and maturational changes that may accompany the consolidation of a more adult-like functional cortical organization. Furthermore, our results suggest that there is value in using an awFC approach as it may be more sensitive in highlighting connectivity differences in developmental networks associated with higher-order cognitive and emotional processing, as compared to stand-alone FC or SC analyses.
Collapse
Affiliation(s)
- Sondos Ayyash
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Aleeza Sunderji
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Heather D. Gallant
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Andrew D. Davis
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michael J. Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Faculty of Medicine and Health Sciences, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Translational Neuroscience Program, Agency for Science, Technology and Research (A*STAR), Singapore Yong Loo Lin School of Medicine, Singapore Institute for Clinical Sciences and Brain – Body Initiative, National University of Singapore, Singapore, Singapore
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Faculty of Medicine and Health Sciences, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Roberto B. Sassi
- Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Geoffrey B. Hall
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- *Correspondence: Geoffrey B. Hall,
| |
Collapse
|
8
|
Uy JP, Tan AP, Broeckman BBFP, Gluckman PD, Chong YS, Chen H, Fortier MV, Meaney MJ, Callaghan BL. Effects of maternal childhood trauma on child emotional health: maternal mental health and frontoamygdala pathways. J Child Psychol Psychiatry 2023; 64:426-436. [PMID: 36331294 DOI: 10.1111/jcpp.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Experiences of early life adversity pose significant psychological and physical health risks to exposed individuals. Emerging evidence suggests that these health risks can be transmitted across generations; however, the mechanisms underlying the intergenerational impacts of maternal early-life trauma on child health remain unknown. METHODS The current study used a prospective longitudinal design to determine the unique and joint contributions of maternal childhood trauma (neglect and abuse) and maternal prenatal and postnatal mental health (anxiety and depressive symptoms) (N = 541) to children's resting frontoamygdala functional connectivity at 6 years (N = 89) and emotional health at 7-8 years, as indexed by parent-reported internalizing problems and child self-reported anxiety and depressive symptoms (N = 268-418). RESULTS Greater maternal childhood neglect was indirectly associated with greater internalizing problems serially through a pathway of worse maternal prenatal and postnatal mental health (greater maternal anxiety and depressive symptoms). Worse maternal postnatal mental health was also uniquely associated with more negative child frontoamygdala resting-state functional connectivity, over and above maternal childhood trauma (both neglect and abuse) and prenatal mental health. More negative frontoamygdala functional connectivity was, in turn, associated with poorer child emotional health outcomes. CONCLUSIONS Findings from the current study provide support for the existence of intergenerational influences of parental exposure to childhood trauma on childhood risk for psychopathology in the next generation and point to the importance of maternal factors proximal to the second generation (maternal prenatal and postnatal mental health) in determining the intergenerational impact of maternal early experiences.
Collapse
Affiliation(s)
- Jessica P Uy
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research in Singapore, Singapore City, Singapore
| | - Birit B F P Broeckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research in Singapore, Singapore City, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research in Singapore, Singapore City, Singapore.,Liggins Institute, University of Auckland, Grafton, Auckland, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research in Singapore, Singapore City, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Department of Obstetrics and Gynaecology, National University Health System, Singapore City, Singapore
| | - Helen Chen
- Psychiatry and Radiology, KK Women's and Children's Hospital, Singapore City, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research in Singapore, Singapore City, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research in Singapore, Singapore City, Singapore.,Liggins Institute, University of Auckland, Grafton, Auckland, New Zealand.,Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada
| | - Bridget L Callaghan
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Wang Z, Liu C, Dong Q, Xue G, Chen C. Polygenic risk score for five major psychiatric disorders associated with volume of distinct brain regions in the general population. Biol Psychol 2023; 178:108530. [PMID: 36858107 DOI: 10.1016/j.biopsycho.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Risk genes and abnormal brain structural indices of psychiatric disorders have been extensively studied. However, whether genetic risk influences brain structure in the general population has been rarely studied. The current study enrolled 483 young Chinese adults, calculated their polygenic risk scores (PRS) for psychiatric disorders based on Psychiatric Genomics Consortium GWAS results, and examined the association between PRSs and brain volume. We found that PRSs were associated with the volume of many brain regions, with differences between PRS for different disorder, calculated at different threshold, and calculated using European or East Asian ancestry. Of them, the PRS for Major Depressive Disorder based on European ancestry was positively associated with right temporal gyrus; the PRS for schizophrenia based on East Asian ancestry was negatively associated with right precentral and postcentral gyrus; the PRS for schizophrenia based on European ancestry was positively associated with right superior temporal gyrus. All these brain regions are critical for corresponding disorders. However, no significant associations were found between PRS for Autism Spectrum Disorder / Bipolar Disorder and brain volume; and the association between PRS for Attention Deficit Hyperactivity Disorder at different thresholds and brain volume was inconsistent. These findings suggest distinct brain mechanisms underlying different psychiatric disorders.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Experimental School Attached to Haidian Teachers' Training College, Xiangshan Branch, Beijing, China
| | - Chang Liu
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| |
Collapse
|
10
|
Tang S, Liu X, Nie L, Qian F, Chen W, He L. Three-dimensional pseudocontinuous arterial spin labeling perfusion imaging shows cerebral blood flow perfusion decline in attention-deficit/hyperactivity disorder children. Front Psychiatry 2023; 14:1064647. [PMID: 36741108 PMCID: PMC9889924 DOI: 10.3389/fpsyt.2023.1064647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To investigate the feasibility of three-dimensional pseudocontinuous arterial spin labeling (3D-pcASL) perfusion imaging in the brain of children with Attention-deficit/hyperactivity disorder (ADHD). METHODS A total of 78 ADHD children aged 5-13 years were prospectively selected as the study group, and 89 healthy children matched in age and sex were selected as the control group. All children underwent MRI conventional sequence, 3D-pcASL, and 3D-T1 sequence scans. The brain gray and white matter volume and cerebral blood flow (CBF) perfusion values were obtained by software post-processing, and were compared and analyzed in the two groups to find out their characteristics in the brain of ADHD children. RESULTS The total brain volume and total CBF values were lower in ADHD children than in healthy children (P < 0.05); the gray and white matter volumes in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus and other brain regions were lower in ADHD children than in healthy children (P < 0.05); the gray matter CBF values in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus and other brain regions were lower in ADHD children than in healthy children (P < 0.05); the differences between the white matter CBF values of white matter in the said brain regions of ADHD children and healthy children were not statistically significant (P > 0.05); and the CBF values in frontal lobe and caudate nuclei could distinguish ADHD children (AUC > 0.05, P < 0.05). CONCLUSION The 3D-pcASL technique showed reduced cerebral perfusion in some brain regions of ADHD children.
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xianfan Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Fangfang Qian
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wushang Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
11
|
McGuinn LA, Tamayo-Ortiz M, Rosa MJ, Harari H, Osorio-Valencia E, Schnaas L, Hernandez-Chavez C, Wright RJ, Klein DN, Téllez-Rojo MM, Wright RO. The influence of maternal anxiety and cortisol during pregnancy on childhood anxiety symptoms. Psychoneuroendocrinology 2022; 139:105704. [PMID: 35286908 PMCID: PMC8977283 DOI: 10.1016/j.psyneuen.2022.105704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The etiology of child and adolescent anxiety remains poorly understood. Although several previous studies have examined associations between prenatal maternal psychological functioning and infant and child health outcomes, less is known about the impact of maternal anxiety specific to pregnancy and cortisol during pregnancy on childhood anxiety outcomes. METHODS Participants included 496 mother-child pairs from the PROGRESS longitudinal birth cohort in Mexico City. Anxiety symptoms were assessed at age 8-11 years during 2018-2019 using the Revised Children's Manifest Anxiety Scale. Pregnancy-specific anxiety was assessed using an expanded version of the Pregnancy Anxiety Scale. Maternal biological stress response during pregnancy was assessed using salivary cortisol measures (area under the curve, cortisol awakening response, and diurnal slope). Linear regression models were used to estimate associations between maternal anxiety and cortisol in relation to continuous child anxiety symptom T-scores. Models were adjusted for maternal age, socioeconomic status, child sex and age, and gestational age at saliva collection. RESULTS We found that higher levels of pregnancy-specific anxiety in the mother were associated with higher anxiety symptoms in the child (β: 1.30, 95% CI: 0.19, 2.41). We additionally observed an association between higher maternal total cortisol output during pregnancy and higher anxiety symptoms in the child (β: 1.13, 95% CI: 0.25, 2.01). DISCUSSION These findings highlight the importance of screening for maternal pregnancy-specific anxiety and the need to identify interventions and support for mothers during pregnancy in order to promote healthy outcomes for mothers and their children.
Collapse
Affiliation(s)
- Laura A McGuinn
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Homero Harari
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Division of Pediatric Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Tang S, Liu X, Nie L, Chen Z, Ran Q, He L. Diagnosis of children with attention-deficit/hyperactivity disorder (ADHD) comorbid autistic traits (ATs) by applying quantitative magnetic resonance imaging techniques. Front Psychiatry 2022; 13:1038471. [PMID: 36465303 PMCID: PMC9712964 DOI: 10.3389/fpsyt.2022.1038471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To explore the feasibility of applying quantitative magnetic resonance imaging techniques for the diagnosis of children with attention-deficit/hyperactivity disorder (ADHD) comorbid autistic traits (ATs). METHODS A prospective study was performed by selecting 56 children aged 4-5 years with ADHD-ATs as the study group and 53 sex- and age-matched children with ADHD without ATs as the control group. All children underwent magnetic resonance scans with enhanced T2*- weighted magnetic resonance angiography (ESWAN), 3D-PCASL, and 3D-T1 sequences. Iron content and cerebral blood flow parameters were obtained via subsequent software processing, and the parameter values in particular brain regions in both groups were compared and analyzed to determine the characteristics of these parameters in children with ADHD-ATs. RESULTS Iron content and cerebral blood flow in the frontal lobe, temporal lobe, hippocampus, and caudate nucleus of children with ADHD-ATs were lower than those of children with ADHD without ATs (p < 0.05). Iron content and CBF values in the frontal lobe, temporal lobe and caudate nucleus could distinguish children with ADHD-ATs from those without ATs (AUC > 0.5, p < 0.05). CONCLUSIONS Quantitative magnetic resonance techniques could distinguish children with ADHD-ATs. TRIAL REGISTRATION This study protocol was registered at the Chinese clinical trial registry (ChiCTR2100046616).
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xianfan Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Zhuo Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiying Ran
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|