1
|
Fortier A, Dumais A, Boisvert M, Zouaoui I, Chung CF, Potvin S. Aberrant activity at rest of the associative striatum in schizophrenia: Meta-analyses of the amplitude of low frequency fluctuations. J Psychiatr Res 2024; 179:117-132. [PMID: 39284255 DOI: 10.1016/j.jpsychires.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024]
Abstract
Schizophrenia is a severe psychiatric disorder associated with brain alterations at rest. Amplitude of low-frequency fluctuations (ALFF) and its fractional version (fALFF) have been widely used to investigate alterations in spontaneous brain activity in schizophrenia. However, results are still inconsistent. Furthermore, while these measurements are similar, they showed some differences, and no meta-analysis has been yet performed to compare them in schizophrenia. Thus, we conducted systematic research in five databases and in the grey literature to find articles investigating fALFF and/or ALFF alterations in schizophrenia. Two separate meta-analyses were performed using the SDM-PSI software to identify fALFF and ALFF alterations separately. Then, a conjunction analysis was conducted to determine congruent results between the two approaches. We found that patients with schizophrenia showed altered fALFF activity in the left insula/putamen, the right paracentral lobule and the left middle occipital gyrus compared to healthy individuals. Patients with schizophrenia exhibited ALFF alterations in the bilateral putamen, the bilateral caudate nucleus, the bilateral inferior frontal gyrus, the right precuneus, the right precentral gyrus, the left postcentral gyrus, the right posterior cingulate gyrus, compared to healthy controls. ALFF increased activity in the left putamen was higher in drug-naïve patients and was correlated with positive symptoms. The conjunction analysis revealed a spatial convergence between fALFF and ALFF studies in the left putamen. This left putamen cluster is part of the associative striatum. Its alteration in schizophrenia provides additional support to the influential aberrant salience hypothesis of psychosis.
Collapse
Affiliation(s)
- Alexandra Fortier
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alexandre Dumais
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Philippe-Pinel National Institute of Legal Psychiatry, Montreal, Canada
| | - Mélanie Boisvert
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Inès Zouaoui
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Chen-Fang Chung
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Xu Y, Cheng X, Li Y, Shen H, Wan Y, Ping L, Yu H, Cheng Y, Xu X, Cui J, Zhou C. Shared and Distinct White Matter Alterations in Major Depression and Bipolar Disorder: A Systematic Review and Meta-Analysis. J Integr Neurosci 2024; 23:170. [PMID: 39344242 DOI: 10.31083/j.jin2309170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Identifying white matter (WM) microstructural similarities and differences between major depressive disorder (MDD) and bipolar disorder (BD) is an important way to understand the potential neuropathological mechanism in emotional disorders. Numerous diffusion tensor imaging (DTI) studies over recent decades have confirmed the presence of WM anomalies in these two affective disorders, but the results were inconsistent. This study aimed to determine the statistical consistency of DTI findings for BD and MDD by using the coordinate-based meta-analysis (CBMA) approach. METHODS We performed a systematic search of tract-based spatial statistics (TBSS) studies comparing MDD or BD with healthy controls (HC) as of June 30, 2024. The seed-based d-mapping (SDM) was applied to investigate fractional anisotropy (FA) changes. Meta-regression was then used to analyze the potential correlations between demographics and neuroimaging alterations. RESULTS Regional FA reductions in the body of the corpus callosum (CC) were identified in both of these two diseases. Besides, MDD patients also exhibited decreased FA in the genu and splenium of the CC, as well as the left anterior thalamic projections (ATP), while BD patients showed FA reduction in the left median network, and cingulum in addition to the CC. CONCLUSIONS The results highlighted that altered integrity in the body of CC served as the shared basis of MDD and BD, and distinct microstructural WM abnormalities also existed, which might induce the various clinical manifestations of these two affective disorders. The study was registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number: CRD42022301929.
Collapse
Affiliation(s)
- Yinghong Xu
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Xiaodong Cheng
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Ying Li
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, 361012 Xiamen, Fujian, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jian Cui
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
- Department of Psychology, Affiliated Hospital of Jining Medical University, 272067 Jining, Shandong, China
| |
Collapse
|
3
|
Long H, Chen Z, Xu X, Zhou Q, Fang Z, Lv M, Yang XH, Xiao J, Sun H, Fan M. Elucidating genetic and molecular basis of altered higher-order brain structure-function coupling in major depressive disorder. Neuroimage 2024; 297:120722. [PMID: 38971483 DOI: 10.1016/j.neuroimage.2024.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/β-hydrolase domain-containing 6 (ABHD6), β 1,3-N-acetylglucosaminyltransferase-9(β3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, β3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zihao Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhaolin Fang
- Network Information Center, Zhejiang University of Technology, Hangzhou 310023, China
| | - Mingqi Lv
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Ban M, He J, Wang D, Cao Y, Kong L, Yuan F, Qian Z, Zhu X. Association between segmental alterations of white matter bundles and cognitive performance in first-episode, treatment-naïve young adults with major depressive disorder. J Affect Disord 2024; 358:309-317. [PMID: 38703905 DOI: 10.1016/j.jad.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Cumulative evidence has consistently shown that white matter (WM) disruption is associated with cognitive decline in geriatric depression. However, limited research has been conducted on the correlation between these lesions and cognitive performance in untreated young adults with major depressive disorder (MDD), particularly with the specific segmental alterations of the fibers. METHOD Diffusion tensor images were performed on 60 first-episode, treatment-naïve young adult patients with MDD and 54 matched healthy controls (HCs). Automated fiber quantification was applied to calculate the tract profiles of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) to evaluate the WM microstructural organization. Correlation analysis was performed to find the associations between the diffusion properties and cognitive performance. RESULTS Compared with HCs, patients with MDD exhibited predominantly different diffusion properties in bilateral uncinate fasciculus (UF), corticospinal tracts (CSTs), left superior longitudinal fasciculus and anterior thalamic radiation. The FA of the temporal cortex portion of right UF was positively correlated with working memory. The MD of the temporal component of left UF was negatively correlated with working memory and positively correlated with symptom severity. Additionally, a positive correlation between the MD of left CST and the psychomotor speed, negative correlation between the MD of left CST and the executive functions and complex attentional processes were observed. CONCLUSIONS Our study validated the alterations in spatial localization of WM microstructure and its correlations with cognitive performance in first-episode, treatment-naïve young adults with MDD. This study added to the knowledge of the neuropathological basis of MDD.
Collapse
Affiliation(s)
- Meiting Ban
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jincheng He
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuegui Cao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Singhand Intelligent Data Technology Co., Ltd, China.
| |
Collapse
|
5
|
Toffanin T, Cattarinussi G, Ghiotto N, Lussignoli M, Pavan C, Pieri L, Schiff S, Finatti F, Romagnolo F, Folesani F, Nanni MG, Caruso R, Zerbinati L, Belvederi Murri M, Ferrara M, Pigato G, Grassi L, Sambataro F. Effects of electroconvulsive therapy on cortical thickness in depression: a systematic review. Acta Neuropsychiatr 2024:1-15. [PMID: 38343196 DOI: 10.1017/neu.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is one of the most studied and validated available treatments for severe or treatment-resistant depression. However, little is known about the neural mechanisms underlying ECT. This systematic review aims to critically review all structural magnetic resonance imaging studies investigating longitudinal cortical thickness (CT) changes after ECT in patients with unipolar or bipolar depression. METHODS We performed a search on PubMed, Medline, and Embase to identify all available studies published before April 20, 2023. A total of 10 studies were included. RESULTS The investigations showed widespread increases in CT after ECT in depressed patients, involving mainly the temporal, insular, and frontal regions. In five studies, CT increases in a non-overlapping set of brain areas correlated with the clinical efficacy of ECT. The small sample size, heterogeneity in terms of populations, comorbidities, and ECT protocols, and the lack of a control group in some investigations limit the generalisability of the results. CONCLUSIONS Our findings support the idea that ECT can increase CT in patients with unipolar and bipolar depression. It remains unclear whether these changes are related to the clinical response. Future larger studies with longer follow-up are warranted to thoroughly address the potential role of CT as a biomarker of clinical response after ECT.
Collapse
Affiliation(s)
- Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Niccolò Ghiotto
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | | | - Chiara Pavan
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Luca Pieri
- Department of Medicine, University of Padova, Padua, Italy
| | - Sami Schiff
- Department of Medicine, University of Padova, Padua, Italy
| | - Francesco Finatti
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Francesca Romagnolo
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Federica Folesani
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Giulia Nanni
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Rosangela Caruso
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Luigi Zerbinati
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Martino Belvederi Murri
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Ferrara
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giorgio Pigato
- Department of Psychiatry, Padova University Hospital, Padua, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
6
|
Fu CHY, Antoniades M, Erus G, Garcia JA, Fan Y, Arnone D, Arnott SR, Chen T, Choi KS, Fatt CC, Frey BN, Frokjaer VG, Ganz M, Godlewska BR, Hassel S, Ho K, McIntosh AM, Qin K, Rotzinger S, Sacchet MD, Savitz J, Shou H, Singh A, Stolicyn A, Strigo I, Strother SC, Tosun D, Victor TA, Wei D, Wise T, Zahn R, Anderson IM, Craighead WE, Deakin JFW, Dunlop BW, Elliott R, Gong Q, Gotlib IH, Harmer CJ, Kennedy SH, Knudsen GM, Mayberg HS, Paulus MP, Qiu J, Trivedi MH, Whalley HC, Yan CG, Young AH, Davatzikos C. Neuroanatomical dimensions in medication-free individuals with major depressive disorder and treatment response to SSRI antidepressant medications or placebo. NATURE. MENTAL HEALTH 2024; 2:164-176. [PMID: 38948238 PMCID: PMC11211072 DOI: 10.1038/s44220-023-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/17/2023] [Indexed: 07/02/2024]
Abstract
Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (β = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.
Collapse
Affiliation(s)
- Cynthia H. Y. Fu
- School of Psychology, University of East London, London, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jose A. Garcia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | | | - Taolin Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Cherise Chin Fatt
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario Canada
- Mood Disorders Treatment and Research Centre and Women’s Health Concerns Clinic, St Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Vibe G. Frokjaer
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Beata R. Godlewska
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Stefanie Hassel
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Keith Ho
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
| | - Andrew M. McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario Canada
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | | | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Aleks Stolicyn
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Irina Strigo
- Department of Psychiatry, University of California San Francisco, San Francisco, USA
| | - Stephen C. Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | | | - Dongtao Wei
- School of Psychology, Southwest University, Chongqing, China
| | - Toby Wise
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Roland Zahn
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - W. Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
- Department of Psychology, Emory University, Atlanta, GA USA
| | - J. F. William Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA USA
| | | | - Sidney H. Kennedy
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario Canada
| | - Gitte M. Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen S. Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Madhukar H. Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Heather C. Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Chao-Gan Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Allan H. Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
7
|
Stoyanov D, Paunova R, Dichev J, Kandilarova S, Khorev V, Kurkin S. Functional magnetic resonance imaging study of group independent components underpinning item responses to paranoid-depressive scale. World J Clin Cases 2023; 11:8458-8474. [PMID: 38188204 PMCID: PMC10768520 DOI: 10.12998/wjcc.v11.i36.8458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive, affective and behavioral tasks, adapted for the functional magnetic resonance imaging (MRI) (fMRI) experimental environment. There is sufficient evidence that common networks underpin activations in task-based fMRI across different mental disorders. AIM To investigate whether there exist specific neural circuits which underpin differential item responses to depressive, paranoid and neutral items (DN) in patients respectively with schizophrenia (SCZ) and major depressive disorder (MDD). METHODS 60 patients were recruited with SCZ and MDD. All patients have been scanned on 3T magnetic resonance tomography platform with functional MRI paradigm, comprised of block design, including blocks with items from diagnostic paranoid (DP), depression specific (DS) and DN from general interest scale. We performed a two-sample t-test between the two groups-SCZ patients and depressive patients. Our purpose was to observe different brain networks which were activated during a specific condition of the task, respectively DS, DP, DN. RESULTS Several significant results are demonstrated in the comparison between SCZ and depressive groups while performing this task. We identified one component that is task-related and independent of condition (shared between all three conditions), composed by regions within the temporal (right superior and middle temporal gyri), frontal (left middle and inferior frontal gyri) and limbic/salience system (right anterior insula). Another component is related to both diagnostic specific conditions (DS and DP) e.g. It is shared between DEP and SCZ, and includes frontal motor/language and parietal areas. One specific component is modulated preferentially by to the DP condition, and is related mainly to prefrontal regions, whereas other two components are significantly modulated with the DS condition and include clusters within the default mode network such as posterior cingulate and precuneus, several occipital areas, including lingual and fusiform gyrus, as well as parahippocampal gyrus. Finally, component 12 appeared to be unique for the neutral condition. In addition, there have been determined circuits across components, which are either common, or distinct in the preferential processing of the sub-scales of the task. CONCLUSION This study has delivers further evidence in support of the model of trans-disciplinary cross-validation in psychiatry.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Rositsa Paunova
- Research Institute, Medical University, Plovdiv 4002, Bulgaria
| | - Julian Dichev
- Faculty of Medicine, Medical University, Plovdiv 4002, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University, Plovdiv 4002, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
8
|
Paunova R, Ramponi C, Kandilarova S, Todeva-Radneva A, Latypova A, Stoyanov D, Kherif F. Degeneracy and disordered brain networks in psychiatric patients using multivariate structural covariance analyzes. Front Psychiatry 2023; 14:1272933. [PMID: 37908595 PMCID: PMC10614636 DOI: 10.3389/fpsyt.2023.1272933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction In this study, we applied multivariate methods to identify brain regions that have a critical role in shaping the connectivity patterns of networks associated with major psychiatric diagnoses, including schizophrenia (SCH), major depressive disorder (MDD) and bipolar disorder (BD) and healthy controls (HC). We used T1w images from 164 subjects: Schizophrenia (n = 17), bipolar disorder (n = 25), major depressive disorder (n = 68) and a healthy control group (n = 54). Methods We extracted regions of interest (ROIs) using a method based on the SHOOT algorithm of the SPM12 toolbox. We then performed multivariate structural covariance between the groups. For the regions identified as significant in t term of their covariance value, we calculated their eigencentrality as a measure of the influence of brain regions within the network. We applied a significance threshold of p = 0.001. Finally, we performed a cluster analysis to determine groups of regions that had similar eigencentrality profiles in different pairwise comparison networks in the observed groups. Results As a result, we obtained 4 clusters with different brain regions that were diagnosis-specific. Cluster 1 showed the strongest discriminative values between SCH and HC and SCH and BD. Cluster 2 had the strongest discriminative value for the MDD patients, cluster 3 - for the BD patients. Cluster 4 seemed to contribute almost equally to the discrimination between the four groups. Discussion Our results suggest that we can use the multivariate structural covariance method to identify specific regions that have higher predictive value for specific psychiatric diagnoses. In our research, we have identified brain signatures that suggest that degeneracy shapes brain networks in different ways both within and across major psychiatric disorders.
Collapse
Affiliation(s)
- Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Cristina Ramponi
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Mou J, Zheng T, Long Z, Mei L, Wang Y, Yuan Y, Guo X, Yang H, Gong Q, Qiu L. Sex differences of brain cortical structure in major depressive disorder. PSYCHORADIOLOGY 2023; 3:kkad014. [PMID: 38666130 PMCID: PMC10939343 DOI: 10.1093/psyrad/kkad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 04/28/2024]
Abstract
Background Major depressive disorder (MDD) has different clinical presentations in males and females. However, the neuroanatomical mechanisms underlying these sex differences are not fully understood. Objective The purpose of present study was to explore the sex differences in brain cortical thickness (CT) and surface area (SA) of MDD and the relationship between these differences and clinical manifestations in different gender. Methods High-resolution T1-weighted images were acquired from 61 patients with MDD and 61 healthy controls (36 females and 25 males, both). The sex differences in CT and SA were obtained using the FreeSurfer software and compared between every two groups by post hoc test. Spearman correlation analysis was also performed to explore the relationships between these regions and clinical characteristics. Results In male patients with MDD, the CT of the right precentral was thinner compared to female patients, although this did not survive Bonferroni correction. The SA of several regions, including right superior frontal, medial orbitofrontal gyrus, inferior frontal gyrus triangle, superior temporal, middle temporal, lateral occipital gyrus, and inferior parietal lobule in female patients with MDD was smaller than that in male patients (P < 0.01 after Bonferroni correction). In female patients, the SA of the right superior temporal (r = 0.438, P = 0.008), middle temporal (r = 0.340, P = 0.043), and lateral occipital gyrus (r = 0.372, P = 0.025) were positively correlated with illness duration. Conclusion The current study provides evidence of sex differences in CT and SA in patients with MDD, which may improve our understanding of the sex-specific neuroanatomical changes in the development of MDD.
Collapse
Affiliation(s)
- Jingping Mou
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Radiology, the First People's Hospital of Yibin, Yibin 644000, China
| | - Ting Zheng
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Lan Mei
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
| | - Yuting Wang
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yizhi Yuan
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
| | - Xin Guo
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hongli Yang
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lihua Qiu
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Research Center of Neuroimaging big data, the Second People's Hospital of Yibin,Yibin 644000, China
| |
Collapse
|