1
|
Li L, Yasmen N, Hou R, Yang S, Lee JY, Hao J, Yu Y, Jiang J. Inducible Prostaglandin E Synthase as a Pharmacological Target for Ischemic Stroke. Neurotherapeutics 2022; 19:366-385. [PMID: 35099767 PMCID: PMC9130433 DOI: 10.1007/s13311-022-01191-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 01/03/2023] Open
Abstract
As the inducible terminal enzyme for prostaglandin E2 (PGE2) synthesis, microsomal PGE synthase-1 (mPGES-1) contributes to neuroinflammation and secondary brain injury after cerebral ischemia via producing excessive PGE2. However, a proof of concept that mPGES-1 is a therapeutic target for ischemic stroke has not been established by a pharmacological strategy mainly due to the lack of drug-like mPGES-1 inhibitors that can be used in relevant rodent models. To this end, we recently developed a series of novel small-molecule compounds that can inhibit both human and rodent mPGES-1. In this study, blockade of mPGES-1 by our several novel compounds abolished the lipopolysaccharide (LPS)-induced PGE2 and pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) in mouse primary brain microglia. Inhibition of mPGES-1 also decreased PGE2 produced by neuronal cells under oxygen-glucose deprivation (OGD) stress. Among the five enzymes for PGE2 biosynthesis, mPGES-1 was the most induced one in cerebral ischemic lesions. Systemic treatment with our lead compound MPO-0063 (5 or 10 mg/kg, i.p.) in mice after transient middle cerebral artery occlusion (MCAO) improved post-stroke well-being, decreased infarction and edema, suppressed induction of brain cytokines (IL-1β, IL-6, and TNF-α), alleviated locomotor dysfunction and anxiety-like behavior, and reduced the long-term cognitive impairments. The therapeutic effects of MPO-0063 in this proof-of-concept study provide the first pharmacological evidence that mPGES-1 represents a feasible target for delayed, adjunct treatment - along with reperfusion therapies - for acute brain ischemia.
Collapse
Affiliation(s)
- Lexiao Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ruida Hou
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Seyoung Yang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
2
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Different Activation of IL-10 in the Hippocampus and Prefrontal Cortex During Neurodegeneration Caused by Trimethyltin Chloride. J Mol Neurosci 2020; 71:613-617. [PMID: 32803646 DOI: 10.1007/s12031-020-01682-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Abstract
Anti-inflammatory cytokine interleukin-10 (IL-10) plays a crucial role in controlling the resolution of inflammation. In this study, we aimed to assess gene expression and the level of IL-10 in the hippocampus and prefrontal cortex of rats, after a single injection of neurotoxicant trimethyltin chloride (TMT). It was shown that 4 weeks after the treatment with TMT, the level of IL-10 in the prefrontal cortex, but not in the hippocampus of TMT-treated rats, was increased. However, expression level of IL-10 mRNA was upregulated both in the hippocampus and in the prefrontal cortex 3 weeks after the injection. Concomitantly, within the same post-treatment period, the expression level of the cyclooxygenase-2 was upregulated in both brain structures, indicating the induction of neuroinflammation. Considering that TMT leads to the death of neurons mainly in the hippocampus, we assume that in contrast to the prefrontal cortex, the level of anti-inflammatory cytokine IL-10 in the hippocampus is not sufficiently increased to prevent the damaging effect of the neurotoxicant. Therefore, an exogenous increase in the level of IL-10 may be useful for the survival of neurons in conditions of neurotoxic damage to the hippocampus.
Collapse
|
4
|
Abstract
Epilepsy is considered a major serious chronic neurological disorder, characterized by recurrent seizures. It is usually associated with a history of a lesion in the nervous system. Irregular activation of inflammatory molecules in the injured tissue is an important factor in the development of epilepsy. It is unclear how the imbalanced regulation of inflammatory mediators contributes to epilepsy. A recent research goal is to identify interconnected inflammation pathways which may be involved in the development of epilepsy. The clinical use of available antiepileptic drugs is often restricted by their limitations, incidence of several side effects, and drug interactions. So development of new drugs, which modulate epilepsy through novel mechanisms, is necessary. Alternative therapies and diet have recently reported positive treatment outcomes in epilepsy. Vitamin D (Vit D) has shown prophylactic and therapeutic potential in different neurological disorders. So, the aim of current study was to review the associations between different brain inflammatory mediators and epileptogenesis, to strengthen the idea that targeting inflammatory pathway may be an effective therapeutic strategy to prevent or treat epilepsy. In addition, neuroprotective effects and mechanisms of Vit D in clinical and preclinical studies of epilepsy were reviewed.
Collapse
|
5
|
de Zorzi VN, Haupenthal F, Cardoso AS, Cassol G, Facundo VA, Bálico LJ, Lima DKS, Santos ARS, Furian AF, Oliveira MS, Royes LFF, Fighera MR. Galangin Prevents Increased Susceptibility to Pentylenetetrazol-Stimulated Seizures by Prostaglandin E2. Neuroscience 2019; 413:154-168. [PMID: 31200106 DOI: 10.1016/j.neuroscience.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Epilepsy is one of the most common chronic neurological diseases. It is characterized by recurrent epileptic seizures, where one-third of patients are refractory to existing treatments. Evidence revealed the association between neuroinflammation and increased susceptibility to seizures since there is a pronounced increase in the expression of key inflammatory mediators, such as prostaglandin E2 (PGE2), during seizures. The purpose of this study was to investigate whether PGE2 increases susceptibility to pentylenetetrazol-induced (PTZ) seizures. Subsequently, we evaluated if the flavonoid isolated from the plant Piper aleyreanum (galangin) presented any anticonvulsive effects. Our results demonstrated that the group treated with PGE2 increased susceptibility to PTZ and caused myoclonic and generalized seizures, which increased seizure duration and electroencephalographic wave amplitudes. Furthermore, treatment with PGE2 and PTZ increased IBA-1 (microglial marker), GFAP (astrocytic marker), 4-HNE (lipid peroxidation marker), VCAM-1 (vascular cell adhesion molecule 1), and p-PKAIIα (phosphorylated cAMP-dependent protein kinase) immunocontent. Indeed, galangin prevented behavioral and electroencephalographic seizures, reactive species production, decreased microglial and astrocytic immunocontent, as well as decreased VCAM-1 immunocontent and p-PKA/PKA ratio induced by PGE2/PTZ. Therefore, this study suggests galangin may have an antagonizing role on PGE2-induced effects, reducing cerebral inflammation and protecting from excitatory effects evidenced by administrating PGE2 and PTZ. However, further studies are needed to investigate the clinical implications of the findings and their underlying mechanisms.
Collapse
Affiliation(s)
- Viviane Nogueira de Zorzi
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Haupenthal
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexandra Seide Cardoso
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gustavo Cassol
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Valdir A Facundo
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Laudir J Bálico
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Daniella K S Lima
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adair Roberto Soares Santos
- Laboratório de Neurobiologia da Dor e Inflamação, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Flavia Furian
- Laboratório de Neurotoxicidade e Psicofarmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Laboratório de Neurotoxicidade e Psicofarmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Rajagopal S, Fitzgerald AA, Deep SN, Paul S, Poddar R. Role of GluN2A NMDA receptor in homocysteine-induced prostaglandin E2 release from neurons. J Neurochem 2019; 150:44-55. [PMID: 31125437 DOI: 10.1111/jnc.14775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
Hyperhomocysteinemia or systemic elevation of homocysteine is a metabolic condition that has been linked to multiple neurological disorders where inflammation plays an important role in the progression of the disease. However, it is unclear whether hyperhomocysteinemia contributes to disease pathology by inducing an inflammatory response. The current study investigates whether exposure of primary cultures from rat and mice cortical neurons to high levels of homocysteine induces the expression and release of the proinflammatory prostanoid, Prostaglandin E2 (PGE2). Using enzymatic assays and immunoblot analysis we show concurrent increase in the activity of cytosolic phospholipase A2 (cPLA2) and level of cyclooxygenase-2 (COX2), two enzymes involved in PGE2 biosynthesis. The findings also show an increase in PGE2 release from neurons. Pharmacological inhibition of GluN2A-containing NMDAR (GluN2A-NMDAR) with NVP-AAM077 significantly reduces homocysteine-induced cPLA2 activity, COX2 expression, and subsequent PGE2 release. Whereas, inhibition of GluN2B-containing NMDAR (GluN2A-NMDAR) with Ro 25-6981 has no effect. Complementary studies in neuron cultures obtained from wild type and GluN2A knockout mice show that genetic deletion of GluN2A subunit of NMDAR attenuates homocysteine-induced neuronal increase in cPLA2 activity, COX2 expression, and PGE2 release. Pharmacological studies further establish the role of both extracellular-regulated kinase/mitogen-activated protein kinase and p38 MAPK in homocysteine-GluN2A NMDAR-dependent activation of cPLA2-COX2-PGE2 pathway. Collectively, these findings reveal a novel role of GluN2A-NMDAR in facilitating homocysteine-induced proinflammatory response in neurons.
Collapse
Affiliation(s)
- Sathyanarayanan Rajagopal
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ashley Anne Fitzgerald
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
7
|
Chicca A, Schafroth MA, Reynoso-Moreno I, Erni R, Petrucci V, Carreira EM, Gertsch J. Uncovering the psychoactivity of a cannabinoid from liverworts associated with a legal high. SCIENCE ADVANCES 2018; 4:eaat2166. [PMID: 30397641 PMCID: PMC6200358 DOI: 10.1126/sciadv.aat2166] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/19/2018] [Indexed: 05/25/2023]
Abstract
Phytochemical studies on the liverwort Radula genus have previously identified the bibenzyl (-)-cis-perrottetinene (cis-PET), which structurally resembles (-)-Δ9-trans-tetrahydrocannabinol (Δ9-trans-THC) from Cannabis sativa L. Radula preparations are sold as cannabinoid-like legal high on the internet, even though pharmacological data are lacking. Herein, we describe a versatile total synthesis of (-)-cis-PET and its (-)-trans diastereoisomer and demonstrate that both molecules readily penetrate the brain and induce hypothermia, catalepsy, hypolocomotion, and analgesia in a CB1 receptor-dependent manner in mice. The natural product (-)-cis-PET was profiled on major brain receptors, showing a selective cannabinoid pharmacology. This study also uncovers pharmacological differences between Δ9-THC and PET diastereoisomers. Most notably, (-)-cis-PET and (-)-trans-PET significantly reduced basal brain prostaglandin levels associated with Δ9-trans-THC side effects in a CB1 receptor-dependent manner, thus mimicking the action of the endocannabinoid 2-arachidonoyl glycerol. Therefore, the natural product (-)-cis-PET is a psychoactive cannabinoid from bryophytes, illustrating the existence of convergent evolution of bioactive cannabinoids in the plant kingdom. Our findings may have implications for bioprospecting and drug discovery and provide a molecular rationale for the reported effects upon consumption of certain Radula preparations as moderately active legal highs.
Collapse
Affiliation(s)
- A. Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - M. A. Schafroth
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - I. Reynoso-Moreno
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - R. Erni
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - V. Petrucci
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - E. M. Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - J. Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| |
Collapse
|
8
|
Niranjan R, Mishra KP, Thakur AK. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson’s Disease. Mol Neurobiol 2018; 55:8038-8050. [DOI: 10.1007/s12035-018-0950-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 01/22/2023]
|
9
|
Gumus E, Taskıran AS, Toptas HA, Güney Ö, Kutlu R, Gunes H, Ozdemir E, Arslan G. Effect of the cyclooxygenase-2 inhibitor tenoxicam on pentylenetetrazole-induced epileptic seizures in rats. ACTA ACUST UNITED AC 2017. [DOI: 10.7197/223.v39i32356.369027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Eslami SM, Moradi MM, Ghasemi M, Dehpour AR. Anticonvulsive Effects of Licofelone on Status Epilepticus Induced by Lithium-pilocarpine in Wistar Rats: a Role for Inducible Nitric Oxide Synthase. J Epilepsy Res 2016; 6:51-58. [PMID: 28101475 PMCID: PMC5206100 DOI: 10.14581/jer.16011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/15/2016] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Status epilepticus (SE) is a neurological disorder with high prevalence and mortality rates, requiring immediate intervention. Licofelone is a cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibitor, which its effectiveness to treat osteoarthritis has been approved. Increasing evidence suggests an involvement of COX and LOX enzymes in epileptic disorders. Thus, in the present study we investigate possible effects of licofelone on prevention and termination of SE. We also evaluated whether the nitrergic system could participate in this effect of licofelone. Methods We have utilized lithium-pilocarpine model of SE in adult Wistar rats to assess the potential effect of licofelone on seizure susceptibility. Licofelone was administered 1 h before pilocarpine. To evaluate probable role of nitric oxide (NO) system, L-arginine (60 mg/kg, i.p.), as a NO precursor; L-NAME (15 mg/kg, i.p.), as a non-selective nitric oxide synthase (NOS) inhibitor; aminoguanidine (100 mg/kg, i.p.), as an inducible NOS (iNOS) inhibitor and 7-nitroindazole (60 mg/kg, i.p.), as a neuronal NOS inhibitor were injected 15 min before licofelone. Also, licofelone and diazepam 10 mg/kg were administered 30 minutes after onset of SE. Results Pre-treatment with licofelone at the dosage of 10 mg/kg, significantly prevented the onset of SE in all subjects (p < 0.001). L-arginine significantly inverted this anticonvulsant effect (p < 0.05). However, L-NAME and aminoguanidine, potentiated the anticonvulsant effect of licofelone (p < 0.05, p < 0.01). Licofelone could not terminate seizures after onset which was terminated by diazepam. Conclusions Our findings showed that anticonvulsive effects of licofelone on SE could be mediated by iNOS. Also, we suggest that COX/5-LOX activation is possibly required in the initial stage of onset but SE recruits extra excitatory pathways with prolongation.
Collapse
Affiliation(s)
- Seyyed Majid Eslami
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical Center, Worcester, MA, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Lerner R, Post J, Loch S, Lutz B, Bindila L. Targeting brain and peripheral plasticity of the lipidome in acute kainic acid-induced epileptic seizures in mice via quantitative mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:255-267. [PMID: 27871881 DOI: 10.1016/j.bbalip.2016.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
Abstract
Epilepsy is a highly common chronic neurological disorder, manifested in many different types, affecting ~1% of the worldwide human population. The molecular mechanisms of epileptogenesis have not yet been clarified, and pharmacoresistance exhibited by 30-40% of epilepsy patients remains a major obstacle in medical care. Growing evidence indicates a role of lipid signalling pathways in epileptogenesis, thus lipid signals emerge as potential biomarkers for the onset and evolving course of the epileptic disorder, as well as potential therapeutic agents and targets. For this purpose, we applied a lipidomic strategy to unravel lipid alterations in brain regions, periphery tissues and plasma that are specific for acute epileptic seizures in mice at 1h after seizure induction by systemic kainic acid injection as compared to vehicle controls. Specifically, levels of (i) selected phospholipids and sphingomyelins, (ii) the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), and the endocannabinoid-related compounds oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), (iii) arachidonic acid (AA), (iv) selected eicosanoids, and (v) fatty acyl content of lipidome were determined in pulverized tissues from six brain regions of kainic acid induced epileptic seizure models and vehicle controls: hypothalamus, hippocampus, thalamus, striatum, cerebellum and cerebral cortex, and from peripheral organs, such as heart and lungs, and in plasma. Alterations in lipid levels after acute epileptic seizures as compared to non-seizure controls were found to be brain region- and periphery tissue-specific, including specific plasma lipid correlates, highlighting their value as marker candidates in translational research studies, and/or drug discovery and response monitoring.
Collapse
Affiliation(s)
- Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Julia Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Sebastian Loch
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Differential Effects of Meloxicam on Pentylenetetrazole- and Maximal Electroshock-Induced Convulsions in Mice. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.5812/jjnpp.36412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Darvishi H, Rezaei M, Khodayar MJ, Reza Zargar H, Dehghani MA, Rajabi Vardanjani H, Ghanbari S. Differential Effects of Meloxicam on Pentylenetetrazole- and Maximal Electroshock-Induced Convulsions in Mice. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-36412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Najyb O, Do Carmo S, Alikashani A, Rassart E. Apolipoprotein D Overexpression Protects Against Kainate-Induced Neurotoxicity in Mice. Mol Neurobiol 2016; 54:3948-3963. [PMID: 27271124 PMCID: PMC7091089 DOI: 10.1007/s12035-016-9920-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
Excitotoxicity due to the excessive activation of glutamatergic receptors leads to neuronal dysfunction and death. Excitotoxicity has been implicated in the pathogenesis of a myriad of neurodegenerative diseases with distinct etiologies such as Alzheimer's and Parkinson's. Numerous studies link apolipoprotein D (apoD), a secreted glycoprotein highly expressed in the central nervous system (CNS), to maintain and protect neurons in various mouse models of acute stress and neurodegeneration. Here, we used a mouse model overexpressing human apoD in neurons (H-apoD Tg) to test the neuroprotective effects of apoD in the kainic acid (KA)-lesioned hippocampus. Our results show that apoD overexpression in H-apoD Tg mice induces an increased resistance to KA-induced seizures, significantly attenuates inflammatory responses and confers protection against KA-induced cell apoptosis in the hippocampus. The apoD-mediated protection against KA-induced toxicity is imputable in part to increased plasma membrane Ca2+ ATPase type 2 expression (1.7-fold), decreased N-methyl-D-aspartate receptor (NMDAR) subunit NR2B levels (30 %) and lipid metabolism alterations. Indeed, we demonstrate that apoD can attenuate intracellular cholesterol content in primary hippocampal neurons and in brain of H-apoD Tg mice. In addition, apoD can be internalised by neurons and this internalisation is accentuated in ageing and injury conditions. Our results provide additional mechanistic information on the apoD-mediated neuroprotection in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Sonia Do Carmo
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Azadeh Alikashani
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada.
| |
Collapse
|
15
|
Dey A, Kang X, Qiu J, Du Y, Jiang J. Anti-Inflammatory Small Molecules To Treat Seizures and Epilepsy: From Bench to Bedside. Trends Pharmacol Sci 2016; 37:463-484. [PMID: 27062228 DOI: 10.1016/j.tips.2016.03.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
As a crucial component of brain innate immunity, neuroinflammation initially contributes to neuronal tissue repair and maintenance. However, chronic inflammatory processes within the brain and associated blood-brain barrier (BBB) impairment often cause neurotoxicity and hyperexcitability. Mounting evidence points to a mutual facilitation between inflammation and epilepsy, suggesting that blocking the undesired inflammatory signaling within the brain might provide novel strategies to treat seizures and epilepsy. Neuroinflammation is primarily characterized by the upregulation of proinflammatory mediators in epileptogenic foci, among which cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), interleukin-1β (IL-1β), transforming growth factor-β (TGF-β), toll-like receptor 4 (TLR4), high-mobility group box 1 (HMGB1), and tumor necrosis factor-α (TNF-α) have been extensively studied. Small molecules that specifically target these key proinflammatory perpetrators have been evaluated for antiepileptic and antiepileptogenic effects in animal models. These important preclinical studies provide new insights into the regulation of inflammation in epileptic brains and guide drug discovery efforts aimed at developing novel anti-inflammatory therapies for seizures and epilepsy.
Collapse
Affiliation(s)
- Avijit Dey
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Xu Kang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Jiange Qiu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
16
|
Srivastava A, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P. Role of inflammation and its miRNA based regulation in epilepsy: Implications for therapy. Clin Chim Acta 2015; 452:1-9. [PMID: 26506013 DOI: 10.1016/j.cca.2015.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
There is a need to develop innovative therapeutic strategies to counteract epilepsy, a common disabling neurological disorder. Despite the recent advent of additional antiepileptic drugs and respective surgery, the treatment of epilepsy remains a major challenge. The available therapies are largely based on symptoms, and these approaches do not affect the underlying disease processes and are also associated frequently with severe side effects. This is mainly because of the lack of well-defined targets in epilepsy. The discovery that inflammatory mediators significantly contribute to the onset and recurrence of seizures in experimental seizure models, as well as the presence of inflammatory molecules in human epileptogenic tissue, highlights the possibility of targeting specific inflammation related pathways to control seizures that are otherwise resistant to the available AEDs. Emerging studies suggest that miRNAs have a significant role in regulating inflammatory pathways shown to be involved in epilepsy. These miRNAs can possibly be used as novel therapeutic targets in the treatment of epilepsy as well as serve as diagnostic biomarkers of epileptogenesis. This review highlights the immunological features underlying the pathogenesis of epileptic seizures and the possible miRNA mediated approaches for drug resistant epilepsies that modulate the immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Arpna Srivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
17
|
Minutoli L, Marini H, Rinaldi M, Bitto A, Irrera N, Pizzino G, Pallio G, Calò M, Adamo EB, Trichilo V, Interdonato M, Galfo F, Squadrito F, Altavilla D. A Dual Inhibitor of Cyclooxygenase and 5-Lipoxygenase Protects Against Kainic Acid-Induced Brain Injury. Neuromolecular Med 2015; 17:192-201. [PMID: 25893744 DOI: 10.1007/s12017-015-8351-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
|
18
|
Trandafir CC, Pouliot WA, Dudek FE, Ekstrand JJ. Co-administration of subtherapeutic diazepam enhances neuroprotective effect of COX-2 inhibitor, NS-398, after lithium pilocarpine-induced status epilepticus. Neuroscience 2014; 284:601-610. [PMID: 25453777 DOI: 10.1016/j.neuroscience.2014.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/19/2022]
Abstract
RATIONALE Seizures during status epilepticus (SE) cause neuronal death and induce cyclooxygenase-2 (COX-2). Pilocarpine-induced SE was used to determine if COX-2 inhibition with NS-398, when administered alone or with diazepam, decreases the duration and/or intensity of SE and/or reduces neuronal injury in the rat hippocampus. METHODS Electroencephalogram (EEG) electrodes were implanted in male Sprague-Dawley rats. SE was induced with lithium-pilocarpine, and continuous EEG and video monitoring were performed for 24 h. Rats were divided into four groups (n=8-14 rats/group) and received NS-398, diazepam, NS-398 and diazepam, or vehicle 30 min after the first motor seizure. Six hours later, NS-398 injection was repeated in the NS-398 and in the NS-398+diazepam groups. The duration of SE (continuous spiking) and the EEG power in the γ-band were analyzed. FluoroJade B staining in the dorsal hippocampus at 24h after SE was analyzed semi-quantitatively in the CA1, CA3 and hilus. RESULTS The duration and intensity of electrographic SE was not significantly different across the four groups. In rats treated with NS-398 alone, compared to vehicle-treated rats, neuronal damage was significantly lower compared to vehicle-treated rats in the CA3 (27%) and hilus (27%), but neuroprotection was not detected in the CA1. When NS-398 was administered with diazepam, decreased neuronal damage was further obtained in all areas investigated (CA1: 61%, CA3: 63%, hilus: 60%). CONCLUSIONS NS-398, when administered 30 min after the onset of SE with a repeat dose at 6h, decreased neuronal damage in the hippocampus. Administration of diazepam with NS-398 potentiates the neuroprotective effect of the COX-2 inhibitor. These neuroprotective effects occurred with no detectable effect on electrographic SE.
Collapse
Affiliation(s)
- C C Trandafir
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - W A Pouliot
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - F E Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - J J Ekstrand
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, United States.
| |
Collapse
|
19
|
Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm 2014; 2014:901902. [PMID: 25197169 PMCID: PMC4147258 DOI: 10.1155/2014/901902] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is one of the most common chronic brain disorders worldwide, affecting 1% of people across different ages and backgrounds. Epilepsy is defined as the sporadic occurrence of spontaneous recurrent seizures. Accumulating preclinical and clinical evidence suggest that there is a positive feedback cycle between epileptogenesis and brain inflammation. Epileptic seizures increase key inflammatory mediators, which in turn cause secondary damage to the brain and increase the likelihood of recurrent seizures. Cytokines and prostaglandins are well-known inflammatory mediators in the brain, and their biosynthesis is enhanced following seizures. Such inflammatory mediators could be therapeutic targets for the development of new antiepileptic drugs. In this review, we discuss the roles of inflammatory mediators in epileptogenesis.
Collapse
|
20
|
Hamel D, Sanchez M, Duhamel F, Roy O, Honoré JC, Noueihed B, Zhou T, Nadeau-Vallée M, Hou X, Lavoie JC, Mitchell G, Mamer OA, Chemtob S. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol 2013; 34:285-93. [PMID: 24285580 DOI: 10.1161/atvbaha.113.302131] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Prompt post-hypoxia-ischemia (HI) revascularization has been suggested to improve outcome in adults and newborn subjects. Other than hypoxia-inducible factor, sensors of metabolic demand remain largely unknown. During HI, anaerobic respiration is arrested resulting in accumulation of carbohydrate metabolic intermediates. As such succinate readily increases, exerting its biological effects via a specific receptor, G-protein-coupled receptor (GPR) 91. We postulate that succinate/GPR91 enhances post-HI vascularization and reduces infarct size in a model of newborn HI brain injury. APPROACH AND RESULTS The Rice-Vannucci model of neonatal HI was used. Succinate was measured by mass spectrometry, and microvascular density was evaluated by quantification of lectin-stained cryosection. Gene expression was evaluated by real-time polymerase chain reaction. Succinate levels rapidly increased in the penumbral region of brain infarcts. GPR91 was foremost localized not only in neurons but also in astrocytes. Microvascular density increased at 96 hours after injury in wild-type animals; it was diminished in GPR91-null mice leading to an increased infarct size. Stimulation with succinate led to an increase in growth factors implicated in angiogenesis only in wild-type mice. To explain the mode of action of succinate/GPR91, we investigated the role of prostaglandin E2-prostaglandin E receptor 4, previously proposed in neural angiogenesis. Succinate-induced vascular endothelial growth factor expression was abrogated by a cyclooxygenase inhibitor and a selective prostaglandin E receptor 4 antagonist. This antagonist also abolished succinate-induced neovascularization. CONCLUSIONS We uncover a dominant metabolic sensor responsible for post-HI neurovascular adaptation, notably succinate/GPR91, acting via prostaglandin E2-prostaglandin E receptor 4 to govern expression of major angiogenic factors. We propose that pharmacological intervention targeting GPR91 could improve post-HI brain recovery.
Collapse
Affiliation(s)
- David Hamel
- From the Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, Quebec, Canada (D.H., O.R., J.C.H., T.Z., X.H., J.-C.L., G.A.M., S.C.); Departments of Pharmacology (D.H., F.D., S.C.) and Biomedical Sciences (O.R., M.N.-V.), Université de Montréal, Montréal, Quebec, Canada; and Department of Pharmacology and Therapeutics (M.S., B.N., S.C.), Goodman Cancer Research and Metabolomics Core Facility (O.A.M.), McGill University, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Birnie M, Morrison R, Camara R, Strauss KI. Temporal changes of cytochrome P450 (Cyp) and eicosanoid-related gene expression in the rat brain after traumatic brain injury. BMC Genomics 2013; 14:303. [PMID: 23642095 PMCID: PMC3658912 DOI: 10.1186/1471-2164-14-303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) induces arachidonic acid (ArA) release from cell membranes. ArA metabolites form a class of over 50 bioactive eicosanoids that can induce both adaptive and/or maladaptive brain responses. The dynamic metabolism of ArA to eicosanoids, and how they affect the injured brain, is poorly understood due to their diverse activities, trace levels, and short half-lives. The eicosanoids produced in the brain postinjury depend upon the enzymes present locally at any given time. Eicosanoids are synthesized by heme-containing enzymes, including cyclooxygenases, lipoxygenases, and arachidonate monoxygenases. The latter comprise a subset of the cytochrome P450 "Cyp" gene family that metabolize fatty acids, steroids, as well as endogenous and exogenous toxicants. However, for many of these genes neither baseline neuroanatomical nor injury-related temporal expression have been studied in the brain.In a rat model of parietal cortex TBI, Cyp and eicosanoid-related mRNA levels were determined at 6 h, 24 h, 3d, and 7d postinjury in parietal cortex and hippocampus, where dynamic changes in eicosanoids have been observed. Quantitative real-time polymerase chain reaction with low density arrays were used to assay 62 rat Cyps, 37 of which metabolize ArA or other unsaturated fatty acids; 16 eicosanoid-related enzymes that metabolize ArA or its metabolites; 8 eicosanoid receptors; 5 other inflammatory- and recovery-related genes, plus 2 mouse Cyps as negative controls and 3 highly expressed "housekeeping" genes. RESULTS Sixteen arachidonate monoxygenases, 17 eicosanoid-related genes, and 12 other Cyps were regulated in the brain postinjury (p < 0.05, Tukey HSD). Discrete tissue levels and distinct postinjury temporal patterns of gene expression were observed in hippocampus and parietal cortex. CONCLUSIONS The results suggest complex regulation of ArA and other lipid metabolism after TBI. Due to the temporal nature of brain injury-induced Cyp gene induction, manipulation of each gene (or its products) at a given time after TBI will be required to assess their contributions to secondary injury and/or recovery. Moreover, a better understanding of brain region localization and cell type-specific expression may be necessary to deduce the role of these eicosanoid-related genes in the healthy and injured brain.
Collapse
Affiliation(s)
- Matthew Birnie
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ryan Morrison
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ramatoulie Camara
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Kenneth I Strauss
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
- Present Address: Michigan State University College of Human Medicine, 333 Bostwick Ave NE, 49503 Grand Rapids, MI, USA
| |
Collapse
|
22
|
Yoshikawa K, Kita Y, Furukawa A, Kawamura N, Hasegawa-Ishii S, Chiba Y, Takei S, Maruyama K, Shimizu T, Shimada A. Excitotoxicity-induced immediate surge in hippocampal prostanoid production has latent effects that promote chronic progressive neuronal death. Prostaglandins Leukot Essent Fatty Acids 2013; 88:373-81. [PMID: 23528866 DOI: 10.1016/j.plefa.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/06/2013] [Accepted: 02/27/2013] [Indexed: 01/19/2023]
Abstract
Excitotoxicity is involved in neurodegenerative conditions. We investigated the pathological significance of a surge in prostaglandin production immediately after kainic acid (KA) administration [initial phase], followed by a sustained moderate elevation in prostaglandin level [late phase] in the hippocampus of juvenile rats. Numerous pyknotic hippocampal neurons were observed 72 h after KA treatment; this number remained elevated on days 10 and 30. Gross hippocampal atrophy was observed on days 10 and 30. Pre-treatment with indomethacin ameliorated neuronal death on days 10 and 30, and prevented hippocampal atrophy on day 30. Microglial response was moderated by the indomethacin pre-treatment. Blockade of only late-phase prostaglandin production by post-treatment with indomethacin ameliorated neuronal death on day 30. These findings suggest a role for initial-phase prostaglandin production in chronic progressive neuronal death, which is exacerbated by late-phase prostaglandin production. Blockade of prostaglandin production has therapeutic implications in preventing long-term neurological sequelae following excitotoxic brain damage.
Collapse
Affiliation(s)
- Keisuke Yoshikawa
- Division of Neuropathology, Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Intercellular signaling pathway among Endothelia, astrocytes and neurons in excitatory neuronal damage. Int J Mol Sci 2013; 14:8345-57. [PMID: 23591846 PMCID: PMC3645746 DOI: 10.3390/ijms14048345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023] Open
Abstract
Neurons interact closely with astrocytes via glutamate; this neuron-glia circuit may play a pivotal role in synaptic transmission. On the other hand, astrocytes contact vascular endothelial cells with their end-feet. It is becoming obvious that non-neuronal cells play a critical role in regulating the neuronal activity in the brain. We find that kainic acid (KA) administration induces the expression of microsomal prostaglandin E synthase-1 (mPGES-1) in venous endothelial cells and the prostaglandin E2 (PGE2) receptor prostaglandin E receptor (EP)-3 on astrocytes. Endothelial mPGES-1 exacerbates KA-induced neuronal damage in in vivo experiments. In in vitro experiments, mPGES-1 produces PGE2, which enhances astrocytic Ca2+ levels via the EP3 receptor and increases Ca2+-dependent glutamate release, thus aggravating neuronal injury. This novel endothelium-astrocyte-neuron signaling pathway may be crucial for driving neuronal damage after repetitive seizures and could be a new therapeutic target for epilepsy and other brain disorders.
Collapse
|
24
|
Takeuchi C, Matsumoto Y, Kohyama K, Uematsu S, Akira S, Yamagata K, Takemiya T. Microsomal prostaglandin E synthase-1 aggravates inflammation and demyelination in a mouse model of multiple sclerosis. Neurochem Int 2012; 62:271-80. [PMID: 23266396 DOI: 10.1016/j.neuint.2012.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 11/02/2012] [Accepted: 12/13/2012] [Indexed: 12/15/2022]
Abstract
Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme required for prostaglandin E(2) (PGE(2)) biosynthesis. In this study, we examined the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We induced EAE with myelin oligodendrocyte glycoprotein(35-55) peptide in mPGES-1-deficient (mPGES-1(-/-)) and wild-type (WT) mice. First, we examined the histopathology in the early and late phases of EAE progression. Next, we measured the concentration of PGE(2) in the spinal cord and investigated the expression of mPGES-1 using immunohistochemistry. In addition, we examined the progression of the severity of EAE using an EAE score to investigate a correlation between pathological features and paralysis. In this paper, we demonstrate that WT mice showed extensive inflammation and demyelination, whereas mPGES-1(-/-) mice exhibited significantly smaller and more localized changes in the perivascular area. The mPGES-1 protein was induced in vascular endothelial cells and microglia around inflammatory foci, and PGE(2) production was increased in WT mice but not mPGES-1(-/-) mice. Furthermore, mPGES-1(-/-) mice showed a significant reduction in the maximum EAE score and improved locomotor activity. These results suggest that central PGE(2) derived from non-neuronal mPGES-1 aggravates the disruption of the vessel structure, leading to the spread of inflammation and local demyelination in the spinal cord, which corresponds to the symptoms of EAE. The inhibition of mPGES-1 may be useful for the treatment of human MS.
Collapse
Affiliation(s)
- Chisen Takeuchi
- Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Astiz M, de Alaniz MJ, Marra CA. The oxidative damage and inflammation caused by pesticides are reverted by lipoic acid in rat brain. Neurochem Int 2012; 61:1231-41. [DOI: 10.1016/j.neuint.2012.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/25/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022]
|
26
|
Borre Y, Lemstra S, Westphal KG, Morgan ME, Olivier B, Oosting RS. Celecoxib delays cognitive decline in an animal model of neurodegeneration. Behav Brain Res 2012; 234:285-91. [DOI: 10.1016/j.bbr.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/06/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
|
27
|
Tyler CP, Paneth N, Allred EN, Hirtz D, Kuban K, McElrath T, O'Shea TM, Miller C, Leviton A. Brain damage in preterm newborns and maternal medication: the ELGAN Study. Am J Obstet Gynecol 2012; 207:192.e1-9. [PMID: 22939723 DOI: 10.1016/j.ajog.2012.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/07/2012] [Accepted: 06/29/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We sought to evaluate the association between maternal medication use during pregnancy and cerebral white matter damage and cerebral palsy (CP) among very preterm infants. STUDY DESIGN This analysis of data from the Extremely Low Gestational Age Newborns (ELGAN) Study included 877 infants born <28 weeks' gestation. Mothers were interviewed, charts were reviewed, placentas were cultured and assessed histologically, and children were evaluated at 24 months corrected age. A diagnostic algorithm classified neurologic findings as quadriparetic CP, diparetic CP, hemiparetic CP, or no CP. RESULTS After adjustment for the potential confounding of disorders for which medications might have been indicated, the risk of quadriparetic CP remained elevated among the infants of mothers who consumed aspirin (odds ratio [OR], 3.0; 95% confidence interval [CI], 1.3-6.9) and nonsteroidal antiinflammatory drugs (NSAIDs) (OR, 2.4; 95% CI, 1.04-5.8). The risk of diparetic CP was also associated with maternal consumption of an NSAID, but only if the consumption was not approved by a physician (OR, 3.5; 95% CI 1.1-11.0). CONCLUSION The possibility that aspirin and NSAID use in pregnancy could lead to perinatal brain damage cannot be excluded.
Collapse
Affiliation(s)
- Crystal P Tyler
- Department of Epidemiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang XM, Zhu J. Kainic Acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 2012; 9:388-98. [PMID: 22131947 PMCID: PMC3131729 DOI: 10.2174/157015911795596540] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 09/28/2010] [Accepted: 10/18/2010] [Indexed: 01/01/2023] Open
Abstract
Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro-toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18.
Collapse
Affiliation(s)
- Xing-Mei Zhang
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
29
|
Ma L, Cui XL, Wang Y, Li XW, Yang F, Wei D, Jiang W. Aspirin attenuates spontaneous recurrent seizures and inhibits hippocampal neuronal loss, mossy fiber sprouting and aberrant neurogenesis following pilocarpine-induced status epilepticus in rats. Brain Res 2012; 1469:103-13. [PMID: 22765917 DOI: 10.1016/j.brainres.2012.05.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Accumulating data suggest that inflammation may contribute to epileptogenesis in experimental models as well as in humans. However, whether anti-inflammatory treatments can prevent epileptogenesis still remains controversial. Here, we examined the anti-epileptogenic effect and possible mechanisms of aspirin, a non-selective Cyclooxygenase (COX) inhibitor, in a rat model of lithium-pilocarpine-induced status epilepticus (SE). Epileptic rats were treated with aspirin (20mg/kg) at 0h, 3h, or 24h after the termination of SE, followed by once daily treatment for the subsequent 20 days. We found that aspirin treatment significantly reduced the frequency and duration of spontaneous recurrent seizures during the chronic epileptic phase. Hippocampal neuronal loss five weeks after SE was also attenuated in the CA1, CA3 and hilus following aspirin administration. Furthermore, the aberrant migration of newly generated granule cells and the formation of hilar basal dendrites were prevented by aspirin. Treatment with aspirin starting at 3h or 24h after SE also suppressed the development of mossy fiber sprouting. These findings suggest the possibility of a relative broad time-window for aspirin intervention in the epileptogenic process after injury. Aspirin may serve as a potential adjunctive therapy for individuals susceptible to chronic epilepsy.
Collapse
Affiliation(s)
- Lei Ma
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 17 Changle West Road, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Cyclooxygenase-2 contributes to VX-induced cell death in cultured cortical neurons. Toxicol Lett 2012; 210:71-7. [PMID: 22306367 DOI: 10.1016/j.toxlet.2012.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 11/23/2022]
Abstract
The link between cell death and increased cyclooxygenases-2 (COX-2) activity has not been clearly established. In this study, we examined whether COX-2 activation contributed to the mechanism of neurotoxicity produced by an organophosphorous nerve agent in cultured rat cortical neurons. Exposure of neuronal cells to the nerve agent, VX resulted in an increase in COX enzyme activity in the culture media. A concentration dependent increase in the activity levels of COX-2 enzyme was observed while there was little to no effect on COX-1. In addition, COX-2 mRNA and protein levels increased several hours post-VX exposure. Pre-treatment of the cortical cells with the COX-2 selective inhibitor, NS 398 resulted in a decrease in both the enzyme activity and prostaglandin (PGE(2) and PGF(2α)) release, as well as in a reduction in cell death. These findings indicate that the increase in COX-2 activity may contribute to the mechanism of VX-induced neurotoxicity in cultured rat cortical neuron.
Collapse
|
31
|
Jeong EM, Ahn KH, Jeon HJ, Kim HD, Lee HS, Jung SY, Jung KM, Kim SK, Bonventre JV, Kim DK. Purification and characterization of a cytosolic Ca(2+)-independent phospholipase A(2) from bovine brain. Mol Cells 2011; 32:405-13. [PMID: 21874539 PMCID: PMC3887695 DOI: 10.1007/s10059-011-1058-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/13/2011] [Accepted: 07/01/2011] [Indexed: 02/02/2023] Open
Abstract
The Ca(2+)-independent phospholipase A(2) (iPLA(2)) subfamily of enzymes is associated with arachidonic acid (AA) release and the subsequent increase in fatty acid turnover. This phenomenon occurs not only during apoptosis but also during inflammation and lymphocyte proliferation. In this study, we purified and characterized a novel type of iPLA(2) from bovine brain. iPLA(2) was purified 4,174-fold from the bovine brain by a sequential process involving DEAE-cellulose anion exchange, phenyl-5PW hydrophobic interaction, heparin-Sepharose affinity, Sephacryl S-300 gel filtration, Mono S cation exchange, Mono Q anion exchange, and Superose 12 gel filtration. A single peak of iPLA(2) activity was eluted at an apparent molecular mass of 155 kDa during the final Superose 12 gel-filtration step. The purified enzyme had an isoelectric point of 5.3 on two-dimensional gel electrophoresis (2-DE) and was inhibited by arachidonyl trifluoromethyl ketone (AACOCF(3)), Triton X-100, iron, and Ca(2+). However, it was not inhibited by bromoenol lactone (BEL), an inhibitor of iPLA(2), and adenosine triphosphate (ATP). The spot with the iPLA(2) activity did not match with any known protein sequence, as determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. Altogether, these data suggest that the purified enzyme is a novel form of cytosolic iPLA(2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joseph V. Bonventre
- Medical Services, Brigham and Women’s Hospital, Harvard Medical School, Boston, Longwood, MA, USA
| | | |
Collapse
|
32
|
Jeong EA, Jeon BT, Shin HJ, Kim N, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Ketogenic diet-induced peroxisome proliferator-activated receptor-γ activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures. Exp Neurol 2011; 232:195-202. [PMID: 21939657 DOI: 10.1016/j.expneurol.2011.09.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/29/2011] [Accepted: 09/04/2011] [Indexed: 12/27/2022]
Abstract
Similar to fasting, the ketogenic diet (KD) has anti-inflammatory effects and protects against excitotoxicity-mediated neuronal cell death. Recent studies have shown that peroxisome proliferator-activated receptor (PPAR)γ has anti-inflammatory effects in seizure animal models. However, the exact mechanisms underlying the anti-inflammatory effects of the KD have not been determined for seizures. Here we investigated the effect of the KD and acetoacetate (AA) on neuroinflammation in a seizure animal model and glutamate-treated HT22 cells, respectively. Mice were fed the KD for 4 weeks and sacrificed 2 or 6h after KA injection. The KD reduced hippocampal tumor necrosis factor alpha (TNF-α) levels and nuclear factor (NF)-κB translocation into the nucleus 2h after KA treatment. KD-induced PPARγ activation was decreased by KA in neurons as assessed by western blotting and immunofluorescence. Finally, the KD inhibited cyclooxygenase (COX)-2 and microsomal prostaglandin E(2) synthase-1 (mPGES-1) expression in the hippocampus 6h after KA treatment. AA treatment also protected against glutamate-induced cell death in HT22 cells by reducing TNF-α and PPARγ-mediated COX-2 expression. Thus, the KD may inhibit neuroinflammation by suppressing a COX-2-dependent pathway via activation of PPARγ by the KD or AA.
Collapse
Affiliation(s)
- Eun Ae Jeong
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, 660-751, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kovács Z, Czurkó A, Kékesi KA, Juhász G. Intracerebroventricularly administered lipopolysaccharide enhances spike–wave discharges in freely moving WAG/Rij rats. Brain Res Bull 2011; 85:410-6. [DOI: 10.1016/j.brainresbull.2011.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/19/2011] [Accepted: 05/08/2011] [Indexed: 12/15/2022]
|
34
|
Distribution and Time-Course of 4-Hydroxynonenal, Heat Shock Protein 110/105 Family Members and Cyclooxygenase-2 Expression in the Hippocampus of Rat During Trimethyltin-Induced Neurodegeneration. Neurochem Res 2011; 36:1490-500. [DOI: 10.1007/s11064-011-0478-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
|
35
|
Andrianova EL, Genrikhs EE, Bobrov MY, Lizhin AA, Gretskaya NM, Frumkina LE, Khaspekov LG, Bezuglov VV. In Vitro Effects of Anandamide and Prostamide E2 on Normal and Transformed Nerve Cells. Bull Exp Biol Med 2011; 151:30-2. [DOI: 10.1007/s10517-011-1252-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Abstract
Mood stabilizers that are approved for treating bipolar disorder (BD), when given chronically to rats, decrease expression of markers of the brain arachidonic metabolic cascade, and reduce excitotoxicity and neuroinflammation-induced upregulation of these markers. These observations, plus evidence for neuroinflammation and excitotoxicity in BD, suggest that arachidonic acid (AA) cascade markers are upregulated in the BD brain. To test this hypothesis, these markers were measured in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. Mean protein and mRNA levels of AA-selective cytosolic phospholipase A(2) (cPLA(2)) IVA, secretory sPLA(2) IIA, cyclooxygenase (COX)-2 and membrane prostaglandin E synthase (mPGES) were significantly elevated in the BD cortex. Levels of COX-1 and cytosolic PGES (cPGES) were significantly reduced relative to controls, whereas Ca(2+)-independent iPLA(2)VIA, 5-, 12-, and 15-lipoxygenase, thromboxane synthase and cytochrome p450 epoxygenase protein and mRNA levels were not significantly different. These results confirm that the brain AA cascade is disturbed in BD, and that certain enzymes associated with AA release from membrane phospholipid and with its downstream metabolism are upregulated. As mood stabilizers downregulate many of these brain enzymes in animal models, their clinical efficacy may depend on suppressing a pathologically upregulated cascade in BD. An upregulated cascade should be considered as a target for drug development and for neuroimaging in BD.
Collapse
|
37
|
Takemiya T, Matsumura K, Sugiura H, Yasuda S, Uematsu S, Akira S, Yamagata K. Endothelial microsomal prostaglandin E synthase-1 facilitates neurotoxicity by elevating astrocytic Ca2+ levels. Neurochem Int 2011; 58:489-96. [PMID: 21219953 DOI: 10.1016/j.neuint.2011.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
Abstract
Recurrent seizures may cause neuronal damage in the hippocampus. As neurons form intimate interactions with astrocytes via glutamate, this neuron-glia circuit may play a pivotal role in neuronal excitotoxicity following such seizures. On the other hand, astrocytes contact vascular endothelia with their endfeet. Recently, we found kainic acid (KA) administration induced microsomal prostaglandin E synthase-1 (mPGES-1) and prostaglandin E(2) (PGE(2)) receptor EP3 in venous endothelia and on astrocytes, respectively. In addition, mice deficient in mPGES-1 exhibited an improvement in KA-induced neuronal loss, suggesting that endothelial PGE(2) might modulate neuronal damage via astrocytes. In this study, we therefore investigated whether the functional associations between endothelia and astrocytes via endothelial mPGES-1 lead to neuronal injury using primary cultures of hippocampal slices. We first confirmed the delayed induction of endothelial mPGES-1 in the wild-type (WT) slices after KA-treatment. Next, we examined the effects of endothelial mPGES-1 on Ca(2+) levels in astrocytes, subsequent glutamate release and neuronal injury using cultured slices prepared from WT and mPGES-1 knockout mice. Moreover, we investigated which EP receptor on astrocytes was activated by PGE(2). We found that endothelial mPGES-1 produced PGE(2) that enhanced astrocytic Ca(2+) levels via EP3 receptors and increased Ca(2+)-dependent glutamate release, aggravating neuronal injury. This novel endothelium-astrocyte-neuron signaling pathway may be crucial for neuronal damage after repetitive seizures, and hence could be a new target for drug development.
Collapse
Affiliation(s)
- Takako Takemiya
- Medical Research Institute, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ryan JC, Cross CA, Van Dolah FM. Effects of COX inhibitors on neurodegeneration and survival in mice exposed to the marine neurotoxin domoic acid. Neurosci Lett 2011; 487:83-7. [DOI: 10.1016/j.neulet.2010.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 02/02/2023]
|
39
|
Kainic acid-induced neurodegenerative model: potentials and limitations. J Biomed Biotechnol 2010; 2011:457079. [PMID: 21127706 PMCID: PMC2992819 DOI: 10.1155/2011/457079] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/25/2010] [Indexed: 01/03/2023] Open
Abstract
Excitotoxicity is considered to be an important mechanism involved in various neurodegenerative diseases in the central nervous system (CNS) such as Alzheimer's disease (AD). However, the mechanism by which excitotoxicity is implicated in neurodegenerative disorders remains unclear. Kainic acid (KA) is an epileptogenic and neuroexcitotoxic agent by acting on specific kainate receptors (KARs) in the CNS. KA has been extensively used as a specific agonist for ionotrophic glutamate receptors (iGluRs), for example, KARs, to mimic glutamate excitotoxicity in neurodegenerative models as well as to distinguish other iGluRs such as α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors and N-methyl-D-aspartate receptors. Given the current knowledge of excitotoxicity in neurodegeneration, interventions targeted at modulating excitotoxicity are promising in terms of dealing with neurodegenerative disorders. This paper summarizes the up-to-date knowledge of neurodegenerative studies based on KA-induced animal model, with emphasis on its potentials and limitations.
Collapse
|
40
|
Fischborn SV, Soerensen J, Potschka H. Targeting the prostaglandin E2 EP1 receptor and cyclooxygenase-2 in the amygdala kindling model in mice. Epilepsy Res 2010; 91:57-65. [DOI: 10.1016/j.eplepsyres.2010.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 02/05/2023]
|
41
|
Knorr C, Marks D, Gerstberger R, Mühlradt PF, Roth J, Rummel C. Peripheral and central cyclooxygenase (COX) products may contribute to the manifestation of brain-controlled sickness responses during localized inflammation induced by macrophage-activating lipopeptide-2 (MALP-2). Neurosci Lett 2010; 479:107-11. [DOI: 10.1016/j.neulet.2010.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/30/2022]
|
42
|
Potschka H. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia 2010; 51:1333-47. [PMID: 20477844 DOI: 10.1111/j.1528-1167.2010.02585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enhanced brain efflux of antiepileptic drugs by the blood-brain barrier transporter P-glycoprotein is discussed as one mechanism contributing to pharmacoresistance of epilepsies. P-glycoprotein overexpression has been proven to occur as a consequence of seizure activity. Therefore, blocking respective signaling events should help to improve brain penetration and efficacy of P-glycoprotein substrates. A series of recent studies revealed key signaling factors involved in seizure-associated transcriptional activation of P-glycoprotein. These data suggested several interesting targets, including the N-methyl-d-aspartate (NMDA) receptor, the inflammatory enzyme cyclooxygenase-2, and the prostaglandin E2 EP1 receptor. These targets have been further evaluated in rodent models, demonstrating that targeting these factors can control P-glycoprotein expression, improve antiepileptic drug brain penetration, and help to overcome pharmacoresistance. In general, the approach offers particular advantages over transporter inhibition as it preserves basal transporter function. In this review the different strategies for blocking P-glycoprotein upregulation, including their therapeutic promise and drawbacks are discussed. Moreover, pros and cons of the approach are compared to those of alternative strategies to overcome transporter-associated resistance. Regarding future perspectives of the novel approach, there is an obvious need to more clearly define the clinical relevance of transporter overexpression. In this context current efforts are discussed, including the development of imaging tools that allow an evaluation of P-glycoprotein function in individual patients.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
43
|
Matousek SB, Hein AM, Shaftel SS, Olschowka JA, Kyrkanides S, O'Banion MK. Cyclooxygenase-1 mediates prostaglandin E(2) elevation and contextual memory impairment in a model of sustained hippocampal interleukin-1beta expression. J Neurochem 2010; 114:247-58. [PMID: 20412387 DOI: 10.1111/j.1471-4159.2010.06759.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Interleukin (IL)-1beta is a proinflammatory cytokine implicated in several neurodegenerative disorders. Downstream actions of IL-1beta include production of prostaglandin (PG) E(2) by increasing expression of cyclooxygenase (COX) enzymes and prostaglandin E synthase (PGES) isoforms. We recently developed a transgenic mouse carrying a dormant human IL-1beta eXcisional Activation Transgene (XAT) for conditional and chronic up-regulation of IL-1beta in selected brain regions. This model is characterized by regionally specific glial activation, immune cell recruitment, and induction of cytokines and chemokines. Here, we aimed to elucidate the effects of long-term IL-1beta expression on the PGE(2) synthetic pathway and to determine the effects of PGs on inflammation and memory in our model. As expected, PGE(2) levels were significantly elevated after IL-1beta up-regulation. Quantitative real-time PCR analysis indicated significant induction of mRNAs for COX-1 and membranous PGES-1, but not COX-2 or other PGES isoforms. Immunohistochemistry revealed elevation of COX-1 but no change in COX-2 following sustained IL-1beta production. Furthermore, pharmacological inhibition of COX-1 and use of COX-1 knockout mice abrogated IL-1beta-mediated PGE(2) increases. Although COX-1 deficient mice did not present a dramatically altered neuroinflammatory phenotype, they did exhibit improved contextual fear memory. This data suggests a unique role for COX-1 in mediating chronic neuroinflammatory effects through PGE(2) production.
Collapse
Affiliation(s)
- Sarah B Matousek
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|
44
|
The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2010; 224:219-33. [PMID: 20353773 DOI: 10.1016/j.expneurol.2010.03.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/17/2010] [Accepted: 03/20/2010] [Indexed: 11/23/2022]
Abstract
The enzyme cyclooxygenase-2 (COX-2), which catalyzes the production of pro-inflammatory prostaglandins, is induced in the brain after various insults, thus contributing to brain inflammatory processes involved in the long-term consequences of such insults. Mounting evidence supports that inflammation may contribute to epileptogenesis and neuronal injury developing after brain insults. Anti-inflammatory treatments, such as selective COX-2 inhibitors, may thus constitute a novel approach for anti-epileptogenesis or disease-modification after brain injuries such as head trauma, cerebral ischemia or status epilepticus (SE). However, recent rat experiments with prophylactic administration of two different COX-2 inhibitors after SE resulted in conflicting results. In the present study, we evaluated whether treatment with parecoxib, a pro-drug of the highly potent and selective COX-2 inhibitor valdecoxib, alters the long-term consequences of a pilocarpine-induced SE in rats. Parecoxib was administered twice daily at 10 mg/kg for 18 days following SE. Five weeks after termination of treatment, spontaneous recurrent seizures were recorded by continuous video/EEG monitoring. Prophylactic treatment with parecoxib prevented the SE-induced increase in prostaglandin E(2) and reduced neuronal damage in the hippocampus and piriform cortex. However, the incidence, frequency or duration of spontaneous seizures developing after SE or the behavioral and cognitive alterations associated with epilepsy were not affected by parecoxib. Only the severity of spontaneous seizures was reduced, indicating a disease-modifying effect. These results substantiate that COX-2 contributes to neuronal injury developing after SE, but inhibition of COX-2 is no effective means to modify epileptogenesis.
Collapse
|
45
|
Zemlyak I, Manley N, Vulih-Shultzman I, Cutler AB, Graber K, Sapolsky RM, Gozes I. The microtubule interacting drug candidate NAP protects against kainic acid toxicity in a rat model of epilepsy. J Neurochem 2009; 111:1252-63. [PMID: 19799711 DOI: 10.1111/j.1471-4159.2009.06415.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
NAP (NAPVSIPQ, generic name, davunetide), a neuroprotective peptide in clinical development for neuroprotection against Alzheimer's disease and other neurodegenerative indications, has been recently shown to provide protection against kainic acid excitotoxicity in hippocampal neuronal cultures. In vivo, kainic acid toxicity models status epilepticus that is associated with hippocampal cell death. Kainic acid toxicity has been previously suggested to involve the microtubule cytoskeleton and NAP is a microtubule-interacting drug candidate. In the current study, kainic acid-treated rats showed epileptic seizures and neuronal death. Injection of NAP into the dentate gyrus partially protected against kainic acid-induced CA3 neuron death. Microarray analysis (composed of > 31 000 probe sets, analyzing over 30 000 transcripts and variants from over 25 000 well-substantiated rat genes) in the kainic acid-injured rat brain revealed multiple changes in gene expression, which were prevented, in part, by NAP treatment. Selected transcripts were further verified by reverse transcription coupled with quantitative real-time polymerase chain reaction. Importantly, among the transcripts regulated by NAP were key genes associated with proconvulsant properties and with long-lasting changes that underlie the epileptic state, including activin A receptor (associated with apoptosis), neurotensin (associated with proper neurotransmission) and the Wolfram syndrome 1 homolog (human, associated with neurodegeneration). These data suggest that NAP may provide neuroprotection in one of the most serious neurological conditions, epilepsy.
Collapse
Affiliation(s)
- Ilona Zemlyak
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Cyclooxygenase-2 plays a critical role in retinal ganglion cell death after transient ischemia: real-time monitoring of RGC survival using Thy-1-EGFP transgenic mice. Neurosci Res 2009; 65:319-25. [PMID: 19698752 DOI: 10.1016/j.neures.2009.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/13/2009] [Accepted: 08/11/2009] [Indexed: 01/26/2023]
Abstract
The exact role of cyclooxygenase-2 (COX-2) in neurodegeneration of retinal ganglion cells (RGCs) in vivo following ischemia-reperfusion injury of the retina was unknown. We made transgenic mice in which the Thy-1.2 promoter drives the expression of EGFP cDNA (Thy-1-EGFP) in RGCs to monitor RGC survival and death in retinal whole mount preparations and in live animals. We show that celecoxib, a selective COX-2 inhibitor, blocks RGC death after ischemic injury. Furthermore, in COX-2 knockout (COX-2(-/-)) mice, RGCs are resistant to ischemia-reperfusion injury. Finally, we performed time-lapse monitoring of RGC death after ischemia in Thy-1-EGFP; COX-2(-/-) mice. Our data show that COX-2 plays a crucial role in ischemia-reperfusion injury-induced RGC death. Inhibition of COX-2 activity may therefore be an effective therapy for neurodegenerative diseases of the retina and optic nerve.
Collapse
|
47
|
Lack of correlation between the central anti-nociceptive and peripheral anti-inflammatory effects of selective COX-2 inhibitor parecoxib. Brain Res Bull 2009; 80:56-61. [DOI: 10.1016/j.brainresbull.2009.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 02/02/2023]
|
48
|
Alterations in excitotoxicity and prostaglandin metabolism in a transgenic mouse model of Alzheimer's disease. Neurochem Int 2009; 55:689-96. [PMID: 19560505 DOI: 10.1016/j.neuint.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 11/21/2022]
Abstract
To address the potential impact of presenilin mutations on the prostaglandin metabolism in a neurodegenerative model of glutamatergic excitotoxicity, we injected kainic acid intraperitoneally (30mg/kg body weight) into mice over-expressing the human N141I mutation of presenilin-2, which is known to cause an early-onset form of Alzheimer's disease. We compared the seizure activity as well as seizure lethality in 2- and 6-month-old mice, transgenic for the above-mentioned point mutation, and their wildtype littermates and found that mice harboring the hN141I mutation showed a relative resistance to excitotoxic treatment. This was associated with a constituitively reduced expression of the cyclooxygenases COX-1 and COX-2 in the hippocampus of N141I presenilin-2 mice and a reduced induction of COX-2 expression post-kainate injection. In the past, clinical trials have suggested that both non-steroidal anti-inflammatory drugs, which impact upon a cell's prostaglandin metabolism, and glutamatergic antagonists might be of benefit to patients suffering from Alzheimer's-type dementias. Yet, the exact mechanism by which these drugs are beneficial remains unclear, although it seems possible that presenilins might be implicated in the process, at least in the case of early-onset forms. The data presented here strongly support the notion of an implication of presenilins in the alterations in the prostaglandin system, which have been observed in Alzheimer's disease and may contribute to the underlying pathogenesis of the disease.
Collapse
|
49
|
Zhang D, Hu X, Qian L, Wilson B, Lee C, Flood P, Langenbach R, Hong JS. Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro. Toxicol Appl Pharmacol 2009; 238:64-70. [PMID: 19397918 DOI: 10.1016/j.taap.2009.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 04/21/2009] [Indexed: 12/16/2022]
Abstract
Microglial activation has been implicated in many astrogliosis-related pathological conditions including astroglioma; however, the detailed mechanism is not clear. In this study, we used primary enriched microglia and astrocyte cultures to determine the role of microglial prostaglandin E(2) (PGE(2)) in the proliferation of astrocytes. The proliferation of astrocytes was measured by BrdU incorporation. The level of PGE(2) was measured by ELISA method. Pharmacological inhibition or genetic ablation of COX-2 in microglia were also applied in this study. We found that proliferation of astrocytes increased following lipopolysaccharide (LPS) treatment in the presence of microglia. Furthermore, increased proliferation of astrocytes was observed in the presence of conditioned media from LPS-treated microglia. The potential involvement of microglial PGE(2) in enhanced astrocyte proliferation was suggested by the findings that PGE(2) production and COX-2 expression in microglia were increased by LPS treatment. In addition, activated microglia-induced increases in astrocyte proliferation were blocked by the PGE(2) antagonist AH6809, COX-2 selective inhibitor DuP-697 or by genetic knockout of microglial COX-2. These findings were further supported by the finding that addition of PGE(2) to the media significantly induced astrocyte proliferation. These results indicate that microglial PGE(2) plays an important role in astrocyte proliferation, identifying PGE(2) as a key neuroinflammatory molecule that triggers the pathological response related to uncontrollable astrocyte proliferation. These findings are important in elucidating the role of activated microglia and PGE(2) in astrocyte proliferation and in suggesting a potential avenue in the use of anti-inflammatory agents for the therapy of astroglioma.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
O'Banion MK. Prostaglandin E2 synthases in neurologic homeostasis and disease. Prostaglandins Other Lipid Mediat 2009; 91:113-7. [PMID: 19393332 DOI: 10.1016/j.prostaglandins.2009.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 04/10/2009] [Accepted: 04/10/2009] [Indexed: 01/17/2023]
Abstract
Prostaglandin E(2) synthases (PGES) currently comprise a group of three structurally and biologically distinct molecules. These enzymes are part of an important and complex paracrine signaling system involved in a wide range of biological processes. This review focuses on the normal physiological and pathological roles of these enzymes in the nervous system. Specific topics include the role of PGES(s) in fever and sickness behavior, inflammatory pain, and neural disease. Although the field is in its early stages, ongoing development of selective PGES inhibitors for possible use in people creates a significant need for more fully understanding the biological roles of these important enzymes.
Collapse
Affiliation(s)
- M Kerry O'Banion
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|