1
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
2
|
Wigner P, Synowiec E, Jóźwiak P, Czarny P, Bijak M, Białek K, Szemraj J, Gruca P, Papp M, Śliwiński T. The Effect of Chronic Mild Stress and Escitalopram on the Expression and Methylation Levels of Genes Involved in the Oxidative and Nitrosative Stresses as Well as Tryptophan Catabolites Pathway in the Blood and Brain Structures. Int J Mol Sci 2020; 22:ijms22010010. [PMID: 33374959 PMCID: PMC7792593 DOI: 10.3390/ijms22010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies suggest that depression may be associated with reactive oxygen species overproduction and disorders of the tryptophan catabolites pathway. Moreover, one-third of patients do not respond to conventional pharmacotherapy. Therefore, the study investigates the molecular effect of escitalopram on the expression of Cat, Gpx1/4, Nos1/2, Tph1/2, Ido1, Kmo, and Kynu and promoter methylation in the hippocampus, amygdala, cerebral cortex, and blood of rats exposed to CMS (chronic mild stress). The animals were exposed to CMS for two or seven weeks followed by escitalopram treatment for five weeks. The mRNA and protein expression of the genes were analysed using the TaqMan Gene Expression Assay and Western blotting, while the methylation was determined using methylation-sensitive high-resolution melting. The CMS caused an increase of Gpx1 and Nos1 mRNA expression in the hippocampus, which was normalised by escitalopram administration. Moreover, Tph1 and Tph2 mRNA expression in the cerebral cortex was increased in stressed rats after escitalopram therapy. The methylation status of the Cat promoter was decreased in the hippocampus and cerebral cortex of the rats after escitalopram therapy. The Gpx4 protein levels were decreased following escitalopram compared to the stressed/saline group. It appears that CMS and escitalopram influence the expression and methylation of the studied genes.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (P.W.); (E.S.); (K.B.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (P.W.); (E.S.); (K.B.)
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland; (P.C.); (J.S.)
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Katarzyna Białek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (P.W.); (E.S.); (K.B.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland; (P.C.); (J.S.)
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (P.G.); (M.P.)
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (P.G.); (M.P.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (P.W.); (E.S.); (K.B.)
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
3
|
Wigner P, Synowiec E, Jóźwiak P, Czarny P, Bijak M, Białek K, Szemraj J, Gruca P, Papp M, Śliwiński T. The Effect of Chronic Mild Stress and Venlafaxine on the Expression and Methylation Levels of Genes Involved in the Tryptophan Catabolites Pathway in the Blood and Brain Structures of Rats. J Mol Neurosci 2020; 70:1425-1436. [PMID: 32406039 PMCID: PMC7399689 DOI: 10.1007/s12031-020-01563-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
A growing body of evidence suggests that depression may be associated with impairment of the tryptophan catabolites (TRYCATs) pathway. The present study investigated the effects of the chronic administration of venlafaxine on the expression and methylation status of Katl, Tph1/2, Ido1, Kmo and Kynu in the brain and blood of rats exposed to the CMS model of depression. The rats were subjected to the CMS procedure for 2 or 7 weeks and administered venlafaxine (10 mg/kg/day, IP) for 5 weeks. mRNA and protein expression and the methylation status of gene promoters in PBMCs and six brain structures were evaluated and analysed using the TaqMan Gene Expression Assay and Western blotting, and methylation-sensitive high-resolution melting (MS-HRM), respectively. We found that the CMS procedure increased KatI expression in the midbrain and KatII expression in the midbrain and the amygdala, while venlafaxine administration decreased KatII expression in the hypothalamus and the cerebral cortex. The methylation status of the Tph1 and Kmo promoters in peripheral blood mononuclear cells (PBMCs) was significantly increased in the stressed group after antidepressant therapy. The protein levels of Tph1 and Ido1 were decreased following venlafaxine administration. Our results confirmed that CMS and venlafaxine modulate the expression levels and methylation status of genes involved in the TRYCATs pathway.
Collapse
Affiliation(s)
- Paulina Wigner
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Ewelina Synowiec
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Paweł Jóźwiak
- Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Michał Bijak
- Faculty of Biology and Environmental Protection, Department of General Biochemistry, University of Lodz, Lodz, Poland
| | - Katarzyna Białek
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Piotr Gruca
- Polish Academy of Sciences, Institute of Pharmacology, Krakow, Poland
| | - Mariusz Papp
- Polish Academy of Sciences, Institute of Pharmacology, Krakow, Poland
| | - Tomasz Śliwiński
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
4
|
Sentari M, Harahap U, Sapiie TWA, Ritarwan K. Blood Cortisol Level and Blood Serotonin Level in Depression Mice with Basil Leaf Essential Oil Treatment. Open Access Maced J Med Sci 2019; 7:2652-2655. [PMID: 31777626 PMCID: PMC6876819 DOI: 10.3889/oamjms.2019.819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Depression is a serious public health problem. The impact of depression is enormous, ranging from decreasing work productivity, interpersonal disorders, sleep and eating disorders, susceptible to disease to an increase in suicides. In a state of depression, there was an increase in cortisol and changes in the neurotransmitter of the brain monoamine, norepinephrine and dopamine and specifically serotonin level. Treatment of depression using synthetic drugs such as the Selective Serotonin Reuptake Inhibitor (SSRI) drug which is said to be safe turns out to still have side effects, such as stomach disorders, erectile disorders, weight gain and sometimes sleep disorders. So, the usage of traditional medicines can be an alternative. One of the traditional medicines that have been studied in Indonesia was the essential oil of basil leaves, which is known to function as an antidepressant at a dose of 2.5 x 10-2 mL/kg b.w. AIM To determine the comparison of cortisol and serotonin level between depressed mice which get basil leaf essential oil as intervention, depression mice, and normal mice. METHODS This research was an experimental type purely using experimental animal models, with an experimental research design Post Test Only Context Group Design in mice (Mus musculus), by dividing 3 groups of mice, namely depressed mice which received essential oil of basil leaves dose of 2.5 x 10-2 mL/kg BW, depression mice, and normal mice, to compare the level of blood cortisol and serotonin while to determine effect of administration basil leaves essential oils in depression mice. RESULTS Cortisol levels between intervened depression mice, depression mice, and normal mice groups were significantly comparable with p < 0.001, while serotonin level was significantly comparable between intervened depression mice, depression mice, and normal mice group with p < 0.001. CONCLUSION Evidenced by differences in cortisol levels, serotonin levels between normal mice groups, depressed mice and mice that received essential oils of basil leaves. The comparisons showed that the cortisol level of the intervened depression group was lower than the depression mice group; however the level didn't reach the level of cortisol in the normal group. While the serotonin level of intervened depression mice group was higher than the depression mice group or normal mice group.
Collapse
Affiliation(s)
- Machnizar Sentari
- Department of Psychiatry, Faculty of Medicine, University of Sumatera Utara, Padang Bulan, Medan Baru, Medan, Sumatera Utara, 20155, Indonesia
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, University of Sumatera Utara, Padang Bulan, Medan Baru, Medan, Sumatera Utara, 20155, Indonesia
| | - Tuti Wahmurti A Sapiie
- Department of Psychiatry, Faculty of Medicine, University of Padjajaran, Jatinangor, Sumedang, Bandung, Jawa Barat, 45363, Indonesia
| | - Kiking Ritarwan
- Department of Neurology, Faculty of Medicine, University of Sumatera Utara, Padang Bulan, Medan Baru, Medan, Sumatera Utara, 20155, Indonesia
| |
Collapse
|
5
|
Bello AU, Idrus Z, Meng GY, Narayan EJ, Farjam AS. Dose-response relationship of tryptophan with large neutral amino acids, and its impact on physiological responses in the chick model. Gen Comp Endocrinol 2018; 260:146-150. [PMID: 29339185 DOI: 10.1016/j.ygcen.2018.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 11/20/2022]
Abstract
Tryptophan (Trp) has been associated with the regulation of several behavioral and physiological processes, through stimulation of serotonergic activity. Tryptophan utilization at the metabolic level is influenced by the competitive carrier system it shares with large neutral amino acids (LNAA). This study was carried out using meat-type chicken as a model, to investigate the dose response effects of Trp/LNAA on fear response (tonic immobility; TI) and hormonal responses, including corticosterone (CORT), serotonin (5-HT), triiodothyronine (T3) and thyroxine (T4). A total of 12 cages (48 birds) were assigned to each of the six experimental groups at 29-42 days of age. Experimental diets were formulated to have incremental levels of Trp/LNAA (0.025, 0.030, 0.035, 0.040, 0.045, and 0.050). The results revealed that, Trp/NAA had no significant effect on growth performance and TI of the birds. However, elevation of Trp/LNAA was concurred with a linear reduction in CORT (P < .0001, r2 = 0.819) and linear increases in 5-HT (P < .0001, r2 = 0.945), T3 (P = .0003, r2 = 0.403) and T4 (P < .0001, r2 = 0.937) levels. In conclusion, the results from the current study demonstrated that, although incremental levels of Trp/LNAA did not affect bird growth performance or fearfulness, it increased 5-HT, T3 and T4, and decreased CORT levels in a linear dose-dependent manner. Manipulation of Trp feeding levels could be applied to manage stressful conditions in birds.
Collapse
Affiliation(s)
- Alhassan Usman Bello
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Zulkifli Idrus
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Selangor, Malaysia; Department of Animal Science, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Goh Yong Meng
- Department of Preclinical Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Edward J Narayan
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Abdoreza Soleimani Farjam
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
| |
Collapse
|
6
|
U. Bello A, Idrus Z, Yong Meng G, Awad EA, Soleimani Farjam A. Gut microbiota and transportation stress response affected by tryptophan supplementation in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1340814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alhassan U. Bello
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zulkifli Idrus
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Animal Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Goh Yong Meng
- Department of Preclinical Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Elmutaz Atta Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
7
|
A role for plasma aromatic amino acids in injurious pecking behavior in laying hens. Physiol Behav 2017; 175:88-96. [DOI: 10.1016/j.physbeh.2017.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
|
8
|
Bandeira LG, Bortolot BS, Cecatto MJ, Monte-Alto-Costa A, Romana-Souza B. Exogenous Tryptophan Promotes Cutaneous Wound Healing of Chronically Stressed Mice through Inhibition of TNF-α and IDO Activation. PLoS One 2015; 10:e0128439. [PMID: 26057238 PMCID: PMC4461259 DOI: 10.1371/journal.pone.0128439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
Abstract
Stress prolongs the inflammatory response compromising the dermal reconstruction and wound closure. Acute stress-induced inflammation increases indoleamine 2, 3-dioxygenase-stimulated tryptophan catabolism. To investigate the role of indoleamine 2, 3-dioxygenase expression and tryptophan administration in adverse effects of stress on cutaneous wound healing, mice were submitted to chronic restraint stress and treated with tryptophan daily until euthanasia. Excisional lesions were created on each mouse and 5 or 7 days later, the lesions were analyzed. In addition, murine skin fibroblasts were exposed to elevated epinephrine levels plus tryptophan, and fibroblast activity was evaluated. Tryptophan administration reversed the reduction of the plasma tryptophan levels and the increase in the plasma normetanephrine levels induced by stress 5 and 7 days after wounding. Five days after wounding, stress-induced increase in the protein levels of tumor necrosis factor-α and indoleamine 2, 3-dioxygenase, and this was inhibited by tryptophan. Stress-induced increase in the lipid peroxidation and the amount of the neutrophils, macrophages and T cells number was reversed by tryptophan 5 days after wounding. Tryptophan administration inhibited the reduction of myofibroblast density, collagen deposition, re-epithelialization and wound contraction induced by stress 5 days after wounding. In dermal fibroblast culture, the tryptophan administration increased the cell migration and AKT phosphorylation in cells treated with high epinephrine levels. In conclusion, tryptophan-induced reduction of inflammatory response and indoleamine 2, 3-dioxygenase expression may have accelerated cutaneous wound healing of chronically stressed mice.
Collapse
Affiliation(s)
- Luana Graziella Bandeira
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Salari Bortolot
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Jorand Cecatto
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Monte-Alto-Costa
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Chaborski K, Bitterlich N, Alteheld B, Parsi E, Metzner C. Placebo-controlled dietary intervention of stress-induced neurovegetative disorders with a specific amino acid composition: a pilot-study. Nutr J 2015; 14:43. [PMID: 25943490 PMCID: PMC4431034 DOI: 10.1186/s12937-015-0030-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Psychosocial stress leads to altered neuroendocrine functions, such as serotonergic dysfunction, as well as alterations of the autonomic nervous system and the hypothalamic-pituitary-adrenal (HPA)-axis activity resulting in an imbalance between inhibitory and excitatory neurotransmitters. Poor dietary intake of L-tryptophan as a precursor of serotonin increases sensitivity to stress. METHODS This randomized, double-blind, placebo-controlled study investigated the effect of a specific amino acid composition with micronutrients on neurovegetative disorders and the cardiometabolic risk profile in psychosocially stressed patients. 32 patients (18-65 years) were eligible for protocol analysis. Points in the Psychological Neurological Questionnaire (PNF), clinical and blood parameter, in particular the serotonin level, salivary cortisol levels, and dietary intake were evaluated at baseline and 12 weeks after supplementation. RESULTS The intervention in the form of either verum or placebo resulted in both groups in a significant decrease of neurovegetative symptoms. However, patients of the placebo group achieved significantly less points in the PNF compared to the verum group. But the rate of responders (≥10 points loss in PNF) was not significantly different between the groups. The macronutrient intake did not differ between verum and placebo group. On average, the HPA-axis was not disturbed in both groups. Blood serotonin indicated in both groups no significant correlation with dietary tryptophan intake or PNF. CONCLUSIONS Daily supplementation of a specific amino acid composition with micronutrients in psychologically stressed patients resulted in no improvement of neurovegetative disorders as measured by the PNF when compared to the placebo group. TRIAL REGISTRATION Clinical Trials.gov ( NCT01425983 ).
Collapse
Affiliation(s)
- Katrin Chaborski
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, Endenicher Allee 11-13, D-53115, Bonn, Germany.
| | - Norman Bitterlich
- Department of Biostatistics, Medicine and Service Ltd, Boettcherstr. 10, D-09117, Chemnitz, Germany.
| | - Birgit Alteheld
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, Endenicher Allee 11-13, D-53115, Bonn, Germany.
| | - Elke Parsi
- Outpatient Practice of Cardiology/Angiology, Suermondtstr. 13, D-13053, Berlin, Germany.
| | - Christine Metzner
- Department of Internal Medicine III, University Hospital, RWTH, Pauwelsstraße 44, D-52074, Aachen, Germany. .,Bonn Education Association for Dietetics r. A., Fuerst-Pueckler-Str. 44, D-50935, Cologne, Germany.
| |
Collapse
|
10
|
Maes M, Ringel K, Kubera M, Anderson G, Morris G, Galecki P, Geffard M. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation. J Affect Disord 2013; 150:223-30. [PMID: 23664637 DOI: 10.1016/j.jad.2013.03.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/03/2013] [Accepted: 03/28/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is accompanied by activation of immuno-inflammatory pathways, increased bacterial translocation and autoimmune responses to serotonin (5-HT). Inflammation is known to damage 5-HT neurons while bacterial translocation may drive autoimmune responses. This study has been carried out to examine the autoimmune responses to 5-HT in ME/CFS in relation to inflammation and bacterial translocation. METHODS We examined 5-HT antibodies in 117 patients with ME/CFS (diagnosed according to the centers for disease control and prevention criteria, CDC) as compared with 43 patients suffering from chronic fatigue (CF) but not fulfilling the CDC criteria and 35 normal controls. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, neopterin and the IgA responses to Gram-negative bacteria were measured. Severity of physio-somatic symptoms was measured using the fibromyalgia and chronic fatigue syndrome rating scale (FF scale). RESULTS The incidence of positive autoimmune activity against 5-HT was significantly higher (p<0.001) in ME/CFS (61.5%) than in patients with CF (13.9%) and controls (5.7%). ME/CFS patients with 5-HT autoimmune activity displayed higher TNFα, IL-1 and neopterin and increased IgA responses against LPS of commensal bacteria than those without 5-HT autoimmune activity. Anti-5-HT antibody positivity was significantly associated with increased scores on hyperalgesia, fatigue, neurocognitive and autonomic symptoms, sadness and a flu-like malaise. DISCUSSION The results show that, in ME/CFS, increased 5-HT autoimmune activity is associated with activation of immuno-inflammatory pathways and increased bacterial translocation, factors which are known to play a role in the onset of autoimmune reactions. 5-HT autoimmune activity could play a role in the pathophysiology of ME/CFS and the onset of physio-somatic symptoms. These results provide mechanistic support for the notion that ME/CFS is a neuro-immune disorder.
Collapse
|
11
|
Renoir T. Selective serotonin reuptake inhibitor antidepressant treatment discontinuation syndrome: a review of the clinical evidence and the possible mechanisms involved. Front Pharmacol 2013; 4:45. [PMID: 23596418 PMCID: PMC3627130 DOI: 10.3389/fphar.2013.00045] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/27/2013] [Indexed: 12/17/2022] Open
Abstract
Besides demonstrated efficacy, selective serotonin reuptake inhibitors (SSRIs) hold other advantages over earlier antidepressants such as greater tolerability and a wider range of clinical applications. However, there is a growing body of clinical evidence which suggests that SSRIs could, in some cases, be associated with a withdrawal reaction upon cessation of regular use. In addition to sensory and gastrointestinal-related symptoms, the somatic symptoms of the SSRI discontinuation syndrome include dizziness, lethargy, and sleep disturbances. Psychological symptoms have also been documented, usually developing within 1–7 days following SSRI discontinuation. The characteristics of the discontinuation syndrome have been linked to the half-life of a given SSRI, with a greater number of reports emerging from paroxetine compared to other SSRIs. However, many aspects of the neurobiology of the SSRI discontinuation syndrome (or SSRI withdrawal syndrome) remain unresolved. Following a comprehensive overview of the clinical evidence, we will discuss the underlying pathophysiology of the SSRI discontinuation syndrome and comment on the use of animal models to better understand this condition.
Collapse
Affiliation(s)
- Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
12
|
Coppola A, Wenner BR, Ilkayeva O, Stevens RD, Maggioni M, Slotkin TA, Levin ED, Newgard CB. Branched-chain amino acids alter neurobehavioral function in rats. Am J Physiol Endocrinol Metab 2013; 304:E405-13. [PMID: 23249694 PMCID: PMC3566503 DOI: 10.1152/ajpendo.00373.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, we have described a strong association of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) with obesity and insulin resistance. In the current study, we have investigated the potential impact of BCAA on behavioral functions. We demonstrate that supplementation of either a high-sucrose or a high-fat diet with BCAA induces anxiety-like behavior in rats compared with control groups fed on unsupplemented diets. These behavioral changes are associated with a significant decrease in the concentration of tryptophan (Trp) in brain tissues and a consequent decrease in serotonin but no difference in indices of serotonin synaptic function. The anxiety-like behaviors and decreased levels of Trp in the brain of BCAA-fed rats were reversed by supplementation of Trp in the drinking water but not by administration of fluoxetine, a selective serotonin reuptake inhibitor, suggesting that the behavioral changes are independent of the serotonergic pathway of Trp metabolism. Instead, BCAA supplementation lowers the brain levels of another Trp-derived metabolite, kynurenic acid, and these levels are normalized by Trp supplementation. We conclude that supplementation of high-energy diets with BCAA causes neurobehavioral impairment. Since BCAA are elevated spontaneously in human obesity, our studies suggest a potential mechanism for explaining the strong association of obesity and mood disorders.
Collapse
Affiliation(s)
- Anna Coppola
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC 27704, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zoratto F, Fiore M, Ali SF, Laviola G, Macrì S. Neonatal tryptophan depletion and corticosterone supplementation modify emotional responses in adult male mice. Psychoneuroendocrinology 2013; 38:24-39. [PMID: 22613034 DOI: 10.1016/j.psyneuen.2012.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 11/15/2022]
Abstract
The serotonergic system and the hypothalamic-pituitary-adrenal (HPA) axis are crucially involved in the regulation of emotions. Specifically, spontaneous and/or environmentally mediated modulations of the functionality of these systems early in development may favour the onset of depressive- and anxiety-related phenotypes. While the independent contribution of each of these systems to the emergence of abnormal phenotypes has been detailed in clinical and experimental studies, only rarely has their interaction been systematically investigated. Here, we addressed the effects of reduced serotonin and environmental stress during the early stages of postnatal life on emotional regulations in mice. To this aim, we administered, to outbred CD1 mouse dams, during their first week of lactation, a tryptophan deficient diet (T) and corticosterone via drinking water (C; 80μg/ml). Four groups of dams (animal facility rearing, AFR; T treated, T; C treated, C; T and C treated, TC) and their male offspring were used in the study. Maternal care was scored throughout treatment and adult offspring were tested for: anhedonia (progressive ratio schedule); anxiety-related behaviour (approach-avoidance conflict paradigm); BDNF, dopamine and serotonin concentrations in selected brain areas. T, C and TC treatments reduced active maternal care compared to AFR. Adult TC offspring showed significantly increased anxiety- and anhedonia-related behaviours, reduced striatal and increased hypothalamic BDNF and reduced dopamine and serotonin in the prefrontal cortex and their turnover in the hippocampus. Thus, present findings support the view that neonatal variations in the functionality of the serotonergic system and of HPA axis may jointly contribute to induce emotional disturbances in adulthood.
Collapse
Affiliation(s)
- Francesca Zoratto
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
14
|
Franklin M, Bermudez I, Hlavacova N, Babic S, Murck H, Schmuckermair C, Singewald N, Gaburro S, Jezova D. Aldosterone increases earlier than corticosterone in new animal models of depression: is this an early marker? J Psychiatr Res 2012; 46:1394-7. [PMID: 22901774 DOI: 10.1016/j.jpsychires.2012.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 11/26/2022]
|
15
|
Koot S, Zoratto F, Cassano T, Colangeli R, Laviola G, van den Bos R, Adriani W. Compromised decision-making and increased gambling proneness following dietary serotonin depletion in rats. Neuropharmacology 2012; 62:1640-50. [DOI: 10.1016/j.neuropharm.2011.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022]
|
16
|
Sub-chronic dietary tryptophan depletion--an animal model of depression with improved face and good construct validity. J Psychiatr Res 2012; 46:239-47. [PMID: 22074993 DOI: 10.1016/j.jpsychires.2011.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 12/15/2022]
Abstract
Sub-chronic tryptophan depletion (SCTD) is proposed as an animal model for depression. Aims were to test the hypothesis and optimise the time of SCTD-induced depression-related behaviour and associated biochemical changes. Sprague Dawley rats were treated with a low tryptophan (TRP) containing diet for 0, 7 or 14 days. Peripheral and central neurochemical markers were measured. SCTD-induced depression-related behaviour was assessed by the forced swim test (FST). Model sensitivity to antidepressants was tested by concomitant treatment with paroxetine. SCTD-induced significant reductions in weight gain and measures of peripheral and central TRP. Corticosterone, aldosterone and kynurenine (K), increased whilst kynurenic acid (KA), an NMDA antagonist decreased. 5-HT(2) receptor binding Bmax was enhanced but was reversed by paroxetine. Corticosterone and aldosterone were significantly negatively-correlated to weight gain. SCTD increased floating time and reduced swimming time in the FST but were reversed by paroxetine. Aldosterone was increased at 7 and 14 days, whereas other changes maximised at 14 days. Aldosterone may be an early marker or causal link for depression development. Increased corticosterone and brain tissue 5-HT-receptor density may be correlates of depressive behaviour. Consequential increases in NMDA signalling through increased K/KA ratios suggest the model may be useful for testing novel antidepressants.
Collapse
|
17
|
Zoratto F, Berry A, Anzidei F, Fiore M, Alleva E, Laviola G, Macrì S. Effects of maternal L-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1479-92. [PMID: 21356262 DOI: 10.1016/j.pnpbp.2011.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 02/02/2023]
Abstract
Major depressive disorder (MDD), a pathology characterized by mood and neurovegetative disturbances, depends on a multi-factorial contribution of individual predisposition (e.g., diminished serotonergic transmission) and environmental factors (e.g., neonatal abuse or neglect). Despite its female-biased prevalence, MDD basic research has mainly focused on male rodents. Most of present models of depression are also devalued due to the fact that they typically address only one of the aforementioned pathogenetic factors. In this paper we first describe the basic principles behind mouse model development and evaluation and then articulate that current models of depression are intrinsically devalued due to poor construct and/or external validity. We then report a first attempt to overcome this limitation through the design of a mouse model in which the genetic and the environmental components of early risk factors for depression are mimicked together. Environmental stress is mimicked through the supplementation of corticosterone in the maternal drinking water while biological predisposition is mimicked through maternal access to an L-tryptophan (the serotonin precursor) deficient diet during the first week of lactation. CD1 dams and their offspring exposed to the L-tryptophan deficient diet (T) and to corticosterone (80mg/l; C) were compared to animal facility reared (AFR) subjects. T and C mice served as intermediate reference groups. Adolescent TC offspring, compared to AFR mice, showed decreased time spent floating in the forced-swim test and increased time spent in the open sectors of an elevated 0-maze. Adult TC offspring showed reduced preference for novelty, decreased breakpoints in the progressive ratio operant procedure and major alterations in central BDNF levels and altered HPA regulation. The route of administration and the possibility to control the independent variables predisposing to depressive-like symptoms disclose novel avenues towards the development of animal models with increased external and construct validity. Furthermore, the observation that, compared to adult subjects, adolescent mice display an opposite profile suggests that peri-pubertal developmental processes may interact with neonatal predispositions to calibrate the adult abnormal phenotype.
Collapse
Affiliation(s)
- Francesca Zoratto
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new '5-HT' hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:702-21. [PMID: 21185346 DOI: 10.1016/j.pnpbp.2010.12.017] [Citation(s) in RCA: 475] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/07/2010] [Accepted: 12/16/2010] [Indexed: 02/07/2023]
Abstract
This paper reviews the body of evidence that not only tryptophan and consequent 5-HT depletion, but also induction of indoleamine 2,3-dioxygenase (IDO) and the detrimental effects of tryptophan catabolites (TRYCATs) play a role in the pathophysiology of depression. IDO is induced by interferon (IFN)γ, interleukin-6 and tumor necrosis factor-α, lipopolysaccharides and oxidative stress, factors that play a role in the pathophysiology of depression. TRYCATs, like kynurenine and quinolinic acid, are depressogenic and anxiogenic; activate oxidative pathways; cause mitochondrial dysfunctions; and have neuroexcitatory and neurotoxic effects that may lead to neurodegeneration. The TRYCAT pathway is also activated following induction of tryptophan 2,3-dioxygenase (TDO) by glucocorticoids, which are elevated in depression. There is evidence that activation of IDO reduces plasma tryptophan and increases TRYCAT synthesis in depressive states and that TDO activation may play a role as well. The development of depressive symptoms during IFNα-based immunotherapy is strongly associated with IDO activation, increased production of detrimental TRYCATs and lowered levels of tryptophan. Women show greater IDO activation and TRYCAT production following immune challenge than men. In the early puerperium, IDO activation and TRYCAT production are associated with the development of affective symptoms. Clinical depression is accompanied by lowered levels of neuroprotective TRYCATs or increased levels or neurotoxic TRYCATs, and lowered plasma tryptophan, which is associated with indices of immune activation and glucocorticoid hypersecretion. Lowered tryptophan and increased TRYCATs induce T cell unresponsiveness and therefore may exert a negative feedback on the primary inflammatory response in depression. It is concluded that activation of the TRYCAT pathway by IDO and TDO may be associated with the development of depressive symptoms through tryptophan depletion and the detrimental effects of TRYCATs. Therefore, the TRYCAT pathway should be a new drug target in depression. Direct inhibitors of IDO are less likely to be useful drugs than agents, such as kynurenine hydroxylase inhibitors; drugs which block the primary immune response; compounds that increase the protective effects of kynurenic acid; and specific antioxidants that target IDO activation, the immune and oxidative pathways, and 5-HT as well.
Collapse
Affiliation(s)
- M Maes
- Maes Clinics @ TRIA, Piyavate Hospital, 998 Rimklongsamsen Road, Bangkok 10310, Thailand.
| | | | | | | | | |
Collapse
|
19
|
Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications. Eur J Nucl Med Mol Imaging 2010; 38:576-91. [PMID: 21113591 PMCID: PMC3034914 DOI: 10.1007/s00259-010-1663-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/01/2010] [Indexed: 12/20/2022]
Abstract
The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are α-[11C]methyltryptophan ([11C]AMT) and 5-hydroxy-L-[β-11C]tryptophan ([11C]5-HTP). Both tracers have advantages and disadvantages. [11C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [11C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain.
Collapse
|
20
|
Tryptophan depletion impairs object-recognition memory in the rat: Reversal by risperidone. Behav Brain Res 2010; 208:479-83. [DOI: 10.1016/j.bbr.2009.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022]
|
21
|
Nazzaro C, Marino S, Barbieri M, Siniscalchi A. Inhibition of serotonin outflow by nociceptin/orphaninFQ in dorsal raphe nucleus slices from normal and stressed rats: Role of corticotropin releasing factor. Neurochem Int 2009; 54:378-84. [PMID: 19418633 DOI: 10.1016/j.neuint.2009.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the dorsal raphe nucleus (DRN) many inputs converge and interact to modulate serotonergic neuronal activity and the behavioral responses to stress. The effects exerted by two stress-related neuropeptides, corticotropin releasing factor (CRF) and nociceptin/orphaninFQ (N/OFQ), on the outflow of [(3)H]5- hydroxytryptamine were investigated in superfused rat dorsal raphe nucleus slices. Electrical stimulation (100 mA, 1 ms for 2 min) evoked a frequency-dependent peak of [(3)H]5- hydroxytryptamine outflow, which was sodium and calcium-dependent. Corticotropin releasing factor (1-100 nM), concentration-dependently inhibited the stimulation (3 Hz)-evoked [(3)H]5-hydroxytryptamine outflow; the inhibition by 30 nM corticotropin releasing factor (to 68 +/- 5.7%) was prevented both by the non selective CRF receptor antagonist alpha-helicalCRF(9-41) (alpha-HEL) (300 nM) and by the CRF(1) receptor antagonist antalarmin (ANT) (100 nM). The CRF(2) agonist urocortin II (10 nM) did not modify [(3)H]5- hydroxytryptamine outflow, ruling out the involvement of CRF(2) receptors. Bicuculline (BIC), a GABAA antagonist (10 microM), prevented the inhibitory effect of corticotropin releasing factor (30 nM), supporting the hypothesis that the inhibition was mediated by increased gamma-aminobutyric acid (GABA) release. Nociceptin/ orphaninFQ (1 nM-1 microM) exerted an antalarmin- and bicuculline-insensitive inhibition on [(3)H]5- hydroxytryptamine outflow, with the maximum at 100 nM (to 63+/- 4.2%), antagonized by the NOP receptor antagonist UFP-101 (1 microM). Dorsal raphe nucleus slices prepared from rats exposed to 15 min of forced swim stress displayed a reduced [(3)H]5-hydroxytryptamine outflow, in part reversed by antalarmin and further inhibited by nociceptin/orphaninFQ. These findings indicate that (i) both corticotropin releasing factor and nociceptin/orphaninFQ exert an inhibitory control on dorsal raphe nucleus serotonergic neurons; (ii) the inhibition by corticotropin releasing factor involves gamma-aminobutyric acid neurons; (iii) nociceptin/ orphaninFQ inhibits dorsal raphe nucleus serotonin system in a corticotropin releasing factor- and gamma-aminobutyric acid-independent manner; (iv) nociceptin/orphaninFQ modulation is still operant in slices prepared from stressed rats. The nociceptin/orphaninFQ-NOP receptor system could represent a new target for drugs effective in stress-related disorders.
Collapse
Affiliation(s)
- Cristiano Nazzaro
- Department of Clinical and Experimental Medicine, University of Ferrara, Italy
| | | | | | | |
Collapse
|
22
|
Tanke MAC, Kema IP, Dijck-Brouwer J, Doornbos B, De Vries EGE, Korf J. Low plasma tryptophan in carcinoid patients is associated with increased urinary cortisol excretion. Psychoneuroendocrinology 2008; 33:1297-301. [PMID: 18722719 DOI: 10.1016/j.psyneuen.2008.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 01/19/2023]
Abstract
BACKGROUND Previously we observed in patients suffering from a metastatic carcinoid tumor that irritability, aggression and lack of impulse control are associated with low levels of plasma tryptophan and presumably with low brain serotonin function. In rats we showed that a diet of low tryptophan resulted in higher stress responses and higher corticosterone production. Here we tested in carcinoid patients whether tryptophan depletion due to tumor 5-HT overproduction is associated with high cortisol production. METHODS Urinary excretion of cortisol, serotonin, 5-hydroxyindole acetic acid (the main metabolite of serotonin a marker of tumor activity), plasma levels of tryptophan and platelet content of serotonin (index of peripheral serotonin synthesis) were determined in metastatic midgut carcinoid patients. Patients (N = 25) were divided into two groups based on their plasma tryptophan levels (< or = 25 micromol/l, n = 12 and > or = 49 micromol/l, n = 13). RESULTS Carcinoid patients with low plasma tryptophan levels had significantly higher urinary excretion of free cortisol (p < 0.01), independent of tumor activity. The inter-individual differences in the low tryptophan group, however, were substantial. CONCLUSIONS In a subgroup of the patients suffering from metastatic carcinoid disease the cerebral access of plasma tryptophan is impaired, thus rendering cerebral serotonin neurotransmission suboptimal and leading to hypercortisolism. The present study provides further support to the idea that low serotonergic function is a risk for developing stress-associated psychopathology.
Collapse
Affiliation(s)
- Marit A C Tanke
- University Center Psychiatry, University Medical Center Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Kositz C, Schroecksnadel K, Grander G, Schennach H, Kofler H, Fuchs D. High serum tryptophan concentration in pollinosis patients is associated with unresponsiveness to pollen extract therapy. Int Arch Allergy Immunol 2008; 147:35-40. [PMID: 18446051 DOI: 10.1159/000128584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 01/08/2008] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND/AIMS The immunologic background of allergic asthma and rhinitis includes a preponderance of Th2-type immunity. In parallel, Th1-type immune response is suppressed by Th2-type cytokines. As a consequence, biochemical pathways triggered by Th1-type cytokine interferon-gamma, such as tryptophan degradation by indoleamine 2,3-dioxygenase and neopterin production, might be altered. We examined whether they are related to the outcome of hyposensitization therapy in atopic patients. METHODS In serum specimens of 44 atopic patients (18 women, 26 men) before any specific immunotherapy, tryptophan and kynurenine concentrations were measured by HPLC, and the kynurenine to tryptophan ratio (kyn/trp) was calculated. Neopterin concentrations were measured by ELISA. Results were compared with concentrations in 38 serum specimens from healthy blood donors and with the outcome of specific subcutaneous immunotherapy in atopics: on clinical grounds, 27 patients were classified as responders, and 17 patients as non-responders. RESULTS Serum tryptophan concentrations were higher in atopics (84.3 +/- 24.4 microM) than in blood donors (57.9 +/- 7.46 microM; p < 0.001), kynurenine and kyn/trp were not different between the 2 groups. All of the neopterin concentrations measured in patients were <8.7 nM, the upper limit of the normal. Non-responders to subcutaneous immunotherapy had significantly higher tryptophan concentrations (95.7 +/- 27.0 microM) than responders (77.1 +/- 19.9 microM; p = 0.01). No other marker concentrations differed between the groups. CONCLUSIONS The measurement of serum tryptophan may present an option to predict the outcome of pollen extract therapy. Higher tryptophan levels may result from lower indoleamine 2,3-dioxygenase activity in atopics. However, this possible relationship needs to be confirmed in further studies.
Collapse
Affiliation(s)
- C Kositz
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|