1
|
Kerdiles O, Oye Mintsa Mi-mba MF, Coulombe K, Tremblay C, Émond V, Saint-Pierre M, Rouxel C, Berthiaume L, Julien P, Cicchetti F, Calon F. Additive neurorestorative effects of exercise and docosahexaenoic acid intake in a mouse model of Parkinson's disease. Neural Regen Res 2025; 20:574-586. [PMID: 38819068 PMCID: PMC11317935 DOI: 10.4103/nrr.nrr-d-23-00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00033/figure1/v/2024-05-28T214302Z/r/image-tiff There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson's disease after diagnosis. Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids, such as docosahexaenoic acid, and exercise in Parkinson's disease, we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway. First, mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation. Four weeks after lesion, animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks. During this period, the animals had access to a running wheel, which they could use or not. Docosahexaenoic acid treatment, voluntary exercise, or the combination of both had no effect on (i) distance traveled in the open field test, (ii) the percentage of contraversive rotations in the apomorphine-induction test or (iii) the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta. However, the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum. Compared to docosahexaenoic acid treatment or exercise alone, the combination of docosahexaenoic acid and exercise (i) improved forelimb balance in the stepping test, (ii) decreased the striatal DOPAC/dopamine ratio and (iii) led to increased dopamine transporter levels in the lesioned striatum. The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Olivier Kerdiles
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Méryl-Farelle Oye Mintsa Mi-mba
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Katherine Coulombe
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Cyntia Tremblay
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Vincent Émond
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Martine Saint-Pierre
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Clémence Rouxel
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
| | - Line Berthiaume
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Pierre Julien
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Quebec, QC, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| |
Collapse
|
2
|
Oye Mintsa Mi-Mba MF, Lebbadi M, Alata W, Julien C, Emond V, Tremblay C, Fortin S, Barrow CJ, Bilodeau JF, Calon F. Differential impact of eicosapentaenoic acid and docosahexaenoic acid in an animal model of Alzheimer's disease. J Lipid Res 2024:100682. [PMID: 39490923 DOI: 10.1016/j.jlr.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) improves cognitive performance in several animal models of Alzheimer's disease (AD), an effect often associated with reduced amyloid-beta (Aβ) and/or tau pathologies. However, it remains unclear to what extent eicosapentaenoic (EPA) provides additional benefits compared to docosahexaenoic acid (DHA). Here, male and female 3xTg-AD mice were fed for 3 months (13 to 16 months of age) the following diets: (1) control (no DHA/EPA), (2) DHA (1.1g/kg) and low EPA (0.4g/kg), or (3) DHA (0.9g/kg) with high EPA (9.2g/kg). The DHA and DHA+EPA diets respectively increased DHA by 19% and 8% in the frontal cortex of 3xTg-AD mice, compared to controls. Levels of EPA, which were below the detection limit after the control diet, reached 0.14% and 0.29% of total brain fatty acids after the DHA and DHA+EPA diet, respectively. DHA and DHA+EPA diets lowered brain arachidonic acid (ARA) levels and the n-6:n-3 docosapentaenoic acid (DPA) ratio. Brain uptake of free 14C-DHA measured through intracarotid brain perfusion, but not of 14C-EPA, was lower in 3xTg-AD compared to NonTg mice. DHA and DHA+EPA diets in 3xTg-AD mice reduced cortical soluble phosphorylated tau (pS202) (-34% high-DHA, -34% DHA+EPA, p<0.05) while increasing p21 activated kinase (+58% and +83%, p<0.001; respectively). High EPA intake lowered insoluble phosphorylated tau (-31% versus DHA, p<0.05). No diet effect on Aβ levels was observed. In conclusion, dietary intake of DHA and EPA leads to differential changes in brain PUFA while altering cerebral biomarkers consistent with beneficial effects against AD-like neuropathology.
Collapse
Affiliation(s)
- Méryl-Farelle Oye Mintsa Mi-Mba
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Meryem Lebbadi
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Waël Alata
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Carl Julien
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Vincent Emond
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Cyntia Tremblay
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Samuel Fortin
- Centre de recherche sur les biotechnologies marines, Rimouski (Qc), Canada
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University Geelong, Victoria, Australia
| | - Jean-François Bilodeau
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada; Department of medicine, Faculty of Medecine, Laval University, Quebec (QC), Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada.
| |
Collapse
|
3
|
Snowden SG, Koulman A, Gaser C, la Fleur SE, Roseboom TJ, Korosi A, de Rooij SR. Prenatal exposure to undernutrition is associated with a specific lipid profile predicting future brain aging. NPJ AGING 2024; 10:42. [PMID: 39349457 PMCID: PMC11442854 DOI: 10.1038/s41514-024-00169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
Prenatal adversity affects cognitive and brain aging. Both lipid and leptin concentrations may be involved. We investigated if prenatal undernutrition is associated with a specific blood lipid profile and/or leptin concentrations, and if these relate to cognitive function and brain aging. 801 plasma samples of members of the Dutch famine birth cohort were assessed for lipidomics and leptin at age 58. Cognitive performance was measured with a Stroop task at 58, and MRI-based BrainAGE was derived in a subsample at 68. Out of 259 lipid signals, a signature of five identified individuals who were undernourished prenatally. These five lipids were not associated with cognitive performance, but three were predictive of BrainAGE. Leptin was not associated with prenatal famine exposure, Stroop performance, or BrainAGE. In conclusion, prenatal undernutrition was associated with an altered lipid profile predictive of BrainAGE 10 years later, demonstrating the potential of lipid profiles as early biomarkers for accelerated brain aging.
Collapse
Affiliation(s)
- Stuart G Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Susanne E la Fleur
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Department of Epidemiology and Data Science, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Aniko Korosi
- Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
- Amsterdam Public Health research institute, Aging & Later life, Health Behaviors & Chronic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Simard M, Mélançon K, Berthiaume L, Tremblay C, Pshevorskiy L, Julien P, Rajput AH, Rajput A, Calon F. Postmortem Fatty Acid Abnormalities in the Cerebellum of Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01736-4. [PMID: 39215908 DOI: 10.1007/s12311-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids play many critical roles in brain function but have not been investigated in essential tremor (ET), a frequent movement disorder suspected to involve cerebellar dysfunction. Here, we report a postmortem comparative analysis of fatty acid profiles by gas chromatography in the cerebellar cortex from ET patients (n = 15), Parkinson's disease (PD) patients (n = 15) and Controls (n = 17). Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI)/ phosphatidylserine (PS) were separated by thin-layer chromatography and analyzed separately. First, the total amounts of fatty acids retrieved from the cerebellar cortex were lower in ET patients compared with PD patients, including monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). The diagnosis of ET was associated with lower cerebellar levels of saturated fatty acids (SFA) and PUFA (DHA and ARA) in the PE fraction specifically, but with a higher relative content of dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) in the PC fraction. In contrast, a diagnosis of PD was associated with higher absolute concentrations of SFA, MUFA and ω-6 PUFA in the PI + PS fractions. However, relative PI + PS contents of ω-6 PUFA were lower in both PD and ET patients. Finally, linear regression analyses showed that the ω-3:ω-6 PUFA ratio was positively associated with age of death, but inversely associated with insoluble α-synuclein. Although it remains unclear how these FA changes in the cerebellum are implicated in ET or PD pathophysiology, they may be related to an ongoing neurodegenerative process or to dietary intake differences. The present findings provide a window of opportunity for lipid-based therapeutic nutritional intervention.
Collapse
Affiliation(s)
- Mélissa Simard
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Koralie Mélançon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Line Berthiaume
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Cyntia Tremblay
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Laura Pshevorskiy
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Pierre Julien
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ali H Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
5
|
Apuschkin M, Burm HB, Schmidt JH, Skov LJ, Andersen RC, Bowin CF, Støier JF, Jensen KL, Posselt LP, Dmytriyeva O, Sørensen AT, Egerod KL, Holst B, Rickhag M, Schwartz TW, Gether U. An atlas of GPCRs in dopamine neurons: Identification of the free fatty acid receptor 4 as a regulator of food and water intake. Cell Rep 2024; 43:114509. [PMID: 39003735 DOI: 10.1016/j.celrep.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Midbrain dopaminergic neurons (DANs) are subject to extensive metabotropic regulation, but the repertoire of G protein-coupled receptors (GPCRs) present in these neurons has not been mapped. Here, we isolate DANs from Dat-eGFP mice to generate a GPCR atlas by unbiased qPCR array expression analysis of 377 GPCRs. Combined with data mining of scRNA-seq databases, we identify multiple receptors in DAN subpopulations with 38 of these receptors representing the majority of transcripts. We identify 41 receptors expressed in midbrain DANs but not in non-DAN midbrain cells, including the free fatty acid receptor 4 (FFAR4). Functional expression of FFAR4 is validated by ex vivo Ca2+ imaging, and in vivo experiments support that FFAR4 negatively regulates food and water intake and bodyweight. In addition to providing a critical framework for understanding metabotropic DAN regulation, our data suggest fatty acid sensing by FFAR4 as a mechanism linking high-energy intake to the dopamine-reward pathway.
Collapse
Affiliation(s)
- Mia Apuschkin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hayley B Burm
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jan H Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise J Skov
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rita C Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carl-Fredrik Bowin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonatan F Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kathrine L Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Leonie P Posselt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristoffer L Egerod
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology and Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Thue W Schwartz
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Namiecinska M, Piatek P, Lewkowicz P. Nervonic Acid Synthesis Substrates as Essential Components in Profiled Lipid Supplementation for More Effective Central Nervous System Regeneration. Int J Mol Sci 2024; 25:3792. [PMID: 38612605 PMCID: PMC11011827 DOI: 10.3390/ijms25073792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Central nervous system (CNS) damage leads to severe neurological dysfunction as a result of neuronal cell death and axonal degeneration. As, in the mature CNS, neurons have little ability to regenerate their axons and reconstruct neural loss, demyelination is one of the hallmarks of neurological disorders such as multiple sclerosis (MS). Unfortunately, remyelination, as a regenerative process, is often insufficient to prevent axonal loss and improve neurological deficits after demyelination. Currently, there are still no effective therapeutic tools to restore neurological function, but interestingly, emerging studies prove the beneficial effects of lipid supplementation in a wide variety of pathological processes in the human body. In the future, available lipids with a proven beneficial effect on CNS regeneration could be included in supportive therapy, but this topic still requires further studies. Based on our and others' research, we review the role of exogenous lipids, pointing to substrates that are crucial in the remyelination process but are omitted in available studies, justifying the properly profiled supply of lipids in the human diet as a supportive therapy during CNS regeneration.
Collapse
Affiliation(s)
- Magdalena Namiecinska
- Department of Immunogenetics, Medical University of Lodz, Pomorska 251/A4 Street, 92-213 Lodz, Poland; (P.P.); (P.L.)
| | | | | |
Collapse
|
7
|
Muñoz-Jurado A, Escribano BM, Galván A, Valdelvira ME, Caballero-Villarraso J, Giraldo AI, Santamaría A, Luque E, Agüera E, LaTorre M, Túnez I. Neuroprotective and antioxidant effects of docosahexaenoic acid (DHA) in an experimental model of multiple sclerosis. J Nutr Biochem 2024; 124:109497. [PMID: 37875228 DOI: 10.1016/j.jnutbio.2023.109497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease, whose etiology is not yet fully understood, although there are several factors that can increase the chances of suffering from it. These factors include nutrition, which may be involved in the pathogenesis of the disease. In relation to nutrition, docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), has emerged as an important player in the regulation of neuroinflammation, being considered a pleiotropic molecule. This study aimed to evaluate the effect of DHA supplementation on clinical state and oxidative stress produced by experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Twenty-five Dark Agouti rats which were used divided into Control Group, Control+Vehicle Group, Control+DHA Group, EAE Group, and EAE+DHA Group. DHA was administered for 51 days by intraperitoneal (i.p.) injection at a dose of 40 mg/kg, once a day, 5 days a week. DHA supplementation produced a decrease in oxidative stress, as well as an improvement in the clinical score of the disease. DHA could exert a beneficial effect on the clinic of MS, through the activation of the antioxidant factor Nrf2.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Alberto Galván
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Manuel E Valdelvira
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain; Analysis Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Ana I Giraldo
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Abel Santamaría
- Laboratory of exciting amino acids, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Evelio Luque
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain; Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Madrid, Spain.
| |
Collapse
|
8
|
Zhang X, Yuan T, Chen X, Liu X, Hu J, Liu Z. Effects of DHA on cognitive dysfunction in aging and Alzheimer's disease: The mediating roles of ApoE. Prog Lipid Res 2024; 93:101256. [PMID: 37890592 DOI: 10.1016/j.plipres.2023.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The prevalence of Alzheimer's disease (AD) continues to rise due to the increasing aging population. Among the various genetic factors associated with AD, apolipoprotein E (ApoE), a lipid transporter, stands out as the primary genetic risk factor. Specifically, individuals carrying the ApoE4 allele exhibit a significantly higher risk. However, emerging research indicates that dietary factors play a prominent role in modifying the risk of AD. Docosahexaenoic acid (DHA), a prominent ω-3 fatty acid, has garnered considerable attention for its potential to ameliorate cognitive function. The intricate interplay between DHA and the ApoE genotype within the brain, which may influence DHA's utilization and functionality, warrants further investigation. This review meticulously examines experimental and clinical studies exploring the effects of DHA on cognitive decline. Special emphasis is placed on elucidating the role of ApoE gene polymorphism and the underlying mechanisms are discussed. These studies suggest that early DHA supplementation may confer benefits to cognitively normal older adults carrying the ApoE4 gene. However, once AD develops, ApoE4 non-carriers may experience greater benefits compared to ApoE4 carriers, although the overall effectiveness of DHA supplementation at this stage is limited. Potential mechanisms underlying these differential effects may include accelerated DHA catabolism in ApoE4 carriers, impaired transport across the blood-brain barrier (BBB), and compromised lipidation and circulatory function in ApoE4 carriers. Thus, the supplementation of DHA may represent a potential intervention strategy aimed at compensating for these deficiencies in ApoE4 carriers prior to the onset of AD.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong 523170, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi 710300, China.
| |
Collapse
|
9
|
Saito K, Koizumi S. A promising drug for neuropathic pain: identification of vesicular nucleotide transporter as a novel target of eicosapentaenoic acid. Purinergic Signal 2023; 19:587-589. [PMID: 36627401 PMCID: PMC10754788 DOI: 10.1007/s11302-022-09918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
- Yamanashi GLIA Center, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA Center, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
10
|
Szrok-Jurga S, Turyn J, Hebanowska A, Swierczynski J, Czumaj A, Sledzinski T, Stelmanska E. The Role of Acyl-CoA β-Oxidation in Brain Metabolism and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13977. [PMID: 37762279 PMCID: PMC10531288 DOI: 10.3390/ijms241813977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This review highlights the complex role of fatty acid β-oxidation in brain metabolism. It demonstrates the fundamental importance of fatty acid degradation as a fuel in energy balance and as an essential component in lipid homeostasis, brain aging, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Julian Swierczynski
- Institute of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| |
Collapse
|
11
|
Reveret L, Leclerc M, Morin F, Émond V, Calon F. Pharmacokinetics, biodistribution and toxicology of novel cell-penetrating peptides. Sci Rep 2023; 13:11081. [PMID: 37422520 PMCID: PMC10329699 DOI: 10.1038/s41598-023-37280-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have been used in basic and preclinical research in the past 30 years to facilitate drug delivery into target cells. However, translation toward the clinic has not been successful so far. Here, we studied the pharmacokinetic (PK) and biodistribution profiles of Shuttle cell-penetrating peptides (S-CPP) in rodents, combined or not with an immunoglobulin G (IgG) cargo. We compared two enantiomers of S-CPP that contain both a protein transduction domain and an endosomal escape domain, with previously shown capacity for cytoplasmic delivery. The plasma concentration versus time curve of both radiolabelled S-CPPs required a two-compartment PK analytical model, which showed a fast distribution phase (t1/2α ranging from 1.25 to 3 min) followed by a slower elimination phase (t1/2β ranging from 5 to 15 h) after intravenous injection. Cargo IgG combined to S-CPPs displayed longer elimination half-life, of up to 25 h. The fast decrease in plasma concentration of S-CPPs was associated with an accumulation in target organs assessed at 1 and 5 h post-injection, particularly in the liver. In addition, in situ cerebral perfusion (ISCP) of L-S-CPP yielded a brain uptake coefficient of 7.2 ± 1.1 µl g-1 s-1, consistent with penetration across the blood-brain barrier (BBB), without damaging its integrity in vivo. No sign of peripheral toxicity was detected either by examining hematologic and biochemical blood parameters, or by measuring cytokine levels in plasma. In conclusion, S-CPPs are promising non-toxic transport vectors for improved tissue distribution of drug cargos in vivo.
Collapse
Affiliation(s)
- L Reveret
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - M Leclerc
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - F Morin
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - V Émond
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - F Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada.
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
12
|
Andriambelo B, Stiffel M, Roke K, Plourde M. New perspectives on randomized controlled trials with omega-3 fatty acid supplements and cognition: A scoping review. Ageing Res Rev 2023; 85:101835. [PMID: 36603691 DOI: 10.1016/j.arr.2022.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Long chain polyunsaturated omega-3 fatty acids (n-3 FA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to be important components in a healthy diet and contribute to healthy functioning of the heart and the brain, among other organs. Although there are epidemiological studies on the strong relationship between fish or n-3 FA consumption and lower risk of cognitive decline, results from randomized controlled trials (RCTs) are less consistent. Here, we performed a scoping review on RCTs with n-3 FA supplementation where cognition was evaluated. Seventy-eight RCTs published before April 2022 were included in this review. Among these RCTs, 43.6% reported a positive cognitive outcome after the consumption of n-3 FA compared to the placebo. However, there was a large diversity of populations studied (age ranges and health status), wide range of doses of EPA + DHA supplemented (79 mg/day - 5200 mg/day) and a multitude of tests evaluating cognition, mainly diagnostic tests, that were used to assess cognitive scores and overall cognitive status. RCTs were thereafter categorized into non-cognitively impaired middle-aged adults (n = 24), non-cognitively impaired older adults (n = 24), adults with subjective memory complaints (n = 14), adults with mild cognitive impairments (MCI, n = 9) and people with diagnosed dementia or other cognitive changes (n = 7). Among these categories, 66.7% of RCTs conducted with MCI adults reported a positive cognitive outcome when supplemented with n-3 FA vs. the placebo. Therefore, this scoping review provides rationale and questions to a) strengthen the design of future RCTs with n-3 FA for cognitive outcomes, and b) generate more informative data to support clinicians in their practice in assessing cognition before and after a nutritional intervention.
Collapse
Affiliation(s)
- B Andriambelo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - M Stiffel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - K Roke
- GOED- Global Organization for EPA and DHA Omega-3, Salt Lake City, UT, United States
| | - M Plourde
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada.
| |
Collapse
|
13
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Stolze Larsen F. New Insight Into Mechanisms of Hepatic Encephalopathy: An Integrative Analysis Approach to Identify Molecular Markers and Therapeutic Targets. Bioinform Biol Insights 2023; 17:11779322231155068. [PMID: 36814683 PMCID: PMC9940182 DOI: 10.1177/11779322231155068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic encephalopathy (HE) is a set of complex neurological complications that arise from advanced liver disease. The precise molecular and cellular mechanism of HE is not fully understood. Differentially expressed genes (DEGs) from microarray technologies are powerful approaches to obtain new insight into the pathophysiology of HE. We analyzed microarray data sets of cirrhotic patients with HE from Gene Expression Omnibus to identify DEGs in postmortem cerebral tissues. Consequently, we uploaded significant DEGs into the STRING to specify protein-protein interactions. Cytoscape was used to reconstruct the genetic network and identify hub genes. Target genes were uploaded to different databases to perform comprehensive enrichment analysis and repurpose new therapeutic options for HE. A total of 457 DEGs were identified in 2 data sets totally from 12 cirrhotic patients with HE compared with 12 healthy subjects. We found that 274 genes were upregulated and 183 genes were downregulated. Network analyses on significant DEGs indicated 12 hub genes associated with HE. Enrichment analysis identified fatty acid beta-oxidation, cerebral organic acidurias, and regulation of actin cytoskeleton as main involved pathways associated with upregulated genes; serotonin receptor 2 and ELK-SRF/GATA4 signaling, GPCRs, class A rhodopsin-like, and p38 MAPK signaling pathway were related to downregulated genes. Finally, we predicted 39 probable effective drugs/agents for HE. This study not only confirms main important involved mechanisms of HE but also reveals some yet unknown activated molecular and cellular pathways in human HE. In addition, new targets were identified that could be of value in the future study of HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Aging decreases docosahexaenoic acid transport across the blood-brain barrier in C57BL/6J mice. PLoS One 2023; 18:e0281946. [PMID: 36795730 PMCID: PMC9934487 DOI: 10.1371/journal.pone.0281946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
Nutrients are actively taken up by the brain via various transporters at the blood-brain barrier (BBB). A lack of specific nutrients in the aged brain, including decreased levels of docosahexaenoic acid (DHA), is associated with memory and cognitive dysfunction. To compensate for decreased brain DHA, orally supplied DHA must be transported from the circulating blood to the brain across the BBB through transport carriers, including major facilitator superfamily domain-containing protein 2a (MFSD2A) and fatty acid-binding protein 5 (FABP5) that transport esterified and non-esterified DHA, respectively. Although it is known that the integrity of the BBB is altered during aging, the impact of aging on DHA transport across the BBB has not been fully elucidated. We used 2-, 8-, 12-, and 24-month-old male C57BL/6 mice to evaluate brain uptake of [14C]DHA, as the non-esterified form, using an in situ transcardiac brain perfusion technique. Primary culture of rat brain endothelial cells (RBECs) was used to evaluate the effect of siRNA-mediated MFSD2A knockdown on cellular uptake of [14C]DHA. We observed that the 12- and 24-month-old mice exhibited significant reductions in brain uptake of [14C]DHA and decreased MFSD2A protein expression in the brain microvasculature compared with that of the 2-month-old mice; nevertheless, FABP5 protein expression was up-regulated with age. Brain uptake of [14C]DHA was inhibited by excess unlabeled DHA in 2-month-old mice. Transfection of MFSD2A siRNA into RBECs decreased the MFSD2A protein expression levels by 30% and reduced cellular uptake of [14C]DHA by 20%. These results suggest that MFSD2A is involved in non-esterified DHA transport at the BBB. Therefore, the decreased DHA transport across the BBB that occurs with aging could be due to age-related down-regulation of MFSD2A rather than FABP5.
Collapse
|
15
|
Gupta S, Dasmahapatra AK. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:581-598. [PMID: 34856889 DOI: 10.1080/07391102.2021.2009915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The senile plaques of neurotoxic aggregates of Aβ protein, deposited extraneuronally, mark the pathological hallmark of Alzheimer's disease (AD). The natural compounds such as omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), which can access blood-brain barrier, are believed to be potential disruptors of preformed Aβ fibrils to cure AD with unknown mechanism. Herein, we present the destabilization potential of three ω-3 PUFAs, viz. Eicosapentaenoic acid (EPA), Docosahexaenoic acid (HXA), and α-linolenic acid (LNL) by molecular dynamics simulation. After an initial testing of 300 ns, EPA and HXA have been considered further for extended production run time, 500 ns. The increased value of root mean square deviation (RMSD), radius of gyration, and solvent-accessible surface area (SASA), the reduced number of H-bonds and β-sheet content, and disruption of salt bridges and hydrophobic contacts establish the binding of these ligands to Aβ fibril leading to destabilization. The polar head was found to interact with positively charged lysine (K28) residue in the fibril. However, the hydrophobicity of the long aliphatic tail competes with the intrinsic hydrophobic interactions of Aβ fibril. This amphiphilic nature of EPA and HXA led to the breaking of inherent hydrophobic contacts and formation of new bonds between the tail of PUFA and hydrophobic residues of Aβ fibril, leading to the destabilization of fibril. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results explain the binding of EPA and HXA to Aβ fibril by interacting with different residues. The destabilization potential of EPA and HXA establishes them as promising drug leads to cure AD, and encourages prospecting of other fatty acids for therapeutic intervention in AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
16
|
Satizabal CL, Himali JJ, Beiser AS, Ramachandran V, Melo van Lent D, Himali D, Aparicio HJ, Maillard P, DeCarli CS, Harris WS, Seshadri S. Association of Red Blood Cell Omega-3 Fatty Acids With MRI Markers and Cognitive Function in Midlife: The Framingham Heart Study. Neurology 2022; 99:e2572-e2582. [PMID: 36198518 PMCID: PMC9754651 DOI: 10.1212/wnl.0000000000201296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Diet may be a key contributor to brain health in midlife. In particular, omega-3 fatty acids have been related to better neurologic outcomes in older adults. However, studies focusing on midlife are lacking. We investigated the cross-sectional association of red blood cell (RBC) omega-3 fatty acid concentrations with MRI and cognitive markers of brain aging in a community-based sample of predominantly middle-aged adults and further explore effect modification by APOE genotype. METHODS We included participants from the Third-Generation and Omni 2 cohorts of the Framingham Heart Study attending their second examination. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations were measured from RBC using gas chromatography, and the Omega-3 index was calculated as EPA + DHA. We used linear regression models to relate omega-3 fatty acid concentrations to brain MRI measures (i.e., total brain, total gray matter, hippocampal, and white matter hyperintensity volumes) and cognitive function (i.e., episodic memory, processing speed, executive function, and abstract reasoning) adjusting for potential confounders. We further tested for interactions between omega-3 fatty acid levels and APOE genotype (e4 carrier vs noncarrier) on MRI and cognitive outcomes. RESULTS We included 2,183 dementia-free and stroke-free participants (mean age of 46 years, 53% women, 22% APOE-e4 carriers). In multivariable models, higher Omega-3 index was associated with larger hippocampal volumes (standard deviation unit beta ±standard error; 0.003 ± 0.001, p = 0.013) and better abstract reasoning (0.17 ± 0.07, p = 0.013). Similar results were obtained for DHA or EPA concentrations individually. Stratification by APOE-e4 status showed associations between higher DHA concentrations or Omega-3 index and larger hippocampal volumes in APOE-e4 noncarriers, whereas higher EPA concentrations were related to better abstract reasoning in APOE-e4 carriers. Finally, higher levels of all omega-3 predictors were related to lower white matter hyperintensity burden but only in APOE-e4 carriers. DISCUSSION Our results, albeit exploratory, suggest that higher omega-3 fatty acid concentrations are related to better brain structure and cognitive function in a predominantly middle-aged cohort free of clinical dementia. These associations differed by APOE genotype, suggesting potentially different metabolic patterns by APOE status. Additional studies in middle-aged populations are warranted to confirm these findings.
Collapse
Affiliation(s)
- Claudia L Satizabal
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD.
| | - Jayandra Jung Himali
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Alexa S Beiser
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Vasan Ramachandran
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Debora Melo van Lent
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Dibya Himali
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Hugo J Aparicio
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Pauline Maillard
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Charles S DeCarli
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - William S Harris
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Sudha Seshadri
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| |
Collapse
|
17
|
Li Y, Lai W, Zheng C, Babu JR, Xue C, Ai Q, Huggins KW. Neuroprotective Effect of Stearidonic Acid on Amyloid β-Induced Neurotoxicity in Rat Hippocampal Cells. Antioxidants (Basel) 2022; 11:2357. [PMID: 36552565 PMCID: PMC9774633 DOI: 10.3390/antiox11122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dietary intake of omega-3 fatty acids found in fish has been reported to reduce the risk of Alzheimer's Disease (AD). Stearidonic acid (SDA), a plant-based omega-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids. However, its role in neuronal degeneration is unknown. This study was designed to evaluate effects of SDA on Amyloid-β(A-β)-induced neurotoxicity in rat hippocampal cells. Results showed that SDA effectively converted to eicosapentaenoic acid (EPA) in hippocampal cells. Aβ-induced apoptosis in H19-7 cells was protected by SDA pretreatment as evidenced by its regulation on the expression of relevant pro- and anti-apoptotic genes, as well as the inhibition on caspase activation. SDA also protected H19-7 cells from Aβ-induced oxidative stress by regulating the expression of relevant pro- and anti-oxidative genes, as well as the improvement in activity of catalase. As for Aβ/LPS-induced neuronal inflammation, SDA pretreatment reduced the release of IL-1β and TNFα. Further, we found that the anti-Aβ effect of SDA involves its inhibition on the expression of amyloid precursor protein and the regulation on MAPK signaling. These results demonstrated that SDAs have neuroprotective effect in Aβ-induced H19-7 hippocampal cells. This beneficial effect of SDA was attributed to its antiapoptotic, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Chen Zheng
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Cui XY, Jiang S, Wang CC, Yang JY, Zhao YC, Xue CH, Wang YM, Zhang TT. Comparative Analyses of EPA-Phosphatidylcholine, EPA-Lysophosphatidylcholine, and DHA-Lysophosphatidylcholine on DHA and EPA Repletion in n-3 PUFA-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13327-13339. [PMID: 36197792 DOI: 10.1021/acs.jafc.2c06462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) play an important role in maintaining the physiological functions of tissues, and the beneficial effects of DHA/EPA in phospholipid forms have been widely reported. Although lysophosphatidylcholine (LPC) is considered to be the preferred form of DHA supplementation for the brain, the kinetics of DHA and EPA recovery and corresponding changes of n-6 docosapentaenoic acid (DPA) and arachidonic acid (AA) levels in different phospholipid molecules and different tissues after administration of EPA in phosphatidylcholine (PC) and LPC forms and DHA in the LPC form are not clear. Here, we measured the total fatty acids in tissues and fatty acid composition of different phospholipid molecules after gavage administration of equal molar amounts of EPA/DHA in mice with n-3 polyunsaturated fatty acid (PUFA) deficiency induced by maternal dietary deprivation of n-3 PUFA during pregnancy and lactation. The results showed that dietary supplementation with EPA-PC, EPA-LPC, and DHA-LPC exhibited different priorities for EPA or DHA accretion and supplementation efficiency curves in different tissues during the developing period. EPA-PC exhibited a more optimal efficacy in DHA and EPA repletion in serum and hepatic total fatty acids. In terms of DHA recovery in the brain, EPA-LPC and DHA-LPC showed great effects. Meanwhile, the DHA level in total fatty acids and major fractions of phospholipids (PC, PE, and PI + PS) in the heart and bone marrow with the supplementation of DHA-LPC displayed a relatively considerable increase compared with that of EPA supplementation groups. The study provides a reference for the time course of DHA or EPA recovery in phospholipid molecular species in different tissues after the supplementation of EPA-PC, EPA-LPC, and DHA-LPC.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| | - Shan Jiang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong, P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| |
Collapse
|
19
|
Dietary Fatty Acid Composition Impacts the Fatty Acid Profiles of Different Regions of the Bovine Brain. Animals (Basel) 2022; 12:ani12192696. [PMID: 36230437 PMCID: PMC9559283 DOI: 10.3390/ani12192696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Fatty acid composition across functional brain regions was determined in bovine brains collected from cattle that were provided supplements of calcium salts containing either palm or fish oil. The Angus cattle were divided into two groups, with one group offered the supplement of calcium salts of palm oil and the other offered the calcium salts of fish oil (n = 5 females and n = 5 males/supplement) for 220 days. These supplements to the basal forage diet were provided ad libitum as a suspension in dried molasses. The fish oil exclusively provided eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3). The functional regions were dissected from the entire brains following commercial harvest. While the cattle provided diets supplemented with the calcium salts of palm oil had increased (p < 0.01) liver concentrations of C18:1 n-9, C18:2 n-6, and arachidonic acid, the fish-oil-supplemented cattle had greater (p < 0.01) concentrations of liver EPA, DHA, and C18:3 n-3. In the brain, DHA was the most abundant polyunsaturated fatty acid. In the amygdala, pons, frontal lobe, internal capsule, and sensory cortex, DHA concentrations were greater (p < 0.05) in the brains of the cattle fed fish oil. Differences among the supplements were small, indicating that brain DHA content is resistant to dietary change. Arachidonic acid and C22:4 n-6 concentrations were greater across the regions for the palm-oil-supplemented cattle. EPA and C22:5 n-3 concentrations were low, but they were greater across the regions for the cattle fed fish oil. The effects of sex were inconsistent. The fatty acid profiles of the brain regions differed by diet, but they were similar to the contents reported for other species.
Collapse
|
20
|
Piatek P, Lewkowicz N, Michlewska S, Wieczorek M, Bonikowski R, Parchem K, Lewkowicz P, Namiecinska M. Natural fish oil improves the differentiation and maturation of oligodendrocyte precursor cells to oligodendrocytes in vitro after interaction with the blood–brain barrier. Front Immunol 2022; 13:932383. [PMID: 35935952 PMCID: PMC9353075 DOI: 10.3389/fimmu.2022.932383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
The blood–brain barrier (BBB) tightly controls the microenvironment of the central nervous system (CNS) to allow neurons to function properly. Additionally, emerging studies point to the beneficial effect of natural oils affecting a wide variety of physiological and pathological processes in the human body. In this study, using an in vitro model of the BBB, we tested the influence of natural fish oil mixture (FOM) vs. borage oil (BO), both rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and monounsaturated fatty acids (MUFAs) such as oleic acid (C18:1n9c) or nervonic acid (NA), on human oligodendrocyte precursor cells (hOPCs) during their maturation to oligodendrocytes (OLs) regarding their ability to synthesize myelin peptides and NA. We demonstrated that FOM, opposite to BO, supplemented endothelial cells (ECs) and astrocytes forming the BBB, affecting the function of hOPCs during their maturation. This resulted in improved synthesis of myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), proteolipid protein (PLP), and NA in mature OLs. This effect is probably the result of BBB cell and hOPC stimulation via free fatty acid receptors (FFARs), which increases insulin growth factor-1 (IGF-1), ciliary neurotrophic factor (CNTF), and brain-derived neurotrophic factor (BDNF) and inhibits fibroblast growth factor 2 (FGF-2) synthesis. The unique formula of fish oil, characterized by much more varied components compared to those of BOs, also improved the enhancement of the tight junction by increasing the expression of claudin-5 and VE-cadherin on ECs. The obtained data justify consideration of naturally derived fish oil intake in human diet as affecting during remyelination.
Collapse
Affiliation(s)
- Paweł Piatek
- Department of Immunogenetics, Medical University of Lodz, Lodz, Poland
| | - Natalia Lewkowicz
- Department of Periodontology and Oral Mucosal Diseases, Medical University of Lodz, Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Radosław Bonikowski
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Lodz, Poland
| | - Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Przemysław Lewkowicz
- Department of Immunogenetics, Medical University of Lodz, Lodz, Poland
- *Correspondence: Przemysław Lewkowicz, ; Magdalena Namiecinska,
| | - Magdalena Namiecinska
- Department of Immunogenetics, Medical University of Lodz, Lodz, Poland
- *Correspondence: Przemysław Lewkowicz, ; Magdalena Namiecinska,
| |
Collapse
|
21
|
The Cholesteryl Ester Transfer Protein (CETP) raises Cholesterol Levels in the Brain. J Lipid Res 2022; 63:100260. [PMID: 35921880 PMCID: PMC9464954 DOI: 10.1016/j.jlr.2022.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
The cholesteryl ester transfer protein (CETP) is a lipid transfer protein responsible for the exchange of cholesteryl esters and triglycerides between lipoproteins. Decreased CETP activity is associated with longevity, cardiovascular health, and maintenance of good cognitive performance. Interestingly, mice lack the CETP-encoding gene and have very low levels of LDL particles compared with humans. Currently, the molecular mechanisms induced because of CETP activity are not clear. To understand how CETP activity affects the brain, we utilized CETP transgenic (CETPtg) mice that show elevated LDL levels upon induction of CETP expression through a high-cholesterol diet. CETPtg mice on a high-cholesterol diet showed up to 22% higher cholesterol levels in the brain. Using a microarray on mostly astrocyte-derived mRNA, we found that this cholesterol increase is likely not because of elevated de novo synthesis of cholesterol. However, cholesterol efflux is decreased in CETPtg mice along with an upregulation of the complement factor C1Q, which plays a role in neuronal cholesterol clearance. Our data suggest that CETP activity affects brain health through modulating cholesterol distribution and clearance. Therefore, we propose that CETPtg mice constitute a valuable research tool to investigate the impact of cholesterol metabolism on brain function.
Collapse
|
22
|
Alata W, Yogi A, Brunette E, Delaney CE, Faassen H, Hussack G, Iqbal U, Kemmerich K, Haqqani AS, Moreno MJ, Stanimirovic DB. Targeting insulin‐like growth factor‐1 receptor (IGF1R) for brain delivery of biologics. FASEB J 2022; 36:e22208. [DOI: 10.1096/fj.202101644r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Wael Alata
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Alvaro Yogi
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Christie E. Delaney
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Henk Faassen
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Umar Iqbal
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Kristin Kemmerich
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Arsalan S. Haqqani
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Maria J. Moreno
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Danica B. Stanimirovic
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| |
Collapse
|
23
|
The Impact of Medium Chain and Polyunsaturated ω-3-Fatty Acids on Amyloid-β Deposition, Oxidative Stress and Metabolic Dysfunction Associated with Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10121991. [PMID: 34943094 PMCID: PMC8698946 DOI: 10.3390/antiox10121991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.
Collapse
|
24
|
Tung TH, Nguyen NTK, Huang SY. New Insights into Depressive Disorder with Respect to Low-Grade Inflammation and Fish Oil Intake. J Oleo Sci 2021; 70:1539-1550. [PMID: 34732633 DOI: 10.5650/jos.ess21209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unipolar depression has been recognized as one of the major diseases by the World Health Organization in the 21st century. The etiology of depression is complicated and includes genetic factors, stress, aging, and special physical status (pregnancy, metabolic syndrome, and trauma). Numerous animal and human studies have demonstrated that n-3 polyunsaturated fatty acids (n-3 PUFAs) are highly correlated to cognition and depression. These nutritional antidepressants, including EPA and DHA, have a range of neurobiological activities contributing to their potential antidepressant effects. Our preclinical and clinical studies have indicated that n-3 PUFA supplementation in addition to standard antidepressant medications may provide synergistic neuroprotective and antioxidant/inflammatory effects. To translate our preliminary findings into clinical application, this paper reviews the existing evidence on the antidepressant effects of n-3 PUFAs and the potential underlying mechanisms, which include modulation of chronic lowgrade inflammation and the corresponding changes in peripheral blood immune biomarkers.
Collapse
Affiliation(s)
- Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University
| | - Ngan Thi Kim Nguyen
- School of Nutrition and Health Sciences, Taipei Medical University.,Department of Nutrition and Food Science, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh city
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University.,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University.,Nutrition Research Center, Taipei Medical University Hospital
| |
Collapse
|
25
|
Hanafy AS, Dietrich D, Fricker G, Lamprecht A. Blood-brain barrier models: Rationale for selection. Adv Drug Deliv Rev 2021; 176:113859. [PMID: 34246710 DOI: 10.1016/j.addr.2021.113859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023]
Abstract
Brain delivery is a broad research area, the outcomes of which are far hindered by the limited permeability of the blood-brain barrier (BBB). Over the last century, research has been revealing the BBB complexity and the crosstalk between its cellular and molecular components. Pathologically, BBB alterations may precede as well as be concomitant or lead to brain diseases. To simulate the BBB and investigate options for drug delivery, several in vitro, in vivo, ex vivo, in situ and in silico models are used. Hundreds of drug delivery vehicles successfully pass preclinical trials but fail in clinical settings. Inadequate selection of BBB models is believed to remarkably impact the data reliability leading to unsatisfactory results in clinical trials. In this review, we suggest a rationale for BBB model selection with respect to the addressed research question and downstream applications. The essential considerations of an optimal BBB model are discussed.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Schmidt RJ, Liang D, Busgang SA, Curtin P, Giulivi C. Maternal Plasma Metabolic Profile Demarcates a Role for Neuroinflammation in Non-Typical Development of Children. Metabolites 2021; 11:545. [PMID: 34436486 PMCID: PMC8400060 DOI: 10.3390/metabo11080545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Maternal and cord plasma metabolomics were used to elucidate biological pathways associated with increased diagnosis risk for autism spectrum disorders (ASD). Metabolome-wide associations were assessed in both maternal and umbilical cord plasma in relation to diagnoses of ASD and other non-typical development (Non-TD) compared to typical development (TD) in the Markers of Autism risk in Babies: Learning Early Signs (MARBLES) cohort study of children born to mothers who already have at least one child with ASD. Analyses were stratified by sample matrix type, machine mode, and annotation confidence level. Dimensionality reduction techniques were used [i.e, principal component analysis (PCA) and random subset weighted quantile sum regression (WQSRS)] to minimize the high multiple comparison burden. With WQSRS, a metabolite mixture obtained from the negative mode of maternal plasma decreased the odds of Non-TD compared to TD. These metabolites, all related to the prostaglandin pathway, underscored the relevance of neuroinflammation status. No other significant findings were observed. Dimensionality reduction strategies provided confirming evidence that a set of maternal plasma metabolites are important in distinguishing Non-TD compared to TD diagnosis. A lower risk for Non-TD was linked to anti-inflammatory elements, thereby linking neuroinflammation to detrimental brain function consistent with studies ranging from neurodevelopment to neurodegeneration.
Collapse
Affiliation(s)
- Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA;
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Stefanie A. Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.A.B.); (P.C.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.A.B.); (P.C.)
| | - Cecilia Giulivi
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves ADO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 2021; 148:105085. [PMID: 34052297 DOI: 10.1016/j.neuint.2021.105085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.
Collapse
Affiliation(s)
- Charles Elias Assmann
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Grazielle Castagna Cezimbra Weis
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Beatriz da Silva Rosa Bonadiman
- Post-Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Audrei de Oliveira Alves
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
28
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Pilecky M, Závorka L, Arts MT, Kainz MJ. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences - implications for systemic changes in trophic interactions. Biol Rev Camb Philos Soc 2021; 96:2127-2145. [PMID: 34018324 DOI: 10.1111/brv.12747] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
In recent decades, much conceptual thinking in trophic ecology has been guided by theories of nutrient limitation and the flow of elements, such as carbon and nitrogen, within and among ecosystems. More recently, ecologists have also turned their attention to examining the value of specific dietary nutrients, in particular polyunsaturated fatty acids (PUFA), among which the omega-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play a central role as essential components of neuronal cell membranes in many organisms. This review focuses on a new neuro-ecological approach stemming from the biochemical (mechanistic) and physiological (functional) role of DHA in neuronal cell membranes, in particular in conjunction with G-protein coupled receptors (GPCRs). We link the co-evolution of these neurological functions to metabolic dependency on dietary omega-3 PUFA. We outline ways in which deficiencies in dietary DHA supply may affect, cognition, vision, and behaviour, and ultimately, the biological fitness of consumers. We then review emerging evidence that changes in access to dietary omega-3 PUFA may ultimately have profound impacts on trophic interactions leading to potential changes in community structure and ecosystem functioning that, in turn, may affect the supply of DHA within and across ecosystems, including the supply for human consumption.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| | - Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| |
Collapse
|
30
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
31
|
Feng C, Li L, Li Q, Switzer K, Liu M, Han S, Zheng B. Docosahexaenoic acid ameliorates autoimmune inflammation by activating GPR120 signaling pathway in dendritic cells. Int Immunopharmacol 2021; 97:107698. [PMID: 33932699 DOI: 10.1016/j.intimp.2021.107698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Although the phenomenon that omega-3 polyunsaturated fatty acids (n-3 PUFAs) shows to have a beneficial effect in patients suffering from multiple sclerosis (MS) and other autoimmune diseases has been empirically well-documented, the molecular mechanisms that underline the anti-inflammatory effects of n-3 PUFAs are yet to be understood. In experimental autoimmune encephalomyelitis (EAE), a model for MS, we show that one of the underlying mechanisms by which dietary docosahexaenoic acid (DHA) exerts its anti-inflammatory effect is regulating the functional activities of dendritic cells (DCs). In DHA-treated EAE mice, DCs acquire a regulatory phenotype characterized by low expression of co-stimulatory molecules, decreased production of pro-inflammatory cytokines, and enhanced capability of regulatory T-cell induction. The effect of DHA on DCs is mediated by the lipid-sensing receptor, G protein-coupled receptor 120 (GPR120). A GPR120-specific small-molecule agonist could ameliorate the autoimmune inflammation by regulating DCs, while silencing GPR120 in DCs strongly increased the immunogenicity of DCs. Stimulation of GPR120 induces suppressor of cytokine signaling 3 (SOCS3) expression and down-regulates signal transducer and activator of transcription 3 (STAT3) phosphorylation, explaining the molecular mechanism for regulatory DC induction.
Collapse
Affiliation(s)
- Chunlei Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lingyun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kirsten Switzer
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shuhua Han
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| |
Collapse
|
32
|
Pifferi F, Laurent B, Plourde M. Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Front Physiol 2021; 12:645646. [PMID: 33868013 PMCID: PMC8044814 DOI: 10.3389/fphys.2021.645646] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Many prospective studies have shown that a diet enriched in omega-3 polyunsaturated fatty acids (n-3 PUFAs) can improve cognitive function during normal aging and prevent the development of neurocognitive diseases. However, researchers have not elucidated how n-3 PUFAs are transferred from the blood to the brain or how they relate to cognitive scores. Transport into and out of the central nervous system depends on two main sets of barriers: the blood-brain barrier (BBB) between peripheral blood and brain tissue and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) between the blood and the CSF. In this review, the current knowledge of how lipids cross these barriers to reach the CNS is presented and discussed. Implications of these processes in health and disease, particularly during aging and neurodegenerative diseases, are also addressed. An assessment provided here is that the current knowledge of how lipids cross these barriers in humans is limited, which hence potentially restrains our capacity to intervene in and prevent neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Benoit Laurent
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
33
|
Leclerc M, Dudonné S, Calon F. Can Natural Products Exert Neuroprotection without Crossing the Blood-Brain Barrier? Int J Mol Sci 2021; 22:ijms22073356. [PMID: 33805947 PMCID: PMC8037419 DOI: 10.3390/ijms22073356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Stéphanie Dudonné
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48697); Fax: +1-(418)-654-2761
| |
Collapse
|
34
|
Jia K, Feng Y, Brenna JT, Luo ZC, Zhao J, Li H, Li P, Zhang Q, Zhao Q, Dai Q, Zhong Y, Lambers T, Zhang H, Zhou H, Gao Y. Breast milk EPA associated with infant distractibility when EPA level is low. Nutrition 2021; 86:111143. [PMID: 33601118 DOI: 10.1016/j.nut.2021.111143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Dietary ω-3 polyunsaturated fatty acids (ω-3 PUFAs) may affect infants' executive function (EF), although it remains unclear whether this may be the effect of total ω-3 PUFAs or any specific ω-3 PUFA. We assessed the associations between ω-3 PUFAs in breast milk and EF in infants at 8 mo of age. METHODS Milk samples from the mothers of 120 breast-fed infants were collected at 42 d and 8 mo postpartum in Beijing, China. Infant's EF was evaluated by planning tasks and A-not-B tasks, including working memory, distractibility, and inhibition of prepotent response at age 8 mo. RESULTS Eicosapentaenoic acid (EPA) concentrations in breast milk were significantly higher at 42 d than 8 mo postpartum. Breast milk EPA levels at both 42 d (P = 0.037) and 8 mo (P = 0.005) postpartum were negatively associated with infant distractibility when EPA levels were low (< 0.05%). No significant association was observed for other ω-3 PUFAs with infant EF scores. CONCLUSIONS Our results suggest a beneficial effect of higher EPA in breast milk (improving infant's attention) when its levels are below a certain threshold.
Collapse
Affiliation(s)
- Keyu Jia
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Feng
- National Institute of Health Data Science at Peking University, Beijing, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - J Thomas Brenna
- Departments of Pediatrics, Chemistry, and Human Nutrition, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| | - Zhong-Cheng Luo
- Lunenfeld-Tanenbaum Research Institute, Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jing Zhao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Li
- Core Facility of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Peiqin Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyi Zhang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianyu Zhao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qi Dai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhong
- Mead Johnson Pediatric Nutrition Institute, Shanghai, China/Nijmegen, the Netherlands
| | - Tim Lambers
- Mead Johnson Pediatric Nutrition Institute, Shanghai, China/Nijmegen, the Netherlands
| | - Hong Zhang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, China
| | - Hong Zhou
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China.
| | - Ying Gao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
35
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
36
|
Na BR, Lee JH. In Vitro and In Vivo Digestibility of Soybean, Fish, and Microalgal Oils, and Their Influences on Fatty Acid Distribution in Tissue Lipid of Mice. Molecules 2020; 25:E5357. [PMID: 33212752 PMCID: PMC7697985 DOI: 10.3390/molecules25225357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022] Open
Abstract
The digestion rates of microalgal (docosahexaenoic acid, DHA, 56.8%; palmitic acid, 22.4%), fish (DHA, 10.8%; eicosapentaenoic acid, EPA, 16.2%), and soybean oils (oleic, 21.7%; linoleic acid, 54.6%) were compared by coupling the in vitro multi-step and in vivo apparent digestion models using mice. The in vitro digestion rate estimated based on the released free fatty acids content was remarkably higher in soybean and fish oils than in microalgal oil in 30 min; however, microalgal and fish oils had similar digestion rates at longer digestion. The in vivo digestibility of microalgal oil (91.49%) was lower than those of soybean (96.50%) and fish oils (96.99%). Among the constituent fatty acids of the diet oils, docosapentaenoic acid (DPA) exhibited the highest digestibility, followed by EPA, DHA, palmitoleic, oleic, palmitic, and stearic acid, demonstrating increased digestibility with reduced chain length and increased unsaturation degree of fatty acid. The diet oils affected the deposition of fatty acids in mouse tissues, and DHA concentrations were high in epididymal fat, liver, and brain of mice fed microalgal oil. In the present study, microalgal oil showed lower in vitro and in vivo digestibility, despite adequate DHA incorporation into major mouse organs, such as the brain and liver.
Collapse
Affiliation(s)
| | - Jeung-Hee Lee
- Department of Food and Nutrition, Daegu University, Gyeongsan-si 38453, Korea;
| |
Collapse
|
37
|
Peng S, Peng Z, Qin M, Huang L, Zhao B, Wei L, Ning J, Tuo QH, Yuan TF, Shi Z, Liao DF. Targeting neuroinflammation: The therapeutic potential of ω-3 PUFAs in substance abuse. Nutrition 2020; 83:111058. [PMID: 33360033 DOI: 10.1016/j.nut.2020.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Substance abuse is a chronic relapsing disorder that results in serious health and socioeconomic issues worldwide. Addictive drugs induce long-lasting morphologic and functional changes in brain circuits and account for the formation of compulsive drug-seeking and drug-taking behaviors. Yet, there remains a lack of reliable therapy. In recent years, accumulating evidence indicated that neuroinflammation was implicated in the development of drug addiction. Findings from both our and other laboratories suggest that ω-3 polyunsaturated fatty acids (PUFAs) are effective in treating neuroinflammation-related mental diseases, and indicate that they could exert positive effects in treating drug addiction. Thus, in the present review, we summarized and evaluated recently published articles reporting the neuroinflammation mechanism in drug addiction and the immune regulatory ability of ω-3 PUFAs. We also sought to identify some of the challenges ahead in the translation of ω-3 PUFAs into addiction treatment.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| |
Collapse
|
38
|
Rose J, Brian C, Pappa A, Panayiotidis MI, Franco R. Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Front Neurosci 2020; 14:536682. [PMID: 33224019 PMCID: PMC7674659 DOI: 10.3389/fnins.2020.536682] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
In the brain, mitochondrial metabolism has been largely associated with energy production, and its dysfunction is linked to neuronal cell loss. However, the functional role of mitochondria in glial cells has been poorly studied. Recent reports have demonstrated unequivocally that astrocytes do not require mitochondria to meet their bioenergetics demands. Then, the question remaining is, what is the functional role of mitochondria in astrocytes? In this work, we review current evidence demonstrating that mitochondrial central carbon metabolism in astrocytes regulates overall brain bioenergetics, neurotransmitter homeostasis and redox balance. Emphasis is placed in detailing carbon source utilization (glucose and fatty acids), anaplerotic inputs and cataplerotic outputs, as well as carbon shuttles to neurons, which highlight the metabolic specialization of astrocytic mitochondria and its relevance to brain function.
Collapse
Affiliation(s)
- Jordan Rose
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Christian Brian
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
39
|
Low YL, Pan Y, Short JL, Nicolazzo JA. Development and validation of a LC-MS/MS assay for quantifying the uptake of docosahexaenoic acid-d5 into mouse microglia. J Pharm Biomed Anal 2020; 191:113575. [DOI: 10.1016/j.jpba.2020.113575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
40
|
Bailes JE, Abusuwwa R, Arshad M, Chowdhry SA, Schleicher D, Hempeck N, Gandhi YN, Jaffa Z, Bokhari F, Karahalios D, Barkley J, Patel V, Sears B. Omega-3 fatty acid supplementation in severe brain trauma: case for a large multicenter trial. J Neurosurg 2020; 133:598-602. [PMID: 32413868 DOI: 10.3171/2020.3.jns20183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julian E Bailes
- 1Department of Neurosurgery, NorthShore University HealthSystem, Evanston
- 2University of Chicago, Pritzer School of Medicine, Chicago
| | - Raed Abusuwwa
- 3Department of Neurosurgery, John H. Stroger Jr. Hospital of Cook County, Chicago
- 4Department of Neurosurgery, Advocate Good Samaritan Hospital, Downers Grove
- 5Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, Illinois; and
| | - Mohammad Arshad
- 5Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, Illinois; and
| | - Shakeel A Chowdhry
- 1Department of Neurosurgery, NorthShore University HealthSystem, Evanston
- 2University of Chicago, Pritzer School of Medicine, Chicago
| | - Donald Schleicher
- 3Department of Neurosurgery, John H. Stroger Jr. Hospital of Cook County, Chicago
| | - Nicholas Hempeck
- 3Department of Neurosurgery, John H. Stroger Jr. Hospital of Cook County, Chicago
| | - Yogesh N Gandhi
- 3Department of Neurosurgery, John H. Stroger Jr. Hospital of Cook County, Chicago
| | - Zachary Jaffa
- 3Department of Neurosurgery, John H. Stroger Jr. Hospital of Cook County, Chicago
| | - Faran Bokhari
- 3Department of Neurosurgery, John H. Stroger Jr. Hospital of Cook County, Chicago
| | - Dean Karahalios
- 4Department of Neurosurgery, Advocate Good Samaritan Hospital, Downers Grove
| | - Jeanne Barkley
- 4Department of Neurosurgery, Advocate Good Samaritan Hospital, Downers Grove
| | - Vimal Patel
- 1Department of Neurosurgery, NorthShore University HealthSystem, Evanston
- 2University of Chicago, Pritzer School of Medicine, Chicago
| | - Barry Sears
- 6The Inflammation Research Foundation and Zone Labs Inc., Peabody, Massachusetts
| |
Collapse
|
41
|
Low Serum Eicosapentaenoic Acid Levels in Cryptogenic Stroke with Active Cancer. J Stroke Cerebrovasc Dis 2020; 29:104892. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.104892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022] Open
|
42
|
Hsu MC, Huang YS, Ouyang WC. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: possible mechanisms. Lipids Health Dis 2020; 19:159. [PMID: 32620164 PMCID: PMC7333328 DOI: 10.1186/s12944-020-01337-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Schizophrenia is a serious long-term psychotic disorder marked by positive and negative symptoms, severe behavioral problems and cognitive function deficits. The cause of this disorder is not completely clear, but is suggested to be multifactorial, involving both inherited and environmental factors. Since human brain regulates all behaviour, studies have focused on identifying changes in neurobiology and biochemistry of brain in schizophrenia. Brain is the most lipid rich organ (approximately 50% of brain dry weight). Total brain lipids is constituted of more than 60% of phospholipids, in which docosahexaenoic acid (DHA, 22:6n-3) is the most abundant (more than 40%) polyunsaturated fatty acid (PUFA) in brain membrane phospholipids. Results from numerous studies have shown significant decreases of PUFAs, in particular, DHA in peripheral blood (plasma and erythrocyte membranes) as well as brain of schizophrenia patients at different developmental phases of the disorder. PUFA deficiency has been associated to psychotic symptoms and cognitive deficits in schizophrenia. These findings have led to a number of clinical trials examining whether dietary omega-3 fatty acid supplementation could improve the course of illness in patients with schizophrenia. Results are inconsistent. Some report beneficial whereas others show not effective. The discrepancy can be attributed to the heterogeneity of patient population. METHODS In this review, results from recent experimental and clinical studies, which focus on illustrating the role of PUFAs in the development of schizophrenia were examined. The rationale why omega-3 supplementation was beneficial on symptoms (presented by subscales of the positive and negative symptom scale (PANSS), and cognitive functions in certain patients but not others was reviewed. The potential mechanisms underlying the beneficial effects were discussed. RESULTS Omega-3 fatty acid supplementation reduced the conversion rate to psychosis and improved both positive and negative symptoms and global functions in adolescents at ultra-high risk for psychosis. Omega-3 fatty acid supplementation could also improve negative symptoms and global functions in the first-episode patients with schizophrenia, but improve mainly total or general PANSS subscales in chronic patients. Patients with low PUFA (particularly DHA) baseline in blood were more responsive to the omega-3 fatty acid intervention. CONCLUSION Omega-3 supplementation is more effective in reducing psychotic symptom severity in young adults or adolescents in the prodromal phase of schizophrenia who have low omega-3 baseline. Omega-3 supplementation was more effective in patients with low PUFA baseline. It suggests that patients with predefined lipid levels might benefit from lipid treatments, but more controlled clinical trials are warranted.
Collapse
Affiliation(s)
- Mei-Chi Hsu
- Department of Nursing, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Yung-Sheng Huang
- College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Wen-Chen Ouyang
- Department of Geriatric Psychiatry, Jianan Psychiatric Center, Ministry of Health and Welfare, No.539, Yuzhong Rd., Rende Dist., Tainan City, 71742 Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, No.452, Huanqiu Rd. Luzhu Dist, Kaohsiung, 82144 Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708 Taiwan
| |
Collapse
|
43
|
Barr JL, Lindenau KL, Brailoiu E, Brailoiu GC. Direct evidence of bradycardic effect of omega-3 fatty acids acting on nucleus ambiguus. Neurosci Lett 2020; 735:135196. [PMID: 32585256 DOI: 10.1016/j.neulet.2020.135196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) an omega-3 polyunsaturated fatty acid, is an agonist of FFA1 receptor. DHA administration reduces the heart rate via unclear mechanisms. We examined the effect of DHA on neurons of nucleus ambiguus that provide the parasympathetic control of heart rate. DHA produced a dose-dependent increase in cytosolic Ca2+ concentration in cardiac-projecting nucleus ambiguus neurons; the effect was prevented by GW1100, a FFA1 receptor antagonist. DHA depolarized cultured nucleus ambiguus neurons via FFA1 activation. Bilateral microinjection of DHA into nucleus ambiguus produced bradycardia in conscious rats. Our results indicate that DHA decreases heart rate by activation of FFA1 receptor on cardiac-projecting nucleus ambiguus neurons.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Kristen L Lindenau
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, 901 Walnut St, Suite 901, Philadelphia, PA 19107, United States
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, 901 Walnut St, Suite 901, Philadelphia, PA 19107, United States.
| |
Collapse
|
44
|
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol 2020; 11:598. [PMID: 32581851 PMCID: PMC7296164 DOI: 10.3389/fphys.2020.00598] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Collapse
Affiliation(s)
- Hannah Chew
- Huntington Medical Research Institutes, Pasadena, CA, United States
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
45
|
White CJ, Lee J, Choi J, Chu T, Scafidi S, Wolfgang MJ. Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System. Mol Cell Biol 2020; 40:e00037-20. [PMID: 32123009 PMCID: PMC7189099 DOI: 10.1128/mcb.00037-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B-/-). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.
Collapse
Affiliation(s)
- Cory J White
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jieun Lee
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph Choi
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tiffany Chu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Islam A, Takeyama E, Mamun MA, Sato T, Horikawa M, Takahashi Y, Kikushima K, Setou M. Green Nut Oil or DHA Supplementation Restored Decreased Distribution Levels of DHA Containing Phosphatidylcholines in the Brain of a Mouse Model of Dementia. Metabolites 2020; 10:metabo10040153. [PMID: 32316172 PMCID: PMC7240946 DOI: 10.3390/metabo10040153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia is a major public health concern nowadays. Reduced levels of brain docosahexaenoic acid (DHA) and DHA-phosphatidylcholines (DHA-PCs) in dementia patients were reported previously. Recently, we have reported that supplementation of green nut oil (GNO) or DHA improves memory function and distribution levels of brain DHA in senescence accelerated mice P8 (SAMP8). GNO is extracted from Plukenetia volubilis seeds, and SAMP8 is a well-known model mouse of dementia. In this current study, we examined the results of GNO or DHA supplementation in the distribution levels of brain DHA-PCs in same model mouse of dementia using desorption electrospray ionization (DESI) mass spectrometry imaging (MSI). We observed significantly decreased distribution of brain DHA-PCs, PC (16:0_22:6), and PC (18:0_22:6) in SAMP8 mice compared to wild type mice, and GNO or DHA treatment restored the decreased distribution levels of PC (16:0_22:6) and PC (18:0_22:6) in the brain of SAMP8 mice. These results indicate that GNO or DHA supplementation can ameliorate the decreased distribution of brain DHA-PCs in dementia, and could be potentially used for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Emiko Takeyama
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women’s University, Taishido, Setagaya-ku, Tokyo 154-8533, Japan;
- Institute of Women’s Health Sciences, Showa Women’s University, Taishido, Setagaya-ku, Tokyo 154-8533, Japan
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: ; Tel.: +81-053-435-2086
| |
Collapse
|
47
|
Bazinet RP, Metherel AH, Chen CT, Shaikh SR, Nadjar A, Joffre C, Layé S. Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain Behav Immun 2020; 85:21-28. [PMID: 31278982 DOI: 10.1016/j.bbi.2019.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
The results of several meta-analyses suggest that eicosapentaenoic acid (EPA) supplementation is therapeutic in managing the symptoms of major depression. It was previously assumed that because EPA is extremely low in the brain it did not cross the blood-brain barrier and any therapeutic effects it exerted would be via the periphery. However, more recent studies have established that EPA does enter the brain, but is rapidly metabolised following entry. While EPA does not accumulate within the brain, it is present in microglia and homeostatic mechanisms may regulate its esterification to phospholipids that serve important roles in cell signaling. Furthermore, a variety of signaling molecules from EPA have been described in the periphery and they have the potential to exert effects within the brain. If EPA is confirmed to be therapeutic in major depression as a result of adequately powered randomized clinical trials, future research on brain EPA metabolism could lead to the discovery of novel targets for treating or preventing major depression.
Collapse
Affiliation(s)
- Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, North Bethesda, MD 20852, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Agnes Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
48
|
Hachem M, Belkouch M, Lo Van A, Picq M, Bernoud-Hubac N, Lagarde M. Brain targeting with docosahexaenoic acid as a prospective therapy for neurodegenerative diseases and its passage across blood brain barrier. Biochimie 2020; 170:203-211. [PMID: 32014503 DOI: 10.1016/j.biochi.2020.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is the main omega-3 polyunsaturated fatty acid in brain tissues necessary for common brain growth and function. DHA can be provided to the body through two origins: an exogenous origin, from direct dietary intakes and an endogenous one, from the bioconversion of the essential α-linolenic acid (ALA, 18:3n-3) in the liver. In humans, the biosynthesis of DHA from its precursor ALA is very low. A reduction in the cerebral amount of DHA is detected in patients suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Considering the vital functions of DHA for the brain, new methodologies to target the brain with DHA offers encouraging perceptions in the improvement of precautionary and therapeutic approaches for neurodegenerative diseases. The aim of the present review was to provide better understanding of the cerebral uptake of DHA in different form including free fatty acids, Lysophosphatidylcholines LysoPC-DHA as well as structured phospholipids. First, we explored the special structure of the blood-brain barrier BBB, BBB being a physical and metabolic barrier with restrictive properties. Then, we discussed the incorporation of DHA into the membrane phospholipids of the brain, the neuroprotective and therapeutic effect of DHA for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France.
| | - Mounir Belkouch
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France
| | - Amanda Lo Van
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France
| | - Madeleine Picq
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France
| | | | - Michel Lagarde
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France
| |
Collapse
|
49
|
Low YL, Jin L, Morris ER, Pan Y, Nicolazzo JA. Pioglitazone Increases Blood-Brain Barrier Expression of Fatty Acid-Binding Protein 5 and Docosahexaenoic Acid Trafficking into the Brain. Mol Pharm 2020; 17:873-884. [PMID: 31944767 DOI: 10.1021/acs.molpharmaceut.9b01131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain levels of docosahexaenoic acid (DHA), an essential cognitively beneficial fatty acid, are reduced in Alzheimer's disease (AD). We have demonstrated in an AD mouse model that this is associated with reduced blood-brain barrier (BBB) transport of DHA and lower expression of the key DHA-trafficking protein, fatty acid-binding protein 5 (FABP5). This study focused on assessing the impact of activating peroxisome proliferator-activated receptor (PPAR) isoforms on FABP5 expression and function at the BBB. Using immortalized human brain endothelial (hCMEC/D3) cells, a 72 h treatment with the PPARα agonist clofibrate (100 μM), and PPARβ/δ agonists GW0742 (1 μM) and GW501506 (0.5 μM), did not affect FABP5 protein expression. In contrast, the PPARγ agonists rosiglitazone (5 μM), pioglitazone (25 μM), and troglitazone (1 μM) increased FABP5 protein expression by 1.15-, 1.18-, and 1.24-fold in hCMEC/D3 cells, respectively, with rosiglitazone and pioglitazone also increasing mRNA expression of FABP5. In line with an increase in FABP5 expression, pioglitazone increased 14C-DHA uptake into hCMEC/D3 cells 1.20- to 1.33-fold over a 2 min period, and this was not associated with increased expression of membrane transporters involved in DHA uptake. Furthermore, treating male C57BL/6J mice with pioglitazone (40 mg/kg/day for 7 days) led to a 1.79-fold increase in BBB transport of 14C-DHA over 1 min, using an in situ transcardiac perfusion technique, which was associated with a 1.82-fold increase in brain microvascular FABP5 protein expression. Overall, this study demonstrated that PPARγ can regulate FABP5 at the BBB and facilitate DHA transport across the BBB, important in restoring brain levels of DHA in AD.
Collapse
Affiliation(s)
- Yi Ling Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Elonie R Morris
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
50
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|