1
|
Shin EJ, Nguyen BT, Jeong JH, Hoai Nguyen BC, Tran NKC, Sharma N, Kim DJ, Nah SY, Lichtstein D, Nabeshima T, Kim HC. Ouabain inhibitor rostafuroxin attenuates dextromethorphan-induced manic potential. Food Chem Toxicol 2021; 158:112657. [PMID: 34740715 DOI: 10.1016/j.fct.2021.112657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Dextromethorphan (DM) abuse produces mania-like symptoms in humans. ERK/Akt signaling activation involved in manic potential can be attenuated by the inhibition of ouabain-like cardiac steroids. In this study, increased phosphorylations of ERK/Akt and hyperlocomotion induced by DM (30 mg/kg, i.p./day × 7) were significantly protected by the ouabain inhibitor rostafuroxin (ROSTA), suggesting that DM induces the manic potential. ROSTA significantly attenuated DM-induced protein kinase C δ (PKCδ) phosphorylation, GluN2B (i.e., MDA receptor subunit) expression, and phospho-PKCδ/GluN2B interaction. DM instantly upregulated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent system. However, DM reduced Nrf2 nuclear translocation, Nrf2 DNA binding activity, γ-glutamylcysteine mRNA expression, and subsequent GSH/GSSG level and enhanced oxidative parameters following 1-h of administration. ROSTA, PKCδ inhibitor rottlerin, and GluN2B inhibitor traxoprodil significantly attenuated DM-induced alterations in Nrf2-related redox parameters and locomotor activity induced by DM in wild-type mice. Importantly, in PKCδ knockout mice, DM failed to alter the above parameters. Further, ROSTA and traxoprodil also failed to enhance PKCδ depletion effect, suggesting that PKCδ is a critical target for the anti-manic potential of ROSTA or GluN2B antagonism. Our results suggest that ROSTA inhibits DM-induced manic potential by attenuating ERK/Akt activation, GluN2B/PKCδ signalings, and Nrf2-dependent system.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Bao-Chau Hoai Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - David Lichtstein
- Walter and Greta Stiel Chair in Heart Studies, Dean, Faculty of Medicine 2013-2017, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Mai HN, Pham DT, Chung YH, Sharma N, Cheong JH, Yun J, Nah SY, Jeong JH, Gen Lei X, Shin EJ, Nabeshima T, Kim HC. Glutathione peroxidase-1 knockout potentiates behavioral sensitization induced by cocaine in mice via σ-1 receptor-mediated ERK signaling: A comparison with the case of glutathione peroxidase-1 overexpressing transgenic mice. Brain Res Bull 2020; 164:107-120. [PMID: 32822804 DOI: 10.1016/j.brainresbull.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
We demonstrated that the gene of glutathione peroxidase-1 (GPx-1), a major antioxidant enzyme, is a potential protectant against the neurotoxicity and conditioned place preference induced by cocaine. Because the sigma (σ)-1 receptor is implicated in cocaine-induced drug dependence, we investigated whether the GPx-1 gene modulates the σ-1 receptor in the behavioral sensitization induced by cocaine. Cocaine-induced behavioral sensitization was more pronounced in GPx-1 knockout (KO) than wild-type (WT) mice and was less pronounced in GPx-1 overexpressing transgenic (GPx-1 TG) than non-TG mice. Cocaine treatment significantly enhanced the oxidative burden and reduced the GSH levels in the striatum of WT, GPx-1 KO, and non-TG mice but not in that of GPx-1 TG mice. In addition, cocaine significantly increased the nuclear translocation, its DNA binding activity of nuclear factor erythroid-2-related factor 2 (Nrf2) as well as the mRNA expression of γ-glutamylcysteine (GCL). The genetic depletion of GPx-1 inhibited the Nrf2-related glutathione system, whereas the genetic overexpression of GPx-1 activated this system against behavioral sensitization. BD1047, a σ-1 receptor antagonist, and U0126, an ERK inhibitor significantly induced the Nrf2-related antioxidant potential against behavioral sensitization. Unlike BD1047, U0126 did not affect the cocaine-induced σ-1 receptor immunoreactivity, suggesting that the σ-1 receptor is an upstream molecule for ERK signaling. Importantly, BD1047 and U0126 failed to affect the σ-1 receptor immunoreactivity and ERK phosphorylation induced by cocaine in GPx-1 TG mice. Our results suggest that GPx-1 is a critical mediator for the attenuation of cocaine-induced behavioral sensitization via modulating σ-1 receptor-mediated ERK activation by the induction of the Nrf2-related system.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Chungbuk, 28160, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, United States
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Saavedra JS, Garrett PI, Honeycutt SC, Peterson AM, White JW, Hillhouse TM. Assessment of the rapid and sustained antidepressant-like effects of dextromethorphan in mice. Pharmacol Biochem Behav 2020; 197:173003. [DOI: 10.1016/j.pbb.2020.173003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023]
|
4
|
Pham DT, Chung YH, Mai HN, Sharma N, Yun J, Kim HJ, Cheong JH, Jeong JH, Kim DJ, Shin EJ, Kim HC. Glutathione peroxidase-1 gene rescues cocaine-induced conditioned place preference in mice by inhibiting σ-1 receptor expression. Clin Exp Pharmacol Physiol 2019; 46:791-797. [PMID: 31332816 DOI: 10.1111/1440-1681.13140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate whether the glutathione peroxidase-1 gene (GPx-1) affects cocaine-induced conditioned place preference (CPP) using a mouse model. Cocaine-induced CPP was accompanied by an increase in the level of σ-1 receptor in the nucleus accumbens (NAc). This phenomenon was more pronounced in the GPx-1 gene knockout (GPx-1 KO) than in wild type (WT) mice. In contrast, the CPP and expression of σ-1 receptor were much less pronounced in GPx-1-overexpressing transgenic (GPx-1 TG) mice than non-transgenic (non-TG) mice. Treatment of the mice with BD1047, a σ-1 receptor antagonist, significantly attenuated both cocaine-induced CPP and c-Fos-immunoreactivity (c-Fos-IR) in WT and GPx-1 KO mice, although the effects were more evident in the latter group. Despite the protective effects of BD1047 on cocaine-induced CPP and c-Fos in non-TG mice, there were no additional protective effects in cocaine-treated GPx-1 TG mice, indicating that the σ-1 receptor is a critical target for GPx-1-mediated psychoprotective activity. Overall, our results suggest that GPx-1 attenuates cocaine-induced CPP via inhibition of σ-1 receptor expression.
Collapse
Affiliation(s)
- Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Chungbuk, Korea
| | - Hee Jin Kim
- Department of Pharmacy, Sahmyook University, Seoul, Korea
| | | | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| |
Collapse
|
5
|
Mai HN, Chung YH, Shin EJ, Jeong JH, Jung TW, Sharma N, Lei XG, Nah SY, Jang CG, Kim DJ, Yang BK, Kim HC. Overexpression of glutathione peroxidase-1 attenuates cocaine-induced reproductive dysfunction in male mice by inhibiting nuclear factor κB. Chem Biol Interact 2019; 307:136-146. [PMID: 31059705 DOI: 10.1016/j.cbi.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Since reproductive toxicity is associated with oxidative stress, nuclear factor κB (NFκB), a redox-sensitive transcription factor, may be involved in the reproductive dysfunction induced by the abusive drug, such as cocaine. In the present study, we investigated whether NFκB mediates cocaine-induced reproductive dysfunction in male mice, and whether glutathione peroxidase (GPx)-1, a well-known enzymatic antioxidant, modulates NFκB activity to affect this reproductive dysfunction. Cocaine treatment significantly increased nuclear translocation of NFκB and its DNA binding activity in the testis of mice. Treatment with cocaine resulted in a significant increase in sperm abnormality, and in significant decreases in the sperm viability and sperm level. Furthermore, cocaine significantly reduced hypothalamic gonadotropin-releasing-hormone expression and plasma testosterone level. These alterations were more pronounced in the GPx-1 knockout (GPx-1 KO) than wild type (WT) mice, and they were less pronounced in GPx-1 overexpressing transgenic (GPx-1 TG) than in non-transgenic (non-TG) mice. Pyrrolidine dithiocarbamate (PDTC), an NFκB inhibitor, was more effective in attenuating cocaine-induced reproductive toxicity in GPx-1 KO than in WT mice. Although PDTC treatment was also significantly protective against the reproductive toxicity in non-TG mice, PDTC did not show additional positive effects against the protective potential mediated by GPx-1 overexpression in mice. Therefore, our results suggest that GPx-1 gene is a protective factor in response to reproductive dysfunction induced by cocaine in male mice, and that NFκB is a critical mediator of protective activity of GPx-1 gene in our experimental conditions.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Boo-Keun Yang
- Department of Animal Resource Science, College of Animal Life Science, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Thanoi S, Roboon J, Nudmamud-Thanoi S. Recovery effect of pre-germinated brown rice on the changes of sperm quality, testicular structure and androgen receptor expression in a rat model of drug addiction. Int J Med Sci 2018; 15:921-928. [PMID: 30008605 PMCID: PMC6036098 DOI: 10.7150/ijms.26076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/27/2018] [Indexed: 11/21/2022] Open
Abstract
Drug addiction is reported to have adverse effects in male reproduction. Dextromethorphan (DXM) administration was used in this study as a model of addiction in rats, and various treatments including the use of pre-germinated brown rice (PGBR) were investigated for their effects on the changes of sperm quality, testicular structure and androgen receptor (AR) expressions in rats receiving DXM. The results demonstrated that these animals showed significant reduction in all parameters of sperm quality, an increase in abnormal testicular structure and decreased androgen receptor expression in spermatogenic, Sertoli and Leydig cells. However, different effects of the treatments applied in this study were observed with the greatest recovery effect from treatment with PGBR. Sperm motility and sperm concentration reverted to normal after treatment with PGBR for 60 days. Moreover, all parameters of testicular structure also returned to normal after 60 days of PGBR treatment, as well as AR expression in Sertoli and Leydig cells. Therefore, we have demonstrated that PGBR treatment can reverse the changes in sperm quality, testicular structure and AR expression in addicted animals and PGBR may be a novel therapeutic strategy for the treatment of drug addiction.
Collapse
Affiliation(s)
- Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jureepon Roboon
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
7
|
Katz JL, Hiranita T, Hong WC, Job MO, McCurdy CR. A Role for Sigma Receptors in Stimulant Self-Administration and Addiction. Handb Exp Pharmacol 2017; 244:177-218. [PMID: 28110353 DOI: 10.1007/164_2016_94] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sigma receptors (σRs) are structurally unique proteins that function intracellularly as chaperones. Historically, σRs have been implicated as modulators of psychomotor stimulant effects and have at times been proposed as potential avenues for modifying stimulant abuse. However, the influence of ligands for σRs on the effects of stimulants, such as cocaine or methamphetamine, in various preclinical procedures related to drug abuse has been varied. The present paper reviews the effects of σR agonists and antagonists in three particularly relevant procedures: stimulant discrimination, place conditioning, and self-administration. The literature to date suggests limited σR involvement in the discriminative-stimulus effects of psychomotor stimulants, either with σR agonists substituting for the stimulant or with σR antagonists blocking stimulant effects. In contrast, studies of place conditioning suggest that administration of σR antagonists or down-regulation of σR protein can block the place conditioning induced by stimulants. Despite place conditioning results, selective σR antagonists are inactive in blocking the self-administration of stimulants. However, compounds binding to the dopamine transporter and blocking σRs can selectively decrease stimulant self-administration. Further, after self-administration of stimulants, σR agonists are self-administered, an effect not seen in subjects without that specific history. These findings suggest that stimulants induce unique changes in σR activity, and once established, the changes induced create redundant, and dopamine independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of those pathways, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.
Collapse
Affiliation(s)
- Jonathan L Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA.
| | - Takato Hiranita
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA
| | - Weimin C Hong
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
| | - Martin O Job
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA
| | - Christopher R McCurdy
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| |
Collapse
|
8
|
Garay RP, Grossberg GT. AVP-786 for the treatment of agitation in dementia of the Alzheimer's type. Expert Opin Investig Drugs 2016; 26:121-132. [PMID: 27936965 DOI: 10.1080/13543784.2017.1267726] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Agitation is common and distressing in patients with Alzheimer-type dementia, but safe, effective treatments remain elusive. Psychological treatments are first-line options, but they have limited efficacy. Off-label psychotropic medications are frequently used, but they also have limited effectiveness, and their use may have harmful side effects, including death. Areas covered: This review discusses the history leading to the conception of AVP-786 (deuterated (d6)-dextromethorphan/quinidine), its pharmacokinetic and pharmacodynamic profiles and safety issues, together with an overview of recent clinical trials. Data were found in the medical literature, in US and EU clinical trial registries and in information provided by the manufacturer. Expert opinion: AVP-786 is one of six investigational compounds in recent phase III clinical development for agitation in Alzheimer disease (AD). Quinidine and deuteration appear to prolong dextromethorphan's plasma half-life and facilitate brain penetration. The FDA granted fast-track designation to AVP-786 and allowed use of data generated on dextromethorphan-quinidine (AVP-923, Nuedexta®) for regulatory filings. AVP-923 reduced agitation in AD and was well tolerated in a phase II RCT that included more than 200 patients. A phase III clinical development program of AVP-786 for AD agitation was recently initiated. This program is expected to start generating results in July 2018.
Collapse
Affiliation(s)
- Ricardo P Garay
- a Geriatric Psychiatry, Department of Psychiatry and Behavioural Neuroscience , Pharmacology and Therapeutics, Craven , Villemoisson-sur-Orge , France
| | - George T Grossberg
- b Department of Psychiatry and Behavioural Neuroscience , St Louis University School of Medicine , St Louis , MO , USA
| |
Collapse
|
9
|
LEVER JOHNR, FERGASON-CANTRELL EMILYA, WATKINSON LISAD, CARMACK TERRYL, LORD SARAHA, XU RONG, MILLER DENNISK, LEVER SUSANZ. Cocaine occupancy of sigma1 receptors and dopamine transporters in mice. Synapse 2016; 70:98-111. [PMID: 26618331 PMCID: PMC4724290 DOI: 10.1002/syn.21877] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Activation of sigma1 (σ1) receptors contributes to the behavioral and toxic effects of (-)-cocaine. We studied a key step, the ability of (-)-cocaine to occupy σ1 receptors in vivo, using CD-1(®) mice and the novel radioligand [(125) I]E-N-1-(3'-iodoallyl)-N'-4-(3",4"-dimethoxyphenethyl)-piperazine ([(125) I]E-IA-DM-PE-PIPZE). (-)-Cocaine displayed an ED50 of 68 μmol/kg for inhibition of specific radioligand binding in whole brain, with values between 73 and 80 μmol/kg for heart, lung, and spleen. For comparison, an ED50 of 26 μmol/kg for (-)-cocaine occupancy of striatal dopamine transporters (DAT) was determined by inhibition of [(125) I]3β-(4-iodophenyl)tropan-2β-carboxylic acid isopropyl ester ([(125) I]RTI-121) binding. A chief finding is the relatively small potency difference between (-)-cocaine occupancy of σ1 receptors and the DAT, although the DAT occupancy is likely underestimated. Interactions of (-)-cocaine with σ1 receptors were assessed further using [(125) I]E-IA-DM-PE-PIPZE for regional cerebral biodistribution studies and quantitative ex vivo autoradiography of brain sections. (-)-Cocaine binding to cerebral σ1 receptors proved directly proportional to the relative site densities known for the brain regions. Nonradioactive E-IA-DM-PE-PIPZE gave an ED50 of 0.23 μmol/kg for occupancy of cerebral σ1 receptors, and a 3.16 μmol/kg (i.p.) dose attenuated (-)-cocaine-induced locomotor hyperactivity by 30%. This effect did not reach statistical significance, but suggests that E-IA-DM-PE-PIPZE is a probable σ1 receptor antagonist. As groundwork for the in vivo studies, we used standard techniques in vitro to determine ligand affinities, site densities, and pharmacological profiles for the σ1 and σ2 receptors expressed in CD-1(®) mouse brain.
Collapse
Affiliation(s)
- JOHN R. LEVER
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - EMILY A. FERGASON-CANTRELL
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - LISA D. WATKINSON
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - TERRY L. CARMACK
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - SARAH A. LORD
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - RONG XU
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211
| | - DENNIS K. MILLER
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri 65211
- Center for Translational Neuroscience, University of Missouri, Columbia, Missouri 65211
| | - SUSAN Z. LEVER
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211
- MU Research Reactor Center, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
10
|
Nguyen L, Thomas KL, Lucke-Wold BP, Cavendish JZ, Crowe MS, Matsumoto RR. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol Ther 2016; 159:1-22. [PMID: 26826604 DOI: 10.1016/j.pharmthera.2016.01.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dextromethorphan (DM) is a commonly used antitussive and is currently the only FDA-approved pharmaceutical treatment for pseudobulbar affect. Its safety profile and diverse pharmacologic actions in the central nervous system have stimulated new interest for repurposing it. Numerous preclinical investigations and many open-label or blinded clinical studies have demonstrated its beneficial effects across a variety of neurological and psychiatric disorders. However, the optimal dose and safety of chronic dosing are not fully known. This review summarizes the preclinical and clinical effects of DM and its putative mechanisms of action, focusing on depression, stroke, traumatic brain injury, seizure, pain, methotrexate neurotoxicity, Parkinson's disease and autism. Moreover, we offer suggestions for future research with DM to advance the treatment for these and other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Linda Nguyen
- Department of Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Kelan L Thomas
- College of Pharmacy, Touro University California, Vallejo, CA 94592, USA
| | - Brandon P Lucke-Wold
- Graduate Program in Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - John Z Cavendish
- Graduate Program in Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Molly S Crowe
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - Rae R Matsumoto
- Department of Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; College of Pharmacy, Touro University California, Vallejo, CA 94592, USA.
| |
Collapse
|
11
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
12
|
Nguyen L, Robson MJ, Healy JR, Scandinaro AL, Matsumoto RR. Involvement of sigma-1 receptors in the antidepressant-like effects of dextromethorphan. PLoS One 2014; 9:e89985. [PMID: 24587167 PMCID: PMC3938562 DOI: 10.1371/journal.pone.0089985] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/25/2014] [Indexed: 12/30/2022] Open
Abstract
Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1) receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047) were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP) 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [(3)H](+)-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors.
Collapse
Affiliation(s)
- Linda Nguyen
- Department of Basic Pharmaceutical Sciences, and Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Matthew J. Robson
- Department of Basic Pharmaceutical Sciences, and Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jason R. Healy
- Department of Basic Pharmaceutical Sciences, and Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Anna L. Scandinaro
- Department of Basic Pharmaceutical Sciences, and Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Rae R. Matsumoto
- Department of Basic Pharmaceutical Sciences, and Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
13
|
Lisak RP, Nedelkoska L, Benjamins JA. Effects of dextromethorphan on glial cell function: Proliferation, maturation, and protection from cytotoxic molecules. Glia 2014; 62:751-62. [DOI: 10.1002/glia.22639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Robert P. Lisak
- Department of Neurology; Wayne State University School of Medicine; Detroit Missouri
- Department of Immunology/Microbiology; Wayne State University School of Medicine; Detroit Missouri
| | - Liljana Nedelkoska
- Department of Neurology; Wayne State University School of Medicine; Detroit Missouri
| | - Joyce A. Benjamins
- Department of Neurology; Wayne State University School of Medicine; Detroit Missouri
- Department of Immunology/Microbiology; Wayne State University School of Medicine; Detroit Missouri
| |
Collapse
|
14
|
Park JY, Shin YG, Kim KW, Kwon YB, Yoon SH. Syntheses of 7-Substituted α-Cyperone Derivatives for Selective Sigma-1 Receptor over Cannabinoid-1 Receptor Binding Affinities. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.11.3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|